narodni
N U dlozisté
1 L Sedé
6 literatury

Separating Deterministic, Nondeterministic, and Co-Nondeterministic Time Complexity
Classes for Single-Tape Computations

Wiedermann, Jifi
1995

Dostupny z http://www.nusl.cz/ntk/nusl-33572

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 23.04.2024

Dalsi dokumenty muzete najit prostfednictvim vyhledavaciho rozhrani nusl.cz .

http://www.nusl.cz/ntk/nusl-33572
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Separating Deterministic, Nondeterministic, and
Co—Nondeterministic Time Complexity Classes
for Single-Tape Computations

Jiri Wiedermann
Institute of Computer Science
Academy of Sciences of the Czech Republic
Pod vodarenskou vézi 2, 182 07 Prague
Czech Republic

Technical report No. 628

March 1995

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod vodarenskou vézi 2, 182 07 Prague 8, Czech Republic

phone: (4+422) 66414244 fax: (4+422) 8585789
e-mail: wieder@Quivt.cas.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Separating Deterministic, Nondeterministic, and
Co—Nondeterministic Time Complexity Classes
for Single-Tape Computations

Jit{f Wiedermann!

Institute of Computer Science
Academy of Sciences of the Czech Republic
Pod vodarenskou vézi 2, 182 07 Prague
Czech Republic

Technical report No. 628
March 1995

Abstract

It is shown that for any well behaved function 7'(n), a single-tape nondeterminis-
tic Turing Machine of time complexity T'(n) can be simulated by a single—tape ¥,—
machine in time T'(n)/log T'(n). Consequently, a separation of all three related fun-
damental complexity classes — viz. single-tape deterministic, nondeterministic, and
co-nondeterministic, respectively, time-bounded classes, is shown.

Keywords

Single tape computations, Turing machines, complexity classes

IThis research was supported by GA CR Grant No. 201/95/0976, and partly by Cooperative Action
IC 1000 (Project “ALTEC”) of the European Union

1 Introduction

Single-tape Turing machines (TMs) are generally considered as the simplest, albeit
from computational point of view somewhat cumbersome, universal computing model.
Therefore the related complexity classes differ in some details, especially in cases when
polynomial factors cannot be neglected, from that of multitape TMs. However, it ap-
pears that it is just the relative simplicity of single-tape TMs that enables to obtain
for them results that are so far, or due to the idiosyncracy of the machines involved,
unattainable for multitape TMs. In both cases the respective results are of immense
value for theoretical studies in complexity theory since they can serve at least as inspi-
ration, or as a guide for our intuition, for similar studies in the field of more realistic
models of computation.

In this context, among the central open problems that attract a lot of theoretical
attention even in case of single-tape computations, are problems dealing with the “non—
trivial” relationship among complexity classes related to fundamental computational
resources — viz. determinism, nondeterminism, and co-nondeterminism, respectively.
Unfortunately, so far the situation here has been much similar to that in the realm of
multitape TMs: mostly only partial answers to only few of the related question has been
known.

To illustrate the recent situation in the respective field, for single-tape TMs,
especially the following results are to be reported.

In [3] or in [4] it is shown that any nondeterministic single-tape TM of time com-
plexity O(T'(n)) can be simulated in linear time by another nondeterministic single-tape

machine in space O(1/7'(n)). In [4], moreover a tight time hierarchy for nondeterministic
single tape TMs has been shown. For the deterministic case, even speed—ups have been
be achieved: in [7], a single-tape deterministic machine has been speeded-up by an al-
ternating machine (i.e., using an unbounded number of alternations) down to O(y/T'(n))
time. In [2] it is shown that the same machine, equipped, moreover, by a read-only input
tape, can be simulated in time O(T(n)2/3 log T'(n)) by a multitape ¥4—machine, i.e., by a
bounded number of alternations. Along these lines, so—far the best result seems to be the
result from [5], where the same result as before has been proved by using a substantially
less powerful simulating machine than in [2] — namely a single-tape ¥;-machine.

