narodni
N U dlozisté
1 L Sedé
6 literatury

Bundle Algorithms for Nonsmooth Unconstrained Optimization

Vicek, Jan
1994

Dostupny z http://www.nusl.cz/ntk/nusl-33563

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 01.10.2024

Dalsi dokumenty muzete najit prostrednictvim vyhledavaciho rozhrani nusl.cz .

http://www.nusl.cz/ntk/nusl-33563
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Bundle Algorithms for Nonsmooth
Unconstrained Optimization

Jan Vlcek

Technical report No. 608

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod vodarenskou vézi 2, 182 07 Prague 8, Czech Republic
phone: (4+422) 6605 3281 fax: (4422) 8585789
e-mail: uivt@uivt.cas.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Bundle Algorithms for Nonsmooth
Unconstrained Optimization

Jan Vicek !

Technical report No. 608

Abstract

We study mainly practical aspects of algorithms. Section 1 contains a brief introduc-
tion to Nonsmooth (Nondifferentiable) Optimization and a simple bundle algorithm.
In Section 2 we incorporate the aggregation strategy, Section 3 contains a necessary
generalization for the nonconvex case, in Section 4 we address the question of how to
obtain the next iterate, Section 5 is devoted to a stopping criterion and in section 6 we
give a technique for choosing the weight parameter. Some numerical experiments are
reported in Section 7.

Keywords
Nondifferentiable minimization, numerical methods, descent methods

!This work was supported under grant No. 201/93/0429 given by the Czech Republic Grant Agency

1 Introduction
Consider the following nonlinear optimization problem
minimize f(x) on R" (1.1)

Differently from the standard situation, we do not require f to be smooth. In sections 1
and 2 we suppose, that f is convex. In this case we can use the following substitution
of the gradient: the subdifferential of f at x (see [1])

Of(z)={g9 € R"|{¢9,z —x) < f(z) — f(x) forall z€ R"} (1.2)

This d(x) is a nonempty, convex and compact set, which shrinks to the gradient,
whenever f is differentiable at x; the elements of d(x) are called subgradients. We
make the general assumption: at every x, we know f(x) and one (arbitrary) g € df(x).

The methods for nonsmooth optimization can be divided into two main classes:
subgradient methods and bundle methods; we restrict ourselves to the latter, which
seem to be the most promising.

A long-known algorithm to minimize convex f is the cutting plane algorithm (see
[2]-[3]): At step k, let the iterates yi,...,yx have been generated, together with the
corresponding function values f(y1),..., f(yx) and subgradients ¢1 € df(y1),..., g% €
Of(yr). We define the cutting plane approximation of f (associated with above bundle
of information) to be the piecewise linear function

fk(x):max{f(yi)+<gi7x_yi> : izlv"'vk} (13)
It results immediately from (1.2) that

fk(x) Sf(l’) and fk(yl) :f(yi)v izlv"'vk' (1'4)

Minimization of this cutting plane model in some convex compact set, which contains
an optimal point, provides the next iterate yxyq.

Unfortunately, the numerical behaviour of this algorithm is extremely poor. There-
fore some stabilizing techniques were proposed. With respect to an available routine
for solving a quadratic programming problem (see [4]) we choose the following process
(see [1], also for its convergence properties) as our basic algorithm, which is in com-
parison with [1] slightly adapted with regard to next sections (e.g. in the quadratic
programming subproblem we use equivalently f¥ — f(x;) instead of fF) :

Algorithm 1.1.

Step 0: (Initialization). Select a starting point x; € R and set k = 1, y; = 1.
Choose a weight (penalty parameter) u > 0 and line search parameter
my, € (0,1); compute f(y1) and g1 € If(y1).

Step 1: (Direction finding). Find the solution (di,vy) to the k-th quadratic pro-
gramming subproblem
minimize v+ 3ld|* over all (d,v) € R* x R
satisfying fF — f(zx) + (gi,d) < vfori=1,... &k, where

FE= 1) + g oe — wi) < fla). (1.5)

Step 2: (Stopping criterion). If x) is “close enough” to the required solution, then

terminate.
Step 3: (Line search). Set yry1 = xx+di and compute f(yr11) and ggy1 € Of (Yry1)-
If
Fyrer) < flog) — mpdy,
where
o 1 9
ok = flar) = [(Yrer) — §U|dk| >0,
set Tpp1 = Yp41 (descent or serious step); otherwise set xpy1 = g (null
step).

