narodni
N U dlozisté
1 L Sedé
6 literatury

Linear Interval Equations: Computing Sufficiently Accurate Enclosures in NP-Hard

Rohn, Jifi
1995

Dostupny z http://www.nusl.cz/ntk/nusl-33581

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 10.04.2024

Dalsi dokumenty muzete najit prostrednictvim vyhledavaciho rozhrani nusl.cz .


http://www.nusl.cz/ntk/nusl-33581
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Linear Interval Equations: Computing
Sufficiently Accurate Enclosures is NP-Hard

Jiti Rohn

Technical report No. 621

January 1995

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod vodarenskou vézi 2, 182 07 Prague 8, Czech Republic
phone: (+422) 66414244 fax: (4+422) 8585789
e-mail: rohn@uivt.cas.cz



INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Linear Interval Equations: Computing
Sufficiently Accurate Enclosures is NP-Hard!
Jii{ Rohn?

Technical report No. 621
January 1995

Abstract

It is proved that if there exists a polynomial-time algorithm which for each system of
linear interval equations with a strongly regular n x n interval matrix computes an

enclosure of the solution set with absolute accuracy better than ﬁ, then P=NP.

Keywords

Linear interval equations, enclosure, NP-hardness

!This work was supported in part by the Czech Republic Grant Agency under grant GACR
201/95/1484

Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, and Faculty
of Mathematics and Physics, Charles University, Prague, Czech Republic (rohn@kam.ms.mff.cuni.cz)



1 Introduction

This report is partly a transcript of a poster®. The main result (Theorem 1) shows that
one of the basic problems in validated computations is more difficult than expected.

2 Enclosures
For a system of linear interval equations
Alz = (2.1)
(A square), enclosure is defined as an interval vector [y, 7] satisfying
X C [y.7]
where X is the solution set:
X = {z; Az =bfor some A € A, beb'}.
If Al is regular, then there exists the narrowest (or: optimal) enclosure [z, 7] given by
Ly = min Ly,
X
ZT; = maxx;
X

for each ¢. Computing [z, T] was proved to be NP-hard (Rohn and Kreinovich [5]). But
it turns out that the same is true for computing ”sufficiently accurate” enclosures:

3 The result

Theorem 1 Suppose there exists a polynomial-time algorithm which for each strongly
regular n X n interval matriz AT and each b' (both with rational bounds) computes a
rational enclosure [y, 7] of X satisfying

1
<7 <7 3.1
T Y, <7 +4n4 (3.1)

for each ©. Then P=NP.

4 Comments

Al =[A, — A, A.+ Al is called strongly regular if o(|AZ1|A) < 1 (a well-known suffi-

cient regularity condition).

3presented at the international workshop Applications of Interval Computations, El Paso, Texas,
February 1995 (sections 2 to 4)



P and NP are the well-known complexity classes. The conjecture that P#£NP, al-
though unproved, is widely believed to be true (Garey and Johnson [1]).

Hence, the problem of computing sufficiently accurate enclosures is by far more dif-
ficult than previously believed: an existence of a polynomial-time algorithm yielding
the accuracy (3.1) would imply polynomial-time solvability of all problems in the class
NP, thereby making an enormous breakthrough in theoretical computer science.

5 Proof

1) Denote ¢ = (1,1,...,1)T € R* and Z = {z € R"; |z| = ¢}, so that Z is the set
of all +1-vectors. We shall use matrix norms

Al = 7| Ale = 323 fag]
iy

and

[Allccr = max{[|Az]ls; = € Z} (5.1)

(where ||z][1 = X, |zi]; cf. [2]). [@] denotes the integer part of a real number a.
2) A real symmetric n X n matrix A = (a;;) is called an M C-matrix if it is of the
form

f=n if Q=
Yl efo,-1} if i#j
(., =1,...,n). For an MC-matrix A we obviously have
n<elAe < |Allcon < ||Alls < n(2n —1). (5.2)

Also,
zi(Az); >0 (5.3)

holds for each z € Z and each ¢ € {1,...,n}. We shall essentially use the fact that
computing ||Al|s,1 is NP-hard for M C-matrices [3, Thm. 2.6]. In the sequel we shall

construct, for a given n x n M C-matrix A, a linear interval system with interval matrix
of size 3n x 3n such that if 7, satisfies (3.1), then

1
HM%JZWAM+2—§L

Hence, if such a 7, can be computed in polynomial time, then ||A|l.1 can also be
computed in polynomial time and since this is an NP-hard problem, P=NP will follow.