Unfortunately, even though the last mentioned result has lead to some separation
results between single-tape deterministic time, and multitape nondeterministic time,
the separation of determinism from nondeterminism, or from co-nondeterminism, for
single-tape machines alone, and for arbitrary time-bounded complexity classes, has not
followed.

It appears that sharper results are necessary if we want to achieve a separation. In
this respect, the key observation seems to be the following one: the speed—ups achieved so
far have been achieved for quite a high price — namely too many powerful computational
resources have had to be added to achieve the speed—up effect. E.g., in the above
mentioned latter case [5], for achieving a speed—up, both addition of nondeterminism,

and of one additional alternation, have been necessary.

In the paper at hand we shall show that a mere addition of an extra alternation is
enough to speed—up a single—tape nondeterministic computation. More specifically, we
show that under a certain reasonable technical conditions concerning the function 7'(n),
any T'(n)-time bounded single-tape nondeterministic TM can be simulated by a single—
tape Yy—machine in time O(T'(n)/logT(n)). The same speed—up can be achieved also
for the complementary machines (i.e., a single-tape II; (co-nondeterministic) machine
can be speeded—up by a single-tape Il machine). As a consequence the separation of
the four related complexity classes — viz. single-tape deterministic, nondeterministic
co-nondeterministic, and X5, respectively, time-bounded classes, will be shown.

2 Speed—up of Nondeterministic Computations by
Additional Alternation

The following theorem states that under certain technical assumptions, any computation
of a nondeterministic, single-tape Turing machine can be speeded—up by a single-tape
TM performing two alternations. The proof of this theorem is based on a space effi-
cient, so—called rectangular representation of single-tape computations, that goes back
to Paterson [6] (see also [1] or [3] for a similar approach). Our proof, however, differs
substantially from proofs based on the similar representation, in at least two important
aspects:

o first, the computation of the original machine, that is to be speeded—up, is first
transformed into an equivalent computations that enables, later on, its efficient
simulation;

e second, by making use of a different distribution of related computational tasks
into nondeterministic, and co-nondeterministic, phase of the simulating machine,
the speed—up of a nondeterministic machine, by only two alternations, is enabled.

Theorem 2.1 Let 1/T(n) be fully time and space constructible, with T'(n) > n*. Than
any T(n)-time=bounded nondeterministic single—tape TM M can be simulated by a
single-tape Yo—TM in time O(T(n)/logT(n)).

Proof Outline. Following [3], for T'(n) as above, w.l.o.g. we can assume that M is of

space complexity O(y/T'(n)). Moreover, from [4] it follows that w.l.o.g. we can assume
also that M is a strongly accepting TM — i.e. such that always halts after performing
T'(n) moves, and either accepts, or rejects its input.

Next, for specific reasons that will become clear in a sequel we shall split the
computation of M into ©(T3(n)) time segments, each of length O(T?/3(n)), and, at
the end of each time interval, we let the machine perform a complete sweep over its tape.

A sweep starts at the position of the machine head at the end of time interval at hand,
proceeds by moving the head to the right end of the tape, then in the opposite direction
to the left end, and finally returns to the original head position. During a sweep the
contents of the tape is not altered. The execution of a sweep will be included into the
respective time segment. It is clear that the time complexity of performing a single
sweep is proportional to the tape length, and thus complexity of the resulting machine
remains bounded by O(T(n)).

The reason for introducing sweeps over the entire tape at the end of each time seg-
ments lies in the fact that doing so it is possible to verify the “history” of cell rewritings
during a computation by returning back in the time to the distance of only ©(72/3(n)).
(This is the first idea where our proof deviates from the schema of similar proofs — say
from [5].)

Now, for the machine M prepared as above we construct the rectangular repre-
sentation of its computation.

