
Interactive System for Universal Functional Optimization (UFO) - Version 1993

Lukšan, Ladislav
1994

Dostupný z http://www.nusl.cz/ntk/nusl-33553

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 10.04.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-33553
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Prague

Interactive System for Universal Functional
Optimization �UFO� � Version ����

L� Luk�san� M� T�uma� M� �Si�ska� N� Rame�sov�a

Technical Report No� V����

January ���	

This work was supported under the grant ����������� given by the Czech Republic Grant Agency

Akademie v�d �esk� republiky

�STAV INFORMATIKY A V�PO	ETN
 TECHNIKY

Institute of Computer Science� Academy of Sciences of the Czech Republic

Pod vod�renskou v��� 	�
�	 �
 Prague �� Czech Republic

E�mail� ICS�uivt�cas�cz

Fax� ���		� ����
�� Phone� ���		� ������� ���		� ����

Contents

�� Introduction to the UFO system �
���� Philosophy of the UFO system �
���� Execution of the UFO system �
���� Input language ��
���� Problem description and method selection using the input language ��
���� The UFO environment ��

�� Problems solved using the UFO system �	
���� Speci
cation of variables ��
���� Speci
cation of the model function �dense problems� ��
���� Speci
cation of the model function �sparse problems� ��
���� Objective functions for discrete approximation �

���� Speci
cation of the approximating functions �dense problems� ��
��
� Speci
cation of the approximating functions �sparse problems� �	
���� Objective functions for optimization of dynamical systems ��
���� Speci
cation of the state functions ��
��	� Speci
cation of the initial functions ��
�����Speci
cation of the subintegral function ��
�����Speci
cation of the terminal function ��
�����Optimization with general constraints ��
�����Speci
cation of the constraint functions �dense problems� �

�����Speci
cation of the constraint functions �sparse problems� ��
�����Additional speci
cations concerning optimization problems �	

�� Optimization methods in the UFO system ��
���� Conjugate direction methods ��
���� Variable metric methods ��
���� Modi
ed Newton methods ��
���� Modi
ed Gauss�Newton methods �

���� Modi
ed Gauss methods ��
��
� Quasi�Newton methods �	
���� Biconjugate direction methods ��
���� Methods for linear programming problems ��
��	� Methods for quadratic programming problems ��
�����Recursive quadratic programming methods for nonlinear programming problems � � � � � � � � � � � � � � ��
�����Recursive quadratic programming methods for minimax problems ��
�����Bundle methods ��
�����Methods for initial value problems for ordinary di�erential equations ��
�����Methods for direction determination ��
�����Methods for stepsize selection ��
���
�Methods for numerical di�erentiation ��
�����Methods for evaluation of the objective function in the case of dynamical systems optimization ��
�����Global optimization methods ��

�� Special tools of the UFO system ��
���� Checking optimization problems ��
���� Testing optimization methods �	
���� Print speci
cations �
�
���� Graphical output �
�
���� Tracing in the UFO control program �
�

�

�� Applications of the UFO system �examples�
�
���� Optimization with simple bounds �
�
���� Minimization of the sum of squares �
�
���� Minimax approximation ��
���� Optimization with linear constraints ��
���� Optimization with nonlinear constraints �nonlinear programming� ��
��
� Global optimization ��
���� Large�scale optimization �sparse Hessian matrix� �

���� Large�scale optimization �sparse Jacobian matrix� ��
��	� Large�scale sum of squares optimization �sparse Jacobian matrix� ��
�����Large�scale nonlinear equations ��
�����Large�scale linear programming ��
�����Large�scale quadratic programming ��
�����Large�scale optimization with linear constraints ��
�����Optimization of dynamical systems � general integral criterion ��
�����Optimization of dynamical systems � special integral criterion � 	�
���
�Initial value problem for ordinary di�erential equations � 	�

References � 	

�

�� Introduction to the UFO system

The universal functional optimization �UFO� system is an interactive modular system for solving both
dense medium�size and sparse large�scale optimization problems� The UFO system can be used for the
following applications�

�� Formulation and solution of particular optimization problems that are described in chapter ��

�� Preparation of specialized optimization routines �or subroutines� based on the methods described
in chapter ��

�� Design and testing new optimization methods� The UFO system is a very useful tool for optimiza�
tion algorithms development�

The special realization of the UFO system� which is described in the subsequent text� makes this
system portable and extensible and we continue with its further development�

�
� Philosophy of the UFO system

The UFO system is an open software system for solving a broad class of optimization problems� An
optimization problem solution is processed in four phases� In the
rst phase the optimization problem is
speci
ed and an optimization method is selected� This can be made in three di�erent ways�

�� The full dialogue mode� The problem speci
cation and the method selection are realized using a
conversation between the user and the UFO system�

�� The batch mode� The problem speci
cation and the method selection are realized using the input
language� An input
le� written in the input language� has to be prepared and stored�

�� The combined mode� Only the part of the speci
cation is written in the input
le� The rest of the
speci
cation is obtained as in the dialogue mode� This possibility is usually the best one since the
problem functions can be de
ned beforehand using a convenient text editor�

The second phase is realized using the UFO macroprocessor� This macroprocessor is written in the
Fortran �� language and its input is a Fortran �� control program� This conception is very advantageous
for the following reasons�

�� The Fortran �� �full ANSI norm� is a su�ciently high and portable programming language� More�
over� this language is very suitable for numerical computations� and a broad class of subroutines is
available in this
eld�

�� A control program� generated by the UFO macroprocessor� calls for necessary modules only and
its speci
cation is very easy� Moreover� control program global declarations are determined by
the problem size� which decreases storage requirements� This way overcomes an impossibility of
dynamical declarations in the Fortran �� language�

�� The UFO system is open� When a new class of optimization problems or optimization methods
have to be included� only the system templates are changed and new modules are prepared� The
control program is composed of the individual modules� using speci
cations in the
rst phase� This
fact allows us to create a great number of various optimization methods�

In the third phase� the control program is translated using a Fortran �� compiler and a
nal program
is linked using library modules� In the fourth phase� a
nal program is executed and the results are
obtained�

The above conception is enabled by the special form of source modules� These modules usually consist
of two parts� the interface template and the Fortran �� realization� The interface template is used by the

�

UFO macroprocessor only and it serves for the control program generation �the part of control program
corresponding to a given module is coded in the template�� These templates also contain knowledge
bases for an automatic selection of the optimization method� If the UFO system has to be extended then
usually only templates� which need not be compiled� are changed� Besides interface templates that are
parts of source modules there exist special templates controlling the UFO macroprocessor� An input
le
written in the input language is one of the special templates�

�	� Execution of the UFO system

The UFO system contains
ve basic procedures GENER�BAT� UFOGO��BAT� UFOGO��BAT� PREK�
LAD��BAT and PREKLAD��BAT� The UFO macroprocessor is called if the statement

GENER
le name�extension

is typed� Then the control program is obtained which has to be compiled and loaded using the procedures
PREKLAD��BAT or PREKLAD��BAT� Furthermore� all the UFO system phases are performed if the
statements

UFOGO�
le name�extension
or

UFOGO�
le name�extension

respectively are typed� Finally� the compilation of the control program PROGRAM�FOR� which was
obtained by the procedure GENER�BAT� followed by its loading and executing is started if the statements

PREKLAD�
or

PREKLAD�

respectively are typed� Here
le name�extension is a name of the input
le that will be used for the
control program generation� The di�erence between UFOGO��BAT and UFOGO��BAT or PREKLAD�
and PREKLAD� consists in the fact that procedures with number � prepares programs for basic com�
putations while procedures with number � prepares programs for using Microsoft CodeView debugger
contained in Microsoft Fortran compiler� All the above procedures use the
le OUTPUT�POM as a basic
output
le� If the input
le is not given then we use the statements

GENER STANDARD�UFO
or

UFOGO� STANDARD�UFO
or

UFOGO� STANDARD�UFO

respectively which means that a full dialogue mode will be considered� The UFOGO� statement has the
same meaning as two statements GENER and PREKLAD� and the UFOGO� statement has the same
meaning as two statements GENER and PREKLAD��

First we show how the full dialogue mode proceeds� We suppose the model function has the form

fF �x� � ����x�� � x��
� � �x� � ���

�the Rosenbrock function� and the starting point is x� � ���� and x� � ���� If we type the statement
UFOGO STANDARD�UFO then the following questions appear that we supplement with answers�

