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Abstract

Taking into account transformation relations between distributions defined on different
supports, an alternative description of continuous probability distributions by means
of influence functions of distribution and weight functions has been developed. They
correspond in cases of special probability distributions to “irrelevances” and “fidelity”
of gnostical theory. Gnostical theory, claimed to be quite independent of probabilistic
concepts, appears thus to be the special case of the classical probabilistic model.

Keywords

Research report, probability, gnostic theory, influence function of the distribution,

LaTeX



1 Introduction: The gnostical theory

A very unusual theory of data treatment was presented by Kovanic [7]-[10]. The aim
of his “gnostical” theory is the same as that of statistics: to make inferences from data
observed under the influence of uncertainty. The theory is believed, however, to be
completely independent of the probabilistic model and of basic concepts of probability.
Let us give a concise exposition of its main ideas.

By Axiom 1, Kovanic introduced a mathematical model of an individual uncertainty
contained in a single positive data item z in the form

2 = zpe™ (1.1)

where zg is an “ideal value” of z and  the uncertainty, scaled in [10] by parameter s.
Since (1.1) seems to be a general parametric model of positive data items, and any real
measured data are in fact positive, Kovanic considered that (1.1) is a universal mathe-
matical model of data “suffered from uncerntainty”. By an ingenious reasoning, based
on analogies from thermodynamic and relativistic mechanics (description of which we
omit, referring to original papers [7], [10]), he derived from (1.1) two individual data
characteristics depending on uncertainty. They are “fidelity” | given by the expression

F(zlz0,5) = cosh™(200) = 2/[(2/20)*/* + (2/20) /"], (1.2)
and “irrelevance” , given by

(2/20)*° = (2/20) %
(2/20)** 4 (2/20) 72/

he(z]z0,8) = —tgh(2Q) = — (1.3)

with mutual relation

hg(2|2075) =1- f2(2|2075)' (14)

These two mysterious gnostical characteristics of each data item are in “latent form”
because of unknown parameters zg, s of the source of data (1.1), and represent, after
Kovanic, a (latent) weight (fidelity) and (latent) relative error (irrelevance) of the data
item. Having a sample Z, = (z1,...,2,) of data of the same origin, the unknown
parameters zg, s in (1.2) and (1.3) can be estimated either by the simple requirements
similar to some statitistical ones (see below), or by composition law, presented as
Axiom 2 of the theory, which states that the “composite event” z. of a data sample Z,
is given by

n

he(zelzo,8) = Zhe(zﬂzo,s)/we, (1.5)
i=1
where w. = ([20, f(2]20,8)])% + [0, he(zi]20,5)]?)"/2, i.e. that irrelevance of the
composite event is the weighted sum of individual irrelevances.

Gnostical estimation procedures take various forms, from pure heuristics to restate-
ments of well-known statistical principles, with one basic difference: instead of raw
data, the irrelevances are substituted into computational formulas. For instance, the
“gnostical correlation coefficient” is given by C.(k) = lk Z?:_lk he(zi|z0, 8)he(Zitk|20, 9).

= =



The simplest gnostical estimate of the ideal value z, is obtained by the requirement
of zero average irrelevance of the sample Z,. This gives an estimation equation of the
ideal value zy in the form

n

Z he(Zi

1
n =1

A

Zo -

20, 84) = 0, (1.6)

where §, is some a priory estimate of the scale parameter s. The function A, in (1.3) is
bounded, |h.(z|z0)),s)| < 1. An immediate consequence of this fact is the B-robustness
of estimates (1.6). Furthemore, the distance between two data items in “data variety”,
measured by means of irrelevances, given by

pe(ZhZ?) = |h6(22|2075) - h6(21|2075)|7 (17)

is bounded too, as rho.(z1,z2) < 2.

Summarizing Kovanic’s approach, there are three interesting ideas in the context
of data processing:

(I) The gnostical model of uncertainties contained in data, given by (1.1), is generally
applicable and independent of probabilistic models. Gnostical data processing is
an alternative to statistical data processing.

