
národní
úložiště
šedé
literatury

NP-Hardness Results for Some Linear and Quadratic Problems
Rohn, Jiří
1995
Dostupný z http://www.nusl.cz/ntk/nusl-33568
Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložišť̌ šedé literatury (NUŠL).
Datum stažení: 26.05.2024
Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

NP-Hardness Results for Some Linear and Quadratic Problems

Jiří Rohn
Technical report No. 619

January 1995

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod vodárenskou věží 2, 18207 Prague 8, Czech Republic phone: $(+422) 66414244$ fax: $(+422) 8585789$
e-mail: rohn@uivt.cas.cz

NP-Hardness Results for Some Linear and Quadratic Problems ${ }^{1}$

Jiří Rohn ${ }^{2}$
Technical report No. 619
January 1995

Abstract

Several problems concerning norms, linear inequalities, linear equations, linear programming and quadratic programming are proved to be NP-hard.

Keywords

Norm, linear inequalities, linear equations, linear programming, quadratic programming, NP-hardness

[^0]
1 Introduction

The first part of this report (sections 2 to 5) was originally made as a transcript of transparencies of seminar talks ${ }^{3}$. Improvements and consequences found shortly after the transcription had been completed were added as Appendices 1 to 4. In this rather incoherent form, the main result is Theorem 2, supported by Proposition 2 (already known in a slightly different setting). Among other consequences, it is shown that computing $\|A\|_{\infty, 1}$ within accuracy $\frac{1}{2}$ is NP-hard (Corollary 9), which in turn implies that the same is true for computing the maximal value of a convex quadratic program (Corollary 11) and for one of the two bounds on the optimal value of a linear program with inexact right-hand side (Corollary 12). Another result (Corollary 3) shows that checking sensitivity of a system of linear equations is an NP-hard problem.

$2 M C$-matrices

The following concept will be used as a basic tool throughout this report:
Definition A real symmetric $n \times n$ matrix $A=\left(a_{i j}\right)$ is called an $M C$-matrix ${ }^{4}$ if it is of the form

$$
a_{i j}\left\{\begin{array}{lll}
=n & \text { if } & i=j \\
\in\{0,-1\} & \text { if } & i \neq j
\end{array}\right.
$$

$(i, j=1, \ldots, n)$.
Proposition 1 If A is an $M C$-matrix, then A^{-1} is nonnegative and symmetric positive definite.

Proof. By definition, A is of the form

$$
A=n I-A_{0}=n\left(I-\frac{1}{n} A_{0}\right)
$$

where $A_{0} \geq 0$ and $\left\|\frac{1}{n} A_{0}\right\|_{\infty} \leq \frac{n-1}{n}<1$, hence

$$
A^{-1}=\frac{1}{n} \sum_{0}^{\infty}\left(\frac{1}{n} A_{0}\right)^{j} \geq 0
$$

A is symmetric by definition; it is positive definite since for $x \neq 0$,

$$
x^{T} A x \geq n\|x\|_{2}^{2}-\sum_{i \neq j}\left|x_{i} x_{j}\right|=(n+1)\|x\|_{2}^{2}-\|x\|_{1}^{2} \geq\|x\|_{2}^{2}>0 .
$$

Hence A^{-1} is also symmetric and positive definite.
The next result is due to Poljak and Rohn [8] (given there in a slightly different formulation without using the concept of an $M C$-matrix). We add the proof for completeness.