Step 4: (Updating). Replace k by k+ 1 and go to Step 1.

Note that this is only the crude form; e.g. we do not need store the auxiliary points y;,

since fith — fF = (g:i, Tk41 — 1), so we have the following recursive updating formula:

S =+ g e —aw), =1,k (1.6)

Recomended values of constants are proposed in Section 7. In next sections we give
some modifications and refinements.

2 Subgradient Aggregation

There is the great drawback of the above algorithm: the number of constraints (in
Step 1) and stored subgradients grows unboundedly, since it is equal to the number of
iterations. Therefore we modify it using the subgradient aggregation strategy (see [5],
also for its convergence properties). The idea is to aggregate the constraints generated
by the past subgradients.

Algorithm 2.1.

Step 0: (Initialization). Select a starting point x1 € R", a final accuracy tolerance
€ > 0 and a line search parameter my, € (0,1). Set y; = x4, J; = {1} and

compute f(y1), g1 € f(y1). Set po = g1, fy = fi = f(y1) and the counter
k=1.

Step 1: (Direction finding). Find the solution (di,vy) to the k-th quadratic pro-
gramming subproblem
minimize v+ 3|d|? over all (d,v) € R" x R
subject to ff — flxk) + {gj,d) < v for j € Jg,

f; — f(og) + (pr-1,d) < v

which is by duality equivalent to finding multipliers)\;?, J € Ji, and)\’; that

solve the k-th dual subproblem
2

minimize SoNG+ Appr—1| — 22N fk pf§
]EJk J€Jdy
subject to)\jZO JEJ A >0, 3 A+ A, =1
J€Jdy

Compute the aggregate couple

pkv Z)‘k g]v —I')\k(pk 17f)

JE€Jk

and set dy = —pg, vp = —{|px|* + f(21) — f]f}, where v, < 0 is the same as
in the primal subproblem.

Step 2: (Stopping criterion). If $|pp|> 4+ f(x)) — fzf < & then stop.
Step 3: (Line search). Set yr11 = x5 +di and evaluate f(yg41) and gry1 € Of (Ypy1)-

It

fyrsr) < flaw) + mpog,
set Tp11 = Yrpy1 (descent or serious step), otherwise set xpy1 = xp (null
step).

Step 4: (Updating). Choose a set Jy C {1,...,k} and calculate

fk+1 = fz’k—l_<gi7xk+1_xk>7 Zejkv
flf—l—l——ll = f(yk+1) + <9k+17 Th41 — yk+1>7
f;H = f; + (pk, Thy1 — Tk)-

Set Jyy1 = Jj U {k + 1}, replace k by k + 1 and go to Step 1.

Note that here it is v = 1 in comparison with the Algorithm 1.1. We shall return to
the weight u in Section 4.

The index set Jj, may be determined arbitrarily. I have tested some techniques
for choosing it, but without any apparent effect. In the present version it is Jp =
{max(k — M,0)+1,...,k}, where M > 2 is a user-supplied bound on the number of
indices.

3 Nonconvexity

First we note that a nonconvex function may have several local minima, thus we content
ourselves with finding only one of them.

It is possible to generalize the subdifferential to nonconvex locally Lipschitz func-
tions (see [6]), but it does not possess the property (1.2). Thus the inequality in (1.4)
does not hold and it is necessary to introduce so-called subgradient locality measures
(see [5]) for weighting past subgradients at search direction finding. To define them we
need some upper estimate of |1 — y;|, which does not require the storage of points y;,

e.g.
k-1

st =y =yl + 3 v —a| for <k, sp=|ex — yil;
i=s

we can use the following recursive updating formula:

k41 K .
i =Sl e |, J=1,0000k

Denoting

of = max{|f} — f(zo)l,7(s])}, 7 20,

we shall call 3? the j-th distance measure and oz? the j-th subgradient locality measure
at the k-th iteration with the convention that v = 0 if f is convex (then —oz? =
ff — f(zx)), and v > 0 in the nonconvex case.

A generalized algorithm to the nonconvex case will be given in the next section.

4 Line Search

The hardest problem, which is created by nonsmoothness, consists in the fact that
the direction opposite to an arbitrary subgradient need not be one of descent. This
difficulty forces us also to modify the classical line search operations. Standard concepts
in bundle methods are a serious (or descent) step and a null step; in [6] there are two
serious steps - long and short.

