narodni
N U dlozisté
1 L Sedé
6 literatury

Information Capabilities Analysis of Recurrent Neural Network Creating Energy
Function Constructively

BoZovsky, P.
1995

Dostupny z http://www.nusl.cz/ntk/nusl-33571

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 04.05.2024

Dalsi dokumenty muzete najit prostfednictvim vyhledavaciho rozhrani nusl.cz .

http://www.nusl.cz/ntk/nusl-33571
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Information Capabilities Analysis of
Recurrent Neural Network Creating Energy
Function Constructively

Petr Bozovsky
Department of Computer Science, Charles University
Malostranské nam. 25, 118 00 Prague 1, Czech Republic

Dusan Hiusek
Institute of Computer Science , Academy of Science CR
Po vodarenskou vézi 2, 182 00 Prague 8, Czech Republic

Technical report No. 627

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod vodarenskou vézi 2, 182 07 Prague 8, Czech Republic
phone: (+422) 66414244 fax: (4+422) 8585789
e-mail: husek@uivtl.uivt.cas.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Information Capabilities Analysis of
Recurrent Neural Network Creating Energy
Function Constructively

Petr Bozovsky
Department of Computer Science, Charles University
Malostranské nam. 25, 118 00 Prague 1, Czech Republic

Dusan Hiusek
Institute of Computer Science , Academy of Science CR
Po vodarenskou vézi 2, 182 00 Prague 8, Czech Republic !

Technical report No. 627

Abstract

The Hebbian learning rule is an example of simple and quick unsupervised learning.
It provides easy additional learning. However, it does not make sure the pattern states
learnt to be stable. Moreover, there is created a large number of spurious stable states
that worsen behavior of the neural network as an associative memory.

We propose a new method of creating an energy function for which the state vec-
tors that are to be memorized are weighted. These vectors are proven to be stable
including given neighborhood of them in sense of the Hamming distance. This method
is polynomial. It also provides an additional learning. The problem of the weights
tolerance is also solved.

Keywords

Recurrent neural network, Hebbian learning
Hopfield network, Energy function

!This paper was supported under grant No.201/94/0729 of Czech Grant Agency

1 Preliminaries

Assume that @',... &" € {—1,1}" are r different n-dimensional binary vectors. We
wish to store this set of states in neural network consisting of n neurons. Hebbian
learning is one of the learning algorithms that allow simple computer implementation.
The interconnection synaptic strengths matrix T' = (7};) can be described by the
following rule

T, = 58 for i £ i

J ;xzxﬁ OI’Z7£‘], (11)
T = 0,

where 7,5 € {1,...,n} and 27 is the ¢-th component of the vector *. The thresholds

f; of the neurons are zero.

In order to learn a new vector @ the relation (1.1) can be written in the form of an
incremental learning rule

ATZ']‘ = T;Zjy, 7 7£ j
Since Tj; = 0 1t is easy to show that the network reaches stable state at finite time.

Hebbian learning has several disadvantages. Some of the vectors learnt under this
algorithm need not be stable. Moreover, there exist stable spurious states (phantoms)
close to these vectors. It is difficult to determine the attraction area of stable states.
Unlearning [2] improves the network behavior but the choice of unlearning coefficients
is not evident.

2 Analysis

We propose a new method of Hebbian learning by constructing the energy function
directly based on the required information storage capabilities. The vectors stored are
weighted in order to make them stable and to make the attraction areas approximately
the same. Learning rule is of the form

T = g i’ for ¢ # 7,
= ! (2.1)
T = 0,

where 4,7 € {1,...,n} and «ay,...,a, > 0 and

ZT:ozs = 1. (2.2)

The coefficients a;, are determined in the way we describe herein after.

As a step toward finding «; let us investigate the conditions that have to be satisfied.
The state " is stable if and only if for all s € {1,...,n}

n

sgn(z Tijxf — ;) = sgn(:z;f).

J=1

Since ¥ # 0 we obtain the condition

Some calculations yield the relation

n

(O Tyjah = 0i).af = Y agaiaf B — 1 — Ozl > 0, (2.3)
j s=1

J=1

where g = 377, :1;?:1;’? corresponds with the Hamming distance between the vectors

J
x® and 2",
Bg = n — 2ham(z*, 2¥).

Since zfz¥ B, is a constant for all 7, s, k the system (2.3) can be written as a linear pro-

gramming problem. Hence, the problem of learnt vectors stability is of the polynomial
complexity.