[^1]Proposition 2 The following decision problem is NP-complete:
Instance. An MC-matrix A and a positive integer L.
Question. Is $z^{T} A z \geq L$ for some $z \in\{-1,1\}^{n}$?
Proof. Let (N, E) be a graph with $N=\{1, \ldots, n\}$. Let $A=\left(a_{i j}\right)$ be given by

$$
a_{i j}= \begin{cases}n & \text { if } i=j \\ 0 & \text { if }\{i, j\} \notin E, i \neq j \\ -1 & \text { if }\{i, j\} \in E, i \neq j\end{cases}
$$

then A is an $M C$-matrix. For $S \subseteq N$, define a cut by

$$
c(S)=\operatorname{Card}\{\{i, j\} \in E ; \text { exactly one of } i, j \text { is in } S\} .
$$

If z is given by

$$
z_{k}= \begin{cases}1 & \text { if } k \in S \\ -1 & \text { if } k \notin S\end{cases}
$$

then

$$
c(S)=\frac{1}{4}\left(z^{T} A z+2 \operatorname{Card}(E)-n^{2}\right)
$$

hence

$$
c(S) \geq L
$$

if and only if

$$
z^{T} A z \geq 4 L-2 \operatorname{Card}(E)+n^{2} .
$$

Since the problem

$$
" c(S) \geq L "
$$

(maximum cut in a graph) is NP-complete (Garey and Johnson [1]), the current problem is NP-hard. It is obviously in the class NP, since a guessed solution z can be verified in polynomial time; hence it is NP-complete.

3 The result

Theorem 1 below forms a common basis for several NP-hardness results listed in the next section.

Proposition 3 Let A be an MC-matrix and L a positive integer. Then

$$
z^{T} A z \geq L
$$

holds for some $z \in\{-1,1\}^{n}$ if and only if the system

$$
-e \leq L A^{-1} x \leq e
$$

has a solution satisfying

$$
\|x\|_{1} \geq 1
$$

(where $e=(1,1, \ldots, 1)^{T}$ and $\left.\|x\|_{1}=\sum_{i}|x|_{i}\right)$.

Proof. \Rightarrow : Let $z^{T} A z \geq L$. Put

$$
x=\frac{A z}{z^{T} A z}
$$

then

$$
\left|L A^{-1} x\right|=\left|\frac{L z}{z^{T} A z}\right| \leq|z|=e
$$

and

$$
\|x\|_{1}=\frac{e^{T}|A z|}{z^{T} A z}=\frac{z^{T} A z}{z^{T} A z}=1 .
$$

\Leftarrow : If $\left|L A^{-1} x\right| \leq e$ and $\|x\|_{1} \geq 1$, then for z given by $z_{i}=1$ if $x_{i} \geq 0$ and $z_{i}=-1$ otherwise we have

$$
L \leq L\|x\|_{1}=L z^{T} x=L z^{T} A A^{-1} x \leq\left|z^{T} A\right| e=z^{T} A z .
$$

Theorem 1 The following decision problem is NP-complete:
Instance. A nonnegative symmetric positive definite rational matrix A.
Question. Does the system

$$
-e \leq A x \leq e
$$

(where $e=(1,1, \ldots, 1)^{T}$) have a solution satisfying

$$
\|x\|_{1} \geq 1 \text { ? }
$$

Proof. According to Propositions 2 and 3, the NP-complete problem

$$
" z^{T} A z \geq L "
$$

can be polynomially reduced to this one (if A is an $M C$-matrix, then $L A^{-1}$ is nonnegative symmetric positive definite), hence the current problem is NP-hard.

If the problem has a solution, then it also has a rational solution of the form

$$
x=\frac{A z}{z^{T} A z}
$$

(proof of Proposition 3) which can be checked in polynomial time; thus the problem belongs to the class NP, hence it is NP-complete.

4 Corollaries

The following five corollaries are direct consequences of Theorem 1. The instances are always assumed to be rational without further notice.

Corollary 1 The following problem is NP-hard:
Instance. $A \in R^{m \times n}, b \in R^{m}, m \geq 2 n$, L positive integer.
Question. Does each solution of the system

$$
A x \leq b
$$

satisfy

$$
\|x\|_{1}<L ?
$$

Corollary 2 The following problem is NP-hard:
Instance. $A, B \in R^{n \times n}, b \in R^{n}$.
Question. Does the system

$$
A x+B|x| \leq b
$$

have a solution?
Corollary 3 The following problem is NP-hard:
Instance. A nonnegative symmetric positive definite $A \in R^{n \times n}, b \in R^{n}, \delta>0$, $\epsilon>0$; denote $x=A^{-1} b$.
Question. Does the solution of each $A x^{\prime}=b^{\prime}$ with $\left\|b^{\prime}-b\right\|_{\infty}<\delta$ satisfy $\left\|x^{\prime}-x\right\|_{1}$ $<\epsilon$?

