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Simple Scaling for Variable Metric
Updates!

L. LUKSAN AND J. VLCEK?

Abstract.

In this contribution, we propose an extremely simple scaling strategy which con-
siderably decreases number of function evaluations if variable metric methods from
the Broyden class are used for unconstrained minimization of functions with number
of variables not extremely small. We confine our attention to BFGS method, since
scaling of other variable metric methods has very similar properties. After describing
our scaling strategy, we compare six scaling techniques, using an extensive collection
of test problems, and present some conclusions.

Key Words Variable metric methods, self scaling, optimization, nonlinear program-
ming.

1. Introduction

Consider the variable metric method whose iteration step has the form

2T =2+ as (1)

where

s=—Hg. (2)
Here  and 2t are old and new vectors of variables, respectively. Direction vector s

and positive stepsize « are chosen so that

Ft—F < eas’y, (3)

sTgt > ey, (4)

with 0 < &7 < 1/2 and ¢y < &3 < 1, where F' and F* are old and new values of the
objective function and g and gt are old and new gradients of the objective function,
respectively. H is a symmetric positive-definite approximation of the inverse Hessian
matrix that is constructed iteratively using the formula

!This work was supported by the Czech Republic Grant Agency, Grant No. 201/93/0429.
2Researchers, Institute of Computer Science, Academy of Sciences of the Czech Republic,
Prague 8, Czech Republic.



1\ 1 1
Ht =~ [H+ (% + ;) deT -3 (HydT +dyTH)] : (5)

This is the so-called scaled BFGS method (see Ref.1 for further details). We confine
our attention to this particular method, since scaling of other variable metric methods
from the Broyden class has very similar properties. It was also confirmed by our
extensive experiments. In (5) and in the subsequent text we use the notation

y=gt—y, (6)

d=z2T— 1= as

, (7)

a =y Hy, (8)
b=d'y =a(s"gt —s'g), (9)
c=d'H'd = —a?sTy, (10)

and we suppose that b > 0, as it follows from (4) and (9).

2. Basic scaling strategies

The use of the scaling parameter v in (5) was introduced by Oren and Luenberger
in Ref 2. In spite of deep theories to derive the value v (Refs. 3-4) it was shown, that
most suitable choices are

v=bla=y"d/y" Hy, (11)

v=c/b=as'g/(s"g—s"g"), (12)
and, eventually, their geometric mean. The value (11) was used by Shano and Phua
in Ref. 5 and the theory connected with the value (12) was proposed by Nocedal and

Yuan in Ref. 6. These values are usually combined with the value v = 1 using some
scaling strategy. The following simple strategies are those which are used most often:

(NS) No scaling. We set v = 1 in each iteration.
(PS) Preliminary scaling of Shano and Phua (Ref. 5). We use either (11) or (12) in

the first iteration and v = 1, otherwise. More precisely, we set y = or vy =T

in the first iteration, if the scaling factor does not lie in the interval [, I].



(AS) Scaling in all iterations. We use either (11) or (12) in all iterations. Again we
set v = or v = I in the first iteration, if the scaling factor does not lie in the

interval [, I'].

The values I and T serve as a safeguard (usually I = 0.01 and T = 100). Besides

these simple strategies, more sophisticated ones were recently proposed.

(CS) Controlled scaling of Luksan (Refs. 7-8). We proceed as in (PS) or (AS) in the

first iteration. In other iterations, let ay be an initial choice of stepsize (usually
ay = 1) and let \y = sTg/sTg, where I} = F(z + a;s) and ¢; = g(z + a;3).
Denote (11) or (12) by 4. Then we set v = 1 if at least one of the following
conditions holds

(a) [M] < AXand Fy < F,

(b) 4 > 1 and either F; > F or Ay <0,

(¢)¥<land Fy < F and Ay > 0,

(d) y <yord>7,
and v = 4 otherwise. The values v, 7 and A were obtained experimentally.

(SS) Selective scaling of Contreras and Tapia (Ref. 9). We proceed as in (PS) or
(AS) in the first iteration. In other iterations, we compute the so-called centered
Oren-Luenberger factor

5= b~ /lld=I1* + ¢/Ild|I*
b=/lld=1* + o/ [|d]|*”

where b~ and ||d”|| are quantities from the previous iteration. Then we set

v =min(§,I'), if 4 >4 > 1, and v = 1 otherwise.

In this contribution we concentrate on two aims. First, we want to show that the
last two scaling strategies can be substantially simplified without loss of their efficiency.
We found experimentally that almost all parts of these strategies are irrelevant, the
only substantial part is to keep the scaling factor in a suitable interval (part (d) of
(CS) or the last decision in (SS)). Second, we want to provide appropriate range for
both the values (11) and (12). As a result of our study, we propose the following new
strategy.

(IS) Interval scaling. We proceed as in (PS) or (AS) in the first iteration. In other
iterations, we use (11) or (12) if y <4 <7, and v = 1, otherwise. Here v = 0.8,
7 = 8.0 for the value (11) and y = 0.6, ¥ = 4.0 for the value (12).

