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Abstract

A characterization of interval P—matrices is given. The result implies that a symmetric
interval matrix is a P-matrix if and only if it is positive definite (although nonsym-
metric matrices may be involved). As a consequence it is proved that the problem of
checking whether a symmetric interval matrix is a P-matrix is NP—hard.
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1 Introduction

As is well known, an n x n matrix A is called a P-matrix if all its principal minors
are positive. P-matrices play an important role in several areas, e.g. in the linear
complementarity theory since they guarantee existence and uniqueness of the solution
of a linear complementarity problem (see Murty [6]).

A basic characterization of P—matrices was given by Fiedler and Pték [3]: A is a
P-matrix if and only if for each € R", x # 0 there exists an ¢ such that x;(Ax); >0
holds. This result immediately implies that a symmetric matrix A is a P-matrix if
and only if it is positive definite. In fact, if A is positive definite, then for each x # 0,
from 3, z;(Ax); = 2T Az > 0 it follows that z;(Az); > 0 for some 7, hence A is a
P-matrix; conversely, if A is a P-matrix, then it is positive definite in view of the
Sylvester determinant criterion [6].

In this paper we focus our attention on interval P-matrices. An interval matrix

A=A A] = {A; A< A<AY,

where A and A are n x n matrices satisfying A < A (componentwise), is said to be a P
matrix if each A € A’ is a P-matrix . In section 2 we introduce a finite set of matrices
A, in AT (whose cardinality is at most 2"~!) such that A’ is a P-matrix if and only if
all the matrices A, are P-matrices (Theorem 3). In view of a similar characterization
of positive definiteness of A’ via the matrices A, (Theorem 4), it is then proved in
section 3 that a symmetric interval matrix A? (i.e., with symmetric bounds A, A) is
a P-matrix if and only if it is positive definite (Theorem 6). This is a generalization
of the above result for real symmetric matrices, but it is not a simple consequence of
it since here nonsymmetric matrices may be involved. As a consequence of this result
we obtain that the problem of checking whether a symmetric interval matrix is a P—
matrix is NP-hard (Theorem 8). This result shows that the exponential number of
test matrices A, used in the necessary and sufficient condition of Theorem 3 is highly
unlikely to be essentially reducible.

2 Characterizations

Let us introduce an auxiliary set
Z={z€R" z;e{-1,1}forj=1,...,n},

i.e. the set of all +1-vectors. The cardinality of Z is obviously 2". For an interval
matrix

A=A, 4],
we define matrices A,,z € Z by
1 — 1 —
(A)ij = 5(Ai; + Ay) = 5(Aij — Aij)2iz;

(1,7 =1,....n). Clearly, (A.);; = A;; if ziz; = 1 and (A.); = Ay if z,z; = —1, hence

A, € Al for each z € Z, and the number of mutually different matrices A, is at most



271 (since A_, = A, for each z € 7), and equal to 2"~! if A < A. The properties in
question (P—property and positive definiteness) will be formulated below in terms of
the finite set of matrices A,,z € Z. For a vector € R", let us define its sign vector

Z=sgnx

by

—1 if$2'<0

(¢ =1,...,n), so that sgna € Z. For a matrix A = (A;;) we introduce its absolute
value by |A| = (|Ai;|); a similar notation also applies to vectors.
The basic property of the matrices A,,z € Z, is summed up in the following

{ 1 ifa; >0
Z; =

auxiliary result; notice that no assumptions on A’ are made.

Theorem 1 Let A be an n x n interval matriz, + € R", and let = = sgnx. Then
for each A € AT and each i € {1,...,n} we have

Proof. Let A€ Al and ¢ € {1,...,n}. Then

e A — i (5 (A+ ADa)] = il (A — S(A+ T

2
< Jaal(|4 - S(A+ ) Jeli < Joil(5 (A - Al
hence
ri(Aw): 2 i (A A — ol (5 — Al

Since z = sgn x, we have |x;| = zjx; for each j, hence

1 B
viAx)i 2 ) (5(Ay + Ay) — 5(Ay — Ayj)zizg v

J

= Z(Az)ijl'il'j = zi(A.x);,
J

which concludes the proof. a

As the first consequence of this result, we prove a Fiedler-Ptak type characterization
of interval P-matrices. Notice that the inequality holds "uniformly” here:

Theorem 2 An interval matriz A’ is a P—matriz if and only if for each x € R",
x # 0, there exists an t € {1,...,n} such that

(2) J?Z(AQ})Z >0
holds for each A € A’.

Proof. TIf (2) holds, then each A € Al is a P-matrix by the Fiedler-Ptédk theorem.

Conversely, let AT be a P-matrix and let # # 0. Put z = sgn z, then A, is a P-matrix,
hence by the Fiedler-Pték theorem we have a;(A.x); > 0 for some 7. Then (1) implies
z;(Az); > (A, x); > 0 for each A € Al and we are done. O

The following characterization, however, turns out to be much more useful:



Theorem 3 A’ is a P-matriz if and only if each A.,z € Z, is a P-matriz.

Proof. If Al is a P-matrix, then each A, € Al is obviously also a P-matrix. Con-
versely, let each A.,z € Z, be a P-matrix. Let + € R", x # 0, and let z = sgn . Since

A, is a P—matrix, there exists an ¢ with #;(A,x); > 0, then from Theorem 1 we ob-
tain z;(Az); > x;(A.x); > 0 for each A € Al hence A! is a P-matrix by Theorem 2. O

Another finite characterization of interval P-matrices, formulated in different terms,
was proved by Bialas and Garloff [1].