Corollary 4 For $A \in R^{m \times n}, b \in R^{m}, c \in R^{n}, m \geq 2 n$, it is NP-hard to compute

$$
\max \left\{c^{T}|x| ; A x \leq b\right\}
$$

Note A linear programming problem with objective $c^{T} x$ can be solved in polynomial time (Khachiyan [6]).

Corollary 5 For a symmetric positive definite $A \in R^{n \times n}$ and $a, b \in R^{n}$, it is NP-hard to compute the optimal value of the quadratic programming problem

$$
\max \left\{x^{T} A x ; a \leq x \leq b\right\} .
$$

Note NP-hardness of quadratic programming with indefinite matrices was proved by Murty and Kabadi [7].
The proofs follow directly from Theorem 1 and Proposition 2.

5 Nearness to singularity

Let us use the norm (Golub and van Loan [3])

$$
\|A\|_{1, \infty}=\max _{i, j}\left|a_{i j}\right| .
$$

The number

$$
d(A)=\min \left\{\left\|A-A^{\prime}\right\|_{1, \infty} ; A^{\prime} \text { singular }\right\}
$$

is called the componentwise distance to the nearest singular matrix (Demmel [4]). If A is rational, then $d(A)$ is rational [8].

Corollary 6 Suppose there exists a polynomial-time algorithm which for each $n \times n$ nonnegative symmetric positive definite rational matrix A computes a rational approximation $d^{\prime}(A)$ of $d(A)$ satisfying

$$
\left|d^{\prime}(A)-d(A)\right|<\frac{1}{12 n^{4}}
$$

Then $P=N P$.
Proof. A direct computation shows that for an $M C$-matrix A we have

$$
\frac{1}{12 n^{4}} \leq \frac{d^{2}\left(A^{-1}\right)}{d\left(A^{-1}\right)+2}
$$

hence

$$
\left|d^{\prime}\left(A^{-1}\right)-d\left(A^{-1}\right)\right|<\frac{d^{2}\left(A^{-1}\right)}{d\left(A^{-1}\right)+2}
$$

which implies that

$$
z^{T} A z \geq L
$$

holds for some $z \in\{-1,1\}^{n}$ if and only if

$$
\left[\frac{1}{d^{\prime}\left(A^{-1}\right)}+\frac{1}{2}\right] \geq L
$$

Hence, if such a polynomial-time algorithm exists, then $\mathrm{P}=\mathrm{NP}$.

6 Appendix 1: $\|A\|_{\infty, 1}$

The material of this appendix was found later, when the previous part had been already written. In my view, Theorem 2 below forms the core of this report, as it clarifies the relationship between Proposition 2, Theorem 1, Corollary 5 and Corollary 6, and offers a deeper insight into the matter ${ }^{5}$. We shall use the norm

$$
\|A\|_{\infty, 1}=\max \left\{\|A x\|_{1} ;\|x\|_{\infty}=1\right\}
$$

(see [3, p. 15]; $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$).
Theorem 2 For an MC-matrix A we have

$$
\begin{aligned}
\|A\|_{\infty, 1} & =\max \left\{z^{T} A z ; z \in\{-1,1\}^{n}\right\} \\
& =\max \left\{x^{T} A x ;-e \leq x \leq e\right\} \\
& =\max \left\{\|x\|_{1} ;-e \leq A^{-1} x \leq e\right\} \\
& =\frac{1}{\min \left\{x^{T} A^{-1} x ;\|x\|_{1}=1\right\}} \\
& =\frac{1}{d\left(A^{-1}\right)} .
\end{aligned}
$$

