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Abstract

It is shown that a variant of qualitative (comparative) possibilistic logic is closely
related to modal interpretability logic, as studied in the metamathematics of first-order
arithmetic. This contributes to our knowledge on the relations of logics of uncertainty
to classical systems of modal logic.
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1 Introduction

Possibilistic logic, as developed by Zadeh, Dubois, Prade and others (see e.g. [4] or
[5]), deals with formulas and their possibilities, the possibility 1I(A) of a formula A
being a real number from the unit interval, and the following axioms are assumed:
(true) = 1, Il(false) = 0, equivalent formulas have equal possibilities, I[(A V B) =
max(II(A),II(B)). It is very natural to ask how possibilistic logic relates to known
systems of modal logics. This question was discussed in [1, 3, 6, 7]; in the last paper,
possibilistic logic was related to tense (temporal) logic with finite linearly preordered
time. One deals with Kripke models (W, |~ 7) where W is a finite non-empty set of
possible worlds, |- maps Atoms x W into {0, 1} (truth evaluation), and 7 maps W into
the unit interval [0,1]; sets X C W have possibilities II(X) = max{r(w) | w € X} and
the possibility II(A) of a formula A is the possibility of the set of all worlds satisfying A.
The mentioned three papers study the binary modality <1 defined as follows: A 1 B
iff TI(A) < II(B). Classical Kripke models have the form (W, ||—, R) where R is a
binary relation. In particular, each possibilistic model (W, ||—, 7) determines a model
(W, |-, R) where wq Rws iff 7(w1) < 7(wz); clearly, R is a linear preorder. [7] formulate
an axiom system QPL sound for this semantics. The axioms are tautologies, transi-
tivity (A < B)&(B <4 C)) — (A< C), linearity (A< B) V (B <4 A), monotonicity
(A4 B) = (AVCaBV(C); 04 A and =(1<0) (non-triviality); 1 is true. Deduction
rules are modus ponens and the following necessitation: from A — B infer A < B. It
was proved in [1] that this axiom system is incomplete (even if complete for formulas
with non-nested modalities) and an axiom scheme was exhibited making the system
complete. A suggestion of Herzig has lead to the observation that the following pair of
axioms sufficies:

(P) (AdB)—0O(Ad4B),

(P~) —(A<d B)— 0O-(Ad4B),

where OC' is =C' <1 0. The related system of tense logic of [1] has three necessity-
like modalities G, H, I (meaning “in all future worlds”, “in all past worlds”, “in all
present worlds”, respectively); OA is HA&TA&GA and A 4 B is defined as O(A —
=(I(=B)&G(=B)); equivalently, (A — (JBV FB)) where J is =[—= and F is =G—
(dual modalities). Details will not be repeated here.

In this paper, we are going to relate possibilistic logic to interpretability logic, as
developed by Smoryriski, Hajek, Svejdar, de Jongh, Veltman, Visser and others. In-
terpretability logic extends provability logic L, and we comment first on the latter. In
provability logic, necessity (box, O) is understood as provability in a fixed axiomatic
arithmetic T' (e.g. Peano arithmetic). As Godel discovered, in T' we can define a for-
mula Pr(z) formalizing the notion of provability in 7', e.g. ~Pr (false) is the formula
Con expressing the consistency of T in T. (Godel’s second incompleteness theorem
says that under reasonable assumptions on 1T', T' does not prove its own consistency,
ie. T 1/ Con.) Godel also invented the method of self-reference in arithmetic, by
constucting a formula v such that 7'+ v = = Pr(v) (v says “I am unprovable”; v is
the numerical code of v) and showed that under reasonable assumptions on T, v is an
independent formula (7' v, T t/ =v). (This is Godel’s first incompleteness theorem).
An arithmetical translation of modal logic is a mapping * associating with each formula



A of propositional modal logic (whose only modality is O) a sentence A* of T" in such
a way that * commutes with connectives (e.g. (A&B)* is A*&B*, etc.) and (ODA)*
is Pr(A*) (this is how necessity is understood as provability). The arithmetical com-
pleteness theorem (cf. [12, 13]) says that a propositional modal formula A is provable
in the provability logic L iff for each arithmetical translation *, T' F A*. Provability
logic also has its Kripke semantics and there is a corresponding completeness theorem
(the same references).