To obtain this representation for any fixed computation, it is helpful to see the
computation at hand as a sort of a diagram, that consists of individual instantaneous
descriptions (ID’s) of M, for subsequent time steps ¢ = 0,1,...., written one above an
other. Besides the current contents of M’s tape in each ID also the current head position
is recorded by writing down the current state of M’s finite control over the position just
scanned by M’s head. In this way also the trajectory of M’s head, on a given input, is
recorded in our diagram.

Further, starting from some position j, with 0 < j < b(n), the tape of M can
be partitioned into blocks of length b(n) (the value of b(n) to be determined later) in
such a way that the sum of length of crossing sequences over the block boundaries will
be at most T'(n)/b(n). Such a position j must exist, since in the opposite case, would
the respective sum be greater than T'(n)/b(n) for each j, the total length of the crossing
sequence, taken over all tape cells, would be greater than T'(n).

The block boundaries will split the computational diagram at hand into at most
\/T'(n)/b(n) vertical slots. These slots will be changed into so—called first order rectan-
gles by drawing horizontal lines in between the ID’s that separate the individual time
segments.

Clearly, in this way we obtain at most O(T%¢(n)/b(n)) first order rectangles.

First order rectangles will be further split by drawing a horizontal line at suitable
points, into second order rectangles whose size is maximized, subject to the satisfaction
of either of the following two conditions:

e none of the two respective vertical sides is crossed by the TM head more often
than at b(n) times;

o the total time spent by the TM head in a given second order rectangle must not

exceed b*(n).

Clearly, second order rectangles can be created in each first order rectangle in
each vertical slot, with the possible exception of “too short” slots, or in remainders of

first order rectangles that are “artificially” cut by the line separating time segments.
Call the respective second order rectangles, that could not be created in the “full size”,
as required by the previous two conditions, as small rectangles.

As a result we obtain at most O(7'(n)/b*(n)) second order full size rectangles
(since the computation within each rectangle “consumes” either b(n) crossing sequence
elements, or time b*(n)), plus at most O(T°/(n)/b(n)) small ones. Thus the total
number of second order rectangles is safely bounded by O(T'(n)/b*(n)).

Each second order rectangle will be thus represented by its two horizontal sides of
length b(n), giving the contents of the corresponding block at the respective time steps,
and by the two vertical sides of length (1 and (3, respectively, with {1, (5 < b(n), giving
the respective crossing sequences in chronological order for each side separately.

Hence, the size of each second order rectangle representation is at most 4b(n),
what in a total gives O(T'(n)/b(n)) for all rectangles.

Now, the idea of simulation is first to guess the above rectangular representation,
and then to verify whether the guess was correct — i.e., whether all rectangles ‘fit’
together (so—called global correctness) and, whether each rectangle represents a valid
piece of M’s computation — i.e., such that starts in “partial” configuration as described
by the upper horizontal side of the rectangle at hand, ends in a configuration as described
by the lower side of the rectangle, and where the M’s head leaves and re—enters the
rectangle in accordance with the crossing sequence that corresponds to the vertical
rectangle boundaries (so—called local correctness).

This seems to lead straightforwardly to the design of the simulation scheme in
which M is simulated by a single-tape ¥5-machine in two main phases: in the the first,
nondeterministic one, all guesses will be performed, whereas in the second, universal
one, the verification of all previous guesses will be done.

Nevertheless the implementation of the above idea is complicated by the fact
that verification of local correctness requires nondeterminism, and therefore must be
performed during the first phase, i.e., sequentially. Doing this straightforwardly for each
rectangle in turn will require a time of order Q(7T'(n)), what would prevent any speed—up.
The way out of this problem is to define the size of each rectangle so small that there
will be many equal rectangles in our rectangular representation; then it will be enough
to identify, and verify only the different rectangles.

This is the second main point where our simulation departs significantly from the
“standard” schema as used e.g. in [1], or in [5]. As we shall see later on, this departure
will require also related, quite involved “preparation” actions in the first, and verification
actions in the second, phase of simulation.

