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Abstract

A �nite discrete recurrent neural network� working in parallel computation mode� is
considered a language acceptor� Such neural acceptors recognize only regular lan�
guages� Both� the size of neural acceptors 	i�e�� the number of neurons
 and their
descriptional complexity 	i�e�� the number of bits in the neural acceptor representa�
tion
 are studied� It is shown that any regular language given by a regular expression
of length n is recognized by a neural acceptor with �	n
 neurons� Further� it is proved
that this network size is� in the worst case� optimal� Then� two specialized construc�
tions of neural acceptors of the optimal descriptional complexity �	n
 for a single n�bit

string recognition are described� They both require O	n
�

� 
 neurons and either O	n


connections with constant weights or O	n
�

� 
 edges with weights of the O	�
p
n
 size�

Finally� the concept of Hop�eld languages is introduced by means of so�called Hop�eld
acceptors 	i�e�� of neural networks with symmetric weights
 and several properties are
mentioned�
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� Introduction

One less commonly studied task in neurocomputing 
��� 
��� 
�� which we will be dealing
with is to compare the computational power of neural networks with the traditional
�nite models of computation such as recognizers of regular languages� It appears that a
�nite discrete recurrent neural network can be used for language recognition in parallel
mode� at each time step one bit of an input string is presented to the network via an
input neuron and an output neuron signals whether the input string that has been read
so far belongs to the relevant language� In this way� a language can be recognized by
a so�called neural acceptor� It is clear that the neural acceptors recognize only regular
languages 
���
A similar de�nition of neural acceptors appeared in 
��� 
�� where the problem of

language recognition by neural networks has been explored in the context of �nite
automata� It was shown in 
�� that every m�state �nite automaton can be realized as

a discrete neural net with O	m
�

� 
 neurons and that at least �		m logm

�

� 
 neurons are
necessary for such construction� This upper and lower bound was improved in 
�� by

showing that O	m
�

� 
 neurons su�ce and that the most of �nite automata require �	m
�

� 

neurons when the values of weights in the network are polynomial with respect to the
network size� Several practical experiments have been also done with the learning
of �nite automata by recurrent neural networks using the standard neural learning
heuristics back�propagation 
���
In the present paper we relate the size of neural acceptors to regular expressions

that on one hand are known to possess the same expressive power as �nite automata�
but on the other hand they represent a tool whose descriptional e�ciency can exceed
that of deterministic �nite automata�
First� in section � we will introduce the basic formalism for dealing with neural

acceptors� Then� in section � we will prove that any regular language described by
a regular expression of a length n can be recognized by a neural acceptor consisting
of O	n
 neurons� Subsequently� in section � we will show that� in general� this result
cannot be improved because there is a regular language given by a regular expression
of length n requiring neural acceptors of size �	n
� Therefore� the respective neural
acceptor construction made of regular expressions is size�optimal�
Next� in section � we will present two specialized constructions of neural acceptors

for single n�bit string recognition that� both� require O	n
�

� 
 neurons and either O	n


connections with constant weights or O	n
�

� 
 edges with weights of the size O	�
p
n
�

The number of bits required for the entire string acceptor description in both cases
is proportional to the length of the string� This means that these constructions are
optimal with respect to the descriptional complexity of neural acceptors� They can
be exploited as a part of a more complex e�cient architectural neural network design�
for example for the construction of a cyclic neural network� with O	�

n

� 
 neurons and
edges� which computes any boolean function�
In section � we will introduce the concept of Hop�eld languages as the languages

that are recognized by the so�called Hop�eld acceptors which are based on symmetric
neural networks 	Hop�eld networks
� Hop�eld networks have been studied widely
outside the framework of formal languages because of their convergence properties�
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From the formal language theoretical point of view� it is an interesting fact that the class
of Hop�eld languages is strictly contained in the class of regular languages� Hence� they
represent a natural proper subclass of regular languages� Further� we will formulate the
necessary and su�cient� so�called� Hop�eld condition stating when a regular language is
a Hop�eld language� Finally the closure properties of Hop�eld languages are mentioned�
More information about Hop�eld languages� including proofs� can be found in 
���
All previous results jointly point to the fact that neural acceptors present quite an

e�cient tool not only for the recognition of regular languages and of their subclasses
respectively but also for their description�

� Neural Acceptors

In this section we formalize the concept of a so�called neural acceptor which is a discrete
recurrent neural network 	further neural network
 exploited for a language recognition
in the following way� During the network computation� an input string is presented
bit after bit to the network by means of one input neuron� All neurons of the network
work in parallel� Following this� the output neuron shows whether the input string�
that has been already read� is from the relevant language� Similar de�nition appeared
in 
�� and 
��� Next� we observe that the neural acceptor can be viewed as a �nite
automaton 
�� and therefore� neural acceptors recognize just regular languages because
of Kleene�s theorem 
���

De�nition � A neural acceptor is a ��tuple N � 	V� inp� out�E�w� h� sinit
� where V

is the set of n neurons including the input neuron inp � V � and the output neuron
out � V � E � V � 	V � finpg
 � fhinp� outig is the set of edges� w � E �� Z
�Z is the set of integers� is the weight function �we use the abbreviation w	hj� ii
 �
wij�� h � V � finpg �� Z is the threshold function �the abbreviation h	i
 � hi
is used�� and sinit � V � finpg �� f�� �g is the initial state of the network� The
graph 	V�E
 is called the architecture of the neural network N and n � jV j is the
size of the neural acceptor� The number of bits that are needed for the whole neural
acceptor representation �especially for the weight and threshold functions� is called the
descriptional complexity of neural acceptor�

De�nition � Let x � x�x� � � �xm � f�� �gm� followed formally by some xm�i �
f�� �g� i � � �due to the notation consistency�� be the input for the neural accep�
tor N � 	V� inp� out�E�w� h� sinit
� The state of the neural network at the time t is a
mapping st � V �� f�� �g� At the beginning of a neural network computation the state
s� is set to s�	i
 � sinit	i
 for i � V �finpg and s�	inp
 � x�� Then at each time step
� � t � m��� the network computes its new state st from the old state st�� as follows�

st	i
 �

���
��

xt�� if i � inp

S
� X
hj�ii�E

wijst��	j
� hi
�

if i � V � finpg

where S	z
 � � for z � � and S	z
 � � otherwise� For the neural acceptor N and its
input x � f�� �gm we denote the state of the output neuron out � V in the time step

�



m � � by N	x
 � sm��	out
� Then L	N
 � fx � f�� �g� jN	x
 � �g is the language
recognized by the neural acceptor N �

Theorem � Let L � L	N
 be a language recognized by some neural acceptor N � Then
L is regular�

Proof� Let N � 	V� inp� out�E�w� h� sinit
 be a neural acceptor� We de�ne a deter�
ministic �nite automaton A � 	Q�� � f�� �g� �� q�� F 
 so that L	N
 � L	A
� Let
Q � fs � V � finpg �� �g be the set of automaton state and q� � sinit be an initial
automaton state� The transition function is de�ned for s � Q and x � � as follows�

�	s� x
	i
 � S
� X
hj�ii�E

wijs	j
� hi
�
for i � V � finpg

where s	inp
 � x� Finally� F � fs � Q j �	s� x
	out
 � �� x � �g is the set of �nal
automaton states� Then the proposition follows from Kleene�s theorem 
��� �

� Upper Bound

We show that any regular language� given by a regular expression of a length n� may be
recognized by a neural acceptor of sizeO	n
� The constructed architecture of the neural
network corresponds to the structure of the regular expression� The neural acceptor
passes through all oriented network paths that correspond to all strings generated by
this expression and that� at the same time� match the input string�

Theorem � For every regular language L denoted by a regular expression L � 
��
there exists a neural acceptor N of the size O 	j�j
 such that L � L	N
 is recognized
by N �

Proof� Let L � 
�� be a regular language denoted by a regular expression �� We
construct a neural acceptor N� � 	V� inp� out�E�w� h� sinit
 of size O 	j�j
 so that L �
L	N�
�
We �rst build an architecture 	V�E
 of the neural network N� recursively with

respect to the structure of the regular expression �� For that purpose we de�ne the
sequence of graphs 	Vk� Ek
 � k � �� � � � � p where 	V�� E�
 has one vertex correspond�
ing to the whole expression � which is recursively partitioned into shorter regular
subexpressions� so that 	Vp� Ep
 have vertices corresponding only to the elementary
subexpressions � or � of � 	we say� vertices of the type � or �
� For the sake of notation
simplicity we identify the subexpressions of � with the vertices of these graphs�

�� V� � fstart� �� outg
E� � fhstart� �i� h�� outig

�� Assume that 	Vk� Ek
 � � � k � p have been already constructed and � � Vk is
a subexpression of � di�erent from � or �� Hence besides the empty language
and the empty string� the regular expression � can denote union� concatenation�
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or iteration of subexpressions of �� With respect to the relevant regular oper�
ation the vertex � is fractioned and possibly new vertices corresponding to the
subexpressions of � arise in the graph 	Vk��� Ek��
� To be really rigorous we
should �rst remove the vertex � and then add the new vertices� However� due to
the notational simplicity we do not insist on such rigorousness and therefore we
can identify one of the new vertex with the old �� That is why we write rather
non�exactly for example �� has the form � � ��� Moreover we substitute e� ��

for ���

	 � is 
� Vk�� � Vk � f�g� Ek�� � Ek � fhx� �i� h�� yi � Ekg�

	 � is e� Vk�� � Vk � f�g�
Ek�� � 	Ek � fhx� �i� h�� yi � Ekg
�

fhx� yi j hx� �i� h�� yi � Ek � fh�� �igg�

	 � has the form � � �� Vk�� � Vk � f�g�
Ek�� � Ek � fhx� �i� h�� yi j hx� �i� h�� yi � Ekg � fh�� �i j h�� �i � Ekg�

	 � has the form � � �� Vk�� � Vk � f�g�
Ek�� � 	Ek � fh�� yi � Ekg
 � fh�� �ig � fh�� yi j h�� yi � Ekg�

	 � has the form ��� Vk�� � Vk� Ek�� � Ek � fh�� �ig�

This construction is �nished after p � O 	j�j
 steps when Vp contains only subexpres�
sions � or �� Then we de�ne the network architecture in the following way�

V � Vp � finpg� E � Ep � fhinp� �i j � � Vp � fstart� outgg �

For i � V denote by d	i
 � j fj � Vp j hj� ii � Eg j� Now we can de�ne the weight
function w and the threshold function h�

	 i � V is the neuron of the type �� wij � � for hj� ii � Ep and wi�inp � d	i
�
hi � d	i
 � ��

	 i � V is the neuron of the type �� wij � � for hj� ii � Ep and wi�inp � �d	i
�
hi � ��

	 start � V � hstart � ��

	 out � V � wout�j � � for hj� outi � Ep� hout � ��

To de�ne the initial state remains� s�	i
 � � for i � Vp � fstartg and s�	start
 � ��
The set V contains three special neurons 	inp� out� start
 as well as other neurons

of the type � or �  one for each subexpression � or � in �� hence jV j � O 	j�j
� An
example of the neural acceptor for the regular language 
		� � e
�
�� is in �gure ���
	the types of neurons are depicted inside the circles representing neurons� thresholds
are depicted as weights of edges with constant inputs ��
�
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Figure ���� Neural acceptor for 
		� � e
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We prove that L � 
�� � L	N�
� From the construction of 	Vp� Ep
 given above it is
easy to observe that this graph corresponds to the structure of the regular expression
�� This means that for every string x � x� � � �xm � L � f�� �g� there is an oriented
path start � x� � x� � � � � � xm � out leading from start � Vp to out � Vp and
containing the vertices of the relevant types 	� or �
� On the other hand for any such
path there is a corresponding string in L�
The neural acceptor N� passes through all possible paths that match the network