[^2]Proof. 1) If $\|x\|_{\infty}=1$, then x belongs to the unit cube $[-1,1]^{n}$ and therefore can be expressed as a convex combination of its vertices which are just the points in $\{-1,1\}^{n}$. Hence from convexity of the norm we have

$$
\|A\|_{\infty, 1}=\max \left\{\|A z\|_{1} ; z \in\{-1,1\}^{n}\right\}=\max \left\{z^{T} A z ; z \in\{-1,1\}^{n}\right\}
$$

(since $\|A z\|_{1}=e^{T}|A z|=z^{T} A z$ for an $M C$-matrix A and $z \in\{-1,1\}^{n}$).
2) $x^{T} A x$ is convex (since A is positive definite), hence its maximum value over the cube $\{x ;-e \leq x \leq e\}$ is achieved at some of its vertices, implying

$$
\max \left\{x^{T} A x ;-e \leq x \leq e\right\}=\max \left\{z^{T} A z ; z \in\{-1,1\}^{n}\right\}=\|A\|_{\infty, 1}
$$

3) Since an $M C$-matrix A is nonsingular, we have

$$
\begin{gathered}
\max \left\{\|x\|_{1} ;-e \leq A^{-1} x \leq e\right\}=\max \left\{\|A y\|_{1} ;-e \leq y \leq e\right\}= \\
\max \left\{\|A y\|_{1} ;\|y\|_{\infty} \leq 1\right\}=\max \left\{\|A y\|_{1} ;\|y\|_{\infty}=1\right\}=\|A\|_{\infty, 1}
\end{gathered}
$$

4) For a positive real number λ,

$$
\|A\|_{\infty, 1} \geq \lambda
$$

holds iff $\left|A^{-1}-A^{\prime}\right| \leq \frac{1}{\lambda} e e^{T}$ for some A^{\prime} which is not positive definite [11, proof, equivalence 0) $\Leftrightarrow 1$)] iff $x^{T T} A^{-1} x^{\prime}-\frac{1}{\lambda}\left|x^{\prime}\right|^{T} e e^{T}\left|x^{\prime}\right|=x^{\prime T} A^{-1} x^{\prime}-\frac{1}{\lambda}\left\|x^{\prime}\right\|_{1}^{2} \leq 0$ for some $x^{\prime} \neq 0$ iff $x^{T} A^{-1} x \leq \frac{1}{\lambda}$ for some x with $\|x\|_{1}=1$ iff

$$
\frac{1}{\min \left\{x^{T} A^{-1} x ;\|x\|_{1}=1\right\}} \geq \lambda
$$

which gives

$$
\|A\|_{\infty, 1}=\frac{1}{\min \left\{x^{T} A^{-1} x ;\|x\|_{1}=1\right\}}
$$

5) By Kahan's theorem [5, p. 775],

$$
\|A\|_{\infty, 1}=\frac{1}{\min \left\{\left\|A^{-1}-A^{\prime}\right\|_{1, \infty} ; A^{\prime} \text { singular }\right\}}=\frac{1}{d\left(A^{-1}\right)} .
$$

Corollary 7 Computing $\|A\|_{\infty, 1}$ is NP-hard for MC-matrices.
Proof. From Proposition 2 and Theorem 2.

Corollary 8 The following problem is NP-hard:

Instance. A symmetric rational M-matrix A.
Question. $I s\|A\|_{\infty, 1} \geq 1$?
Proof. For an $M C$-matrix $A, z^{T} A z \geq L$ holds if and only if $\left\|\frac{1}{L} A\right\|_{\infty, 1} \geq 1$, where $\frac{1}{L} A$ is an M-matrix. Hence the problem of Proposition 2 can be polynomially reduced to this one.

The NP-hardness part of Theorem 1 follows from this result and from Theorem 2.