We have already noticed that the size of a rectangle representation is at most
4b(n). Thus, for a given TM M there are at most R(n) = ¢*(different rectangles,
for some constant ¢ > 0 that depends on the size of M’s alphabet and on the number
of its stats. In order to have many equal rectangles in our rectangular representation
of M’s computations, R(n) must be asymptotically less than their total number — i.e.,

less that O(T'(n)/b%*(n)). Choose b(n) = 1/24log, T(n). Then R(n) = T"/%(n), what, as

we shall see later on, is quite appropriate for our purposes.

Let us describe now the simulation itself. Let S be the simulating single-tape
Yo-TM.

The nondeterministic phase of its computation consists of the following four sub-
phases.

Subphase 1.1 — generating a rectangular representation. For a given computation
of M the rectangular representation, with b(n) as above, is guessed and written down
on the S’s tape in the following order: time segment by time segment, and within
each time segment, first order rectangle by first order rectangle, from left to right, and
within each first order rectangle, second order rectangle by second order rectangle, in
chronological order. Boundaries between individual (first and second order) rectangles,
and time segments, respectively, are marked by special symbols on a special track.

The length of the above data, pertinent to one time segment, is at least Q(1/7T'(n))

(since there must be at least Q(y/7'(n)/b(n)) second order rectangles, each of size

O(b(n))), and at most O(T?3(n)) (since within the time segment of duration T%%(n),
at most O(T?/3(n)/b(n)) different rectangles can be visited by M’s head).

However, it is clear that the entire rectangular representation can be generated
in linear time w.r.t. its length — i.e., in time O(T'(n)/log T'(n)).

Subphase 1.2 — preparing for duplicate rectangle identification. On a special
track, guess and write down all the different rectangles from M’s rectangular representa-
tion, in the sorted order. Call the resulting string a set-of-rectangles. Then “copy”, still
onto the same special track, nondeterministically, the previous string of length at most
4R(n)b(n), above the beginning of each time segment, T'/%(n) times in a row. Due to
the nondeterminism involved, the entire “nondeterministic copy” operation, for all seg-
ments, can be performed in a single traversal over 5’s tape. Hence the time complexity
of this operation is O(T'(n)/b(n)).

The set-of-rectangles strings will be subsequently, in the universal phase of simu-
lation (see subphase 2.3), be used for testing, whether all the rectangles from the original
rectangular representation are duplicates of the rectangles that are included in the above
set.

Subphase 1.3 — local verification. Verity, whether all the rectangles from set-
of-rectangles present a valid “piece” of M’s computation. This is done by performing a
nondeterministic computation as dictated by rectangle sides, for each rectangle from the
first occurrence of set-of-rectangles. Since there are R(n) rectangles, and the verification
of any of them is bounded by b*(n), the verification of all rectangles requires time

O(E(n)b*(n)).

Subphase 1./ — acceptance verification. Check, whether among all rectangles in
the rectangular representation (i.e., not in the set-of-rectangles (1)) there is a rectangle
in which the acceptance of M occurs. For this purpose, by scanning the appropriate
track of S’s tape guess the right rectangle, and verify, by replaying corresponding nonde-

terministic computation of M, whether the accepting state of M is achieved. This takes
time proportional to the length of S’s tape - i.e., O(T'(n)/b(n)).

Then the universal phase follows. It consists of three subphases that are run in
parallel.

Subphase 2.1 — verifying the global correctness. This phase consists in fact of
two independent verification processes that can be run also in parallel:

o verification of horizontal boundaries in rectangular representation: For the rect-
angles that are the first ones in each slot, we have to verify, that their upper
horizontal boundaries correspond to the initial content of M’s tape. For the re-
maining rectangles we have to verify, whether the lower horizontal boundary of
any rectangle, that is not the last one in the given slot, is the same as the upper
horizontal boundary of a rectangle that follows the previous rectangle in a given
slot.