�

UFO PREPROCESSOR V�����

X�NUMBER OF VARIABLES� � �FORTRAN EXPRESSION�

�

�

X��� � �FORTRAN EXPRESSION�

X��� � �FORTRAN EXPRESSION�

INPUT FOR OPTIMIZATION �STARTING POINT��

� INPUT ��� �

X��� � ����D�� X��� � ���D�
� MODEL �FF� �

TYPE OF OBJECTIVE FUNCTION

FF � GENERAL FUNCTION

FL � LINEAR FUNCTION

FQ � QUADRATIC FUNCTION

AF � SUM OF FUNCTIONS

AQ � SUM OF SQUARES

AP � SUM OF POWERS

AM � MINIMAX

DF � DIFFERENTIAL SYSTEM WITH INTEGRAL CRITERION

DQ � DIFFERENTIAL SYSTEM WITH INTEGRAL OF SQUARES

NO � MODEL IS NOT SPECIFIED

� NF ��� �

NUMBER OF VARIABLES

�
� FMODELF ��� �

MODEL OF OBJECTIVE FUNCTION

FF � �FORTRAN EXPRESSION�

FF � ���D���X������ � X������ � �X��� � ���D�����

GF�NUMBER OF VARIABLES� � �FORTRAN EXPRESSION�

�

�

GF��� � �FORTRAN EXPRESSION�

GF��� � �FORTRAN EXPRESSION�

MODEL OF GRADIENT OF OBJECTIVE FUNCTION

� GMODELF ��� �

�

HF�LENGTH OF HESS MATRIX� � �FORTRAN EXPRESSION�

�

�

HF��� � �FORTRAN EXPRESSION�

HF��� � �FORTRAN EXPRESSION�

MODEL OF HESSIAN MATRIX

� HMODELF ��� �

� KCF ��� �

COMPLEXITY OF THE OBJECTIVE FUNCTION

� � EASY COMPUTED FUNCTION

� � REASONABLE BUT NOT EASY COMPUTED

FUNCTION

� � EXTREMELY COMPLICATED FUNCTION

� KSF ��� �

SMOOTHNESS OF THE OBJECTIVE FUNCTION�

� � SMOOTH� WELL�CONDITIONED

� � SMOOTH� ILL�CONDITIONED

� � NONSMOOTH

� HESF �D� �

TYPE OF HESSIAN MATRIX�

D � DENSE

S � SPARSE WITH KNOWN �GENERAL� STRUCTURE

�ONLY FOR UNCONSTRAINED AND LINEARLY CONSTRAINED

OPTIMIZATION�

NO � HESSIAN MATRIX IS NOT USED

� KBF ��� �

TYPE OF SIMPLE BOUNDS�

� � NO SIMPLE BOUNDS

� � ONE SIDED SIMPLE BOUNDS

� � TWO SIDED SIMPLE BOUNDS

� KBC ��� �

TYPE OF GENERAL CONSTRAINTS�

� � NO GENERAL CONSTRAINTS

� � ONE SIDED GENERAL CONSTRAINTS

� � TWO SIDED GENERAL CONSTRAINTS

� EXTREM �L� �

TYPE OF OPTIMIZATION

L � LOCAL OPTIMIZATION

G � GLOBAL OPTIMIZATION

� NORMF ��� �

SCALING SPECIFICATION FOR VARIABLES�

� � NO SCALING IS PERFORMED

� � SCALING FACTORS ARE DETERMINED AUTOMATICALLY

� � SCALING FACTORS ARE SUPPLIED BY USER

� TEST �NO� �

PERFORM STANDARD TEST OF ANALYTICAL DERIVATIVES�

NO � NO TEST

YES � PERFORM TEST AND CONTINUE

ONLY � PERFORM ONLY TEST

� KOUT ��� �

LEVEL OF PRINT OF LOCAL MINIMIZATION�

�� � PAPER SAVING PRINT FOR TESTS

� � NO PRINT

� � STANDARD PRINT OF RESULTS

� � ADDITIONAL PRINT OF STEPSIZE SELECTION

� � ADDITIONAL PRINT OF DIRECTION DETERMINATION

� � ADDITINAL PRINT OF VARIABLE METRIC UPDATE

� � ADDITIONAL PRINT OF NUMERICAL DIFFERENTIATION

� MOUT ��� �

LEVEL OF SCREEN OUTPUT

� � NO OUTPUT

� � FINAL OUTPUT ONLY

� � OUTPUT IN EACH ITERATION

�
� MSELECT ��� �

SELECTION OF OPTIMIZATION METHOD

� � AUTOMATICAL SELECTION OF METHOD

� � MANUAL SELECTION OF METHOD

� � MANUAL SELECTION OF METHOD AND IMPORTANT PARAMETERS

� � MANUAL SELECTION OF METHOD AND ALL PARAMETERS

� GRAPH �NO� �

SPECIFICATION OF THE GRAPHICAL OUTPUT�

NO � GRAPHICAL OUTPUT SUPPRESSED

YES � GRAPHICAL OUTPUT REQUIRED

� IEXT ��� �

TYPE OF EXTREMUM�

� � MINIMIZATION

� � MAXIMIZATION

UFO PREPROCESSOR STOP

�

Each question is represented by one frame that contains the contents of the question �name of the
macrovariable which has to be de
ned�� the default value �in the brackets� and an explanation of the
requirement� If no default value is wanted then the corresponding value or text has to be typed� The
dialogue can be ended by pressing the key �� � �

The result of the UFO macroprocessor action is the following control program which consists of global
declarations� input speci
cations� problem de
nition� method realization and control variables adjusting�

�

� �������������������

� GLOBAL DECLARATIONS

� �������������������

�

INTEGER ITIME

INTEGER IX���

REAL�� GF���

REAL�� X���

REAL�� HD���

REAL�� H��������	��

REAL�� S���

REAL�� XO���

REAL�� GO���

INTEGER IMB

�

� COMMONS PLACED HERE WERE OMITTED

� SINCE THEY REQUIRE A LARGE SPACE

�

CALL UYCLEA

�

� �������������������

� END OF DECLARATIONS

� �������������������

�

CALL UYINTP

�

� ����������

� METHOD ���

� ����������

�

CALL UYINT�

X���
����D�

X���
���D�

CALL UYTIM��ITIME�

CALL UYCLST

NDECF
�

CALL UO�FU�

����� CONTINUE

CALL U�FDU�

GOTO ����
�������������������������������� ISB��

����� CONTINUE

����� CALL UF�F���GF�GF�

GOTO ������������������� ISB��

����� CONTINUE

�

ASSIGN ����� TO IMB

����� CONTINUE

NFV
NFV��

FF
���D���X�������X���������X�������D�����

GOTO IMB

����� CONTINUE

IF�TSS�NS��EQ��UFXX�� GOTO �����

����� CONTINUE

CALL UF�GS��X�IX�X�GF�HD�

GOTO ������������� ISB��

����� CONTINUE

IF�TSS�NS��EQ��UXFU�� GOTO �����

IF�TSS�NS��EQ��UUXX�� GOTO �����

IF�TSS�NS��EQ��USXX�� GOTO �����

����� CONTINUE

CALL UYTRUG�X�GF�GF�

CALL UO�FU��X�GF�H�X�X�

CALL UYFUT�

GOTO �����

����� CONTINUE

CALL UUDSD��H�

GOTO ������������� ISB��

����� CONTINUE

IF �ITERM�NE��� GOTO �����

CALL UYCPSD�IX�H�HD�

CALL UYTRUH�X�H�

CALL UDDLI��H�GF�S�

CALL UD�TL��GF�S�

GOTO �����

����� CONTINUE

CALL UYTRUS�X�X�XO�GF�GO�S�S�

����� CONTINUE

CALL US�L���X�XO�S�

GOTO ������������� ISB��

����� CONTINUE

CALL UYUPSD�X�IX�XO�GF�GO�HD�

CALL UYTRUD�X�X�XO�GF�GO�

CALL UUDBI��H�S�XO�GO�

GOTO �����

���
� CONTINUE

CALL UO�FU��X�X�X�X�

�

� �����������������

� END OF METHOD ���

� �����������������

�

CALL UYTIM��ITIME�

END

�

� ������������������������

� INITIATION OF METHOD ���

� ������������������������

	