(IT) Each data item contains its own (gnostical) “weight” and “relative error”, which
can be approximately expressed after estimating zg, s from a set of data of the
same origin.

(ITI) Estimation procedures are to be based on the geometry in “data variety”, which
is non-Euclidean.

2 Case of history

At the time when the theory appeared, it was, during discusions on author’s lectures,
completely rejected by statisticians. On the other hand, results of the application of
gnostical estimators and procedures to artificial as well as to real data were outstand-
ing. From the comparison of the gnostical estimator (1.6) with a large set of robust
statistical estimators [11], applied on the well-known collection of Stiegler’s data [15],
the gnostical estimator was found to be the best, since estimated values of the known
location parameters of Stiegler’s data sets, using (1.6), were the most accurate.

The first serious doubt of the validity of (I) was given in Fabidn [1]. He noticed that
the square of fidelity (1.2) is similar to the density of a certain probability distribution,
later identified as log-logistic. He also showed that gnostical estimators are identical to
the maximum-likelihood (ML) estimator or to a-estimators introduced by Vajda [18] in
the case of this distribution. Based on this result, Vajda [19], [20] and Novovi¢ova [13]
studied properties of gnostical estimators. Apart from Kovanic’s further attempts to
consider only finite n-point “data varietes”, they proved that gnostical estimators are



regular statistical M-estimators, strongly consistent and asymptotically normal, and
derived their asymptotic variances.

3 Problem statement

The success of the estimator (1.6) applied to the Stiegler data sets can be simply ex-
plained. The influence function of the robust estimator (1.6) is, contrary to usual robust
estimators, non-symmetrical. This coincides with a clear non-symmetry of Stiegler’s
data. Nevertheless, some questions concerning gnostical theory remain unanswered.
The incorrectness of (I) has not yet been rigorously proved and gnostical theory is still
considered by some statisticians (see [16]) as a nonstatistical approach to uncerntainty.
Can Kovanic’s ideas (IT) and (III) be proved incorrect, too 7

In the presented paper, we show that:

(i) There is a possible interpretation of Kolmogorov probability theory, in which de-
scription of continuous random variables exhibit some features similar to features
of the gnostical theory.

(ii) Within the framework of this (geometric, say) probabilistic approach, basic notions
of the gnostical theory appear to be probabilistic notions in cases of two special
distributions.

(ii1) Within these special data models, Kovanic’s ideas (II) and (III) are right and
gnostical estimation procedures, consisting in setting of irrelevances into “statis-
tical formulas”, are correct (if data follow one of these special models).

4 Geometric description of continuous random
variables

R denotes real line, and T' C R a finite or infinite open interval. By Br is denoted the o-
field of Borel subsets of T'. Let U : T'— R be a continuous random variable on (T, Br)
with distribution P. Let P{T} =1, P{R—T} = 0, so that T is the support set of the
distribution P. By F' is denoted the distribution function F(u) = P{( € T : ( < u}
and by p the density p(u) = dF(u)/du of random variable U. If the support is the
whole real line, T'=T" = R, we denote random variables by X and their distributions
by Pg, distribution functions by Fr and densities by pg.

Let ¢ : T — T be a continuously differentiable homeomorphic mapping. Consider
the random variable

U =p(X). (4.1)
The distribution function of U is given by

F(u) = Fr(e™ (u)) (4.2)



and the density by

dF(u) _ dFg(v) d(p™" (u))

= = — =1 . 4
p(u) du do |v_ap () du ( 3)
Density of the random variable U consists of two terms,
p(u) = q(u)J (u). (4.4)
The first one,
_ dFR(v)
o) = pale™ ) = LE (1.5)

is the “image” of the basic density pr on R. It will be called the proper density. The
second term,
(o™ (u))

J(w) = = (4.6)

is of geometric origin. It is the Jacobian of the inverse mapping p=' : T — T" and
does not actually depend on the basic density pr, but only on T" and ¢. We call it
the geometric term. Equation (4.4) gives the transformation relation of densities of
random variables related by (4.1). Such random variables and their distributions will
be called ¢-related.