Corollary 9 Suppose there exists a polynomial-time algorithm which for each MCmatrix A computes a rational number $\nu(A)$ satisfying

$$
\left|\nu(A)-\|A\|_{\infty, 1}\right|<\frac{1}{2} .
$$

Then $P=N P$.
Proof. If such an algorithm exists, then $\|A\|_{\infty, 1}=\left[\nu(A)+\frac{1}{2}\right]$ (since $\|A\|_{\infty, 1}$ is integer for an $M C$-matrix A), hence the NP-hard problem of Corollary 7 can be solved in polynomial time, implying $\mathrm{P}=\mathrm{NP}$.

In the next corollary we present a problem whose complexity depends on the norm used:

Corollary 10 The decision problem
Instance. A nonnegative symmetric positive definite rational matrix A.
Question. Is $x^{T} A x \leq 1$ for some x with $\|x\|=1$?
is NP-complete if the norm $\|\cdot\|_{1}$ is used and is solvable in polynomial time for $\|\cdot\|_{2}$.
Proof. NP-hardness of the problem for $\|\cdot\|_{1}$ follows from Proposition 2 and Theorem 2. The fact that it belongs to NP is proved via a similar construction as in Proposition 3 (see [11]). $x^{T} A x \leq 1$ for some x with $\|x\|_{2}=1$ holds if and only if $x^{T}(A-I) x \leq 0$ for some $x \neq 0$, which is the case if and only if $A-I$ is not positive definite. Since $A-I$ is symmetric, the latter fact can be verified in polynomial time using Sylvester determinant criterion and Gaussian elimination.

The last result shows that the norm $\|A\|_{\infty, 1}$ has nontrivial properties and is worth further studying. It is preceded by a "theorem on the alternative" which may be of independent interest:

Proposition 4 Let $A, B \in R^{n \times n}$, A nonsingular, $B \geq 0$. Then exactly one of the two alternatives holds:
(i) the inequality $B|A x| \geq|x|$ has a nonzero solution,
(ii) the inequality $B|A x|<|x|$ has a solution in each orthant.

Proof. 1) $B|A x| \geq|x|$ for some $x \neq 0$ iff $B\left|x^{\prime}\right| \geq\left|A^{-1} x^{\prime}\right|$ for some $x^{\prime} \neq 0$ iff

$$
\left|A^{\prime}-A^{-1}\right| \leq B
$$

for some singular A^{\prime} [10, Lemma 2.1].
2) $B|A x|<|x|$ has a solution in each orthant iff each A^{\prime} satisfying

$$
\left|A^{\prime}-A^{-1}\right| \leq B
$$

is nonsingular [9, Thm. 3].
Clearly, exactly one of the two possibilities occurs.

Proposition 5 A nonsingular matrix A satisfies $\|A\|_{\infty, 1}<1$ if and only if in each orthant there exists an x satisfying $\|A x\|_{1}<1$ and $|x| \geq e$.

Proof. For $B=e e^{T}, B|A x| \geq|x|$ is equivalent to $\|A x\|_{1} \geq\|x\|_{\infty}$, hence $B|A x| \geq|x|$ has a nonzero solution iff $\|A\|_{\infty, 1} \geq 1$. Thus $\|A\|_{\infty, 1}<1$ holds iff

$$
\left\|A x^{\prime}\right\|_{1} e<\left|x^{\prime}\right|
$$

has a solution in each orthant. Setting $x=\frac{x^{\prime}}{\min _{i} \mid x_{i}^{\prime} i}$, we see that this is equivalent to the fact that

$$
\begin{gathered}
\|A x\|_{1}<1 \\
|x| \geq e
\end{gathered}
$$

has a solution in each orthant.

