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Abstract

The Hebbian learning rule is an example of simple and quick unsupervised learning�
It provides easy additional learning� However� it does not make sure the pattern states
learnt to be stable� Moreover� there is created a large number of spurious stable states
that worsen behavior of the neural network as an associative memory�

We propose a new method of creating an energy function for which the state vec�
tors that are to be memorized are weighted� These vectors are proven to be stable
including given neighborhood of them in sense of the Hamming distance� This method
is polynomial� It also provides an additional learning� The problem of the weights
tolerance is also solved�
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� Preliminaries

Assume that x�� � � � �xr � f�	� 	gn are r di
erent n�dimensional binary vectors� We
wish to store this set of states in neural network consisting of n neurons� Hebbian
learning is one of the learning algorithms that allow simple computer implementation�
The interconnection synaptic strengths matrix T � �Tij can be described by the
following rule

Tij �
rX

s��

xs
ix

s
j� for i �� j�

Tii � ��
�	�	

where i� j � f	� � � � � ng and xs
i is the i�th component of the vector xs� The thresholds

�i of the neurons are zero�

In order to learn a new vector x the relation �	�	 can be written in the form of an
incremental learning rule

�Tij � xixj� i �� j�

Since Tii � � it is easy to show that the network reaches stable state at �nite time�

Hebbian learning has several disadvantages� Some of the vectors learnt under this
algorithm need not be stable� Moreover� there exist stable spurious states �phantoms
close to these vectors� It is di�cult to determine the attraction area of stable states�
Unlearning ��� improves the network behavior but the choice of unlearning coe�cients
is not evident�

� Analysis

We propose a new method of Hebbian learning by constructing the energy function
directly based on the required information storage capabilities� The vectors stored are
weighted in order to make them stable and to make the attraction areas approximately
the same� Learning rule is of the form

Tij �
rX

s��

�sx
s
ix

s
j � for i �� j�

Tii � ��
���	

where i� j � f	� � � � � ng and ��� � � � � �r � � and

rX
s��

�s � 	� ����

The coe�cients �s are determined in the way we describe herein after�

	



As a step toward �nding �s let us investigate the conditions that have to be satis�ed�
The state xk is stable if and only if for all i � f	� � � � � ng

sgn�
nX

j��

Tijx
k
j � �i � sgn�xk

i �

Since xk
i �� � we obtain the condition

�
nX

j��

Tijx
k
j � �i�x

k
i � ��

Some calculations yield the relation

�
nX

j��

Tijx
k
j � �i�x

k
i �

rX
s��

�sx
s
ix

k
i �sk � 	� �ix

k
i � �� ����

where �sk �
Pn

j�� x
s
jx

k
j corresponds with the Hamming distance between the vectors

x
s and xk�

�sk � n� �ham�xs�xk�

Since xs
ix

k
i �sk is a constant for all i� s� k the system ���� can be written as a linear pro�

gramming problem� Hence� the problem of learnt vectors stability is of the polynomial
complexity�

We have tried to solve the system ���� for some small examples� For the system of
upto ten di
erent randomly chosen ���dimensional vectors we obtained ��� constraints
with 			 nonnegative variables� We used several sets of such vectors and no problem
was detected during the computation� Since we had a very simple solving procedure
we could not try to solve larger problems� It is remarkable that the matrix of the
system ���� is very sparse� Using nonnegative variables we �nd that there are only
nr�r���	 nonzero values in the matrix with nr��n�r�	 values� In case of r �� n
it is about r

�n
of the whole matrix �in our case 	���

In order to investigate the network behavior at neighborhoods of the learnt vectors
let t denote the maximum size of their attraction areas� As we do not know whether
the inverses of x�� � � � �xr will be learnt �as it happens in classical Hebbian learning
we obtain

j�skj � n� �t�

and thus t � n��� This condition was also used in ����

Assume that V di
ers from x
k in just 	 components d�� � � � � d� where 	 � 	 � t�

We require the network in state V to reach the state xk� It can be ful�lled by the
following condition

�
nX

j��

TijVj � �i�x
k
i � � for all i � f	� � � � � ng� ����

If it holds the input to the neuron i is of the same sign as the i�th element of the closest
vector learnt and when updating one of the neurons d�� � � � � dn the Hamming distance
between V and xk decreases�

�



After some calculations the system ���� can be expressed as

rX
s��

�sx
s
ix

k
i ��sk � �

X

j�fd������d�g

xs
jx

k
j �� �ix

k
i � Vix

k
i � �� ����

that has to hold for all k � f	� � � � � rg� i � f	� � � � � ng� 	 � f�� � � � � tg and di
erent
d�� � � � � d� � f	� � � � � ng�

Since
P

j�fd������d�g x
s
jx

k
j can be any value from f�t� � � � � tg we can �nd lower bound

of the left�hand side of ���� and write

� � � �
rX

s��

�s�x
s
ix

k
i �sk � �t� �ix

k
i � 	 � �� for all k� i� ����

This system does not depend on the choice of d�� � � � � d�� Moreover� this estimation
does not present additional restriction because for all s� k � f	� � � � � rg there exists
such a state V that the relation ���� follows from ����� It implies that the system
���� is equivalent to �����

In order we could formulate ���� as a linear programming problem we need to
add a new variable� say 
 � R� For these purposes we denote � � ���� � � � � �r�
n

k
i � �nk

i�� � � � � n
k
ir� where

nk
is � �xs

ix
k
i �sk � �t�

Now the system ���� can be expressed as

��nk
i � �ix

k
i � 	� ����

It can be easily shown that ���� holds if there exists 
 � � such that

��nk
i � �ix

k
i � 	 � 
jnk

i j� ����

further� if ���� holds for some �� and 
 then the constraints ���� hold for all � such
that j����j � 
�

The linear programming problem can be stated as the maximization of 
 that is to
be accomplished subject to a set of nr�� linear constraints ���� and ���� among the
variables ��� � � � � �r� ��� � � � � �n� 
�

We have shown that when we �nd a solution of linear programming problem

max 

rX

s��

�s�x
s
ix

k
i �sk � �t� �ix

k
i � 


� rX
s��

�xs
ix

k
i �sk � �t�

����
� 	�

rX
s��

�s � 	 for all k � f	� � � � � rg� i � f	� � � � � ng�

��� � � � � �r � ��

����

then the vectors learnt are stable and have attraction areas at least of the size t� where
we choose

t � �n �max
s��k

j�skj���

Further we provide the 
�inaccuracy of all �s�

�



In global the network constructed by the described method cannot oscillate because
Tii � �� Obviously� when we start from the t�neighborhood of some learnt vector we
�nd that the network state goes directly to the closest stable vector� i�e� in this case it
is su�cient to update each neuron only once�

Additional learning of a new vector xr�� is also possible� When we set

�news � �olds � s � 	� � � � � r�
�r�� � �

and 
new small �negative enough to satisfy the additional constraints we obtain a
feasible solution of ����� Then we can process the maximization�

� Results and Future Work

We solved ���� for the particular case described above� In various cases the solution
was found for t � � upto t � 	� with the 
�tolerance �������	� Results obtained were
related to the choice of vectors learnt�

In future we want to use a modi�cation of the linear programming network described
in ��� to solve the problem �����

�
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