�

SUBROUTINE UYINT�

�

� COMMONS PLACED HERE WERE OMITTED

� SINCE THEY REQUIRE A LARGE SPACE

�

REAL�� XDELS�RPF�S�RPF�S�RPF�S�RGF�S�RGF�S�RGF�S

COMMON	UMCLST	 XDELS�RPF�S�RPF�S�RPF�S�RGF�S�RGF�S�RGF�S

ETA�
���D���

ETA

���D ��

ITR
�

IRD
�

IWR
�

NEXT
�

KOUT
�

MOUT
�

INITS
�

INITH
�

MET
�

MOD
�

ETA�
���D���

IEXT
�

NOUT
�

IPRN
�

IEXT
�

FMIN
����D ��

MCG
�

ETA�
���D���

MCG�
�

NFGX
�UF�GS��

NFXX
�UF�F���

LOUT
�

MOUT
�

ISNF
�

IRES�

IRES�
�

MTESX
�

MTESF
�

MIT
���

MFV
����

TOLX
���D��

TOLF
���D���

TOLB
����D ��

TOLG
���D��

ITES
�

INITH
�

ETA�
���D���

NDXX
�UDDLI��

INITD
�

EPS�
���D ��

ALF�
���D���

ALF�
���D ��

��

XMAX
���D �

KTERS
�

MES
�

MES�
�

MES�
�

FMAX
���D ��

EPS�
���D��

MRED
��

NSXX
�US�L���

MET�
�

MET�
�

MET�
�

NUXX
�UUDBI��

MOUT
�

NXFU
�U�FDU��

XDELS
XDEL

RPF�S
RPF�

RPF�S
RPF�

RPF�S
RPF�

RGF�S
RGF�

RGF�S
RGF�

RGF�S
RGF�

END

�

� ���������������������

� INITIATION OF PROBLEM

� ���������������������

�

SUBROUTINE UYINTP

�

� COMMONS PLACED HERE WERE OMITTED

� SINCE THEY REQUIRE A LARGE SPACE

�

NF
�

KCF
�

KSF
�

M
�������	�

KBF
�

KBC
�

NORMF
�

KDF
�

KDA
��

KDC
��

KDE
��

KDY
��

MMAX
�������	�

END

� �����������

��

The results �screen output� obtained using this control program have the following form�

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV

 NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ��
�D��� G
 �
��D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT

 NFV
 �� NFG
 � F
 ����D��� G
 ���
D���

NIT
 �� NFV
 �
 NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 � F
 ����D��� G
 ���
D���

NIT
 �� NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 � F
 ���
D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 � F
 ���
D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 � F
 ����D��� G
 ���
D���

NIT
 �� NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 �
 NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 � F
 ����D��� G
 ���
D���

NIT
 �� NFV
 �
 NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV

� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV

� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV

� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �
 NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ��
�D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ��
�D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ���
D��� G
 ����D���

NIT
 �� NFV
 ��
 NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 �
��D���

NIT
 �
 NFV
 ��� NFG
 � F
 �
��D��� G
 ��
�D���

NIT
 �� NFV
 ��
 NFG
 � F
 ���
D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ���
D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ���
D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ��
�D���

NIT
 �� NFV
 ��� NFG
 � F
 ���
D��� G
 ��
�D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ���
D��� G
 ����D���

NIT
 �
 NFV
 ��� NFG
 � F
 �

�D��� G
 ����D���

��

NIT
 �� NFV
 ��
 NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ��
�D��
 G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

� NIT
 �� NFV
 ��� NFG
 � NDC
 � F
 ����D��� G
 ����D���

TIME
 ����������

Besides a dialogue� we can use the batch
les written in the input language� This possibility
will be explained later� Here we note that a certain experience can be obtained using the demo�
les
PROB���UFO�� � �� PROB���UFO� These demo�
les contain �� test problems described in chapter �� We
can solve them using the statements UFOGO PROB���UFO�� � �� UFOGO PROB���UFO�

��� Input language

The form of the control program is determined using statements of the input language� The UFO
system input language is based on the batch editing language �BEL� ���� and it contains three types of
instructions�

�� Standard Fortran �� instructions which can be written in the free format�

�� Fortran �� instructions containing macrovariables� These instructions get a
nal form after the
rst
pass of the UFO macroprocessor�

�� Special macroinstructions� The macroinstructions control the UFO macroprocessor execution�

Standard Fortran �� instructions used in the input language have some extensions and limitations�
The main extension is the free format� The instructions do not have a limited length� they can be written
everywhere in the input
le and if they are written in the same line then character ��� is used to separate
the instructions� The continuation of an instruction is speci
ed by the character �� �� The main limitation
concerns the placement of instructions in the control program� Therefore greater statement numbers then
				 cannot be used� comments can be introduced by the character ��� only and the only continuation
character can be �� �� Also� it is recommended to use identi
ers beginning with the character �W� which
are not used in the UFO system