7 Appendix 2: Approximate quadratic programming is NP-hard

The results of the previous section enable us to strengthen the formulation of Corollary 5:

Corollary 11 Suppose there exists a polynomial-time algorithm which for each integer data A, b, c, A symmetric positive definite, computes a rational number $\nu(A, b, c)$ satisfying

$$
\left|\nu(A, b, c)-\max \left\{x^{T} A x+c^{T} x ; 0 \leq x \leq b\right\}\right|<\frac{1}{2}
$$

Then $P=N P$.
Proof. Due to Theorem 2, for an $M C$-matrix A we have

$$
\|A\|_{\infty, 1}=\max \left\{x^{T} A x ;-e \leq x \leq e\right\}=\max \left\{y^{T} A y-2(A e)^{T} y ; 0 \leq y \leq 2 e\right\}+e^{T} A e
$$

hence

$$
\left|\nu(A, 2 e,-2 A e)+e^{T} A e-\|A\|_{\infty, 1}\right|<\frac{1}{2}
$$

and the conclusion follows from Corollary 9.

8 Appendix 3: Linear programming with inexact right-hand side is NP-hard

For a linear programming problem

$$
\operatorname{minimize} c^{T} x
$$

subject to

$$
A x=b
$$

$$
x \geq 0
$$

denote

$$
f(A, b, c)=\inf \left\{c^{T} x ; A x=b, x \geq 0\right\}
$$

(so that $f=-\infty$ if the problem is unbounded and $f=\infty$ if it is infeasible). Consider the problem with the right-hand side ranging within the bounds \underline{b} and \bar{b} (componentwise). With A and c fixed, define

$$
\begin{aligned}
& \underline{f}=\inf \{f(A, b, c) ; \underline{b} \leq b \leq \bar{b}\} \\
& \bar{f}=\sup \{f(A, b, c) ; \underline{b} \leq b \leq \bar{b}\}
\end{aligned}
$$

Obviously,

$$
\underline{f}=\inf \left\{c^{T} x ; \underline{b} \leq A x \leq \bar{b}, x \geq 0\right\}
$$

hence \underline{f} can be determined by solving an LP problem, which can be done in polynomial time $[\overline{6}]$. But the case of \bar{f} is different:

Corollary 12 Computing \bar{f} within accuracy $\frac{1}{2}$ is NP-hard for rational data $A, \underline{b}, \bar{b}, c$ and for a finite value of \bar{f}.

Proof. For an $M C$-matrix A, consider the problem

$$
\min \left\{e^{T} x_{1}+e^{T} x_{2} ;\left(A^{-1}\right)^{T} x_{1}-\left(A^{-1}\right)^{T} x_{2}=b, x_{1} \geq 0, x_{2} \geq 0\right\}
$$

with

$$
-e \leq b \leq e
$$

From the duality theorem and Theorem 2 we have

$$
\bar{f}=\sup _{-e \leq b \leq e} \max \left\{b^{T} y ;-e \leq A^{-1} y \leq e\right\}=\max \left\{e^{T}|y| ;-e \leq A^{-1} y \leq e\right\}=\|A\|_{\infty, 1}
$$

and it suffices to apply Corollary 9.
Note A linear programming problem with the right-hand side satisfying $\underline{b} \leq b \leq \bar{b}$ can be also viewed as a parametric linear programming problem with fully parametrized right-hand side. Hence this problem is also NP-hard.

9 Appendix 4: Complexity of solving linear interval inequalities

Under a system of linear interval inequalities $A^{I} x \leq b^{I}$ we understand the family of systems of linear inequalities

$$
\begin{gathered}
A x \leq b \\
A \in A^{I}, b \in b^{I}
\end{gathered}
$$

where $A^{I}=\{A ; \underline{A} \leq A \leq \bar{A}\}$ is an $m \times n$ interval matrix and $b^{I}=\{b ; \underline{b} \leq b \leq \bar{b}\}$ is an interval m-vector. There are two basic problems concerning solvability of such families
of systems: first, whether each system $A x \leq b$ with data satisfying $A \in A^{I}, b \in b^{I}$ has a solution; second, whether some of such systems has a solution.