Our interval scaling strategy is based on two requirements: the initial stepsize
acceptability, and the fast ultimate rate of convergence. The first requirement is
essential since it helps to decrease the number of function evaluations when starting
from points that are far from the solution. On the other hand, in Ref. 6 it was proved



that scaling in all iterations can decrease the ultimate rate of convergence due to
oscillation of values of the scaling parameter. This oscillation could be eliminated by
setting v = 1 in the case, when the value v lies outside the interval [v,7]. The values
~ and 7 were determined experimentally using extensive computational experiments.
~ Let us explain our comparison of individual scaling strategies. This comparison
was performed using the collection of test problems used in Ref. 8. This collection
contains problems 1-15 from Ref. 7 (which are modifications of problems proposed
in Ref. 11) and problems 21-30 from Ref. 10. The problems can be utilized with
a variable dimension n and we used n = 20 in all cases. We chose this dimension,
since scaling strategies are inefficient for extremely small problems (like problems 1-18
from Ref. 10). The comparison was carried out using the modular system for universal
functional optimization UFO described in Ref.12. In CS we used the same values v and
7 as in IS (these values are given above) while in SS we used the original values from
Ref. 9. Furthermore we used ¢; = 0.0001 and €5 = 0.9 in (3) and (4). The iterative
process was terminated, whenever the gradient norm was less than 1078, Summary of
comparisons of individual scaling strategies is given in Table 1, which contains total
number of iterations NIT and total number of function evaluations NFV for summary
of problems (results for NS and SS are introduced in the first column even if they
do not use scaling factor(11)). Detailed comparison of NS and IS with scaling factor
(11) is given in Table 2, which contains the number of iterations NIT, the number of
function evaluations NFV and the reached function value F for every test problem.

We chose just this comparison to show the fact that our new scaling strategy improves
an efficiency of the robust BFGS method.

Table 1: Comparison of various scaling strategies.

Scaling factor (11) | Scaling factor (12)

Scaling strategy | NIT NFV | NIT NFV
NS 3180 4576

PS 2377 2793 | 2363 2793

AS 3404 3914 | 2466 3198

IS 1452 1834 | 1442 1976

CS 1527 1903 | 1444 2083
SS 1472 2059

Table 2: NS versus IS using the value (11).



no scaling (NS) interval scaling (IS)

NIT NFV F| NIT NFV F
133 197 4.3E-19 | 105 137 2.2E-19
221 307 1.5E-19 | 116 139 1.5E-17
115 154 2.3E-17 30 38 1.1E-13
123 200  3.494213680 68 88 3.494213680

64 36 4.1E-16 23 24 1.1E-15
87 111 7.9E-16 28 29 1.2E-15
34 70 6.392162882 22 23 6.392162882
48 98 2.4E-24 26 48 1.61-22

42 65 - 2500.000000 32 51 -2500.000000
673 1195  143.5187274 | 361 505 143.5187274
163 208  0.215531757 | 121 151  0.215531757

13 28 1.997866137 12 21 1.997866137

1 2 0.000000000 1 2 0.000000000
35 51 1.2E-16 57 59 1.5E-18
22 42 -8.510866851 17 19 -8.5108663851
40 52 3.3E-20 33 44 1.8E-20
30 o4 6.1E-14 o4 62 1.4E-17

64 86  7.888853E-5 21 28 T.888853LE-5
1079 1347  3.194840E-3 | 108 134  3.194840E-3

DO DO = = b e e e e e Z
— SO WD O LTS Ot W g

3 6 2.01E-24 3 6 2.1E-24

57 63  3.430929E-6 32 58  3.430929E-6

22 30 32 7.38-22 19 21 3.8E-16

23 40 o4 1.1E-16 56 58 1.2E-16

24 7 8 1.1E-18 8 9 1.1E-16

25 36 60  0.356263954 29 30 1.5E-17
TOTAL | 3036 4429 1367 1733

According results presented in tables 1-2 and our additional tests, we can add
several comments. First, the robust BFGS method can be improved by a suitable
scaling technique, at least for problems contained in our collection. It follows from
Table 2. Even if most function evaluations of the NS strategy were taken by solving
two problems (10 and 19), the IS strategy gave better results also in the remaining
cases (NS strategy was better only for problems 14,17,23,24 and the total number
of saved function evaluations for these problems was 21). Failure of NS strategy on
problems 10 and 19 slightly distorted Table 1. In fact the NS strategy was better
than AS strategy for remaining problems, but other strategies again outperformed the
NS one (in the case of remaining 23 problems we needed 2034 function evaluations
for NS, 1332 for PS, 2076 for AS, 1195 for IS, 1190 for CS and 1348 for SS). Second,
similar properties were observed for other variable metric methods from the Broyden
class. In fact, different scaling factors ((11), (12) or their geometric mean) are suitable
for different methods, but the recomended intervals [y,7] are the same for the same
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scaling factors.
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