For general theories Ty, Ty, T} is interpretable in Ty if primitive notions of 17 can
be defined on T, in such a way that axioms of T} become provable in T;. Consider
the extension of our arithmetic 7' : Ty = (T + ¢), To = (T + ¢). In this case we
can formalize the notion of interpretability, i.e., produce a formula Intp(x,y) of T
saying “(1T" + ¢) interprets (T + )" or “(T + ) is interpretable in (T 4 ¢)”; T proves
reasonable properties of this notion. This leads to a modal propositional logic with
one unary modality O and one binary modality <1; one has arithmetical interpretations
((DA) is Pr(A*), (A B)*is Intp(A*, B¥)), arithmetical completeness, Kripke models,
Kripke-style completeness [2, 8, 9, 10, 11, 14]. The double semantics of provability
and interpretability logic (arithmetical and Kripke-like) gives interpretability logic its
beauty; nevertheless, arithmetical interpretations will be disregarded here. We relate
interpretability logic to a variant of qualitative possibilistic logic which we call the logic
of sufficiently big possibilities (or the logic of future possibilities). In Section 1 we survey
most basic facts on interpretability logic; in Section 2 we introduce our comparative
logic of sufficiently big possibilities, in Section 3 we develop a tense logic with finite
linearly preordered time and relate it to both preceding systems. Section 4 contains
some remarks and Section 5 is an appendix giving indications for a completeness proof.

2 Preliminaries: Interpretability logics

Axioms are as follows:

axioms of L:

1) tautologies,
2) O(A — B) — (DA — OB),
3) DA — ODA,
4) O(0A — A) — OA (Lob’s axiom),
additional axioms:
(JI)D(A—-B)— A4 B
(J2) (A B)&(B<C))— (A4 C)
J3) (A O)Y&(BaC))<a((AVvB)<a ()
(J4) Ad B — (CA — OB)
(J5) CA1 A
(M) (A< B)— ((A&OC) < (B&OCY))
(P) (A9 B)—0O(A4 B)

Deduction rules: modus ponens and necessitation: from A infer OA. (Clearly, CA

is =O-A).



Remark Arithmetical validity of most axioms is easy to see; we comment on Lob’s
axiom. In fact, this is a variant of Godel’s second incompleteness theorem: by trivial
manipulations, it can be written as G—A — O(=A&—=O=A), thus (replacing —A by
B) OB — O(B&—OB) and hence OB — —0(B — <©B) which has the following
arithmetical interpretation: if B is consistent (with 7') then the formula B — Con(B)
is unprovable (in T, thus: if (T4 B) is consistent then (7' 4+ B) does not prove its own
consistency; we disregard technical details.).

The following are important axiom systems: IL = L+ (J1) — (Jb), ILM =
IL+ (M), ILP=1L+ (P). See [2,8,9, 11, 14].
Note that in IL, box is definable from triangle:

[LFOA=(=A<0)
where 0 is false). A Veltman model has the form (W, |—, R, S) where (W, |-, R) is a

Kripke model with R transitive and asymmetric (hence irreflexive) and S is a reflexive
transitive relation containing R. (This is only a particular case; see [10] for the general

case). One defines w |-O0A iff for all v € W, wRv implies v |- A; w |FA < B iff
(Vo)(wRv&v |FA — (Fu)(wRu&vSu&u |-B)).

The completeness theorem for ILP says that ILP F A iff A is true in each finite
Veltman model (W, |-, R, S) satisfying the following condition:

(wRv & wRu & vSu & wRw' & w Rv) — w'Ru
Another formulation is as follows: let v.5,u mean wRv & wRu & vSu. Then
(vS,u& wRW & w Rv) — vSyu.

To get completeness for L, and I LM one needs a more complicated notion of a
Veltman model.

3 The comparative logic of future possibilities

Comparing [ LP with QPL + (P) we see that QPL + (P) proves (J1-J4) but not (J5)
and clearly does not prove Lob’s axiom. If one restricts oneself to positive models
(for each w € W, n(w) > 0) then O of QPL becomes an (S5)-modality; in particular,
0OA — Aissound; QPL+ (P)+ (0A — A) axiomatizes completely <1 with respect to
positive models.