Let © C R™ be an open convex set. We denote by Pr = {Fy|f € O} a parametric
family of distributions on (7', Br), dominated by Lebesgue measure, with the parent P
and with corresponding distribution functions Fy and densities p(u|f). Let Uy, ..., U,
be observations, independent and identically distributed (i.i.d.) according to Fyp and
let 7,(Uy,...,U,) be a functional 7,, : T'— R such that 7,, — 7T () for n — oo.

Let 7 be an M-estimator, given by a suitable “¢»—function” ) and by the equation

> U(XIT) =
7=1
Its influence function at ' = Fyo is given by

TF(u; T, F) = c ' p(u|T(F)),

where ¢ is constant. It has been established in robust statistics (we refer to Hampel et
all [5]) that the influence function of estimators determines the properties of estimates.
Thus, estimates are sensitive or insensitive (robust) to outlying values in data if the
influence function of the estimator is unbounded or bounded on T

Consider the maximum likelihood (ML) estimator 7 in the location model T" =
R,0 = R, pr(x|0) = pr(x — ). Its y-function is the partial score function rg(x),

$(al6) = Pl —0) = o pr(e —0)) = ro(e). (1.7

By the use of relations

660 (Inpr(x —0)) =

re(x) =



and by setting § = 0, one can realize that properties of ML estimates depend in fact
of the score function

hi(x) = —pr(r)/pr(2) (4.8)
(see [5], Example 1, pp. 104). Thus, the influence functions of ML estimators seems to
be rather an entity connected with distributions than with ML estimators.

Such a point of view is, however, possible only in the case T' = R. Score functions of
distributions defined on Borel sets of T # R are different from partial score functions
of corresponding ML estimators. Consider, for instance, the lognormal distribution
defined on (RT,Br+) where Rt = (0,00) by the density p(z|z0) = (vV272) "t exp(—0.5
In*(2/20)). Its score function is for z > 0 given by hr(z|20) = 271 (1+In(2/20)), whereas
the ¢-function (partial score function) of the lognormal ML estimator for parameter
2018 74, (2|20) = 251 In(2/ 20).

A generalization of the concept of the score function into a function expressing
properties of ML estimates of distributions defined on arbitrary 7" has been obtained
by Fabian ([2]-[4]). We show here that it will do for it to require the “natural trans-
formation law” (identical to (4.2)) for score functions of distributions defined on R.

Definition 1 Let a mapping ¢ : T = R — T be continuously differentiable and
homeomorphic. Let the score function hr of a distribution Pr defined on (T',BR)
exists. A real-valued function h:' T — R, given by transformation

h(u) = hr(e™ (u)), (4.9)
will be called the influence function (IFD) of the distribution P .

Explicit form of an IFD on arbitrary T' is given by Theorem 1.

Theorem 1 Influence function of an absolute continuous distribution P on arbitrary
(T, Br) is given by the relation

hla) =~ =T ()l (1.10)
where J is given by (4.6).

Proof Denote v = ¢! (u). Using (4.9) and (4.8)

1 d 1 d du
h(u) = }T(v) %(_pR(U)) = pR(U) %(—pR(v)) %

Substituting pr(v) = p(u) J(u)~! from (4.4) and using (4.6),

bl) = S ) T ) = =T )

<

O

Specifying general relations for the case T'= Rt = (0,00), we denote z = u € Rt

and Z = U on RY. Let Z = ¢(X), and choose the simplest possible mapping ¢ : R —
R, by

z=p(x) =¢€". (4.11)

5



Then

z=p ' (2)=1nz, J(z)=1/z. (4.12)
Using (4.11), (4.12), IFD (4.10) on R" is expressed by
h(z) = =1 = =p'(2)/p(2). (4.13)