The first problem was solved by Rohn and Kreslová [12]: each system $A x \leq b, A \in$ $A^{I}, b \in b^{I}$ has a solution if and only if the system of linear inequalities

$$
\begin{aligned}
& \bar{A} x_{1}-\underline{A} x_{2} \leq \underline{b} \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

has a solution. Since this can be checked by solving an associated linear programming problem, the first problem can be solved in polynomial time [6].

Rather surprisingly, it turns out that the second problem is more involved. For a square matrix A,

$$
\begin{gathered}
-e \leq A x \leq e \\
\|x\|_{1} \geq 1
\end{gathered}
$$

is equivalent to

$$
\left(\begin{array}{c}
A \\
-A \\
0^{T}
\end{array}\right) x-\left(\begin{array}{c}
0 \\
0 \\
e^{T}
\end{array}\right)|x| \leq\left(\begin{array}{c}
e \\
e \\
-1
\end{array}\right)
$$

which, due to the theorem by Gerlach [2], is the case if and only if x solves

$$
A^{\prime} x \leq b^{\prime}
$$

for some $A^{\prime} \in A^{I}, b^{\prime} \in b^{I}$, where

$$
\begin{gathered}
A^{I}=\left[\left(\begin{array}{c}
A \\
-A \\
-e^{T}
\end{array}\right),\left(\begin{array}{c}
A \\
-A \\
e^{T}
\end{array}\right)\right], \\
b^{I}=\left[\left(\begin{array}{c}
e \\
e \\
-1
\end{array}\right),\left(\begin{array}{c}
e \\
e \\
-1
\end{array}\right)\right] .
\end{gathered}
$$

Hence, the second problem is NP-hard in view of Theorem 1. It is even NP-complete, since for guessed A and b, solvability of $A x \leq b$ can be checked in polynomial time [6].

Bibliography

[1] M. E. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979.
[2] W. Gerlach, Zur Lösung linearer Ungleichungssysteme bei Störung der rechten Seite und der Koeffizientenmatrix, Math. Operationsforsch. Stat., Ser. Optimization, 12(1981), pp. 41-43.
[3] G. H. Golub and C. F. van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, 1983.
[4] J. W. Demmel, The componentwise distance to the nearest singular matrix, SIAM J. Matrix Anal. Appl., 13(1992), pp. 10-19.
[5] W. Kahan, Numerical linear algebra, Can. Math. Bull., 9(1966), pp. 757-801.
[6] L. G. Khachiyan, A polynomial algorithm in linear programming, Dokl. Akad. Nauk SSSR, 244(1979), pp. 1093-1096.
[7] K. G. Murty and S. N. Kabadi, Some NP-complete problems in quadratic and nonlinear programming, Math. Program., 39(1987), pp. 117-129.
[8] S. Poljak and J. Rohn, Checking robust nonsingularity is NP-hard, Math. Control Signals Syst., 6(1993), pp. 1-9.
[9] J. Rohn, Linear interval equations: enclosing and nonsingularity, Research report 89-141, KAM Series, Faculty of Mathematics and Physics, Charles University, Prague 1989, 16 p.
[10] J. Rohn, Interval matrices: singularity and real eigenvalues, SIAM J. Matrix Anal. Appl., 14(1993), pp. 82-91.
[11] J. Rohn, Checking positive definiteness or stability of symmetric interval matrices is NP-hard, Commentat. Math. Univ. Carol., 35(1994), pp. 795-797.
[12] J. Rohn and J. Kreslová, Linear interval inequalities, Linear Multilinear Algebra, 38(1994), pp. 79-82.

[^0]: ${ }^{1}$ This work was supported in part by the Czech Republic Grant Agency under grant GAC̆R 201/95/1484
 ${ }^{2}$ Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, and Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic (rohn@kam.ms.mff.cuni.cz)

[^1]: ${ }^{3}$ held in Prague, November 1994, and in Leipzig, December 1994
 ${ }^{4}$ from "maximum cut"; explained in the proof of Proposition 2

[^2]: ${ }^{5}$ another applications of Theorem 2 are given in appendices 2 and 3