In analogy with the terminology introduced for P-matrices, an interval matrix A’
is said to be positive definite if each A € A! is positive definite (i.e., satisfies 27 Az > 0
for each « # 0). The following theorem was proved in [9, Thm. 2]. We give here
another proof of this result to make the paper self-contained and to demonstrate that
it is a simple consequence of Theorem 1:

Theorem 4 A’ is positive definite if and only if each A.,z € Z, is positive definite.

Proof. The "only if” part is obvious since A, € A’ for each z € Z. To prove the
"if” part, take an A € AT and x € B*,x # 0. For z = sgn x, from Theorem 1 we have

for each ¢, hence

2T Az = ZQ?Z(AJ})Z > sz(Azx)z =a2TA.x >0,

so that A is positive definite. Thus, by definition, A is positive definite. a

The last two theorems reveal that both the P-property and positive definiteness of
interval matrices are characterized by the same finite subset of matrices A, € A’,
z € Z. This relationship will become even more apparent in the case of symmetric
interval matrices which we shall consider in the next section.

3 Symmetric interval matrices

For an interval matrix A? = [A, A], define an associated interval matrix Al by

Al is called symmetric if AT = AL which is clearly the case if and only if both A and
A are symmetric. Hence, Al is always a symmetric interval matrix. The relationship
between positive definiteness and P—property is provided by the following theorem:



Theorem 5 Al is positive definite if and only if Al is a P-matriz.

Proof. For each z € Z, let us denote by A% the matrix A, for Al i.e.

s 1 - 1 -
(A2)ij = Z(Aij + Ay + Ay + Aj) — Z(Aij + Aji — Aij — Aji)zizg
(., =1,...,n). Then A? is symmetric and a direct computation shows that
(3) el Ay = 2T AL

holds for each € R". Now, if A is positive definite, then each A.,z € Z is positive
definite, hence each A? is positive definite due to (3), so that A? is a P-matrix, hence
Al'is a P-matrix by Theorem 3. Conversely, if Al is a P-matrix, then each A%, 2 € Z
is a P-matrix, hence it is positive definite due to its symmetry, thus each A.,z € 7 is
positive definite by (3) and A’ is positive definite by Theorem 4. O

Our main result on symmetric interval matrices is now obtained as a simple conse-
quence of Theorem 5.

Theorem 6 A symmetric interval matric A is a P-matriz if and only if it is
positive definite.

Proof. The result follows immediately from Theorem 5 since a symmetric interval
matrix Al satisfies A = Al by definition. O

At the beginning of the Introduction we showed that a real symmetric matrix is a
P-matrix if and only if it is positive definite. The result of Theorem 6 sounds verbally
alike, but it is not a simple consequence of the real case since here nonsymmetric
matrices may be involved. In fact, it can be immediately seen that a symmetric interval
matrix Al = [A, A] contains nonsymmetric matrices if and only if A < A;; holds for
some ¢ # j.

An interval matrix A’ is called regular (cf. Neumaier [7]) if each A € A’ is nonsin-
gular. The following result shows that for symmetric interval matrices the P—property
is preserved by regularity. Several other results of this type are summed up in [10].

Theorem 7 A symmetric interval matric A is a P-matriz if and only if it is
reqular and contains at least one symmetric P-matriz.

Proof. A symmetric interval P-matrix Al is regular (each A € Al has a positive
determinant) and contains a symmetric P-matrix A. If Al is regular and contains a
symmetric P-matrix Ao, then Aq is positive definite, hence A’ is positive definite by
Theorem 3 in [9], which in the light of Theorem 6 means that Al is a P-matrix. O

Another relationship between regularity and P—property of interval matrices was
established in [8, Thm. 5.1, assert. (B1)]: an interval matrix Al = [A, A] is regular if
and only if (A+A— S(A—A))"H(A+ A+ S(A—A)) is a P-matrix for each signature

4



matrix S (i.e., a diagonal matrix with +1 diagonal elements). This topic was recently
studied by Johnson and Tsatsomeros [5].

The necessary and sufficient condition of Theorem 3 employs up to 2"7! test ma-
trices A,,z € Z. There is a natural question whether an essentially simpler criterion
could be found. The last theorem gives an indirect answer to this question: it implies
that an existence of a polynomial-time algorithm for checking the P—property of sym-
metric interval matrices would imply that the complexity classes P and NP are equal,
thereby running contrary to the current (unproved) conjecture that P£NP. We refer
the reader to the classical book by Garey and Johnson [4] for a detailed discussion of
the problem "P=NP” and related issues.

Theorem 8 The following problem is NP-hard:
Instance. A symmetric interval matriz A = [A, A] with rational bounds A, A.
Question. Is AT a P-matriz?

Proof. By Theorem 6, A’ is a P-matrix if and only if it is positive definite; checking
positive definiteness of symmetric interval matrices was proved to be NP-hard in [11]. O

Coxson [2] proved that the P-matrix problem for real matrices is co-NP-complete.
His result concerns nonsymmetric matrices since the symmetric case can be solved by
Sylvester determinant criterion which can be performed in polynomial time (Schrijver
[12]). Theorem 8 shows that for interval matrices even the symmetric case is NP-hard.

Acknowledgment. Correspondence with Prof. J. Garloff on the subject of this
paper is highly appreciated.
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