Knowing the score function hp of a distribution Pr on R, Br, one can compute the
corresponding density by a formula inverse to (4.8)

pr(e) = ixexp (—/hR(x) dz) (4.14)

c
where ¢, is a norming constant (to be computed). In the case of an influence function
h(z) on R*, the formula inverse to (4.13) is

1
p(z) = —exp (— / 2L+ h(2)] d2). (4.15)
c.
Since ppr is assumed continuously differentiable, p is continuously differentiable, too,
and relations (4.8), (4.14) and (4.13), (4.15) represent one-to-one correspondences be-
tween densities and IFD’s of continuous probability distributions.

Example IFD’s and densities of some couples of e”-related distributions on R and Rt

are given in Table 1. Tabeled influence functions are plotted on fig.1.

TABLE 1 [FD’s hp(x) and densities pr(x) of some distributions on R and
IFD’s h(z) and densities p(z) of e*—related distributions on R*

hr(z) Pr(2) h(z) p(z)
z \/%6_902/2 In = ﬁe‘éln z
e —1 e z—1 e ”
tgh(z/2) fcosh™(x/2) (¢ —1)/(z+1) /(= +1)?
sinh x me*“hl’ 1z —1/2) ) Ze_%(z"'l/z)

where K is the MacDonald function (Bessel function of the III. kind). In the first
three rows of Table 1 are standardized forms of couples of e”-related distributions:
normal and lognormal, double exponential and exponential, logistic and log-logistic

(the distribution on R in the fourth row is not encountered in statistics, the related
one on R* is Wald-type).

In what follows, we will consider that the influence functions of distributions on R*
are defined with respect to the mapping ¢ given by (4.11).



5 Influence function of a parametric distribution

Generalization of the influence function of a distribution (4.10) for the case of a para-
metric family Pr is straightforward: a parametric set of IFD’s is {h(u|0)|§ € O},
where

1 d,
Sy e () (5.1)

Consider the simplest case of a parametric family with one location parameter. In
the case of distributions defined on R, the location parameter xg € R means the shift of
the mode of the parent distribution Pr along the real line, and corresponding densities
are p(x|ro) = pr(r — o).

The notion of the location parameter will be generalized for cases of distributions

defined on 7' as follows.

h(ulf) = —

Definition 2 Let xg be the location parameter of a distribution Pr. The location
parameter ug of a p-related distribution P on (T, Br) is given by the relation

up = (o).
The form of densities of location type on RT is therefore

1 z
p(zlz0) = 2 'pr(In 2 —In ) = ;pR(an—) (5.2)
0

and corresponding IFD’s are, by (4.9),
h(z]z0) = hr(In (2/z0)).

We now show that, in the case of a distribution with a (generalized) location param-
eter, its IFD is proportional to the partial score function for the location parameter.

Theorem 2 Let ug be the location parameter of a parametric family { Py, |uo € O} on
(T,Br). Let the partial score function ri(u|ug) for ug exists. Then

h(ulug) = J_l(uo)rl(u|u0).

Proof Denote v = ¢~ (u), 20 = ¢~ (ug). Using (4.4), (4.6), Theorem 1 and (4.9),

i) = g (0 o)) = s < pla) =
=L L Gwpate—ro) LD ) (o) = (o) (el

J(u)pr(x — x¢) dxo dug
O

According to the Theorem, and referring to the meaning of the ML scores function

in statistics, we suppose that a general sense of the influence function of a distribution is
the following: h(u) is the value which is to enter into statistical inference mechanisms.

In other words, it is the “inference value” of u € T under the assumption of the

7



distribution F. We do not discusse this question in more details here. Some further
results supporting this idea can be found in [4].

