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Abstract
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1 Introduction

Let © be a domain in Euclidean space R®> with a piecewise smooth boundary 9.
The porous media flow problem is described by Darcy’s law

u=-A"'Vp; (1.1)
and the continuity equation for uncompressible fluid
V-u = g, (1.2)

where u is a velocity of the flow, p is a piezometric head, ¢ is a density of sources and
A~! is positive definite tensor of permeability of porous media. (i.e. there exists ag > 0
such that Y7, ;3 [A7H(x)]i;66 > a0 dics &i& for all € € R? and almost everywhere on
Q . Further we suppose [A7!(x)];; € L>=(Q) , for 7,5 € {1,2,3}). From macroscopic
point of view it is necessary to involve the tectonical discontinuity into permeability
tensor.

The boundary 9 is composed from two parts. It holds 9Q = 90p U 9Qy,
00p N 90y = 0. The following boundary conditions are considered

p=pp on Op, (1.3)

u-n=-A"'Vp-n=uy on IOy, (1.4)

where n denotes the unit outward normal to boundary 92 (It exists almost every-
where).

2 Mixed-hybrid formulation of the porous media
flow problem, existence and uniqueness of solu-
tion

Consider the decomposition &, of domain ) by elements ¢;, ¢ € I, such that it is

valid (see [8])
(Z) ﬁ = Ueeghg 3
(41) e;Ne;j =0, if ¢ # j;

(1it) e € &, is open subset  with a piecewise smooth boundary de.

We shall denote by I'y, = U.eg,0e —9Qp the structure of faces of elements from which
we shall exclude the faces with Dirichlet boundary conditions 9€Qp. Define following
spaces on the decompositions &, , 'y :

H(div,&,) = {v € L*(Q); V-v° € L*(¢), Ve € &} (2.1)
with the norm )
IV awe,= [ v Iea+ D V-V 5.1, (2.2)
eeé'h



where v¢ denotes the restriction of vector function v on the element e and
Hy(Tw) ={p: Th— R; o€ Hp(Q), p° = me", Ye € &}, (2.3)

where H},(Q2) = {¢ € H'(Q); v¢ = 0 on dQp}, v is the trace mapping of functions
from HJ () on the structure of faces I', and + is the trace mapping on 9. In the

functional space HA(T';) we define norm

I wllir,= wegl};f(ﬂ){ pl1.05 yre = p na Ty}, (2.4)

where |pl10 = (Ve, V)i o. Further let

WD,h = H(dw,gh) X LQ(Q) X HB(F;L) (25)
be function space with standard norm
Iwliwa = (Ve + 16 loa+ 1wl )7 (2.6)

We introduce a bilinear form B(w,w) on the product Wp; x Wp, by relations

Bw,w) =Y B.(%,w), (2.7)

eeé'h

BS(V~V6,W6) — (Ai}e?Ve)O’e . (567 AV Ve)O,e _ (v . iv/'e, ¢6)0,e +
+ < a5n° Ve >a + <tV >, (2.8)

where n® denotes the unit outward normal to de. Further we define a linear continous
functional on Wp; by formula

Qw) = > {—(¢" 0 — < pPpH.n° V" >oc0a, + < uy, 1 Socroay |- (2.9)
eeé'h

DEFINITION 1.1: The function w* € Wp 3 is said to be a weak solution of mixed-
hybrid formulation of porous media flow problem described by equations (1.2), (1.1)
using with boundary conditions (1.3), (1.4), the decomposition &, of domain £ and
structure of faces I'y , if

Bw*,w) = Q(w), YweWp,. (2.10)

Now we shall prove some lemmas, which introduce some functions important for showed
of existence and uniqueness of weak solution.

LEMMA 1.1:  Let us choose u € HE(Fh) and let ¢ € HLH(Q) be a function such
that for all e € &, will be ©° weak solution of problem

— V- V=0 ine, (2.11)
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with boundary condition

©° = p° on Oe. (2.12)
Then
ol = X [ 22uras = uliy, . (213)
b 7 Joe On® 2lh

PROOF: Applying the Green formula to equation —(V - Ve©, ¢%)g. = 0 and consid-
ering boundary condition (2.12), we obtain
0p°

2 = ¢ds. 2.14
|S‘Q |1,e 9e anelu ( )

From (2.14) we get the left equality in (2.13). From the variational formulation of
problem (2.11) with boundary condition (2.12) we can write:

“I7.= inf 17,5 ¢ =pu"on de} =|| p° |7 2.15
|S‘Q |1,6 ¢E}%(Q){|¢ |1,e7 ¢ poon 6} H H "5,867 ( )
which implies (2.13). O
Let us denote
Al = sup (Av,v)oq. (2.16)
IVllo,o=1

REMARK 1.1: Let u € Hg(Fh) and let @ be a function such that for all e € &, will
be ¢° weak solution of equation (2.11) with boundary condition @¢ = |1}T|1”6 on the Je.
Then
Blia = I8 = A Il 2.17)
ecéy,

LEMMA 1.2: Let € H%(Fh) and ¢ € L*(Q). Let 1) be the solution of the following

problem

-V -Vy=¢ in Q, (2.18)
=0 on 0Qp, a—¢ =0 on 00y. (2.19)
Jn
Then
S <,V on® > = 0. (2.20)

eeé'h

PROOF: Because u € HA(T'},) there exists ¢ € H},(2) such that ~,¢ = p. Using the
Green formula we get:

Doo<us Vet nt >ac= 3 [(¢5, V-V )oe + (Ve Vib)o] =

eeé'h eeé'h
= (997 V- v¢)0,9 + (V% v¢)0,§2 =<y, Vo -n >p0=
=<7y, Vb -n >50,=0, (2.21)



REMARK 1.2: There exists Cq depending only on domain € such that

[Yhe <Call ¢l - (2.22)

For Cq and |A| (see also (2.16)) ¢ is a weak solution of the problem

— V-V = ¢ in Q (2.23)

|A|CG
with boundary conditions (2.19). Then using (2.22) we get

1

bly o <
)10 < AlCs

16 llo.q - (2.24)

THEOREM 1.1:  Muzed-hybrid formulation porous media flow problem defined by
equation (2.10) has a unique solution w* € Wp .
PROOF. First we estimate

<ps,veen® >5 = (Vo ', v + (05, Vv ), < (2.25)

16" el v llaive = 11 1% My aell V& llaive -

IA

Choosing w® = (v©, ¢, u°), w° = (v€, 07, i) and applying the Schwartz inequality to
the bilinear form (2.8) we obtain

Bo(we,w) < ALV ol v Hloe + 11 6 lloell V- v lloe +

+ IV ol 6 lloe + 112 1 sell vE llaive +

+ e 1ol V6 llaive <

< 2max{[A[ 1} | W" [lwe - [[ W" [[lw,e - (2.26)
Introduce €y = 2max{|A|,1} and ap = infy vy, q=1 (AV,V)oo > 0. For any w° =
(v, 9% u°) we choose W = (v°, ¢, i) in the following

$° = —2¢° — 2V .v°,
Ve o= 2vE 4 2VEE + Vi (2.27)
o= _Qﬂev

where ¢ and 1) were defined above. Now we have

B.(we,we) = (AV", V). — (65, V - V) — (V- V¢, 6o+
+ < pcveen® >h + < pf,veent >5.2>
> min{%, 2, i gzt | W B, + < 16, Vi 0 o=
= k(ao, |A],Co) || w* |3y, + < p°, Vi n® >4,
where
(273} 1 1

k Al Cq)=min |—,2, —, ———| .
(a07| |7 Q) min 9 7|A|72|A|C§22

(2.28)



For the components of the function w we get

3
~e e e |12 e |12 e |2
(V v )075 S 7 H v HO,e +|A|2 H H H%,ae +|A|20§22 H (/5 Hl,ev
1 1 1
v‘fvev‘fve e< 4 v e |2 1 e 27
( v, v )07 — ( + |A|Cé) H v HO,e +|A|Cé ( + |A|Cé) H ¢ HO,e

(6,60 <61 & 1[5, +2 11V - v [I5...
~ec |2 _ e |12
071 =4 0 1

Consenquently,
% v, < K*(JA[,Ca) || w* |l -

with

K(|A],Cq) = {max{ [6+ ARCE + |A|C2 (1 * M)] b

o+ i) | |A7|2H}% |

N koo .
Be(Whw?) 2 = [ WE flwell W llwe + < %, V¥ >o

Then

and summing up we obtain

g gl 4 € k gt
B(w,w) =Y B(W',w)>— | ¥ wal Wlwa -
vl K

Introducing
k

O, —
T K

> 0 (2.29)

we get
_inf sup  B(w,w) > (h. (2.30)
Wil =1 [[wllyy , <1

From the symmetry of the bilinear form B(w,w) follows immediately

inf sup  B(w,w) > (h. (2.31)
W =1 5y, <1

By [1] Theorem 2.1. there exists unique solution of problem (2.10), satisfying

N 1 1
| W [[wn< E{H qlloa + 1o 11 + lun 20,37, (2.32)

where || uy "2—%,85: infy e (i)l V |laive; unv =v-non 0Qy }.