input� In the beginning the only non�input neuron start � V is active 	its state is
�
� It sends a signal to all connected neurons and subsequently becomes passive 	its
state is �
 due to the dominant threshold� The connected neurons of the type � or
� compare its type with the network input and become active only when it matches�
otherwise they remain passive� Due to the weight and threshold values it follows that
any neuron of the type � becomes active iff inp � V is active and at least one of
j �� inp� hj� ii � E� is active� and any neuron of the type � becomes active iff inp � V

is passive and at least one of j �� inp� hj� ii � E� is active� This way all relevant paths
are being traversed� and their traverse ends in the neuron out � V which realizes the
logical disjunction� and is active iff the pre�x of the input string� that has been read
so far� belongs to L� This completes the proof that L � L	N�
� �

� Lower Bound

In this section we show the lower bound �	n
 for the number of neurons that� in the
worst case� are necessary for the recognition of a regular language which is described by
a regular expression of the length n� As a consequence� it follows that the construction
of the neural acceptor from section � is size�optimal�
The standard technique is employed for this purpose� For a given length of regular

expression we de�ne a regular language and the corresponding set with exponential
number of pre�xes for this language� We prove that these pre�xes must bring any
neural acceptor into the exponential number of di�erent states in order to provide a
correct recognition� This will imply the desired lower bound�

De�nition � For n � � and k � � de	ne the following regular languages�

Ln �
h�
�� � �	e� �
�� � 	�	e� �

� �� � � � �

� � � � 	�	e� �

n�� �� � 	�	e� �

n�� 	� � �

��i

�

�



!k �
h
	�	e� �

k

i
� Pn �

n���
k��

!k�

It is clear that Pn� n � � is the set of pre�xes for the language Ln� We prove
several lemmas concerning properties of these regular languages� The regular expression
which de�nes the language Ln in De�nition � is in fact of O 	n�
 length because the
abbreviation for repeated concatenation is not included when determining its length�
Therefore� we �rst show that there is a regular expression �n� of the linear length
only� denoting the same language Ln� The number of pre�xes in Pn is shown to be
exponential with respect to n�

Lemma �


i� 
�n � RE Ln � 
�n� and j�nj � O	n
�


ii� jPnj � �n � ��

Proof�


i� In the regular expression which denotes the language Ln from De�nition �� we can
subsequently factor out 	n � �
 times the subexpression �	e � �
 to obtain the
desired regular expression

�n �
�
�� � �	e� �


�
�� � �	e� �


�
� � � �	e� �


�
�� � �	e� �
�	� � �


�
� � �
����

of the linear length j�nj � O	n
 which de�nes the same language Ln � 
�n��


ii� It follows from De�nition � that j!kj � �
k and therefore� jPnj �

n��X
k��

�k � �n��� �

The following lemma shows how the pre�xes in Pn can be completed to strings from Ln�

Lemma �


i� x � x�� � Pn �� x� � Ln�


ii� Let x � Pn then x� � Ln �� x � !n���


iii� x � x�� � Ln �� 
x� � Ln� 
x� � !n�� x � x�x���

Proof�


i�� 
ii� follow from De�nition ��


iii� Assume x � x�� � Ln� The language Ln is de�ned via iteration in De�nition ��
Hencefore� we can write x � x��x

�
� � � �x

�
r� where x

�
i � Ln� for i � �� � � � � r� De�ne

x� � x��x
�
� � � � x

�
r�� � Ln and x� so that x�r � x��� Obviously x� � !n��� �

Now we prove that any two di�erent pre�xes from Pn can be completed by the same
su�x� so that one of the resulting string is in Ln while the other one is not�
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Lemma � �x�� x� � Pn x� �� x� �� 
y � f�� �g� x�y � Ln and x�y �� Ln�

Proof� Assume x�� x� � Pn� Then there exist � � k�� k� � n such that x� � !k� � x� �
!k�� We will distinguish two cases�

�� k� �� k��
Without loss of generality suppose n 	 k� 	 k�� De�ne y � �n�k� �

	 Denote x�� � x��n�k��� � !n��� From 	ii
 Lemma � we obtain x�y � x��� �
Ln�

	 Denote x�� � x��n�k��� � !k��n�k���� From k� 	 k� it follows k�� n� k� �
� � n� �� Therefore x�y � x��� �� Ln due to 	ii
 Lemma ��

�� k� � k� � k�
We can write x� � �a��a� � � � �ak� aj � fe� �g and x� � �b��b� � � � �bk� bj �
fe� �g� for j � �� � � � � k� Let i � minfj j aj �� bjg� Without loss of generality
ai � �� bi � e� De�ne y � �n�k�i�

	 Denote z� � �a��a� � � � �ai��� � !i� z� � �ai���ai�� � � � �ak�n�k�i�� � !n���
From 	i
 Lemma � z�� � Ln and z�� � Ln from 	ii
 Lemma �� This implies
that x�y � z��z�� � Ln because Ln is closed under the concatenation�

	 Denote x�� � x��n�k�i�� � !n�i��� To the contrary suppose that x�y �
x��� � Ln� From 	iii
 Lemma � z� � Ln� z� � !n�� such that x�y �
z�z�� exist� Hence z� � �bi���bi�� � � � �bk�n�k�i�� � !n�� because x�y �
�b��b� � � � �bk�n�k�i� Denote z�� � �b��b� � � � �bi��� i � n and from 	ii

Lemma � it follows z� � z��� �� Ln which is a contradiction� Thus x�y ��
Ln� �

Now we are ready to prove the following theorem concerning the lower bound�

Theorem � Any neural acceptor N that recognizes the language Ln � L	N
 requires
at least �	n
 neurons�

Proof� The neural acceptor N � that recognizes the language Ln � L	N
 from De�ni�
tion �� must have � 	�n
 di�erent states which are reached when taking input pre�xes
from Pn because any di�erent x�� x� � Pn can be completed by y from Lemma � so
that x�y � Ln and x�y �� Ln� This implies that N needs �	n
 binary neurons� �

� Neural String Acceptors

The previous results showed that neural acceptors have the same descriptive capabilities
as regular expressions� In this section we will study how powerful they are when we
con�ne ourselves on a certain subclass of regular expressions� Here� we will deal with
the simplest case considering just �xed binary strings from f�� �g�� We present two
constructions of neural acceptors for a single string recognition� For n�bit string they
both require O	n

�

� 
 neurons and either O	n
 connections with constant weights or

�



O	n
�

� 
 edges with weights of the O	�
p
n
 size� The number of bits required for the

entire string acceptor description is in both cases proportional to the length of the
string� This means that these constructions are optimal from the neural acceptors
descriptional complexity point of view�
This elementary case can be useful because the single string recognition is very often

a part of more complicated tasks� In a personal communication Piotr Indyk pointed
out that the latter string acceptor construction can also be exploited for building a
cyclic neural network� with O	�

n

� 
 neurons and edges� which computes any boolean
function�

Theorem � For any string a � a� � � � an � f�� �gn there exists a neural acceptor of the

size O	n
�

� 
 neurons with O	n
 connections of constant weights� Thus� the descriptional
complexity of the neural acceptor is �	n
�

Proof� For the sake of simplicity suppose �rst that n � p� for some positive integer
p� The idea of the neural acceptor construction is to split the string a � f�� �gn

into p pieces of the length p and to encode these p substrings using p� 	for each p

binary weights of edges leading to p comparator neurons c�� � � � � cp� The input string
x � x� � � � xn � f�� �gn is being gradually stored per p bits into p bu�er neurons
b�� � � � � bp� When the bu�er is full� the relevant comparator neuron ci compares the
assigned part of the string a�i���p��� � � � � aip with the corresponding part of the input
string x�i���p��� � � � � xip� � � i � p� that is stored in the bu�er� and sends the result of
this comparison to the next comparator neuron� The synchronization of the comparison
is performed by �p clock neurons� where neurons s�� � � � � sp tick at each time step of the
network computation� and neurons m�� � � � �mp tick once in a period of p such steps�
The last comparator neuron cp represents the output neuron and reports at the end
whether the input string x matches a�
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Figure ���� Architecture for a neural string acceptor with O	n
 edges�
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A formal de�nition of the neural acceptor N � 	V� inp� out�E�w� h� sinit
 for the
recognition of the string a follows 	see also �gure ���
� De�ne

V � finp� start� c�� � � � � cp � out� b�� � � � � bp� s�� � � � � sp�m�� � � � �mpg �

E � fhbi� cji� hmi� cji j � � i� j � pg � fhs�� cii� hsp�mii j i � �� � � � � pg �
fhci� ci��i� hbi� bi��i� hsi� si��i� hmi�mi��i j i � �� � � � � p � �g�
fhci� cii� hmi�mii� hmp�mii j i � �� � � � � p� �g �
fhinp� b�i� hstart� s�i� hsp� s�i� hmp� s�ig �

Denote by di �
���fj j a�i���p�j � �� � � j � pg

���� Then put
w 	hbj� cii
 � �a�i���p�j � �� w 	hmj� cii
 �

	
� if j � i

�� if j 	 i
� � i� j � p

w 	hci� cii
 � �p � di � i� � i � �� � � � � p � �
w 	hmp� s�i
 � ��� w 	hmp�mii
 � �� i � �� � � � � p� �

h 	ci
 �

	
di � i� � if i � �
di � i� � if � � i � p

h 	mi
 �

	
� if i � �
� if � � i � p�

All remaining weights and thresholds are set to �� Finally the initial state is determined�
s�	v
 � � for v � V � finp� starg and s�	start
 � ��
Note that the weights w 	hci� cii
 � O	p
� i � �� � � � � p � � are not constant as re�

quired� It is due to the neuron ci which should keep its state � after it becomes active in
order to transfer the possible positive result of the comparison to the next comparator
neuron� Therefore the relevant feedback must exceed the sum of all other inputs to
achieve the threshold value� This can be avoided by inserting p � � auxiliary neurons
that remember the result of preceding comparisons between neighbor comparator neu�
rons� All these neurons have a constant feedback because they have only one input�
from the previous comparator neuron� to be exceeded�
The construction of the neural acceptor can also be easily adapted for n � p� � r�

� � r � p� The technique from the proof of Theorem � is employed for the recognition
of the last r bits of the string a� The resulting architecture of sizeO	r
 is then connected
to the neural string acceptor by identifying the neuron start with the above�mentioned
neuron out � cp� �

Theorem � For any string a � f�� �gn there exists a neural acceptor of the size O	n
�

� 


neurons with O	n
�

� 
 edges with weights of the size O	�
p
n
� Thus� the descriptional

complexity of the neural acceptor is �	n
�

Proof� The design of the desired neural acceptor is very similar to the construction
from the proof of Theorem � except that the number of comparator neurons is reduced
to two neurons c�� c�� In this case the substrings a�i���p��� � � � � aip� � � i � p are
encoded by O	p
 	each by �
 weights of the size O	�p
 corresponding to the connection
leading from the clock neurons mi to these comparison neurons� The contents of the
input bu�er� viewed as a binary number� are �rst converted into an integer� This inte�
ger is then compared with the relevant encoded part of the string a by the comparator