Consider the location and scale model on R, given by a parametric family Pr =
{Pryolzo € Ryoc € Rt} on (R, Bgr), where P, , = (Pr)z.0, with densities in the form
p(z|2g,0) = 07 'pr((2 — 20)/o). Using (5.2) we obtain densities of related parametric
distributions Pr+ = {P., +|20 € RT,0 € Rt} on (R",Bg+) in the form

z z

p(zlz0,0) = (02) 7 pr(o™" In (=) = (02) " pr(ln(—)"7). (5.3)

20 20

Corresponding IFD’s are
h(z|zo,0) = U_lhR(ln(z/zo)l/g). (5.4)

pr is usually called the parent density of the family Pr. hr will be called the parent
IFD of the family. It is apparent from (5.3), (5.4) that they can be taken as parents of
the location and scale family Pgr+, too.

6 Weight function of a parametric distribution

Definition 3 Let h be the influence function of a distribution Py € Pr, defined on
(T, Br), continuous and strictly increasing on T'. A real-valued function g : T — R,
given by

g(u|f) = dh(u|f)/du (6.1)

will be called the weight function of the distribution Py.

Motivation for this definition is as follows. By means of IFD’s, a distance in the
sample space T' can be introduced by the formula

plu, uz|0) = |h(us]d) — h(uq]0)] U, Uy € 0. (6.2)

By Theorem 2, (6.2) is the distance of “ML values for location” of two points of
the sample space. It appears to be a metric for a continuous, strictly increasing h.
Expression (6.2) can be rewritten in such a case into dp(u|f) = g(u|f)du, where ¢ is
given by (6.1). The space (7, g) is apparently the one-dimensional Riemannian metric
space. In Riemannian geometry (we refer to Kobayashi, Nomizu [6]), ¢ represents the
weight introduced in the space T

From the direct differentiation of (5.1) and the use of (4.6) follows transformation
relation for the weight function in the form

g(ulf) = J(u)gr(e™" (ul0)). (6.3)

Likewise in the case of densities on RT, the term w(u|d) = gr(p~*(u|f)) will be called
the proper weight function of random variable U.

Consider now for the sake of simplicity a distribution without parameters with a
density p(u) and IFD h(u), so that the weight function is given by ¢(u) = dh(u)/du.

8



Taking derivatives of (4.8), (4.13) with respect to = and z, respectively, we obtain
weight functions on R and R*, expressed by densities as

/

gr(z) = (pR(x))Q _ Pale) (6.4)

pr(%) pr(x)
_ PE (PG Cope)
g(z) = ) + [(p(z)) () ] ) (6.5)

Example Proper densities ¢(z) (4.5) and proper weight functions w(z) = zg(z) of
distributions defined on R and quoted in Table 1 are given in Table 2.

TABLE 2 Densities pr(x), weight functions gr(x) of distributions on R from
Table 1 and proper densities q(z), weight functions g(z) and proper weight
Junctions w(z) of related distributions on R

Pr(*) gr(z) q(2) 9(2) w(z)
v%—ﬂe_ixrz 1 \/Lz—re_?ln% 1/z 1
etee” e” ze F 1 z
Zcosh “x ~cosh “x 2/ z + z + z + z=
}cosh™ § cosh™ [(z+1)? 2/(z4+1)7  (V2/(z'? 1/2))?
—coshx —1(= z
2]{1(1)6 " coshx 21(01(1)26 2(+41/2) %(1 + 1/22) %(Z + 1/2)

We suppose that proper weight function w(u|#) could represent a relative weight
(relative importance) of a point u € T' of the sample space (of the observed value u)
under the assumption of the distribution Fj.

Let gr be the weight function of the distribution Pr. Weight function of the location

and scale model Pg+ is, using (5.4) and (6.1)

g(z]z0,0) = U_lth(ln(z/zo)l/g)/dz = U_Qz_lgR(ln(z/zo)l/g). (6.6)

7 Parametric form of a continuous random vari-
able and Axiom 1 of the gnostical theory

Definition 4 Let U be a random variable defined on (T, By) with distribution Py € Pr
and let there exists a continuous and strictly increasing on T influence function h of
the distribution Py. Let 0 be a random variable defined by the relation

Q= hU).