Note that more important than to achieve a sufficient decrease of the objective
function is to add the new subgradient information to the bundle to generate a better
next search direction (e.g. when in the algorithms above in Step 3 we try to reach a
decrease of f(x) instead of performing the null step, it may cause a significant increasing
of the number of iterations).

We give now a simplified algorithm after [6].

Algorithm 4.1

Step 0:

Step 1:

Step 2:
Step 3:

(Initialization). Select a starting point x1 € R", a final accuracy tolerance
¢ > 0, a weight u > 0, the maximum number of stored subgradients M > 2,
the distance measure parameter v > 0 (v = 0 if f is convex) and line search
parameters myz, € (0,1), mp € (my,1) and a lower bound for long serious
steps € (0,1]. Set y; = x1, J1 = {1} and compute f(y1), g1 € If(y1).
Set the counter £ = 1, the line search parameter (=1-=.5/(1 —my) and
initialize py = ¢y, f; = fi = f(n), 3 =51 = 0.
(Direction finding). Find the solutlon (di,Dx) to the k-th quadratic pro-
gramming subproblem

minimize T+ Y|d|? over all (d,7) € R* X R

subject to —oz? + (g;,d) < T for j € J, —o/; + (pr-1,d) < 7,
where

= max{|f] — flzi);7(s])?} for j e J,
= max{[f, — flzr)].7(s5)"},

which is by duality equivalent to finding multipliers)\;?, J € Ji, and)\’; that
solve the k-th dual subproblem

e L
S e e

2

minimize % ‘ Z;] X;g; + Appr—1| + >ed,)\joz? +)\po/;
JE€EJE
subject to A, > 0,7 € Ji, Ay >0, 2 A+ A, =1,
J€Jk
with 7, = — {%|pk|2 +)\;?ozé? +)\’;o/;}.
J€Jk
Set

(pk7 p7 p Z)‘k 9]7]7] —I')\k(pk 17f§7 p)

JE€Jk

. 5 1 . 1

Gt = max{|F = F(ea)| ALY, ve = ol = 6k =~
(Stopping criterion). If Z|p|* + 6/; < & then stop.
(Line search). By line search Algorithm 4.2 find step sizes 5, t% set x4 =
T + 5 di, ypor = g + thdy, and evaluate f(yr1) and gry1 € Of (Yry1)-

Step 4: (Updating). Calculate the linearization values

= fF g e —w), i€ Jg,

flfjhl = f(Yr+1) + (Gr41, Thp1 — Yrt1),

f;“ = JE; + <pk751?k+1 - 51?k>,

sV = sE | de], i€ Jy, i = (th — 1) |del,
sitt = 1] |di.

Set Jr1 = Jp U {k + 1} and increase k by 1; if card Jp > M, then J; =
J\{minj|y € Jp}. Go to Step 1.

Algorithm 4.2 (Line search)
Step i: Set t§ =0 and t =ty = 1.
Step ii: If f(zp +tdy) < f(xr) + mptoy, set t5 = ¢, otherwise set {y = .

Step iii: If 5 > 1 set t%, = t§ and stop (long serious step), otherwise calculate
g € Of (xp + tdy) and

B = max{| flas + thdy) — fs + tdy) + (0 = 15)g"dil, 3(t — t})2|de]?}.

Then if —3 + g'dy, > mpuvy, set th, = t and stop (a null step if t§ =0, a
short serious step otherwise).

Step iv: If t§ = 0 then set

t= maX{C . tU, %t%]vk/(t[]vk + f(l‘k) — f(l‘k + tUdk)}

and if t§ > 0 then set t = 2(¢f + tv). Go to Step (ii).
In the course of computational testing some drawbacks appeared:
e on some problems there was too many null steps, particularly at first iterations;

e at the first iteration, the inequality in Step (ii) was not satisfied in some cases,
in spite of the significant decrease of the objective function;

e the minimal value of f(x) could be uselessly forgotten.

Therefore and with respect to an available quadratic interpolation routine I have
modified the line search procedure as follows:

Algorithm 4.3 (Line search)

Initialization: If k =1 set i,, = 0 (number of consecutive null steps).

Step i: Set th =tp =0and t =ty = 1.

Step di: If f(ap +tdy) < fag)+ max{mptog, —1}, set tp = ¢, otherwise set tyy = 1.
If f(ag +tdy) < f(xp), set t8 =1,

Step iii: If tp >0 and t5 > 7, set t% =% 4, = 0 and stop (serious step), otherwise
calculate g € df(x), + tdy) and

B = max{|f(ex + tide) — flax +td) + (t = 17)g" del, (¢ —1L)*|di]*}.