�



neuron c� to see whether it is smaller or equal� At the same time it is compared by the
comparator neuron c� to see whether it is greater or equal� The neuron which realizes
the logical conjuction of comparator outputs is added to indicate whether the part of
the input string matches the corresponding part of the string a� However� this leads to
one more computational step of the neural acceptor which is inconsistent with De�ni�
tion �� The correct synchronization can be achieved by exploiting the above�mentioned
additional architecture for the recognition of the last r bits aq��� aq��� � � � � aq�r 	q � p�

of the string a� Details of the synchronization are omitted as well as a complete formal
de�nition of the neural string acceptor� We give only the de�nition of the weights that
are relevant for the comparisons�

w 	hbi� c�i
 � ��i��� w 	hbi� c�i
 � �i�� i � �� � � � � p

w 	hmi� c�i
 �

�������
������

pX
j��

�p�jaj for i � �

pX
j��

�p�ja�i���p�j �
pX

j��

�p�ja�i���p�j for i � �� � � � � p

w 	hmi� c�i
 � �w 	hmi� c�i
 � h 	c�
 � h 	c�
 � ��

The weights w 	hmi� c�i
 � �w 	hmi� c�i
� i � �� � � � � p are de�ned as di�erences
because all clock neurons mj � � for � � j � i are active only when the part
x�i���p��� � � � � xip of the input is in the bu�er� The architecture of the neural string ac�
ceptor is depicted in �gure ��� 	instead of the above�mentioned conjuction the neuron
reset is added to realize the negation of comparator conjuction to possibly terminate
the clock
� �
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� Hop�eld Languages

In section � we have restricted ourselves to a special subclass of regular expressions�
In this section we will concentrate on a special type of neural acceptors� the so�called
Hop�eld acceptors which are based on symmetric neural networks 	Hop�eld networks
�
In these networks the weights are symmetric and therefore� the architecture of such
neural acceptors is given by an undirected graph�
Hop�eld networks have been traditionally studied 
��� 
��� and used due to their

convergence properties� These networks are also of particular interest� because their
natural physical realizations exist 	e�g� Ising spin glasses� �optical computers�
�
Using the concept of Hop�eld acceptors� we will de�ne a class of Hop�eld languages

that are recognized by these acceptors� We mention several properties of this class� In
this section all proofs are omitted and can be found in 
���

De�nition � The neural acceptor N � 	V� inp� out�E�w� h� sinit
 that is based on sym�
metric neural network �Hop	eld network� where hi� ji � E �� hj� ii � E� and
wij � wji� for every i� j � V � finpg is called Hop�eld acceptor� The language
L � L	N
 recognized by Hop	eld acceptor N is called Hop�eld language�

The class of Hop�eld languages is strictly contained within the class of regular
languages� We give an evidence of this fact by formulating the necessary and su�cient
condition  the so�called Hop�eld condition when a regular language is a Hop�eld
language� Intuitively� Hop�eld languages cannot include words with those potentially
in�nite substrings which allow Hop�eld acceptor to converge and to forget relevant
information about the previous part of the input string which is recognized�

De�nition � A regular language L is said to satisfy a Hop�eld condition if f for every
v�� v� � f�� �g� and x � f�� �g� there exists m� 	 � such that either 	�m � m� v�x

mv� � L

or 	�m � m� v�x

mv� �� L
�

The following theorem gives a characterization of the Hop�eld languages class� The
construction of a Hop�eld acceptor for a regular languague satisfying the Hop�eld
condition can be realized with O	j�j
 neurons and so it is size�optimal as well�

Theorem � Let L be a regular language� Then L is a Hop	eld language if f L satis	es
the Hop	eld condition�

For example it follows from Theorem � that the regular languages 
	���
��� 
	����
��
are not Hop�eld languages because they do not satisfy the Hop�eld condition�
We also investigate the closure properties of the Hop�eld languages class�

Theorem � The class of Hop	eld languages is closed under the union� concatenation�
intersection� and complement� It is not closed under the iteration�
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