The expression

U =h"'(), (7.1)

will be called parametric form of random variable U.



Theorem 3 Kovanic’s Aziom 1 (1) represents the parametric form of a random vari-
able with lognormal distribution.

Proof Density of the lognormal distribution is given by

1 1112 1/o
pi(z|z0,0) = e~ 5 1(=/20)/ ]
2moz
The corresponding IFD is
hi(z|z0,0) = éi(—zpl(zﬂzo,a)) = o Mn(z/2)"°.
pi(z|z0,0) dz

Setting Q = hi(Z|z0,0), one obtains

Z = 20€SQ, (72)
where s = o2 The assertion then follows from the one-to-one correspondence of
densities and IFD’s (4.13), (4.15). O

Remark A general parametric form of (7.2) for the location and scale model on

(R*, Bg+) with parent IFD hg is, using (5.4),

—1

7 = zgehr (7)) (7.3)

(7.3) represents a generalized form of the “gnostical Axiom 17.

8 Probability densities implicitly assumed in the
gnostical theory

For the sake of clarity of account, we mentioned in the Introduction only one of Ko-
vanic’s types of irrelevances. In fact, there are two. By means of “estimating irrele-
vance” , given by (3), are constructed robust gnostical estimates. The second type is
the “quantifying irrelevance”, given by

: 1 —2/s
bzl 5) = sinh(20) = L[(z/ )" — (2 2) 2/ (5.1)
and providing sensitive gnostical estimates.

Theorem 4 Probability densities corresponding to two types of Kovanic’s irrelevances

(1.3), (8.1) are

(sl s) = T 1
p1(2|20,8) = 2sT2(1/4) [(2/20)2/5‘|‘ (z/zo)_2/5]1/2

(8.2)

L LG/ o e 0) 1) (8:3)

p2(2|20,5) = W )

respectively.

10



Proof Let
hgi(u) = tgh(2u), hgo(u) = sinh(2u) (8.4)

be score functions of some distributions. The corresponding densities are given by
(4.14), so that

p(u) = cl_le_ftgh(zu) = ¢Tleosh™/2(2u) (8.5)
pQ(U) — 02_16_ sinh(2u) du _ c;lg—%cosh(?u)‘ (86)

By the use of integrals ([14]),

v—1

0 2 0
/0 cosh™ax dx = () I(v/2), /0 2 lem oz Hal2) g — Z(q/p)a/zKa(Z\/p_q)

where I' is the gamma function and K, the modified Bessel function of the 3. kind,
norming constants are

¢ =T3H1/4)/2V 27, ¢y = Ko(1/2).

By the substitution
u=1In(z/z)"* (8.7)

in (8.4) and using (5.4), one obtains influence functions of searched distributions in the
form

hi(z|z0,8) = S_Itgh(ln(z/zo)Q/s) = —5""h.(2|20, 5) (8.8)
ha(z|z0,8) = S_ISinh(ln(z/zo)z/s) = 57 (2|20, 5), (8.9)
where —h, and h, are gnostical irrelevances given by (1.3) and (8.1). Substituting (8.7)

into (8.5) and (8.6) and using transformation relations (5.3), one obtains the searched
densities in the form (8.2) and (8.3).

Since the opposite sign of the estimating irrelevance with respect to IFD, as well as
the constant factor plays no role in practical applications of gnostical algorithms, and
considering the one-to-one correspondence of IFD’s and densities, assertion holds. O

Remark 1 “Gnostical probability densities” (8.2), (8.3) differ from that introduced by
Axiom 1 due to an inconsistency in Kovanic’s derivation of gnostical data characteristics
(1.2), (1.3) from (1.1). In the step, in which the two components of random variable
¢* = cosh(s€2) + sinh(sQ) are considered to be independent (Kovanic’s “dissimilarity
laws”), is in fact redefined the original distribution.