Macrovariables used in the UFO system begin with the character ��� and they are supposed to be of
the type character� Their contents are always in the form of a string which can be sometimes interpreted
as an integer� The chief signi
cance of the macrovariables is their use in substituting their contents for
their names in the Fortran �� statements� In this case we place the macrovariable �beginning with ����
in the text� but if it is followed by a letter or digit we have to use brackets� For example if we write

�FLOAT W�����
or

CALL UD�HESF�TYPE�DECOMP�NUMBER
or

X���������P��

and if the contents of �FLOAT� �HESF� �TYPE� �DECOMP� �NUMBER and �P are �REAL��� �it is
standard�� �D�� �L�� �G� ��� and �D� �it is standard� then we get REAL�� W����� or CALL UDDLG� or
X�������D� respectively after the UFO preprocessor application� The contents of macrovariables can be
de
ned by substitutions as will be shown later�

The macroinstructions are a very important for the input language since they make possible the
substitution of texts� change of macrovariables� branching� loops and more� We brie�y describe the most
useful of them� The more detailed description is given in �����

�� Substitution� The substitution of a string for a macrovariable is speci
ed by the macroinstruction
�MACRO��contents�� For example we have to set �HESF��D�� �TYPE��L�� �DECOMP��G��
�NUMBER�� �the integers need not to be substituted as strings� to obtain the result given above�

��

�� Substitution of a text� If we write

�SET�MACRO� or �ADD�MACRO�

text text

�ENDSET �ENDADD

then a given text �that can contain a large number of Fortran �� statements� is inserted into the
macrovariable �MACRO� The macroinstruction �SET is used for the de
nition of a new macrovari�
able� The macroinstruction �ADD can� moreover� append a new text to the old one so it can be
used repeatedly�

�� Logical macrovariables� The macrovariable �DEF has a logical contents� If we write �DEF�MACRO�
then the contents of �DEF is either �TRUE�� if the macrovariable �MACRO was previously de�

ned �by the substitution �MACRO��contents� or using macroinstructions �SET and �ADD�� or
�FALSE� in the oposite case� This possibility can be used for branching� If we use the macroinstruc�
tion �ERASE�MACRO� then the previously de
ned macrovariable �MACRO becomes unde
ned
�so that �DEF�MACRO���FALSE���

�� Branching� This possibility is very similar to the branching in the Fortran �� language�

�IF�MACRO��string���

statements

�ELSEIF�MACRO��string���

statements

�ELSE

statements

�ENDIF

Besides the relation � �� we can also use the other relations � ��������������������� and the logical
values �TRUE�� �FALSE� and �DEF�MACRO�� The branching is used in the UFO macroprocessor
stage and it has an in�uence in the form of the control program�

�� Loops� The basic looping macroinstruction has the form �similarly as in the Fortran �� language��

�DO�MACRO�INDEX��INDEX��INDEX��

statements

�ENDDO

For example if �NF��� �NC�� and if we write

�DO�I���NF���

�DO�J���NC���

CALL UKMCI���I��J��I��D���J��D��ICG�JCG�CG�

�ENDDO

�ENDDO

then the UFO macroprocessor creates the sequence

CALL UKMCI���������D�����D��ICG�JCG�CG�

CALL UKMCI���������D�����D��ICG�JCG�CG�

��

CALL UKMCI���������D�����D��ICG�JCG�CG�

CALL UKMCI���������D�����D��ICG�JCG�CG�

CALL UKMCI���������D�����D��ICG�JCG�CG�

CALL UKMCI���������D�����D��ICG�JCG�CG�

� Substitution of a
le� Suppose we have a
le with a name
le name�extension� Then we can include
it into the control program using the macroinstructions

�INCLUDE��
le name�extension��

or

�SUBST��
le name�extension��

The main di�erence between these possibilities is that the macroinstruction �INCLUDE includes
a text without change �it has to be a regular Fortran �� text with the
xed format� while the
macroinstruction �SUBST substitutes a text executed consecutively by the UFO macroprocessor
�so it can contain the macrovariables and macroinstructions and it can be written in the free format��
If the included
le has the name
le name�I then we can use a simpler form without extension� For
example the
le UZLINS�I can be substituted using the macroinstruction �SUBST��UZLINS���

�� Special macroinstructions� Besides macroinstructions of the batch editing language BEL� the in�
put language contains special macroinstructions which control the UFO macroprocessor� These
macroinstructions are the switches �DIALOGUE and �BATCH that de
ne the dialogue mode
and the batch mode respectively �an initial status is �DIALOGUE�� and the special substitutions
�GLOBAL� �INITIATION� �INPUT� �OUTPUT� �METHOD� �TSTART� �TSTOP and �STAN�
DARD� At the same time �GLOBAL includes the global declarations� �INITIATION substitutes
an initiation of common variables� �INPUT and �OUTPUT insert user speci
ed input and output
respectively� �METHOD substitutes the part of control program corresponding to the optimization
method� �TSTART or �TSTOP insert initial or
nal timing procedures respectively and �STAN�
DARD includes the sequence�

�INITIATION

�INPUT

�METHOD

�IF��DEF�OUTPUT��

�OUTPUT

�ENDIF

�END

The macroinstruction �END
nishes the UFO macroprocessor execution�

�� Standard macrovariables� The macrovariables �FLOAT or �P have standard contents �REAL��� or
�D� respectively� This possibility has a meaning for a precision free notation� If we write