Constants C; = 2max{|A[,1}, C; = £ > 0 are independent on the decomposition
&, of domain €. O



REMARK 1.3: Let p° be a classical solution of equation —V - A™'Vp = ¢ with
boundary conditions (1.3), (1.4). Consider w® in the form w® = (u®, p°, p°|r, ). Then
w? € Wp,, and for any Q' C Q such that ' C Qis p® € H*(') and

Oe e Oe e Oe e e
(Au™, v)oenar — (P V - V)oenart < Py, D -V >(aenar uenaay,)

=< p”,n°-v° = enaq, - (2.33)

Here 090, resp. 0, approximate parts of boundary d€lp, resp. 9Qy, and Qy =
QU oy

From the continuity of p® and Vp® in the domain  and from the equation —A~! gfloe =
u’ - n° on 99 it follows for ' — O
(AU, v)gna — (AU, v,
(p067 v . Ve)O,eﬂQ’ N (p067 v . Ve)0767
< p06|rh, n® - v > (8eny)u(endQly) < PD; n°-v* > 9endy s
Yo <u”n pf >enpe—<u’n, g >e0, =< un, i >oa, - (2.34)

eeé'h
Now for any w € Wp; we obtain
B(WO,W) = Z Be(woe,we) = Z{ (A uoe,ve)oﬁ —
eeé'h eeé'h
_(p067v X Ve)O,e _ (v X qu7 ¢6)076_|_ < p067ne X Ve >86 _I_ < ne X quHue >86} —
= Z {=(¢% 0%)o,c— < pH,0° - VE >ocmna, + < uly, f° >acnony } = Q(W).

eeé'h

Consequently, w? solves equation (2.10) and considering uniqueness we have w® = w*.

3 Approximation of mixed-hybrid formulation

Assume the decomposition &, of the domain ) strongly regular, i.e. there exists con-
stant Cy independent on &), such that

max — < (y, (3.1)

where h® = diame and p. denotes the diameter of the spheres inscribed in e.
Let us introduce the class of polynomials of degree at most k in e Py(e) and for k,r,t €
N we define spaces

Pu(&) = {én € L2(Q); 65 € Pyle), Ve € &), (3.2)
H,(div, &) = {vy; v € H(div,e), v € [P.(e)]?, Ve € &4}, (3.3)
Hp(Tn) = {pn € Hp(Th); 39}, € Pule), py, = 95, Ve € &, (3.4)
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WD,h(k,r,t) = HT(div,gh) X Pk(gh) X Hgt(l“h) - WD,h- (35)

DEFINITION 2.1: The function w; € Wp s, is the approximation of mixed-
hybrid formulation, if holds

B(wy, wi) = Q(wWs), VWi € Wp nkri), (3.6)
where B(.,.), resp. Q(.), was defined (2.7), resp. (2.9).

We shall show some conditions for existence unique solution of (3.6). First we intro-
duce necessary conditions.

LEMMA 2.1: Assume there exists a unique solution of (3.6), then
(i) Ypune Hp,(Th) :

Z < Vp - ne,,uh >5e= 0, \V/Vh - HT(div,gh) = Up = 0, (37)
e€lp
(it) Yon € Pe(&) :
(V . Vh,c,oh)oﬁ = 0, Vv, € HT(div,Eh) — Q«QZ = 0. (38)

PROOF. Let (i) be invalid, then there exists i, € HD (Th), fin, # 0 such that

Z < Vy - ne,,&h >5.= 0, Vv, € HT(div,gh).
eeé'h

Then B((0,0, fin), ws) = 0 for all wy, € Wp 4. Therefore wg, = (0,0,0) is not
unique solution of (3.6) for ¢ =0, pp =0, uy = 0.
Let (ii) is invalid, then there exists ¢, € Py(&r), @5 # 0 such that

(Vv @0 )oe =0, Vve € H,(div, &).
Then B((0,$,0),wy) = 0 for all wi, € Wp (.0, and so Wiy = (0,0,0) is not unique
solution of (3.6) for ¢ =0, pp =0, uy = 0. O
For (3.7) is necessary {vh-n% v, € H,(div, Eh) e € &,} generated complete system of
functionals on HD (). Let us choose uj, € HDJ(F;L) and consider the problem