Then if (—B+g¢7dy > mpvy and (t < 1or (k> 1and i, <6)))orty—tp <7,
set t, =t and (i, = 1, + 1 if t§ = 0, 7,, = 0 otherwise) and stop (a null step
if t¥ =0, a short step otherwise).

Step tv: If tp = 0 then set

. 1
t = min{0.9¢y, max{{y /100, §t%]vk/(thk + flak) — flag + tude) }}

and if tp > 0 then set ¢ = %(tp + tr). Go to Step (ii).

5 Stopping Criterion

To balance a precision of the objective function, I have modified Step 2 in the Algo-
rithm 4.1 as follows:

Step 2°: (Stopping criterion). 1f

loal? 500 - mas{l 7 — el (35711l +0.001) <

or |f(xg) — f(xr—1)] < es in two consecutive iterations, where ¢ > 0, then
stop.

6 Weight Updating

In the algorithm given in [6] the weight parameter u is not constant, but it is used a
following safeguard quadratic interpolation technique by Kiwiel (see [7]) for updating
uy, (it can be placed in the end of Step 4 of the Algorithm 4.1):

Algorithm 6.1 (Weight updating)

Initialization: 1f k = 1 set e¥ = 400, ¥ = 0 and select a lower bound for weights

Umin > 0.

Step (a) Set v = ug. If ypy1 £ xp + di then exit (see below).

Step (b) If w441 = 1 go to Step (f).

Step () If f(yrs1) < f(xr) + mpog and if 7% > 0 then set v = 2up(1 — [f(yrs1) —
flzx)]/vr) and go to Step (e).

Step (d) It i > 3 set u = ug/2.

Step (e) Set wupyr = max{u,ur/10, Umin}, ¥t = max{ek, —2v;} and It =
max{s¥ + 1,1}, If ugpys # up set 5+ = 1. Exit.

Step (f) Set elt! = min{e}, |px| + al}. If aft] > max{eft!, —10v;} and f < -3,
set u = 2up(1 — [f(yrs1) — F(@r)]/ve). Set upir = minfu, 10u;} and i¥+! =
min{i® — 1, —1}. If upyy # up set 5+ = —1. Exit.

This procedure is not quite corresponding to the used Algorithm 4.2 (or 4.3), since

o the given quadratic interpolation formula is derived only for unit step lengths
(Yot1 = xx + di),

o the weight updating algorithm is sensitive to the definition of null step; if we use
short (serious) steps or interpolation instead of null steps, it is possible that there
is not enough consecutive null steps and thus u 1s never increased.

Moreover I have found that the change of u; should not be damped so much - after
numerical experiments it seems that u should jump at the boundary of regions inside
which the gradient V[exists and is continuous. Therefore I propose the following
procedure, where the quadratic interpolation is generalized to any step lengths and
therefore is satisfactory also for null and short steps.

Algorithm 6.2 (Line search 4+ weight updating)

Initialization: 1f k =1 set uy = 1, ¢, = 0 (number of consecutive null steps) and select
a lower bound for weights i, > 0.

(i): Set 15 =tp=0and { =iy =1.

(ii): Set tp =t if f(ay + tdy) < f(ag) + max{mygtoy, —1}, ty =t otherwise.
If f(ap +tdy) < f(zg) set t5 =+

(iii): Calculate g € O f(x), + tdy).
St up = 2(tg7dy + (21) — f(ex + 1de))/ (11]
Ift <1 set

ug = 2(f(xn + tudy) — flag +tdy) — (o — t)g"dp)/((tr — t)]de])?,
otherwise set

u, = 2(f(zr+tdy) — flay) —tgidy)/(tdp])? if i, =0,

u, = —1 otherwise.
If u, < —tmin set u, = u,, otherwise if uy > —tmin set v, = min{u,, u,}.

(iv): M tp >0 and t§ > 7 set th, =5, 1, = 0 and go to (vi) (serious step), otherwise
calculate

B = max{|f(xy + tydy) — f(eg + tdp) + (E = t7)g" del, (= 1)*|di[*}.
Then if
(—ﬂ—l—gTdk > mpog and (¢ <1 or (k>1 and i, <6))) or ty —tp <1,

set th, =t and (i, =1, + 1 if tf = 0,4, = 0if t§ = 1}, 1, = —1 otherwise) and
go to (vi) (a null step if t§ =0, a short step otherwise).