We have tried to solve the system (2.3) for some small examples. For the system of
upto ten different randomly chosen 50-dimensional vectors we obtained 502 constraints
with 111 nonnegative variables. We used several sets of such vectors and no problem
was detected during the computation. Since we had a very simple solving procedure
we could not try to solve larger problems. It is remarkable that the matrix of the
system (2.3) is very sparse. Using nonnegative variables we find that there are only
nr(r+241) nonzero values in the matrix with nr(2n+r+41) values. In case of r << n
it is about 5~ of the whole matrix (in our case 10%).

In order to investigate the network behavior at neighborhoods of the learnt vectors
let ¢ denote the maximum size of their attraction areas. As we do not know whether
the inverses of ®',...,&" will be learnt (as it happens in classical Hebbian learning)
we obtain

|ﬂsk| S n — 4t7

and thus ¢ <n/4. This condition was also used in [2].

Assume that V differs from " in just p components d;,...,d, where 1 < p < .
We require the network in state V' to reach the state x*. It can be fulfilled by the
following condition

-1,V —0;).2f >0 forall c € {1,...,n}. (2.4)
j=1

If it holds the input to the neuron ¢ is of the same sign as the ¢-th element of the closest
vector learnt and when updating one of the neurons dy, ..., d, the Hamming distance
between V' and z* decreases.

After some calculations the system (2.4) can be expressed as

S aaiaf[Ba -2 Y :L'jxf] — Ot — Via® > 0, (2.5)
s=1

je{d17~~~7dp}

that has to hold for all & € {1,...,r}, ¢ € {1,...,n}, p € {0,...,t} and different
dl,...,dp - {1,,n}
Since 3 etdy,d,) :L'j:z;f can be any value from {—t,... ¢} we can find lower bound

of the left-hand side of (2.5) and write

r

L Zozs(xfxf sk — 2t) — Gixf —1>0, for all k,1. (2.6)

s=1
This system does not depend on the choice of dy,...,d,. Moreover, this estimation
does not present additional restriction because for all s,k € {1,...,r} there exists

such a state V' that the relation (2.6) follows from (2.5). It implies that the system
(2.5) is equivalent to (2.6).

In order we could formulate (2.6) as a linear programming problem we need to

add a new variable, say ¢ € R. For these purposes we denote a = (aq,...,a,),
E_ (k k
n? =(ny,...,n.), where

ni, = (aief B — 21).
Now the system (2.6) can be expressed as
a.nt — 0% > 1. (2.7)
It can be easily shown that (2.7) holds if there exists ¢ > 0 such that
a.nl — 0z > 1 4 ¢|nk|, (2.8)
further, if (2.8) holds for some a* and ¢ then the constraints (2.7) hold for all a such
that |a — a*| < e.

The linear programming problem can be stated as the maximization of ¢ that is to
be accomplished subject to a set of nr 4 2 linear constraints (2.2) and (2.8) among the
variables aq,..., ., 61,...,0,, c.

We have shown that when we find a solution of linear programming problem

max ¢

Zas(:lifl'fﬂsk —2t) — Gixf — 5(2(1;281,5 e 2t>2)1/2 >,

i =1 (2.9)
Zozszl forall ke {1,...,r},e € {1,...,n},

s=1

A1yeeny 0 2> 0,

then the vectors learnt are stable and have attraction areas at least of the size ¢, where
we choose
t < — sk|)/4.
< (n —max[fu])/

Further we provide the e-inaccuracy of all «;.

In global the network constructed by the described method cannot oscillate because
T;; = 0. Obviously, when we start from the ¢-neighborhood of some learnt vector we
find that the network state goes directly to the closest stable vector, i.e. in this case it
is sufficient to update each neuron only once.

Additional learning of a new vector £ *! is also possible. When we set
new __ old —
o = ad", s=1,....r,
Qrp1 = 0

and £" small (negative) enough to satisfy the additional constraints we obtain a

feasible solution of (2.9). Then we can process the maximization.

3 Results and Future Work

We solved (2.9) for the particular case described above. In various cases the solution
was found for ¢ = 5 upto ¢t = 10 with the e-tolerance 0.03-0.1. Results obtained were
related to the choice of vectors learnt.

In future we want to use a modification of the linear programming network described
in [4] to solve the problem (2.9).

Bibliography

Hopfield J.: Neural networks and physical systems with emergent collective compu-

tational abilities, Proc. Natl. Acad. Sci. USA, Vol.79, pp. 2554-2558 (1982)

Hopfield J., Feinstein D., Palmer R.: ‘Unlearning’ has a stabilizing effect in collec-
tive memories, Nature 52, pp. 158-159 (1983)

Li J., Michel A., Porod W.: Analysis and synthesis of a class of neural networks:
variable structure systems with infinite gain, IEEE TCS 36, pp. 713-731 (1989)

Tank D., Hopfield J.: Simple “Neural” Optimization Networks, IEEE TCS CAS-33,
pp. 533-541 (1986)