-V -Vgr,=0 ine, ¢, =pp on Je.
For vi, = V@, € [P_i(e)]® for all e € &, we get

> < V@n-nt pu >oe= |Pnlig =l mi i, - (3.9)
e€lp

For fulfilment (3.7) it is necessary to satisfy r > ¢ — 1.
For (3.8) it is necessary {V - vy; vy, € H,(div, &)} to generate the complete system of
functionals on P,(&). From that we have the condition r > &k + 1.
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Let ¢, € Pi(&) and ;Zh € H'(Q) be a solution of the equation

~ 1
V. =— ¢ inQ 1
V V@/)h |A|Cé¢h 1m (3 0)
with mixed boundary conditions
- I
Br=0 on 02, 2 Z0 on 00y, (3.11)
On
Then B
Vi, € H,(dwv, ). (3.12)
We introduce
Ho(div,e) = {v® € [P.(c)]’; V-v:=0}. (3.13)

THEOREM 2.1: Letr=k+1>1t—1. Then there exists unique solution of (3.6).

PROOF. For w§ = (v¢, ¢, u5) we choose Wi = (VE, %, i) in the form
Vi = 2vj + 2V + Vi,
% o= 202V v,
fi, = =2}
We calculate
Be(ﬁ/;v WZ) = Q(AVZ, VZ)(LS + Z(Avg‘zim VZ)(L@ + (AV?ZZ, VZ)Q@ +
—I_(v ) VZ? V- VZ)(L@ - (v ) vgovim ¢Z>076 - (v ’ qubfi)v ¢Z>076 +
+2 < py, V@i -0 >oe + < g, Vo, - >5,

V@5 € Ho(e) and therefore (V- V&5, 65 )0 = 0.
Further analogously to the Theorem 1.1 we get

B(Whn,wn) > k|| Wi ||y 1 (3.14)
and because | Wy, |w A< K || Wy ||[w 5, we obtain

in sup  |B(Wp, wi)| > Cs. (3.15)
IWnllw ;=1 IWhllyy , <1
The bilinear form B(W;, w},) is symmetric and so

_inf sup  |B(Wp, wi)| > Cs. (3.16)
IWnllw ,=1 IWhllwy , <1

According to [1] there exists unique solution of (3.6) and following estimate is valid

01) :
- w < (14 = f *— 3.17
Iw' = willwo, < (16 ) ot I w817
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Let s is integer and we introduce the Sobolev space H*()) (see [7]). We denote by
|| - ||s,o the norm of the space H*(2).

LEMMA 2.2: Let s € N. Then for any ¢ € H*(Q), s > 0, s € N there exists
constant Ky > 0 indepedent on h and function pp, € Py(E) such that

| @ —¢n lloo< Kih™ || @ |[s. (3.18)

where oy = min{k+1,s}.

LEMMA 2.3: Letm € N. Then for any u® € [H™(e)]?>, m > 1, m € N, there exists
constant Ky > 0 independent on h and function uj, € H,(div, &) such that

| a =y [Jai,0< K2hZ? || 0 [0, (3.19)
where ag = min{r,m —1}.
LEMMA 2.4: Let? e N.
Hp,(Ty) = {pn € Hp(Th); Ip5, € Pile), pf, = e, Ve € & }. (3.20)

Then for any p € HY(Q), { > 1, { € N such that p = ¢ on T}, there exists constant
1
K3 > 0 indepedent on h and function py € H57t(Fh) such that

= vy, < Kb | @ e (3.21)

where az = min{t,{ —1}.

Proof of inequalities (3.18), (3.19) is introduced in [2]. Inequality (3.21) follows imme-
diately from the definition of norm || - H%,Ph-

If o, € HH(Q) N Py(e), for all e € & and ou|r, = pun € Hg7t(Fh) , then we get the
inequality

o=l r, <l — enlig (3.22)
THEOREM 2.2: Letp® € HY(Q), { > 2 be the exact solution of equation —V-Vp = ¢
andletr=k+1>1¢—1.

Let wi = (Up,pr, An) € Wp(rr) be the solution of problem (3.6).
Let us denote

Ew = (€ua5p75A)7 = (_A_lvpo — Up, pO — Ph p0|Fh — A )7
a=mm{r,t,(—1},

C
C* = (1 + 51) max{ Ky, K, Ks}.
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Then

| ew lwaos C7A° [Z I P H?,e] : (3.23)

eeé'h

PROOF. The statement follows from [1], assertion of the Theorem 2.1. and from
lemmas 2.2 , 2.3 and 2.4. O
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