8

(v): If tp =0 then set

. 1
t = min{0.9¢;;, max{t; /100, §t%]vk/(thk + flak) — flag +tude)}}

and if tp > 0 then set { = %(tp + tr). Go to Step (ii).
(vi): I —tmin/10 < wp, < 100/ tpin and (2, = 0 or ¢, > 5 or fap + di) < flar) +
max{mrvg, —1}), then set
U1 = min{max{ty, Umin, Ur/10}, 1 /tmin, 10uy}.

Stop.

7 Numerical Experiments

In this section we compare our results for 22 standard examples from the literature with
those obtained by the BT algorithm (nonconvex version) by H. Schramm. Problems 1-
16 are described in [6], problems 17-18 in [8], problems 19-20 in [9], problems 21, 22
respectively in [10], [11]. In the table 1 we give optimal values of tested functions for
the problems.

‘ Nr. ‘ Problem ‘ Minimum H Nr. ‘ Problem ‘ Minimum
1 | Rosenbrock | 0.0 12 | Maxquadl | -0.84140833
2 | Crescent 0.0 13 | Maxq 0.0
3| CB2 1.9522245 || 14 | Maxl 0.0
4| CB3 2.0 15 | TR48 -638565.0
5| DEM -3.0 16 | Goffin 0.0
6 | QL 7.20 17 | El Attar 0.55981306
7| LQ -1.4142136 || 18 | Wolfe -8.0
8 | MifHin1 -1.0 19 | MXHILB 0.0
9 | Mifflin2 -1.0 20 | L1HILB 0.0

10 | Rosen -44.0 21 | Gill 9.7857721
11 | Shor 22.600162 || 22 | Steiner2 16.703838

Table 1: Optimal values for problems

We present the results of two algorithms. The first one Al implements the Algo-
rithm 4.1, where the line search Algorithm 4.2 is replaced by the Algorithm 4.3 with
constant weight parameter u = 1, the second Algorithm A2 implements a combination
of the Algorithms 4.1 and 6.2.

The parameters have the following values: my = 0.01, mg = 0.5, ¢ = 0.001,
¥ = 0.25, tpmin = 0.002, ¢ = 107°, &, = 1075.

Tables 2, 3 respectively contains results for the choice M =n +3, M = 106 (ni is
a number of iterations, nf is a number of function and subgradient evaluations, f* is a
final value of the objective function).
As a conclusion from our limited numerical experiments we may state that

e our method is comparable with the BT algorithm;

e the version A2 requires in many examples less function evaluations than Al;

o the number of function evaluations for M = 106 is mostly not much smaller than
for M = n + 3 and therefore the bundle size (n + 3) seems to be satisfactory.

Alg. BT Al A2
Nr. | ni nf f* ni nf f* ni nf f*

1 92 104 .1159E-10 59 68 .2869E-08 39 42 .4061E-09
2 14 17 .00001170 12 14 .3933E-11 18 20 .4045E-15
3 24 26 1.9522245 33 35 1.9522245 32 34 1.9522245
4 13 15 2.0000002 42 47 2.0000000 14 16 2.0000000
5 12 17 -3.0000000 15 17 -3.0000000 17 19 -3.0000000
6 17 18 7.2000000 26 28 7.2000000 21 23 7.2000023
7 6 12 -1.4142135 10 11 -1.4142136 11 12 -1.4142136
8 62 69 -1.0000000 35 37 -1.0000000 30 32 -1.0000000
9 27 32 -1.0000000 8 10 -1.0000000 13 15 -1.0000000
10 60 65 -44.000000 73 75 -44.000000 43 45 -43.999999
11 35 36 22.600163 90 92 22.600162 27 29 22.600162
12 75 83 -.84140833 | 223 229 -.84140833 61 62 -.84140832
13| 204 205 .2429E-11 | 329 330 .4186E-06 | 343 344 .9049E-07
14 91 93 3442E-14 | 261 262 .00028127 | 118 119 .05810643
15| 500 570 -638346.40 | 500 508 -638357.22 | 500 504 -632141.59
16 | 169 172 .1546E-13 | 304 332 .00074720 | 400 422 .3275E-15
17 95 105 .55981991 | 131 135 .55981307 | 104 110 .55981457
18 23 30 -7.9999999 59 63 -8.0000000 45 48 -8.0000000
19| 206 256 .4400E-06 | 132 133 .00636343 | 142 227 .3688E-05
20 | 170 172 .1937E-08 | 381 382 .6995E-06 | 258 280 .1584E-04
21 | 500 541 9.7857861 | 431 467 9.7857721 | 254 257 9.7857748
22| 226 228 16.703838 | 147 159 16.703839 | 151 164 16.703876

