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Abstract

It is proved that computing enclosures of solutions of linear interval equations with
overestimation bounded by a polynomial in the system size is NP-hard.
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1 Introduction

Solving linear interval equations usually means computing enclosures. For a system of
linear interval equations

Alz = ! (1.1)

(A” square), enclosure is defined as an interval vector [y,7] satisfying
X C[y,7)
where X is the solution set:
X = {z; Az =bfor some A € A, bec b}

Various enclosure methods can be found in Alefeld and Herzberger [1] or Neumaier [7].
If Al is regular (i.e., each A € Al is nonsingular), then there exists the narrowest (or:
optimal) enclosure [z, T] given by

ZT; = maxx;
X

for each i. Computing [z, 7] was proved to be NP-hard (Rohn and Kreinovich [12]; also,
Kreinovich, Lakeyev and Noskov [6] for the rectangular case). In the main result of this
paper we show that computing enclosures with overestimation bounded by a polynomial
in the system size is NP-hard. The result holds true even for a very restricted class of
systems (1.1) with Al = [A. — A, A. + A] having nondegenerate interval coefficients
in one row only and satisfying o(|AZ'|A) = 0. Hence, the problem of computing
sufficiently narrow enclosures turns out to be more difficult than previously believed.
Three case studies illustrate some implications of the result.

2 Preliminaries

A real symmetric n x n matrix A = (a;;) is called an M C-matrix [10] if it is of the
form

) =n if 1=
il e {0, —1} if i
(., = 1,...,n). In the proof of the main theorem we shall essentially utilize the
following result [11, Corollary 7] concerning the norm
[Al[ecn = max{[|Az|ls; [le]lc = 1}

(where ||z][s = ¥, |z]; and ||z||oc = max; |z;]; see Golub and van Loan [3, p. 15]):

Proposition 1 Computing |A||1 is NP-hard for MC-matrices.



Next we introduce a class of systems (1.1) of a special form. For each rational
number ¢ > 0, let us denote by H. the family of systems of linear interval equations

Alz = !
with A” of the form o
1 [—ee’,ce
AI:(O [ o ]), (2.1)

where A is an n x n MC-matrix (n arbitrary, n > 1) and e = (1, 1,..., )T € R" (i.e.,
Al is (n+1)x(n+1)), and

V= ( s ) 22)

for some (but arbitrary) rational 5 > 0. If we write (2.1) as

Al =[A.— A A+ A

1 of
(05

is symmetric positive definite [10, p. 795], the radius matrix

0 eel
s=(0 %)

has nonzero coefficients in the first row only, and

-1 . 0 €€T

then

hence

o(|AZHA) = 0. (2.4)

Thus an interval matrix (2.1) is strongly regular (i.e. o(|AZ'|A) < 1, cf. [7]); problems
with strongly regular interval matrices have been usually considered "tractable”.

In order to be able to formulate a unifying complexity result, we introduce the
following concept: enclosure algorithm is an algorithm which for each system A’z = b’
with rational data (and square A’)in a finite number of steps either computes a rational
enclosure, or fails (i.e., issues an error message). Failure of an enclosure algorithm may
be caused by various reasons: 1) no enclosure exists since the solution set is unbounded
(in case of a singular A'), 2) the algorithm cannot be continued (e.g. in case of the
interval Gaussian algorithm), 3) the algorithm works under some condition only (e.g.,
strong regularity), 4) a prescribed number of steps has been reached, etc.



3 Main result

Theorem 1 If P # NP holds, then each polynomial-time enclosure algorithm has the
following property: for each rational € > 0,

o cither it fails for some system in H.,

o or for each rational a > 0 and each integer k > 0 there exists a system of size
n > 2 in H. for which the enclosure [y, 5] computed by the algorithm satisfies

glggl—ank<f1—l—omk§yl. (3.1)

Comments. 1) P and NP are the well-known complexity classes. The conjecture
that P#£NP, although unproved, is widely believed to be true (cf. Garey and Johnson
[2]). 2) If the conjecture holds true, then each polynomial-time enclosure algorithm
which works for at least one family H. may produce arbitrarily large overestimations
(3.1); hence, no (even arbitrarily bad) accuracy can be guaranteed to be achievable by
a polynomial-time enclosure algorithm.