3) For a given n x n MC-matrix A (which is diagonally dominant and therefore
nonsingular), consider a linear interval system

Alz =o' (5.4)



with AT = [A. — A, A. + A, b = [b. — 6, b, + 6] given by

0 —I 0
Ac=| -1 0o A |,
0 Al A

00 0
A=100 0
0 0 Beel

(all the blocks are n x n, I is the unit matrix),

()
(3

1
[Alls +2°

(all the blocks are n x 1) and
ﬂ =

We shall first prove that A’ is strongly regular. Since

A=V T
A= =1 0 o0
I 0 A

(as it can be easily verified), we have

0 0 Peel
A A=10 0 0 :
0 0 BlAlecT

This matrix has eigenvalues A = 0 (multiple) and A = || A|[;. Hence o(|AZ'A) =
B||Alls < 1 due to (5.5), and Al is strongly regular.

4) For the linear interval system (5.4), consider a solution x satisfying Az = b for
some A € AL, b e bl. If we decompose z as

then we have

22 = 0
b = A713
A/J/'B _ b/



for some A’, V' satisfying |[A~! — A’| < Beel and [b'| < Be, hence 22 is a solution of the
linear interval system

(A" — Bee”, A7+ BeeTla’ = [ e, Be] (5.6)

whose matrix is obviously again strongly regular. From [4, Thm. 2.2] we have that for
each z € Z the equation

A7 = B(||ell + 1)= (5.7)

has a unique solution x,. A direct substitution shows that the solution has the form

3
= —— A2,
1 — B||Az|lx

Lz

Now, from the same Theorem 2.2 in [4] we have that each solution of (5.6) belongs to
the convex hull of the x.’s, hence also

p

2> ¢ Conv{———
S e

Az z € 7}

which implies
B

t=A123 e Conv{————
S e

z, 2 € L},

Thus for each ¢ € {1,...,n} we have

B B
T=Amax{Az]ly; 2 € 2} 1— B[ Al

x}g

and the upper bound is obviously achieved at some x, which, due to (5.7) and (5.3),
solves the equation

(A7 = Bz2T)e. = p=. (5.8)

Hence for the 3n-dimensional solution x of (5.4) we have

o 8

=T =
L= Bl[Alloo
for each ¢ € {1,...,n} (cf. [3]).
5) Let ¢ € {1,...,n}. Due to (5.9), (5.5) and (5.2) we have T; € (0,1) and
1 1

> =
6_n(2n—1)—|—2 2 —n+2’

(5.9)

hence .
7 > ﬂ > 2n2 —n+2 — 1 )
_1—ﬂn_1—m 2n2 —2n + 2
Since the real function % is increasing in (0, 1), we have
7 T 1 1
: > (2n?—2n+2)2 _ >
1 -7z = l—m (2n2 —2n+2)(2n2 —2n+1) =~ 4nt

4



Hence, if 7, satisfies (3.1), then

T2
0<y,—7; < —
1—1‘2'

which implies
0<% —7 <Ty;

and
1 1
Ti Y
Now, from (5.9) we have
1 1
[Alloos =5 — =

and adding this to (5.10), we obtain

1 1
[ Alloon < 777 < || Alfoex + 1.

K3

Since ||Al|s.1 is integer for an M C-matrix A (due to (5.1)), the last result implies

1 1 1

[ Allso1 3T 1Al =
Thus, if 7; satisfying (3.1) can be computed by a polynomial-time algorithm, then the
same is true for ||Al|co,1 and since computing || Al|s.1 is NP-hard for M C-matrices [3],

P=NP follows. O

6 The symmetric case

Let AT = [A. — A, A, + A] be a symmetric interval matrix (i.e., the bounds A, — A
and A, + A are symmetric) and let X* be the set of solutions of (2.1) corresponding
to systems with symmetric matrices only:

X* = {z; Az =bfor some A € A', b€ b', A symmetric}.

Again, [y,7] is called an enclosure of X* if X* C [y, 7] holds. The narrowest enclosure
is [z®,7°], where

T = mina;,
T, = maxa;
Xs

for each :. We have an analogous result:

Theorem 2 Suppose there exists a polynomial-time algorithm which for each strongly
regular symmetric n x n interval matriz A’ and each b (both with rational bounds)
computes a rational enclosure [y, 7] of X° satisfying

1

ffﬁyiﬁff‘l‘m

for each ©. Then P=NP.



Proof. The system (5.4) constructed in the proof of Theorem 1 has a symmetric
interval matrix A’ and each T;, ¢ = 1,...,n, is achieved at the solution of a system
whose matrix is of the form

0 -1 0
= At
0 A™' A7l gt

(eq. (5.8)), hence it is symmetric (since an M C-matrix A is symmetric). Thus we have

T =1

for e =1,...,n, and the proof of Theorem 1 applies to this case as well. a
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