The correctness of rectangles from the “first row”, so to speak, is easily to be
verified, by shifting the rectangles that carry parts of the input, towards the input,
that is being kept on the special track at the beginning of the S’s tape. The
remaining rectangles, that do not carry the input, should contain blanks in the
corresponding parts. All this can be done in time O(T(n)z/?’b(n)) for each rectangle
in parallel.

For the remaining rectangles, note that due to the chosen representation of rect-
angles on M’s tape (see subphase 1.1), within the same time interval, the lower
and the upper horizontal side of two neighbouring rectangles within the same slot
are at the distance of at most O(b(n)). Their equivalence can be easily verified in
time O(b*(n)) by invoking a special parallel process for each rectangle.

When there are two neighbouring rectangles within the same slot, but in differ-
ent time segments, then the distance of the corresponding horizontal boundaries,
that have to be compared, is at most O(T%3(n)). Thus, again, the necessary
comparisons for all time segments can be done in parallel, in time O(T?/3(n)b(n)).

The last verification is not completely trivial, since except the horizontal boundary
of a rectangle at hand, also a counter of size O(log T'(n)) = O(b(n)) must be carried
along each time segment, that “counts” the rectangles and enables thus to identify
the corresponding rectangles that are the neighbours within the same slot.

o verification of vertical boundaries in rectangular representation: For the kind of
verification at hand it is important to realize that due to the sweeps involved
at the end of each time segment, only crossing sequences between horizontally
neighbouring rectangles within the same time segment must be compared. Thus,
it 1s enough for each crossing sequence element from the right side of some rectangle
to find its “companion” in the left side of a horizontally neighbouring rectangle;

this companion will be located at the distance of at most O(T%3(n)). This can be
done in parallel, extra for each element, and extra for each time segment: we only
must keep track of element’s relative position on the vertical boundary between

the respective slots, within the given time segment. This amounts to shifting a
counter of size O(log T(n)) along the tape, to the distance of at most O(T?/3(n)).

Subphase 2.2 — verifying the correctness of “nondeterministic copy” operation
from subphase 1.2: universally split into O(T"/3(n)) copies of S, (exactly: as many copies
as there are time segments, minus one) and for each pair of neighbouring time segments
verity, whether the string set-of-rectangles is the same in both time segments. This can be
done by moving the respective string along the tape from the beginning of the first time
segment at hand above the beginning of the second time segment. Since the length of
two time segments on S’s tape is at most O(T%/3(n)), moving the string set-of-rectangles

of length R(n) along this distance requires time O(T%?(n).R(n).b(n)) = O(T%(n)b(n)).

Subphase 2.3. — wverifying duplicates of rectangles: we have to verify, whether
every rectangle in a given time segment finds itself also among the rectangles within set-
of-rectangles, that is located at the beginning of each time segment on a special track
(see subphase 1.2). This can be done easily in parallel, extra for each time segment, by
subsequently moving along the tape each rectangle from the rectangular representation
towards the beginning of the respective segment, and by verifying, whether the segment
at hand finds itself also in set-of-rectangles. Similarly as before the cost of this operation
is of order O(T*/%(n)b(n)).

Note that there can be some ”"additional” rectangles in the set-of-rectangles that
have passed the test in subphase 1.3, nevertheless they do not find themselves within
the rectangular representation of M’s computations, but, obviously, this is harmless.

This is the end of the simulation: if all the previous verifications in Phase 1 and
2, respectively, end successtully, S accepts its input.

From the previous complexity estimates of individual parts of S’s computation it
is seen that the most time consuming computation has been performed in phase 1, and
hence the time complexity of the whole simulation is O(T'(n)/b(n)).