Proof. Assume to the contrary that there exists a polynomial-time enclosure algo-
rithm, rational numbers ¢ > 0, @ > 0 and an integer & > 0 such that for each system
in H. the algorithm computes an enclosure [y,7] satisfying either

k
Ty —an” <y,

or
Y < T1+ an®

where n is the system size. Let A be an arbitrary MC-matrix of size m. Let us
construct an (m 4 1) x (m + 1) interval matrix

;[ 1 [—eet g€l
ve(d

and an (m + 1)-dimensional interval vector

I 0
’ ‘( [—%e&e])’

v=a(m+1),

where

and apply the algorithm to the system
Alz =o' (3.2)

(which obviously belongs to H.) to compute an enclosure [y,y] which, according to the
assumption, satisfies either

-7y <y, (3.3)



or

U < T+ (3.4)
This can be done in polynomial time. We shall prove that
I _
[Allccr = ;mm{—gpyl} (3.5)
holds, where [...] denotes the integer part. Hence, ||A|[cc1 can be computed in poly-

nomial time; but since this is an NP-hard problem (Proposition 1), P=NP will follow.
To prove (3.5), first observe that the system (3.2) can be written as

z1 + [—eel eel )’ =0,

—le < Al < le,
€ €
where ' = (xq,...,2,,)7. Hence
7 = max{cel|2’; e <A < le}
€ €

= ymax{||e"||1; —e < 472" < ¢}
= ymax{|[Ae”|s; —e <" < ¢}
_ ’ymaX{HAII/'WHl; HQ;H/HOO = 1}

= l[Alloon

and in a quite similar way,

Hence from (3.3) and (3.4) we obtain that either
1
- Y, < HAHOOJ +1
-

or 1
~91 < [[Allson 1
v

holds, in both the cases
L. _
;mm{—glayl} <Aoo + 1. (3.6)
But since [y ,7,] encloses [z, 7], from y, < z;, 7y <7, we have
L. _
[Alloon < —min{—y,, 7}
v
which together with (3.6) gives

L. _
[Allocx = 2 min{=y,, 7} < Al + 1. (3.7)



However, the number

[Allea = max ([ Aals = max{| Az @, € (=11} for each j}

is integer for an MC-matrix A (which is integer by definition), hence from (3.7) we
finally obtain

I . _
HAHOOJ: _mln{_gpyl} 3
>

which is (3.5). Hence, ||A|[cc1 can be computed in polynomial time for an M C-matrix
A, which in view of Proposition 1 implies that P=NP. This concludes the proof by
contradiction. O

4 Application 1: interval Gaussian algorithm

For each rational ¢ > 0, the interval Gaussian algorithm with partial pivoting [1], [7]
(which is polynomial-time) is performable for each system in H. since all the pivots are
real and nonzero due to the special form of the system matrix (2.1). Hence, if P#NP,
then arbitrarily large overestimations (3.1) may occur for arbitrarily narrow system
matrices (2.1).

5 Application 2: explicit bounds

For a system (1.1) with a strongly regular interval matrix A = [A, — A, A. + A] and
a right-hand side b = [b, — &, b. + 8], the classical approach using Neumann series (or
the Oettli-Prager inequality) gives

e —z.| < d
for each z in the solution set X, where x. = AZ'b. and
d=(I—[AZNA) AT (Alre] +06).

This enables us to construct the following polynomial-time enclosure algorithm: if
IlAZYAllL < 1, then the enclosure is [z. — d,z. + d], otherwise it fails. In view of
(2.3), the algorithm works for each H. with ¢ € (0,1). Hence, if P#NP, then for each
rational ¢ € (0,1), @ > 0 and each integer k& > 0 there exists a system (1.1) of size
n > 2 with max;; A;; = ¢ for which

|z — x|+ an® < d

holds for each # € X. Thus, an overestimation in d may get arbitrarily large for
arbitrarily narrow interval matrices.



6 Application 3: preconditioning

For a system (1.1) with a strongly regular interval matrix A!, the system matrix of the
preconditioned system

AT A e = ATN (6.1)

(multiplication performed in interval arithmetic) is regular and the optimal enclosure
[z, 7] for (6.1), which encloses [z,7] (cf. [7]), can be computed in polynomial time
(Hansen [4], Rohn [9]). Hence, we can construct the following polynomial-time enclo-
sure algorithm for (1.1): if |[JAZ'|A||; < 1, then the enclosure is [z, T], otherwise it fails.
Due to (2.3), the algorithm works for each H., ¢ € (0,1). Hence the main result implies
that under the assumption P#NP, the optimal enclosure [z, 7] of the preconditioned
system (6.1) may overestimate the optimal enclosure [z, 7] of the original system (1.1)
by an arbitrary prescribed value even for arbitrarily narrow system matrices.

7 Concluding remark

Theorem 1 is a worst-case result which relies heavily on the fact that the right-hand side
(2.2) of each system in H. has a zero midpoint. As a result, the solution set X stretches
into all the 2" orthants. This is not a typical situation. In practical computations the
solution set is often a part of a single orthant; in this case the optimal enclosure [z, T]
can be computed by a linear programming technique in polynomial time (Oettli [8],

Khachiyan [5]).

Acknowledgment. [ am indebted to Prof. M. Fiedler for his comments on an
earlier draft of this paper that resulted in an essential improvement of the main theo-
rem.
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