> | 2621 2866 3301 3434 2641 2824
Time 9:03.76 2:24.67 2:35.82

Table 2: Results for M =n + 3

10

Alg BT Al A2

Nr. | ni nf f* ni nf f* ni nf f*
1 91 101 .1602E-09 49 56 .5344E-09 92 96 .2578E-06
2 14 17 .1170E-04 12 14 .3933E-11 13 15 4439E-11
3 24 26 1.9522245 25 27 1.9522245 26 28 1.9522249
4 13 15 2.0000002 33 37 2.0000000 14 16 2.0000000
5 12 17 -3.0000000 15 17 -3.0000000 17 19 -3.0000000
6 17 18 7.2000000 25 27 7.2000000 25 27 7.2000031
7 6 12 -1.4142135 10 11 -1.4142136 12 13 -1.4142136
8 58 66 -1.0000000 34 36 -1.0000000 17 19 -1.0000000
9 32 37 -1.0000000 8 10 -1.0000000 13 15 -1.0000000
10 60 65 -44.000000 59 61 -44.000000 44 46 -43.999997
11 53 54 22.600162 65 67 22.600162 27 29 22.600162
12 98 105 -.84140557 | 200 203 -.84140833 61 62 -.84140832
13| 141 142 9898E-12 | 329 330 .4186E-06 | 343 344 .9049E-07
14 74 76 1277E-14 | 261 262 2813E-03 | 118 119 .05810643
151 500 556 -638340.33 | 500 508 -638354.98 | 500 503 -634129.98
16 | 169 172 .5608E-14 | 240 254 7 1.935658 | 324 333 .4997E-15
17 72 85 7 1.086660 | 106 107 .55981308 | 112 113 .55981625
18 23 30 -7.9999999 42 46 -8.0000000 43 46 -8.0000000
19| 177 204 .3379E-06 | 132 133 .6363E-02 | 142 227 .3688E-05
20| 176 179 .1758E-08 | 381 382 .6995E-06 | 301 307 .1928E-04
21 93 100 7 11.86699 | 500 522 9.7892591 | 500 502 9.7858202
22| 101 103 16.703838 | 128 133 16.703838 | 162 170 16.703839
>o 12004 2180 3154 3243 2906 3049

Time 1:40:26.37 2:55.43 3:01.47

Table 3: Results for M = 106

11

Bibliography

1]

Lemaréchal C. and Zowe J., A Condensed Introduction to Bundle Methods in Non-
smooth Optimization, in “Algorithms for Continuous Optimization” (E. Spedicato

ed.). Kluwer Academic Publishers, 1994.

Cheney E.W. and Goldstein A.A., Newton’s Method for Convexr Programming and
Tchebycheff Approximation, Numer. Math. 1 (1959), 253-268.

Kelley J.E.., The Cutting Plane Method for Solving Convexr Programs, SIAM J. 8
(1960), 703-712.

Luksan L.: Dual Method for Solving a Special Problem of Quadratic Programming
as a Subproblem at Linearly Constrained Nonlinear Minimaz Approzimation, Ky-

bernetika 20 (1984), 6, 445-457.

Kiwiel K.C., “Methods of Descent for Nondifferentiable Optimization”, Lecture
Notes in Mathematics 1133, Springer-Verlag, Berlin, 1985.

Mikelda M.M. and Neittaanmaki, “Nonsmooth Optimization”, World Scientific
Publishing Co. Pte. Ltd., 1992.

Kiwiel K.C., Prozimity Control in Bundle Methods for Convexr Nondifferentiable
Minimization, Mathematical Programming 46 (1980), 105-122.

Zowe J., Nondifferentiable Optimization, in “Computational Mathematical Pro-

gramming’, 1985, pp. 323-356.

Kiwiel K.C., An FEllipsoid Trust Region Bundle Method for Nonsmooth Convex
Minimization, STAM Journal on Control and Optimization 27 (1989), 737-757.

Bihain A., Optimization of Upper Semidifferentiable Functions, Journal of Opti-
mization Theory and Applications 4 (1984), 545-568.

Facchinei F. and Lucidi S., Nonmonotone Bundle-Type Scheme for Convexr Nons-
mooth Minimization, Journal of Optimization Theory and Applications 76 (1993),
241-257.

12