Our aim is to relate possibilistic logic more closely to interpretability logic. This is
done below.

To marry ILP with possibility theory, consider the world-dependent future possi-
bility: TI(A,w) = sup{wr(w’) | w" > w and w' |- A}. Here ©' > w means m(w’) > 7(w).
Define w ||-A < B if (A, w) < II(B,w). Thus A < B is satisfied in the world w
if either 1I(A), II[(B) < w(w) or II(A) < II(B). This suggests the following (fuzzy)



reading of the new triangle-modality: the possibility of A is less-than-or-equal to the
possibility of B, or neither A nor B are too much possible.

Our comparative logic of future possibilities (or, if the reader prefers, logic of suf-
ficiently big possibilities) has formulas built from propositional variables using connec-
tives and the modality <1; its models are finite possiblistic Kripke models K = (W ||
—,m,) and the semantics of < is given by comparison of future possibilities as above.
We shall find a complete axiomatization.

Define O to be the future necessity: w ||-0A iff for all v’ > w, w’ ||—A. This
relates possibilistic logic and its Kripke models to tense logic and its Kripke models;
we shall investigate the corresponding tense logic in the next section. At this moment,
let us stress that relating possibilistic logic to tense logics (and other logics, e.g. in-
terpretability logic) should contribute to our understanding of what possibility theory
is; one interpretation is that I1(A) is the last moment in which A is possible (or zero).
This temporal interpretation makes our future possibility natural: 1I( A, w) means (in
the world w) the last moment after now in which A is possible (or zero). To elucidate
this, let us verify the validity of the axiom (J5): CA <4 A. Given w, if II(CA, w) > 0,
let w’ be the last world after w satisfying $A; thus there is a last w” > w satisfying
A; TI(CA, w) = II(w') < [I(w”) = (A, w). Clearly, each possibilistic model (W, |-, 7)
determines a particular Veltman model called an LPO-model (linear preorder):

An LPO-model is a Veltman model (W, ||—, R, S) where S is a linear preorder of
W, i.e. S is transitive and dichotomous (wSwv or vSw for all w,v € W) and R is the
corresponding strict preorder: wRv if wSv and not v.Sw.

Observe that w ||[—A < B in the possibilistic model (W, |—,7) (with respect to
the future-possibility semantics) iff w ||—A < B in the corresponding LPO model
(W, |-, R, S) (with respect to Veltman semantics). Let (D) be the axiom of dichotomy
(A< B)Vv (B < A). Then:

Fact Axioms of ILPD are tautologies of LPO-models.

But we shall show that ILPD is not complete for LPO-models. In the sequel we
develop a tense logic with finite linearly preordered time and one (future) necessity
extending ILPD and complete for LPO -models.

4 A tense logic with finite linearly preordered time

In this section we shall investigate the modality of future necessity introduced above.
Note that here we have only the future necessity (always in the future), no past necessity
and no present necessity. This is in contrast to the system of [1] discussed in Section 1,
with the same Kripke models (with finite linearly preordered time) but with three
necessities mentioned. We show that our present tense logic is completely axiomatized
by an axiom system extending the axioms of provability logic L by a single axiom of
linear preorder:

Let (E) be the axiom
O(0A — B)vO(0OB — OA)

4



(linEar prEordEr).

Theorem 4.1 1. The logic L + (E) (provability logic plus (E)) is sound and com-
plete for finite Kripke models (W, |-, R) such that there is a linear preorder S on
W (transitive and dichotomous) whose corresponding strict preorder is R (thus

wRv iff wSv and not vSw; in other words, (W, |-, R,S) is an LPO-model).

2. In L+ (F) define 4 as follows (definition):
(F) A4 B iff O(=A&—B) v O(B&O-A).
Then L+ (F) + (F) proves all axioms of ILPD.

3. The definition (F) is true in each LPO-model if Q9 means comparison of future
possibilities.

4. ILPD does not prove (E); in particular, the model

PO~ — — —-@ p

is a model of ILPD, but the formula O(Op — —p)V O(O-p — Op) is false in the
root.

The proof of (1) is a modification of the proof of the completeness theorem in [1];
(2)-(4) are easy.

Summarizing, L+ (E, F') is the logic of comparison of future possibilities (over finite
models); it strictly extends the interpretability logic ILPD.