O

Note that the selection of a few “parameters” in the proof of the previous theo-
rem (like the size of a rectangle, or the length of a time segment) was somewhat arbi-
trary: however, as seen from the proof and its analysis, although there are also other
possibilities, within a certain range, none of them would lead to asymptotically better
performance of the simulation. Namely, our proof “works” only in the case when there
are less than O(T(n)/log® T'(n)) different rectangles in the rectangular representation at
hand, what leads straightforwardly to the logarithmic size of block representation. Thus
our simulation cannot be improved merely by tuning some of its parameters.

Therefore, the general question, whether there exist any asymptotically faster
simulation of the above type, remains open.

We shall end this section by restating the statement of the previous theorem
in terms of relation between the respective complexity classes. To this purpose, let
NTIME(T(n)), and X2 —TIMFE(T(n)), respectively, denote nondeterministic and ¥,
respectively, T'(n)-time bounded single-tape TM complexity classes. Then the following
corollary of the theorem 2.1 holds true:

Corollary 2.1 Let 1/T(n) be fully time and space constructible, with T'(n) > n?. Then
NTIMEy(T(n)) C Sy — TIM Ey(T(n)/ log T(n))

Proof Outline. The above inclusion follows directly from theorem 2.1; we only have
to show that we can get rid of any constant hidden in the “big O” notation in the
complexity estimate of simulating machine from the theorem 2.1. A short reflection
reveals that this is indeed possible, since we can speed—up our simulating machine by
an arbitrary constant factor, by using the standard technique of compressing groups of
its tape symbols into symbols from a larger alphabet. There are slight problems with
the compression of input - the first idea to compress it, prior to start of the simulation,
in a sequential manner, would require time of order (n?), what is unacceptable (since
some simulating machines can run in time O(n?/logn), say). Therefore, a more com-
plicated process must be chosen: first, nondeterministically guess, and write down, the
compressed input, and later on, in the parallel computing phase, verify the correctness
of the initial guess. Also note that in order to achieve the above constant speed—up the
branching factor of nondeterministic or universal instructions of the original ¥, might

be increased.
O

3 Speed—up of Co—Nondeterministic Computations
by Additional Alternation

It appears that the previous results can be “reworked” to hold also for the case of co-
nondeterministic computations — i.e., for computations performed by single-tape time
bounded II; machine. In this case, the simulating machine would be a single-tape I,
machine (a machine that starts its computation in a co-nondeterministic mode, and
during its computation is allowed to perform one more alternation):

Theorem 3.1 Let 1/T(n) be fully time and space constructible, with T'(n) > n*. Than
any T(n)-time-bounded co—nondeterministic single-tape TM can be simulated by a

single-tape y=TM in time O(T'(n)/logT(n)).

We shall not present a proof here, since it is similar to the proof of theorem 2.1;
in fact, the simulating machine is obtained from that from the proof of theorem 2.1
by exchanging its existential states with universal ones, and by mutually exchanging

its accepting and rejecting states (recall that in the proof of theorem 2.1 the simulated
machine has been w.l.o.g. considered as a strongly 7'(n)-time bounded machine —
i.e., such that ends in an accepting or rejecting state on any computational path, after
performing at most 7'(n) steps).

Further, when introducing the notion of two new complexity classes, namely that
of co—- NTIMFE;(T(n)), and lly=TITM E1(T(n)), respectively, with the obvious meaning,

than similarly as before, one can prove the following corollary:

Corollary 3.1 Let 1/T(n) be fully time and space constructible, with T'(n) > n*. Then

co— NTIME(T(n)) Clly = TIME(T(n)/logT(n))

4 Separation Results

In the sequel we shall prove that the amount of speed—up achieved by the previous sim-
ulation is enough to prove interesting separation results concerning the basic complexity
classes that are related to the computations at hand. To prove these results, we shall
need two hierarchy theorems. The first one of them, that we shall reproduce here with-
out a proof, is the theorem by Lorys and Liskiewicz [4], proving a tight hierarchy for
single-tape nondeterministic time complexity classes:

Theorem 4.1 Let Ty(n) be fully time constructible, with n* € o(Ty(n)), and let Ti(n +
1) € o(T2(n)). Then?

