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Abstract
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� Introduction

This report was made as a transcript of transparencies� This is the reason for its terse
style and division into short sections� It consists of two parts
 an overview of Rump	s
method �sections � to �� and its reformulation avoiding the use of Brouwer	s �xed
point
theorem and interval arithmetic �sections � to ���� The principal result is Theorem ��

� Problem

Solve
A�x � b

�A square n�n� in �nite precision arithmetic and estimate the accuracy of the solution
obtained by means of the �nite precision arithmetic�

� Recasting

For arbitrary nonsingular R and x��

A�x � b

is equivalent to
�x� x� � �I �RA���x� x�� �R�b�Ax���

Hence
�x � x� � x�

where x� solves
x� � Gx� � g �����

with

G � I �RA

g � R�b�Ax��

�in practice
 R � A��� x� � Rb� so that G and g are of small norms and x� is close
to ��� In the sequel we consider the equation ������

� Rump�s inclusion idea

Let an interval vector ��box�� X satisfy

G �X � g � X� �����

�where G �X � g � fGx� g� x � Xg� and X� is the interior of X�� Then� in view of
Brouwer	s �xed
point theorem�

x� � Gx� � g

�



has a unique solution x� � G �X � g �Rump �����
How to verify �����
 if

G �X � g � X�

holds in interval arithmetic� then ����� holds since

G �X � g � G�X � g

due to de�nitions of interval operations�

� Interlude� interval arithmetic

Operations over intervals are de�ned by the general rule

�a� a� 	 �b� b� � f� 	 �� � � �a� a�� � � �b� b�g�

explicitly

�a� a�� �b� b� � �a� b� a� b�

�a� a�
 �b� b� � �a� b� a� b�

�a� a�� �b� b� � �minM�maxM �

where
M � fab� ab� ab� abg

and

�a� a�� �b� b� � �a� a��
�
�

b
�
�

b

�

provided � �� �b� b�� A real number a is identi�ed with �a� a��

� Rump�s algorithm for solving x� � Gx� � g

select � � ��� ��� Y 
� �g� g��
repeat

X 
� ��� �� � � ��� Y �
Y 
� G �X � g

until Y � X��
fthen x� � Y g�

The algorithm �Rump ��� p� ���� proved to perform excellently



 small number of iterations �usually � ����


 high accuracy achieved�


 relative independence on the �in�ation parameter� ��

Now� what is behind it �

�



	 Enclosure theorem

Theorem � Let x and d � � satisfy

j�I �G�x� gj 	 �I � jGj�d� �����

Then the equation
x� � Gx� � g

has a unique solution x� and
x� d 	 x� 	 x� d

holds�

Comment The most important part of the assumption is the existence of a positive
solution d of the inequality

jGjd 	 d�

If d possesses this property� then for each x there exists a positive real number � such
that x and d 
� �d satisfy ������


 Proof

����� implies jGjd 	 d� hence 
�jGj� 	 �� �I � jGj��� � � and I �G is nonsingular� so
that ����� has a unique solution x�� From

x� � Gx� � g

we obtain
x� � x � G�x� � x� � g � �I �G�x

which implies
jx� � xj � jGj � jx� � xj� j�I �G�x � gj

and
�I � jGj�jx� � xj � j�I �G�x� gj�

Premultiplying this inequality by �I � jGj��� yields

jx� � xj � �I � jGj���j�I �G�x� gj

and from ������ also by premultiplying by the same matrix� we have

�I � jGj���j�I �G�x� gj 	 d

which together gives
jx� � xj 	 d�

�

�



� Re�nement

Theorem � Let all rows of G be nonzero and let x and d � � satisfy ������ Then

x� 
� Gx� g

d� 
� jGjd

also satisfy ����� and
� 	 d� 	 d

holds�

Comment Hence� once a solution to ����� has been found� a nested sequence of en

closures can be constructed whose radii tend to � provided 
�jGj� 	 � �since then
jGjk � ���

�
 Proof

Under the assumptions we have

j�I�G�x��gj � jG��I�G�x�g�j � jGj � j�I�G�x�gj 	 jGj � �I�jGj�d � �I�jGj�d��

Since no row of jGj is a zero vector�

� 	 d� � jGjd 	 d

follows from ������ �

�� Relationship to Rump�s inclusion result

Theorem � Let X � �x� d� x� d�� Then Rump�s inclusion

G �X � g � X� ������

is equivalent to ������

�� Proof

It follows from the formulae in section � that

G �X � g � �Gx� jGjd � g�Gx� jGjd� g��

hence G �X � g � X� if and only if

x� d 	 Gx� jGjd � g

�



and
Gx � jGjd� g 	 x� d

hold� which is equivalent to

j�I �G�x� gj 	 �I � jGj�d�

�

Hence� Rump	s inclusion result can be proved by elementary means without using
Brouwer	s �xed
point theorem� Also� the inclusion ������ can be veri�ed as ����� with

out using interval arithmetic�

Now� the problem reduces to solving ������

�� Solvability

Theorem � The inequality ����� has a solution x� d � � if and only if


�jGj� 	 �� ������

�� Proof

If ����� holds� then jGjd 	 d� implying ������� Conversely� if ������ holds� then there
exists a d � � satisfying jGjd 	 d� and the inequality ����� holds e�g� with x� and d� �

�� Algorithm

Theorem � If ��	��� holds
 then a solution to ����� can be computed by the following
�nite algorithm�
f 
� a small positive vector�
x� 
� �� d� 
� ��
repeat

x 
� x�� d 
� d��
x� 
� Gx� g�
d� 
� jGjd � jx� � xj� f

until jd� � dj 	 f�
Then x and d solve ����� and satisfy

�I � jGj���j�I �G�x� gj 	 d 	 �I � jGj����j�I �G�x � gj� �f�� ������

Comment � Both downwardly and upwardly directed rounding must be used to guar

antee that the key inequality d� f 	 d� 	 d� f is satis�ed�

Comment � The algorithm was formulated under the condition ������� In practice

�



it is usually not known beforehand whether it is satis�ed� In this case� to ensure the
�niteness of the algorithm� we may change the stopping rule to

until �jd� � dj 	 f or jGjd� � d� or k � k��

where k is an iteration counter �which should be added into the main loop� and k� is
a prescribed maximum number of iterations� If jGjd� � d� holds� then 
�jGj� � � and
����� does not have a solution�

�� Proof

The algorithm generates sequences

xk�� � Gxk � g

dk�� � jGjdk � jxk�� � xkj� f

that can be shown to be cauchian� hence convergent� Thus jdk�� � dkj � � and

dj�� � dj � jdj�� � djj 	 f

after a �nite number of steps� Then

jGjdj � j�I �G�xj � gj 	 dj

hence xj� dj solve ������ The �rst inequality in ������ follows from ����� as in the proof
of Theorem �� The second one follows from the identity

�I � jGj�dj � jxj�� � xjj� f � dj � dj��

and the facts that �I � jGj��� � � and dj � dj�� 	 f � �

Note The algorithm is not identical with that of Rump� which� due to the use of
interval arithmetic� generates another sequence of boxes �xk � dk� xk � dk��

�	 Re�nement procedure

The enclosure produced by the algorithm can be further re�ned by this procedure
�based on Theorem ��


h 
� a positive vector of accuracy wanted�
x� 
� x� d� 
� d�
x�� 
� Gx� � g� d�� 
� jGjd��
repeat

x 
� x�� d 
� d��
x� 
� x��� d� 
� d���
x�� 
� Gx� � g�

�



d�� 
� jGjd�

until �not jx� � x��j 	 d� � d�� or d� 	 h��
if not jx� � x��j 	 d� � d�� then fx� d 	 x� 	 x� dg
else fx� � d� 	 x� 	 x� � d� and d� 	 hg�

The procedure generates a strictly nested sequence� i�e

�x� � d�� x� � d�� � �x� d� x� d��

at each iteration� It either �nds an enclosure with prescribed accuracy� or stops when
the condition jx� � x��j 	 d� � d�� cannot be veri�ed more� If ������ holds� then the
radii tend to � and the condition d� 	 h guarantees �nite termination� As in the main
algorithm� downwardly and upwardly directed rounding must be used�

�
 Appendix� Interval�free version of Rump�s it�

erations and a �nite termination condition

The results of this appendix were found when the previous part had already been
completed� Let us denote the interval vectors Y and X appearing in Rump	s algorithm
�section �� by Y � �y� y� and X � �x� x�� Since for � � ��� �� we have