5 Remarks

We continue with a series of remarks.

Remark Over LPO models, O and < are interdefinable: (F) defines <1 from O and

evidently OA = (A < 0) is a tautology. Thus the theory L + (E,F) may be presented
as a theory with a single modality <.

Remark We compare the modality of comparison of future possibilities (denoted
<y in the present remark) with the (world independent) modality of comparison of
possibilities (<., ¢ for “constant over worlds”). For a moment, let a CNN-formula
(closed non nested) be a boolean combination of formulas of the form A < B. If C is
such a formula, 'y and C. mean results of replacement of <1 by <1y and <. respectively.
The relation is as follows:



Fact Let C be a CNN-formula. If Cy is a tautology (over LPO-models) then C. is
a tautology. On the other hand, for each axiom C of QPL except =(1 < 0),Cy is a
tautology. (But 1 <10 is satisfied in each maximal element of each LPO-model).

The first part is proved by adding to an arbitrary LPO-model a new least element.

Let QP Lg result from QPL by removing the axiom —(1 <1 0). It can be shown, in
an analogy to [1], that Q) P Lo axiomatizes all CNN formulas that are tautologies in the
future semantics. Alternatively, it axiomatizes all CNN formulas that are tautologies
in the constant semantics with respect to all LPO-models plus the empty model (no
worlds, possibility of each formula is 0).

Remark The task remains to analyze the meaning of ILPD (which is weaker than
L + (E, F)) for possibilistic logic. As the example above shows, ILPD admits models
substantially different from (not elementarily equivalent to) any LPO-model. Does
every model of ILPD have a possibilistic interpretation?

Remark Studying future possibility we restricted ourselves to finite models. Such
a restriction is fully justified in the case of constant possibilities, as it was shown in
[1]. Here this is an additional assumption, justified, e.g. by postulating that the scale
of possibilities (7(w)) is a finite subset of [0,1]. Expressive power of future possibility
comparison on infinite models might deserve additional consideration.

6 Appendix

A proof of the completeness theorem for L 4+ (£) may be obtained by an inspection of
the proof of completeness of FLPOT in [1] Section 3. We briefly indicate the necessary
changes; the reader is assumed to have a copy of [1] at his/her disposal.

In 3.5, change the definition of F:

' ETy iff, for each C', GC € T'y ifft GC € Ty
(G replaces O; we have no H, I modalities). Delete 3.6, 3.7, 3.8(1) holds as it stands;
3.8(2) will read: If TET' then I'RA implies IV RA (and also ARI" implies ARI”, but

this will be proved later).

Proof: 1t GA €1 then GA €T and A € A.

Define irreflexive theories as in 3.9; 3.10 holds as it stands.
3.11(1) holds by a new proof:

Proof: Assume ORIy, ORIy, and let all of the following three conditions be false:
IRy, T'yRIy, T'1ET,. Then there are A, B, C witnessing this, i.e.

(GA&—B&GC) € T,

(GB&A&-GC) € T,



But © F G(G(A&C) — B)V G(GB — G(A&C)), thus © proves one of the disjuncts.
If © F G(G(A&C) — B) then (G(A&C) — B) € I'y and I'y is inconsistent; if ©
G(GB — G(A&C) then I'ys H GB — G(A&C) — GC, thus I'y is inconsistent. But
I'y,I'y are consistent.

In Def.3.12 of a critical formula delete H, I; define S = {I' | ARI' or AET}. 3.13
is 0.K.

In 3.14 show that, if £ is a set of irreflexive theories, then for I'1, I'y € Q exactly one
of the conditions I'y Ry, TI'y KTy, TI'; BRI’y holds; i.e., that they are mutually exclusive;
use the proof is it stands. For transitivity, we have to prove the second half of 3.8:

FlR FQE Fg 1mphes FlR Fg.

If IR T';3F I's and not I''R TI's then I'sR I'y or I''E TI's. But I'sR I'y implies
I'skR Ty which is incompatible with 'y T's, and I''E T’ gives I'' ' T'y which is
incompatible with I'' R I's.

3.15(1) is O.K. as its stands and (2), (3) are deleted. Similarly for 3.16(1), (2), (3).
This completes the proof; the rest is O.K.
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