Remark 2 Considering one of the probability models (8.2), (8.3), Kovanic’s idea (II)
is true. Indeed, given a model of a statistical experiment in the form of a parametric
set Pr, the data, realizations of 1.i.d. random variables Uy,...U, with distribution
Py € Pr, are no longer merely an observed collection of data items. For each data item
u; are, by the assumed model, prescribed the a priori data characteristics: the value
of the influence function of distribution, (“inference value” or, possibly, “relevance”)
h(u;|#), and the proper weight w(u;|f). They are in a "latent” form because of an
unknown #°, similarly as with the likelihood. They can be approximately determined
after an estimate 0 of the true value ° is found. Thus, Kovanic’s irrelevances (in the

11



case of “estimating irrelevance” the function negative to it) appears to be special cases
(in special models (8.2), (8.3)) of a basic probabilistic characteristic, surprisingly not
known in a general form in probability theory untill introduced by Fabian.

Kovanic’s idea (III) is then simply realized by defining the distance in the sample
space by the relation (6.2). This is a Riemannian distance, being Euclidean only in
cases of special distributions (for instance the normal distribution on R with IFD
hr(z|xg,0) = 07 (x — x0)).

Theorem 5 Square of the gnostical fidelity is, apart from the constant, the proper
weight function in the probabilistic model given by the density family (8.2).

Proof Weight functions of distributions with densities (8.5), (8.6) are, using (6.1) and

(8.4)
g1(u) = 2cosh™(2u), g2(u) = 2cosh(2u). (8.10)
After substitution (8.7) and by the use of (6.6),
g1(2]20,8) = 25722 Leosh ™2 (In(2/20) %) = 257227 f2(2| 20, 5) (8.11)
92(2]20,8) = 2522 Tcosh(In(z/ z)%*) = 257227 F 7 (2|20, 5), (8.12)
where f is the fidelity (1.2). Thus, f? is, apart from the constant factor (Kovanic is
aware of the relation (6.1)), the proper weight function wq(z|z0,8) = zg¢1(2|z0,s) of

the distribution (8.2) (and, similarly, f~!(z|z0,s) the proper weight function of the
distribution (8.3)). O

9 Conclusion

In this paper we explained Kovanic’s “non-statistical” notions of irrelevance and fidelity
of individual data. We did this in a rather unexpected fashion: by including their
general equivalents into Kolmogorov probability theory.

We conjecture that a significance of the gnostical theory consists not in some of
its special procedures, but in the fact, that it was the first virtually probabilistic and
statistical theory, which was constructed on a sample space different from the whole
real line. Since gnostical theory, likewise with the classical probability theory, does not
itself realize the existence of the geometric term (4.6), the “bridge” between different
sample spaces, gnostical theory naturally deals with influence functions of distribution
on R* (as probability theory does likewise in cases of distributions on R) and with
proper weight functions.

According to Theorem 2 of Section 5, the requirement (1.6) of zero average
(ir)relevance of a data sample (generally: zero average “sample influence function of
distribution”) affords the ML estimate of the location parameter without knowing the
mazimum likelihood principle (e.g. without need of differentiation with respect to the
location parameter). To this fact can be attributed the success of “gnostical estimator”
(1.6) of the location parameter, as well as the source of difficulties with “gnostical” es-
timation of the scale parameter (which can be removed by the use of the IFD-moment

method, see Fabian (1994b)).
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It should be noted that we did not explain Kovanic’s estimation procedures based
on his “Axiom 2 of the gnostical theory”. We suppose that, in probabilistic terms,
the composition law (1.5) can be considered to be a “finite equivalent” of some limit
theorem concerning sums of weighted i.i.d. random variables. “Qualitatively”, (1.5)
asserts that the weighted sum of i.i.d. random variables is distributed according to the
original probability law. This idea might be interesting, but it should be proved or
disproved.
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