��� �� � � ��� �y� y� � �y � �jyj� y � �jyj�

and
G � �x� d� x� d�� g � �Gx� jGjd� g�Gx� jGjd � g�

�section ���� the original Rump	s algorithm can be equivalently rewritten in the fol

lowing interval
free form


select � � ��� ��� y 
� g� y 
� g�
repeat

x 
� y � �jyj�

x 
� y � �jyj�

y 
� �

�
G�x � x�� �

�
jGj�x� x� � g�

y 
� �

�
G�x � x� � �

�
jGj�x� x� � g

until �x 	 y and y 	 x��

fthen y � x� � yg�

It is worth emphasizing that this algorithm generates the same sequence of boxes
Y � �y� y�� X � �x� x� as the original Rump	s algorithm� but the interval arithmetic is
not used here�
The explicit form of iterations enables us to formulate a su�cient condition for �nite
termination� which is di�erent from that one by Rump ���


�



Theorem � Rump�s algorithm for solving �	��� terminates in a �nite number of steps
for each � satisfying

� 	 � 	
�

�
������

�� � ��
�jGj� 	
�

�
������

���I � jGj���jGj � jx�j 	 jx�j� ������

Comment The assumptions imply that 
�jGj� 	 �

�
and jx�j � �� Conversely� if this is

true� then � satisfying ������������� exists�

Proof� Denote the iterated boxes by Yk � �y
k
� yk�� Xk � �xk� xk�� From the explicit

formulae

xk�� � y
k
� �jy

k
j

xk�� � yk � �jykj

y
k��

�
�

�
G�xk�� � xk����

�

�
jGj�xk�� � xk��� � g

yk�� �
�

�
G�xk�� � xk��� �

�

�
jGj�xk�� � xk��� � g

we have �
jxk�� � xkj
jxk�� � xkj

�
� �� � ��

�
jGj jGj
jGj jGj

��
jxk � xk��j
jxk � xk��j

�

for each k and since the spectral radius of the matrix on the right
hand side is equal
to �
�jGj�� from ������ we see that the sequences fxkg and fxkg are cauchian� hence
xk � x� xk � x� y

k
� y� yk � y� Taking the limits� we obtain

x � y � �jyj

x � y � �jyj

y �
�

�
G�x � x��

�

�
jGj�x� x� � g

y �
�

�
G�x � x� �

�

�
jGj�x� x� � g

which after some rearrangements leads to

�y � �M j�yj� �x ������

where

�y �

�
y
y

�

�x �

�
x�

x�

�

�



and

M �
�

�

�
��I �G���G� �I � jGj���jGj� �I �G���G� �I � jGj���jGj
��I �G���G� �I � jGj���jGj� �I �G���G� �I � jGj���jGj

�
�

Since

jM j �

�
�I � jGj���jGj� �I � jGj���jGj
�I � jGj���jGj� �I � jGj���jGj

�
�

for � satisfying ������ and ������ we have


��jM j� � ��
��I � jGj���jGj� �
��
�jGj�

�� 
�jGj�
	 �� 	 ��

hence from ������ we obtain
j�yj � �jM j � j�yj� j�xj

and consequently �since �I � �jM j��� � ��

j�yj � �I � �jM j���j�xj�

hence
j�M j�yjj � �jM j � j�yj � �I � �jM j����jM j � j�xj� ������

But from ������ we have
��jM j � j�xj 	 j�xj�

hence
�jM j � j�xj 	 �I � �jM j�j�xj

and �by premultiplying�
�I � �jM j����jM j � j�xj 	 j�xj

which combined with ������ gives

j�M j�yjj 	 j�xj�

hence from ������ we have that j�yj � � �i�e�� all entries of �y are nonzero�� so that jyj � �
and jyj � �� Then from the limit expressions above we obtain

x � y � �jyj 	 y

and
x � y � �jyj � y�

hence xk 	 y
k
and yk 	 xk for some k� so that the algorithm is �nite� �

Note Consider a system ����� for which there exists an i such that gi � � and Gij � �
for each j �i�e�� x�i � ��� Then �xk�i � �xk�i � �y

k
�i � �yk�i � � for each k� so that the

algorithm will not terminate in a �nite number of steps� �This is a theoretical result�
in practical computations �nite termination may occur due to roundo� errors��

�



�� Final remark

As we have seen� Theorem � forms the common basis for Rump	s algorithm and for
the algorithm given in section ��� Another alternative algorithms may be formulated
for solving the inequality ������ thus the area is open for further research�
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