NTIME(Ty(n)) € NTIM Ey(Ty(n))

The next theorem proves a similar hierarchy for single-tape co-nondeterministic
time:

Theorem 4.2 Let Ty(n) be fully time constructible, with n* € o(Ty(n)), and let Ti(n +
1) € o(Ty(n)). Then

co— NTIMEy(Ty(n)) C co— NTIM Ey(Ty(n))

Proof Outline: Consider any language L € NTIME;(15(n)) — NTIME(Ti(n)).
According to the previous theorem, such a language must exist, and for its complement
holds co— L € co— NTIM E1(T5(n)), and co— L & co— NTIM E;(T1(n)), what proves
the theorem.
O
Now we can return to our separation results. First we show that co-nondeterministic
single-tape time is not included in nondeterministic single-tape time:

2The inclusion symbol ‘C’ denotes the proper containment.

Theorem 4.3 Let T'(n) be such that /T (n) is a fully time and space constructible
Junction, with n* € o(T(n)), and T(n +1)/log T(n + 1) € o(T(n)). Then

co— NTIME(T(n)) € NTIMEy(T(n))
Proof Outline. Assume the opposite —i.e., co— NTIME(T(n)) C NTIME(T(n)),

and consider a computation of any T'(n) time-bounded single-tape nondeterministic
TM M, for T(n) as above. Then, according to theorem 2.1, M can be simulated by a
single-tape Yy-machine S in time O(7T'(n)/log T'(n)). In this machine, replace the co—
nondeterministic part of computation by a nondeterministic one, what, according to our
assumption, must be possible, without asymptotically deteriorating the computational
time complexity of the resulting nondeterministic machine M'. Clearly, M’ recognizes
the same language as M does, and runs in time O(T'(n)/log T'(n)).

Consider now any language L € NTIME (T (n)) — NTIME(T(n)/logT(n)).
According to theorem 4.1 and our assumptions on T'(n), such a non—-empty language L
must exist. However, M’ recognizes L in time O(T'(n)/log T'(n)), what is a contradiction

with the choice of L. Therefore, co — NTIME(T(n)) € NTIMFE(T(n)).
O

Obviously, from the previous theorem it already follows that nondeterminism is
not closed under complement. Nevertheless, for establishing a clear picture as far as the
exact relationship between nondeterminism, and co-nondeterminism is concerned, we
shall show that similar theorem as the latter one holds also for nondeterministic time,
that is not included in co-nondeterministic time:

Theorem 4.4 Let T'(n) be such that /T (n) is a fully time and space constructible
Junction, with n* € o(T(n)), and T(n +1)/log T(n + 1) € o(T(n)). Then

NTIME\(T(n)) € co— NTIME,(T(n))

The respective proof mirrors that of the previous theorem, by making use of
theorem 3.1., instead of 2.1., and of theorem 4.2 instead of 4.1.

Next we show that determinism does not equal nondeterminism for single-tape
time-bounded TM computations; for this purpose we introduce also the complexity class

DTIMEFE;(T(n)), with obvious meaning.

Theorem 4.5 Let T'(n) be such that \/T(n) is a fully time and space constructible
Junction, with n* € o(T(n)), and T(n +1)/log T(n + 1) € o(T(n)). Then

DTIME\(T(n)) € NTIMEy(T(n))

Proof Outline: It is clear that DTIME(T(n)) € NTIME(T(n)); suppose that
DTIME{(T(n)) = NTIMFE{(T(n)). Then NTIMFE;(T(n)) must be closed under com-
plement, since DTIMFE;(T(n)) obviously is. But the previous theorem shows that
NTIME(T(n)) is not closed under complement — a contradiction.

