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Abstract

We consider the solution of general sparse systems of linear equations Ax � b by means
of the preconditioned conjugate gradient method �PCGNR� applied to the normal
equationsATAx � ATb� It is known that approaches based on the normal equations can
be quite e�ective for solving problems which are unsymmetric and strongly inde	nite�
Also
 the PCGNR method is an attractive technique for solving large
 sparse linear
least squares problems�

We obtain robust algebraic preconditioners for the normal equations by means of
incomplete orthogonalization schemes applied to A� We focus on schemes based on the
Gram�Schmidt process
 combined with various sparsity�preserving and stabilization
strategies� In addition
 we present new methods based on approximating the inverse
of the Cholesky factor of ATA directly� The results of numerical experiments are
discussed�
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� Introduction

In this paper we consider the solution of systems of linear equations

����� Ax � b

where A is a general sparse matrix
 which may be rectangular� For simplicity
 we shall
assume that A has full column rank� When A is not square
 we are interested in solving
����� in the least squares sense� An important technique for solving problem ����� is
the preconditioned conjugate gradient method applied to the normal equations

����� ATAx � ATb

�hereafter referred to as PCGNR�� For a long time
 researchers in numerical linear
algebra have been skeptical about the normal equations
 due to the fact that the
spectral condition number of ATA is the square of that of the original matrix A� Also

explicitly computing ATA usually entails loss of sparsity and may lead to a severe loss
of information �due to cancellation��

In recent times
 however
 several authors have demonstrated that the precondi�
tioned conjugate gradient method applied to ����� can be an e�ective way of solving
problem �����
 provided that a good preconditioner is available� Fortunately
 it is
possible to construct a preconditioner for ATA directly from the original matrix A�

Because PCGNR only needs the coe
cient matrix of ����� in the form of matrix�vector
multiplications
 there is no need to form the product ATA explicitly� Numerical ex�
periments have pointed to the fact that PCGNR often exhibits a remarkable degree
of robustness
 making it a viable alternative to nonsymmetric iterative solvers directly
applied to problem ������ In particular
 it has been shown that approaches based on
the normal equations can be quite e�ective for solving problems which are strongly
inde	nite �see ������ Furthermore
 the PCGNR method is an attractive technique for
solving large
 sparse linear least squares problems ��
 ����
We are interested in the construction and testing of robust algebraic preconditioners for
the normal equations� Several authors have studied approaches based on the following
observation� if A � QR is the QR factorization of A� with R upper triangular with
positive diagonal entries and Q orthogonal
 the Cholesky factorization of ATA is given
by ATA � RTR� and R�TATAR�� � I� This suggests that a sparse approximation
to R can be used to precondition the CGNR iteration� A sparse approximation to
R may be obtained by explicit formation of B � ATA followed by an incomplete
Cholesky factorization of B� As already mentioned
 however
 there exist more robust
procedures which approximate R directly from A ��
 ��
 ���� In ���� the emphasis is
on incomplete orthogonalizations obtained by means of Givens rotations
 whereas in
���� the preconditioner is constructed using a Gram�Schmidt process� both authors use
drop tolerances to preserve sparsity�

In this contribution we restrict ourselves to methods based on the �incomplete�
Gram�Schmidt process� We experiment with di�erent sparsity�preserving and safe�
guarding strategies� In addition
 we introduce new methods which approximate the
inverse matrix R�� directly� Such incomplete inverse factorization techniques allow the



construction of sparse approximate inverses for ATA and are potentially advantageous
on parallel architectures because they avoid the need for �highly sequential� back and
forward solves
 in contrast with standard incomplete factorization preconditioners ����

Ch� �� see also �����

An issue of paramount importance in incomplete factorization methods is the exis�
tence of the incomplete factorization itself� It is well known that if ATA is an H�matrix

then the incomplete Cholesky factorization of ATA based on a prescribed sparsity pat�
tern always produces a non�singular preconditioner �in exact arithmetic�� On the other
hand
 a breakdown could take place during an incomplete QR factorization of A even
if ATA is an H�matrix �see ���
 where examples are given for an incomplete QR de�
composition based on Givens rotations�� In practice
 however
 incomplete orthogonal
factorizations based on drop tolerances tend to be very stable
 and this is what makes
them attractive� In our implementations we included safeguarding mechanisms in�
tended to prevent breakdown of the incomplete factorizations� Our codes always run
to completion and produce a nonsingular approximation to R �or R����

Concerning sparsity�preserving strategies
 we tried a combination of drop toler�
ances and reordering� Removing computed quantities whose magnitude falls below a
preset positive drop tolerance is usually an e�ective way to preserve sparsity in the
approximation to the triangular factor R� but there are some problems for which it
is impossible to have both a sparse incomplete factor and rapid convergence of the
PCGNR iteration� For such stringent problems it may help to resort to the minimum
degree algorithm ���
 ���� This heuristic only requires information about the nonzero
structure of A� and is carried out before any �oating point computation� After the
�column� reordering of A has been determined
 an incomplete orthogonal decomposi�
tion based on a drop tolerance is performed� A potential problem with this strategy
is the fact that the rate of convergence of PCGNR could be adversely a�ected by the
reordering of the unknowns� The risk of this happening is high if the matrix problem
originates from the numerical solution of an elliptic PDE and the preconditioner is
based on an incomplete factorization with the sparsity pattern of ATA� In this case

reordering the unknowns �i�e�
 the grid points� according to the minimum degree algo�
rithm can lead to a severe deterioration of the convergence rate as compared with the
original �natural� ordering
 see ���� However
 it appears from the experiments in ���
that this deterioration is much less serious if the incomplete factorization is obtained
with a drop tolerance� In our experience
 the use of minimum degree does cause the
convergence of PCGNR to somewhat slow down in many cases
 but it is useful in or�
der to obtain a more sparse preconditioner
 therefore requiring less work per iteration�
This remark applies to the preconditioners based on approximating R as well as to the
preconditioners based on approximating R���

The rest of this paper is organized as follows� in Sections � and � we describe
the incomplete orthogonal and inverse orthogonal factorization schemes �respectively�

and in Section � we present the results of numerical experiments on a variety of sparse
matrix problems
 aimed at assessing the relative e�ectiveness of the various precondi�
tioners� The results are compared with those obtained with a simple preconditioning
technique based on the incomplete Cholesky factorization of ATA� Finally
 we draw
some conclusions in Section ��



� Incomplete Orthogonal Factorization Precondi�

tioners

In this section we consider the problem of computing a sparse approximation to R
 the
upper triangular factor in the QR decomposition of A �we assume that R has positive
diagonal elements�� To this end we can choose from a variety of available techniques

since there are many algorithms to compute R and within each algorithm there are
several ways of obtaining an incomplete factor� Of course
 incompleteness can in�uence
R in the various algorithms and implementations very di�erently�

We describe three versions of incomplete QR decompositions based on the sparse
modi	ed Gram�Schmidt �MGS� process
 see ��� �for incomplete orthogonalization via
Givens rotations
 see ������

The implementation of all schemes in this and the next section is based on the
use of dynamic data structures similar to those adopted in submatrix formulations of
sparse unsymmetric Gaussian elimination �see ������ The coe
cient matrix A is stored
in the dynamic data structure by columns �CCS format�
 which is a natural choice for
carrying out the �incomplete� MGS process�

A simple way to compute an incomplete QR decomposition is based on dropping
elements of the reduced matrix A�i� obtained at step i of the orthogonalization process�
We check for elements whose magnitude falls below a prescribed drop tolerance Td and
remove these from the data structure� To improve stability
 we increase the diagonal
element a

�i�
ii if the norm of the i� th column of A�i� is less than the prescribed tolerance

Td
 as described in Algorithm ���� Here � is a relaxation parameter which was set to
��� in our tests� With this safeguarding
 the algorithm cannot break down�

The second algorithm in this Section �Algorithm ���� is the one described in ����
Instead of removing �small� elements of updated A it removes �small� nondiagonal
elements of the upper triangular factor�

It can be easily shown that Algorithm ��� cannot break down �see ����
Finally
 a third algorithm can be obtained by combining the dropping strategies of

Algorithms ��� and ���� small elements are removed both from the factor R and from
the set of vectors that remain to be �approximately� orthogonalized�



Algorithm ��� Incomplete QR decomposition by diagonally safeguarded MGS

set A� � �a
���
� � � � � � a

���
n 
 � A � Rm�n

for i � �� � � � � n

if jja
�i�
i jj � Td then

set a
�i�
ii � a

�i�
ii � �jj�a

���
ii � � � � � a

���
mi


T jj

end if

set rii � jja
�i�
i jj

set qi � a
�i�
i �rii

for j � i� �� � � � � n

set � � qTi a
�i�
j

if � �� � then

for l � i� � � � � m

if a
�i�
lj �� � � qli �� � then

set � � a
�i�
lj � �qli

if j�j � Td then

a
�i���
lj � �

else

a
�i���
lj � �

end if

else

set a
�i���
l�j � a

�i�
l�j

end if

end l

else

set a
�i���
j � a

�i�
j

end if

end j

end i

Algorithm ��� Incomplete QR decomposition by MGS with incomplete

updates of R

set A� � �a
���
� � � � � � a

���
n 
 � A � Rm�n

for i � �� � � � � n

set rii � jja
�i�
i jj

set qi � a
�i�
i �rii

for j � i� �� � � � � n

set � � qTi a
�i�
j

if j�j � Td then

rij � �

a
�i���
j � a

�i�
j

else

rij � �

a
�i���
j � a

�i�
j � �qi

end if

end j

end i



� Preconditioning by Incomplete Inverse QR Fac�

torization

In this section we describe some procedures that directly approximate the upper trian�
gular matrix Y such that �ATA��� � Y TY � In the language of Statistics
 we compute
an incomplete covariance factorization� This can be computed directly from A ap�
plying a procedure which orthogonalizes the columns as in the MGS algorithm and
computes Y throughout these steps�

When applied without dropping
 this decomposition computes the matrix Y which
is equal �up to a diagonal matrix factor� to the transposed inverse of the Cholesky factor
of ATA� which is usually a dense triangular matrix� A sparse approximation may be
obtained by removing suitably small 	ll�in occurring in the course of the computation

or else by a drop�by�position strategy� Here we use a drop tolerance Td� as in the
previous section�

The algorithms to compute an incomplete Y �that is
 an approximate inverse of R
in the QR factorization of A� update the values of Y in such a way that dynamic data
structures must be used� We store Y in this data structure by rows� Elements in these
rows are kept in partial order throughout the algorithm� Pointers to elements of the
actual column of Y or behind it are kept and updated by a mechanism similar to the
one adopted in the numerical factorization procedure in SPARSPAK �see �����

The computation of the preconditioner is based on the matrix decompositionADY � �
Q
 where Q is a matrix with orthonormal columns
 D is a positive diagonal matrix
 Y �

is unit upper triangular and Y � DY � is the inverse of the upper triangular factor in
the QR decomposition of A�

We give 	rst the pseudocode for the algorithm with incomplete updates of Y based
on the complete sparse MGS and then for the algorithm with complete updates of Y �



Algorithm ��� ADY � � Q decomposition with incomplete updates of Y �

set A� � �a
���
� � � � � � a���n � � A � Rm�n

for i � �� � � � � n
set dii �

�

jja
�i�
i

jj

set qi � a
�i�
i dii

for j � i� �� � � � � n
set � � qTi a

�i�
j

if j�j � Td then

a
�i���
j � a

�i�
j � �qi

for k � �� � � � � i
if y�kj �� � � y�ki �� � then
y�kj � y�kj � y�ki�

end if
end k

end if
end j

for j � �� � � � � i� �
if y�ji �� � then
y�ji � diiy

�
ji

end if
end j

end i



Algorithm ��� Incomplete ADY � � Q decomposition diagonally safeguarded

set A� � �a
���
� � � � � � a���n � �

�
A

�

�
� Rm�n

for i � �� � � � � n
if jja

�i�
i jj � Td then

set a
�i�
ii � a

�i�
ii � �jj�a

���
ii � � � � � a

���
mi�

T jj
end if
set dii �

�

jja
�i�
i

jj

set qi � a
�i�
i dii

for j � i� �� � � � � n
set � � qTi a

�i�
j

if � �� � then
for l � i� � � � �m

if a
�i�
lj �� � � qli �� � then

set � � a
�i�
lj � �qli

if j�j � Td then

a
�i���
lj � �

else
a
�i���
lj � �

end if
else

set a�i���l�j � a
�i�
l�j

end if
end l

else
set a�i���j � a

�i�
j

end if
for k � �� � � � � i

if y�kj �� � � y�ki �� � then
y�kj � y�kj � y�ki�

end if
end k

end j

for j � �� � � � � i� �
y�ji � diiy

�
ji

end j

end i

Finally
 a third incomplete inverse factorization scheme may be obtained combining
the drop strategies adopted in Algorithm ��� and Algorithm ����



� Experimental Results

In this Section we present the results of experiments with the preconditioned CGNR
schemes� Most test matrices are from the Harwell�Boeing collection ���� Matrices
WATSONx are from Y� Saad�s collection of sparse problems� The test matrices used
are representative of problems arising in a variety of applications
 such as chemical
kinetics
 computer system simulation
 �uid �ow
 chemical engineering and others�

The goal of our experiments is to explore the relation between the amount of 	ll�
in allowed in the incomplete factor �or inverse factor� and the rate of convergence of
PCGNR� Furthermore
 we want to compare the approximate inverse preconditioners
described in Section � with the more standard implicit preconditioners of Section �� For
completeness
 we have also included the results for an incompleteCholesky factorization
�with a drop tolerance� of ATA� This is the only preconditioner which does not require
a dynamic data structure�

Concerning the di�erences in the computation of the preconditioners themselves

it should be mentioned that in most cases �though not always� it is more expensive
to construct an explicit preconditioner than an implicit one� This di�erence
 however

becomes negligible if many linear systems with the same coe
cient matrix �or a slightly
modi	ed one� and di�erent right�hand sides have to be solved
 since in this case the
cost of the iterative part dominates the cost of the overall computation� Furthermore

on parallel architectures the approximate inverse preconditioners can take advantage
of explicitness�

We present the results of experiments with variants of the incomplete MGS �IMGS�
and incomplete inverse MGS �IIMGS� orthogonalization processes
 and with the incom�
plete Cholesky �IC� preconditioner� The results are given in Table ���� In all cases
we adopted the column ordering of A induced by the minimum degree ordering on
the structure of ATA� for the reasons discussed in the Introduction� The 	rst column
in the table contains the matrix name
 the number N of unknowns
 and the number
NADJ of nonzeros in the triangular part of ATA �after reordering�� In case of rectan�
gular matrices
 we do not show the number m of matrix rows in the table
 since our
incomplete algorithms are only a�ected by the structure of ATA�

For both groups of Gram�Schmidt algorithms we tried di�erent options for drop�
ping� IMGS� corresponds to Algorithm ���
 IMGS� corresponds to Algorithm ���� and
IMGS� combines removing elements from the factor R and from the set of vectors to
be approximately orthogonalized in these algorithms� It uses the same drop tolerance
for both types of dropping� IIMGS� is an implementation of Algorithm ���
 IIMGS�
corresponds to Algorithm ��� and IIMGS� combines both types of dropping�

All the computations were performed in double precision on a SGI Crimson com�
puter� Convergence of the PCGNR iteration was considered achieved when the eu�
clidean norm of the residual was less than ����� for all matrices we allowed a maxi�
mum number of iterations equal to the number N of unknowns� Notice that without
any preconditioning
 CGNR fails to converge in N or less iterations for nearly all test
problems�

The key role in the comparison is played by the size of 	ll�in in the approximate
factor
 which is controlled by the value of the drop tolerance Td� Note that di�erent



matrices and di�erent preconditioners often require totally di�erent values of Td and
it is therefore very di
cult to have a good guess for the drop tolerance itself� The only
general principle is that severely ill�conditioned problems force the use of small drop
tolerances �thus causing high 	ll�in�
 or else the iteration will converge very slowly� See
���� for a discussion of this important issue�

For each preconditioning strategy we report the size of 	ll�in �FILL� and the cor�
responding number of PCGNR iterations �NIT� for two di�erent values of the drop
tolerance� The 	rst �and smaller� one is a value for which the amount of 	ll in the
incomplete factor becomes sensibly smaller than the 	ll in the complete factor and it
still takes only a few PCGNR iterations to ful	ll the stopping criterion� The second

larger value corresponds to the point after which the number of iterative steps becomes
prohibitive� Notice that in some cases there is not much di�erence between the two
results� Also
 it may well happen that a larger value of Td produces more 	ll�in than
a smaller value� nevertheless
 the incomplete factor corresponding to the smaller value
of Td is more accurate
 in the sense that it yields convergence in less iterations �see the
results for IMGS� and IMGS� on matrix FS������

For some ill�conditioned matrices we report the results for only one value of Td�

This means that larger values of Td cause the PCGNR iteration to fail to converge in
less than the maximum allowed number N of iterations�

For some extremely ill�conditioned matrices �such as FS����� we observed conver�
gence only for very small values of Td� which were ine�ective at producing incomplete
factors with reduced 	ll�in� Larger values of Td produced very slow convergence� There�
fore
 we did not include those results�



MATRIX IMGS	 IMGS� IMGS� IIMGS	 IIMGS� IIMGS� IC
N�NADJ FILL�NIT FILL�NIT FILL�NIT FILL�NIT FILL�NIT FILL�NIT FILL�NIT
FS��		 ������ 	����� 		���� ������ ��	�� 	����� 	�����
��	����� ���	�	� ����	� ����	� �����	� ����	� ����	� ����		
FS��	� �����	� �����	� �����	� �	����	� 	�����	� 	�����	� 	������
��	����� ������� ������� �	����� ������� 	������� 	������� �
FS���	 ������ ������ 	����� ����	�� 		�	��� 		����� ������
�������� ������� ������� 		����� ��	����� ������	 �	����� 	����	�
FS���� ������ ������ ������ ������� ������ ������ 	������
�������� �����	� 	��	�	� 	�	��	� ������	� 	����� ������ �����	
FS���� 	����� 	����� 	��	�� ������� ������ ������ ��	��	
�������� 	����� 	��	�� 		�	�	� ����	�� �����	� �����	� ������
FS���	 �	���� 	����� 	����� ������ ����� ����� �����
����	���� �		��� 	����� ����	� ������ ����� ����� �����
WELL	��� ���	�� ������ ���	�� �	���� �	���� �	���� ������
�����	�� �����	� �����	� �	���	� �����	� ���	�	� �����	� ��	��		
ILLC	��� ������ ������ ������ ������ ������ ������ ������
�����	�� �����	� ��	��	� ��	��	� �����	� ���	�	� �����	� �������
GRE		� 	����� 	����� 	�	��� ��	��� ������ ������ 	�����
		����	 	����	� 	��	�	� 		���		 ������� ��	��� ��	��� 	�����
GRE	�� ������ ������ ������ 		����� 		����� 		����� ������
	������� �����	� �����	� �����	� 		����	� 	�����	� 	�����	� �����	�
GRE��� 	������	 ������	 	�����	� ��	����	 ����	��	 ��	����� 	�����	�
������	� ��	���� ������� ���	��� �	������ 	������� �	������ ���	���
WATSON	 	��	�� 	����� 	����� 	����� 	����� 	����� 	�����
���	�		 	����� ��	�� ����� 	����� 	�	��		 	����		 ����	�
WATSON� ��	��� 			��� ����� ��		�� 	����� 	��	�� 	�����
�����		 	����� ����� ����� 	����� 	����� 	��	�� �����
WATSON� ��	��� ������ ������ ��	��� ������ ������ �		���
	������� �����	� �����	� �	���	� �����	� �����		 �����	� �����	�
STR��� ������ ������ �	���� ����	�� ������� ������� ���	��
�������� �	���	� ��	��	� �����	� 	�����	� 	�����	� 	��	��	� �����	�
LNS	�	 ������ ������ ������ ������ ������ ������ ����	
	�	�		�� ������ ������ ������ � � � �
WEST�	�� ����		 ����		 ����� ������ ������ ������ ��	�	
	������ � � ������ ������� 	������ � �
WEST�	�� �	��	� �	��	� �	��	� �	���	� �	���	� �	���	� �����
	������ � � ������ 	��	��� 	������ ������ �
WEST�	�� �	��� �	��� �	��� ������ ������ ������ 	����	
	������ � � ������ �����	� � � �
WEST���	 	������ 	��	��� 	������ ������� ������� ������� 	���	�	
��	����� 	�	����� 	������� 	������	 ����	��� �������� ���	���� �

Table ���� Comparison of iteration counts and �ll�in in preconditioners in the
PCGNR procedure �CGNR preconditioned by incomplete MGS	 incomplete inverse
MGS and IC algorithms
�



� Conclusions

The 	rst conclusion drawn from the experiments concerns the comparison of methods
within each of the groups IMGSx and IIMGSx� Our results show that while the options
� and � give similar results
 the option � is often worse
 in the sense that 	ll�in in the
incomplete factor is higher� This is especially true for the IIMGS class of methods�

Judging on the ground of robustness
 amount of 	ll in the incomplete factor and
e�ectiveness at reducing the number of PCGNR iterations
 the overall winner is pre�
conditioner IMGS��

An observation which applies to all the preconditioning schemes studied in this
paper is that it is di
cult to predict in advance what kind of 	ll�in and convergence
behavior will correspond to a given value of the drop tolerance Td� However
 matrices
from the same type of application �such as the FS matrices
 which arise from the solu�
tion of systems of ODEs in chemical kinetics studies� tend to have a similar behavior�
Hence
 it may be worthwhile to spend some time to 	nd a good value of Td for one of
these matrices and then use it also for other matrices in the same class� Again
 this
stratagem will not work on extremely ill�conditioned problems�

An interesting and perhaps surprising result of the experiments is the existence of
some matrices for which the preconditioners based on the incomplete inverse factor�
ization behave very well� In fact
 for some of these matrices the size of the incomplete
inverse factor Y �in terms of 	ll�in� can even be less than the size of the incomplete
factor R� and yet produce the same or a similar number of PCGNR iterations� For
most test matrices
 however
 the approximate inverse preconditioners require substan�
tially fuller incomplete factors in order to produce convergence rates comparable with
those for the implicit preconditioners� In other words
 very sparse approximate inverse
preconditioners are usually not as e�ective at reducing the number of PCGNR itera�
tions as the implicit ones� Explicitness comes to a price� whether this price is worth
paying
 it will depend on the particular problem and computer architecture at hand�

Finally
 it should be observed that in many cases the simple approach based on
computing an incomplete Cholesky decomposition of ATA gives very satisfactory re�
sults� On the other hand
 our results con	rm the well�known fact that in practice
 the
incomplete Cholesky approach is more prone to su�er from instability problems than
the approach based on incomplete orthogonalization� In fact
 it is precisely this obser�
vation which led researchers to consider the use of incomplete orthogonal factorizations
in the 	rst place� In can be seen from the last column in Table � that the IC algorithm
with comparatively large drop tolerances failed to produce a stable preconditioner in
six cases� The most robust of all preconditioners
 on the basis of our experiments
 is
IMGS� �Algorithm �����
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