O

Similarly, we show that determinism does not equal co-nondeterminism either:

10

Theorem 4.6 Let T'(n) be such that \/T(n) is a fully time and space constructible
Junction, with n* € o(T(n)), and T(n +1)/log T(n + 1) € o(T(n)). Then

DTIME(T(n)) C co— NTIME,(T(n))

Proof Outline: It is clear that DTIMEL(T(n)) € co — NTIME(T(n)). If
DTIMFE{(T(n)) = co— NTIME(T(n)), then co — NTIME(T(n)) would be closed
under complement — a contradiction with theorem 4.3.

O

Now consider the relationship of the previous classes to the single tape o time. It
appears that this class can be also strictly separated from the classes considered above:

Theorem 4.7 Let T'(n) be such that /T (n) is a fully time and space constructible
Junction, with n* € o(T(n)), and T(n +1)/log T(n + 1) € o(T(n)). Then

NTIME\(T(n)) C Sy — TIME\(T(n))

Proof Outline. If NTTME(T(n)) = ¥y — TIMFE(T(n)), then from corollary 2.1
we get a contradiction in form NTIME(T(n)) C NTIME(T(n)/logT(n))) with the

hierarchy from theorem 4.1.
O

Theorem 4.8 Let T'(n) be such that /T (n) is a fully time and space constructible
Junction, with n* € o(T'(n)), and T(n+1)/logT(n+ 1) € o(T(n)). Then

co— NTIMEy(T(n)) C Sy — TIME(T(n))

Proof Outline. If co — NTIMFE(T(n)) = X3 — TIMFE(T(n)), then from theorem
4.7 we get NTIME(T(n)) C co— NTIME(T(n)), what is in a contradiction with
theorem 4.4.
O
Diagrammatically, the relation among all above considered complexity classes
is depicted in Fig.1. In this picture, unlike in the most of other similar pictures, the
position of an oval inside an other oval, really means a strict containment.

5 Conclusions

Separation results for the fundamental time bounded complexity classes, related to
single-tape TM computations, for a large spectrum of complexity bounds, have been
shown. This seems to be the first occasion where similar results for a universal model
of computation have been achieved.

A lot of work remains to be done. Among the first questions that could be
amenable for the further research is the extension of the previous results to single-tape

11

4 N

S, — TIME (T (n))

/ co — NTIME; (T (n))
NTIME(T(n)) DTIM El(T(n)D

Figure 4.1: Relations among the basic single-tape complexity classes

off-line TMs. This may bring us some steps further on our way towards the solution of
similar problems for multitape TMs.

Acknowledgement. The author thanks to his colleague Stanislav Zak for his helpful
comments on the first version of the present paper.

12

Bibliography

1]

Hopcroft, J. — Paul, W. — Valiant L.: On time versus space and related problems.
Proc. IEEE FOCS 16, 1975, pp. 57-64

Kannan, R.: Alternation and the power of nondeterminism (Extended abstract).

Proc. 15-th STOC, 1983, pp. 344346

Li, M. — Neuféglise, H. — Torenvliet, L. — van Emde Boas, P.: On Space
Efficient Simulations. I'TLI Prepublication Series, CS-89-03, University of Ams-
terdam, 1989

Lorys, K. — Liskiewicz, M.: Two Applications of Fiihrers Counter to One-Tape
Nondeterministic TMs. Proceedings of the MFCS’88, LNCS Vol. 324, Springer
Verlag, 1988, pp. 445-453

Maass, W. — Schorr, A.: Speed-up of Turing Machines with One Work Tape and
Two—way Input Tape. STAM J. Comput., Vol. 16, no. 1, 1987, pp. 195-202

Paterson, M.: Tape Bounds for Tape-Bounded Turing Machines, JCSS, Vol. 6,
1972,pp. 115-124

Paul, W. — Prauss, E. J. — Reischuk, R.: On Alternation. Acta Informatica, 14,
1980, pp. 243-255

13