�FLOAT WA�WB

WA������P��

WB������P��

then after the UFO macroprocessor execution we have

��

REAL�� WA�WB

WA����D�

WB����D�

The macrovariables �FLOAT and �P are de
ned in the installation template and they can be
changed when we wish to use single precision computations

We have described the basic possibilities of the input language that are su�cient for preparing the batch
mode input
le� More details are given in ���� and �����

��� Problem description and method selection using the input language

If we want to process either the batch mode or the mixed mode we have to prepare an input
le
written in the input language� This input
le prescribes the structure of the control program� If some
macrovariable is used� it has to have been previously de
ned� Therefore de
nitions of macrovariables
usually lie in the beginning of the input
le� Many macrovariables are used for a de
nition of the
optimization problem� The most important among them are macrovariables de
ning problem functions�

�FMODELF � de
nition of a model function value
�GMODELF � de
nition of a model function gradient
�HMODELF � de
nition of a model function Hessian matrix
�DMODELF � de
nition of a model function derivatives �with respect to state space variables�

�FMODELA � de
nition of approximating functions values
�GMODELA � de
nition of approximating functions gradients
�HMODELA � de
nition of approximating functions Hessian matrices
�DMODELA � de
nition of approximating functions derivatives �with respect to state space variables�

�FMODELC � de
nition of constraint functions values
�GMODELC � de
nition of constraint functions gradients
�HMODELC � de
nition of constraint functions Hessian matrices

�FMODELE � de
nition of state space functions values
�GMODELE � de
nition of state space functions gradients
�DMODELE � de
nition of state space functions derivatives �with respect to state space variables�

�FMODELY � de
nition initial value functions values
�GMODELY � de
nition initial value functions gradients

First we show a simple example which corresponds to the problem already used for a full dialogue mode
demonstration �the Rosenbrock function��

�SET�INPUT�

X���
����D�� X���
���D�

�ENDSET

�SET�FMODELF�

FF
�����D���X�������X���������X�������D�����

�ENDSET

�NF
�

�MOUT
�

�BATCH

�STANDARD

Using the macrovariable �INPUT� we specify initial values of variables� Using the macrovariable �FMOD�
ELF we specify the model function value �the model function gradient is not speci
ed and it will be com�
puted numerically�� The macrovariable �NF de
nes the number of variables and �KOUT and �MOUT

�

are print speci
cations� The macroinstruction �BATCH switches a mode to the batch one� The macroin�
struction �STANDARD de
nes a standard form of the control program� Descriptions of more complicated
problems are shown in chapter ��

In the above example� a direct de
nition of a model function value is used� We can also use indirect
speci
cations by means of the Fortran �� subroutines or the
les prepared beforehand� Suppose that the
model function value is de
ned using the subroutine EFFU�� or it is speci
ed in the
le VALUE�MOD�
Then we can write�

�SET�FMODELF�
CALL EFFU���NF�X�FF�NEXT�

�ENDSET
or

�SET�FMODELF�
�INCLUDE��VALUE�MOD��

�ENDSET
or

�SET�FMODELF�
�SUBST��VALUE�MOD��

�ENDSET

The last possibility is useful if the model function value speci
cation is written in a free format or it
contains the BEL macroinstructions�

��� The UFO environment

The UFO environment can be used on personal computers �compatible with IBM PC� with processors
��
 ��
 ��
 ��
� with the operating system MS DOS version ��� or higher and with the Microsoft
FORTRAN �� compiler version ��� or higher�

The UFO environment is called using the statement UFO �program UFO�EXE�� It is controlled using
the !pull�down" menu� The main menu is activated pressing the key �F��� � The UFO environment
contains a source program editor whose control is similar to the Word Star editor and� therefore� to the
most commonly used source program editors under the MS DOS system �for example Turbo Pascal�� All
signi
cant statements of the source program editor are available from the UFO environment menu�

Since the UFO environment menu is clearly understood we do not describe it �the description is given
in ����� � We only show the usual way for operating input
les� When the batch mode input
le is
prepared using the source program editor we press the key �F��� and
nd the command Run� in the
UFO environment menu� This command starts the UFO preprocessor and its action corresponds to the
statement UFOGO� �with the present input
le�� An easier possibility is pressing the keys �Alt��� �
Similarly� pressing the keys �Alt��� corresponds to the statement UFOGO� and pressing the keys �Alt�
	� has the same e�ect as the statement GENER� Furthermore� if the control program PROGRAM�FOR
is loaded in the source program editor� pressing the keys �Alt��� and �Alt��� has the same e�ect as
the statements PREKLAD� and PREKLAD� respectively �

��

�� Problems solved using the UFO system

The most general problem which can be solved using the UFO system is a minimization of an objective
function F � Rn � R over a set X � Rn� The objective function can have several forms determined using
the macrovariable �MODEL�

�MODEL��FF� � general smooth optimization� In this case

F �x� � �fF �x�

where fF � Rn � R is a real valued smooth so�called model function

�MODEL��FL� � linear optimization� In this case

F �x� � �
nX
i��

gFi xi

where gFi � � � i � n� are real coe�cients�

�MODEL��FQ� � quadratic optimization� In this case

F �x� � �
nX
i��

�gFi �
�

�

nX
j��

hFijxj�xi

where gFi � � � i � n� and hFij � � � i � n� � � j � n� are real coe�cients�

�MODEL��AF� � sum of functions minimization� In this case

F �x� �
nAX
k��

fAk �x�

where fAk � Rn � R� � � k � nA� are real valued smooth so�called approximating
functions�

�MODEL��AQ� � Sum of squares minimization� In this case

F �x� �
nAX
k��

jfAk �x�j�

where fAk � Rn � R� � � k � nA� are real valued smooth so�called approximating
functions�

�MODEL��AP� � sum of powers minimization� In this case

F �x� �
nAX
k��

jfAk �x�jr

where fAk � Rn � R� � � k � nA� are real valued smooth so�called approximating
functions and � � r �� is a real exponent�

�MODEL��AM� � minimization of maximum �minimax�� In this case

F �x� � max
��k�nA

jfAk �x�j

where fAk � Rn � R� � � k � nA� are real valued smooth so�called approximating
functions�

��

�MODEL��DF� � minimization of general integral criterion with respect to the state equations� In this
case

F �x� �

Z tmax
A

tmin
A

fA�x� yA�x� tA�� tA� dtA � fF �x� yA�x� t
max
A �� tmax

A �

and

dyA�x� tA�
dtA

� fE �x� yA�x� tA�� tA�� y
A�x� tmin

A � � fY �x�

where fA � Rn�nE�� � R is a real valued smooth so�called subintegral function� fF �
Rn�nE�� � R is a real valued smooth so�called terminal function� fE � Rn�nE�� �
RnE is a real valued smooth so�called state function and fY � Rn � RnE is a real
valued smooth so�called initial function�

�MODEL��DQ� � minimization of sum of squares integral criterion with respect to the state equations�
In this case

F �x� �
�
�

Z tmax
A

tmin
A

nEX
i��

wE
i �tA��y

A
i �x� tA�� yEi �tA��

� dtA �
�
�

nEX
i��

wE
i �y

A
i �x� t

max
A �� yEi �

�

and

dyA�x� tA�
dtA

� fE �x� yA�x� tA�� tA�� y
A�x� tmin

A � � fY �x�

where fE � Rn�nE�� � RnE is a real valued smooth so�called state function and
fY � Rn � RnE is a real valued smooth so�called initial function�

�MODEL��NO� � solving an initial value problem for a system of ordinary di�erential equations� In
this case

dyA�tA�
dtA

� fE �yA�tA�� tA�� y
A�tmin

A � � ymin
A

where fE � RnE�� � RnE is a real valued smooth so�called state function�

The model function fF � Rn � R can have several types of Hessian matrices speci
ed by the
macrovariable �HESF�

�HESF��D� � dense Hessian matrix�
�HESF��S� � sparse Hessian matrix with a general pattern�
�HESF��NO� � Hessian matrix is not used�

The default option is �HESF��D�� The approximating functions fAk � Rn � R� � � k � nA� can have
several types of Jacobian matrices speci
ed by the macrovariable �JACA�

�JACA��D� � dense Jacobian matrix�
�JACA��S� � sparse Jacobian matrix with a general pattern�

If �JACA��D�� then always �HESF��D�� If �JACA��S�� we can specify the type of the Hessian matrix
using the macrovariable �HESF�

�HESF��D� � dense Hessian matrix�
�HESF��B� � sparse Hessian matrix with a partitioned pattern �see ������
�HESF��S� � sparse Hessian matrix with a general pattern�
�HESF��NO� � Hessian matrix is not used�

�	

The objective function de
ned by the choice �MODEL��AQ� can be used for the solution of a system
of nonlinear equations

fAk �x� � �� � � k � nA

In this case we suppose nA � n� This case is considered separately� since for nA � n special methods for
systems of nonlinear equations can be used�

The subintegral function� terminal function� state function and initial function� appeared in the case
of dynamical systems optimization� are considered to be dense� Therefore we cannot use the speci
cation
�HESF��S� in this case�

The set X � Rn can be whole Rn �unconstrained case� or it can be de
ned by box constraints

xLi � xi if i � I�

xi � xUi if i � I�

xLi � xi � xUi if i � I�

xLi � xi if i � I�

where I� 	 I� 	 I� 	 I� � fi � N � � � i � ng� by general linear constraints

cLk �
nX
i��

gCkixi if k � L�

nX
i��

gCkixi � cUk if k � L�

cLk �
nX
i��

gCkixi � cUk if k � L�

cLk �
nX
i��

gCkixi if k � L�

where gCki� � � k � nC � � � i � n� are real coe�cients and L� 	 L� 	 L� 	 L� � fk � N � � � k � nCg�
or by general nonlinear constraints

cLk � fCk �x� if k � N�

fCk �x� � cUk if k � N�

cLk � fCk �x� � cUk if k � N�

cLk � fCk �x� if k � N�

where fCk � Rn � R� � � k � nC � are real valued smooth so�called constraint functions and N� 	 N� 	
N� 	N� � fk � N � � � k � nCg� The constraint functions fCk � Rn � R� � � k � nC � can have several
types of Jacobian matrices speci
ed by the macrovariable �JACC�

�JACC��D� � dense Jacobian matrix�
�JACC��S� � sparse Jacobian matrix with a general pattern�

If �JACC��D�� then must be �HESF��D� or �HESF��NO�� If �JACC��S�� then must be �HESF��S� or
�HESF��NO� �the last possibility only in the case of linear programming��

��

There are several limitations in the current version of the UFO system�

�� If the model function has a sparse Hessian matrix then the constraint functions can only be linear
and they must have a sparse Jacobian matrix�

�� Minimization of maximum�minimax� and nonsmooth optimization is not implemented in the sparse
case�

�� Minimization of dynamical systems is not implemented in the sparse case�

�� Usually the UFO system serves for local optimization� Global optimization can be used only for
relatively small �n � ��� dense problems that are unconstrained or that contain box constraints�

These limitations will be consecutively removed in subsequent versions of the UFO system�
In the rest of this report we will use the notation NF� NA� NC instead of n� nA� nC and X� FF� GF�

HF� FA� GA� FC� GC instead of x� fF � gF � hF � fA� gA� fC � gC � This new notation corresponds to the
notation of the variables and the
elds in the UFO system�

	�
� Speci�cation of variables

First we must specify the number of variables using the statement �NF�number of variables� If
there are no box constraints we set �KBF��� In the opposite case we set �KBF�� or �KBF��� If
�KBF�� or �KBF�� then

X�I� � unbounded � if IX�I� � �
XL�I� � X�I� � if IX�I� � �

X�I� � XU�I� � if IX�I� � �
XL�I� � X�I� � XU�I� � if IX�I� � �
X�I� � constant � if IX�I� � �

where �� I� NF� The option �KBF�� must be chosen if IX�I��� for at least one index �� I� NF� Then
two di�erent
elds XL�I� and XU�I�� �� I� NF are declared� In the opposite case we set �KBF�� and
only one common
eld XL�I��XU�I�� � � I� NF is declared�

Initial values of variables X�I�� �� I� NF� types of box constraints IX�I�� �� I� NF� and lower and
upper bounds XL�I� and XU�I�� �� I� NF� can be speci
ed using macrovariable �INPUT� The default
values are IX�I��� and XL�I��XU�I���� �� I� NF� For example�

�KBF��� �NF��
�SET�INPUT�

X����x�
X����x�� IX������ XL����xL�
X����x�� IX������ XL����xL� � XU����xU�
X����x�� IX�����

�ENDSET

The UFO system allows us to use a scaling of variables �for instance if the values of variables di�ers
very much in their magnitude�� Then we set�

�NORMF�� � scaling parameters XN�I�� �� I� NF� are determined automatically so that
X�I� XN�I���� ��I�NF� for the initial values of variables�

�NORMF�� � scaling parameters must be speci
ed by the user by means of the macrovariable �IN�
PUT�

The scaling of variables is recommended only in exceptional cases since it increases the computational
time and storage requirements� The scaling of variables is suppressed if �NORMF�� �this value is
default�� The scaling of variables is not permitted in the case of general constraints �if KBC����

��

	�	� Speci�cation of the model function �dense problems�

If the macrovariable �MODEL is not speci
ed or if �MODEL��FF�� then the objective function is
de
ned by the formula

F�X� � � FF�X� if �IEXT � � �minimization�
or

F�X� � � FF�X� if �IEXT � � �maximization�

Option �IEXT�� is default�
The model function FF�X� must be de
ned by the user either directly� in the full dialogue mode� or

using corresponding macrovariables� in the batch �or mixed� mode� The value of the model function is
speci
ed using the macrovariable �FMODELF�

�SET�FMODELF�
FF � value FF�X�
�for given values of variables X�I�� �� I� NF�

�ENDSET

The
rst derivatives of the model function are speci
ed using the macrovariable �GMODELF�

�SET�GMODELF�
GF��� � derivative �FF�X� �X���
GF��� � derivative �FF�X� �X���
GF��� � derivative �FF�X� �X���
#$
GF�NF� � derivative �FF�X� �X�NF�
�for given values of variables X�I�� ��I�NF�

�ENDSET
The second derivatives of the model function are speci
ed using the macrovariable �HMODELF� If
�HESF��D�� then the Hessian matrix is assumed to be dense and we specify only its upper half�

�SET�HMODELF�
HF��� � derivative ��FF�X� � X����

HF��� � derivative ��FF�X� �X����X���
HF��� � derivative ��FF�X� �X����

HF��� � derivative ��FF�X� �X��� �X���
HF��� � derivative ��FF�X� �X��� �X���
HF�
� � derivative ��FF�X� �X����

#$
HF�NF��NF��� �� � derivative ��FF�X� �X�NF��

�for given values of variables X�I�� ��I�NF�
�ENDSET

If the macrovariables �GMODELF or �HMODELF are not de
ned� we suppose that the
rst or the
second derivatives of the model function are not given analytically� In this case� they are computed
numerically� using the UFO system routines� whenever it is required� If it is advantageous to compute
the
rst derivatives of the model function FF�X� together with its value� we can include the models
�FMODELF and �GMODELF into the common model �FGMODELF� Similarly we can include the
models �FMODELF� �GMODELF and �HMODELF into the common model �FGHMODELF�

To improve the e�ciency of the computation� we can specify additional information about the model
function FF�X�� The
rst piece of information� useful for an automatic choice of the optimizationmethod�
is the computational complexity speci
ed by the macrovariable �KCF�

��

�KCF�� � evaluation of the model function FF�X� is very easy �it takes at most O�NF� simple
operations��

�KCF�� � evaluation of the model function FF�X� is of medium complexity �it takes at least
O�NF� complicated operations and at most O�NF�� simple operations��

�KCF�� � evaluation of the model function FF�X� is extremely di�cult �it takes at least
O�NF�� complicated operations or O�NF�� simple operations��

The option �KCF�� is default� An additional useful piece of information is the analytical complexity
�di�erentiability and conditioning�� which is speci
ed by the macrovariable �KSF�

�KSF�� � the model function FF�X� is di�erentiable and well�conditioned�
�KSF�� � the model function FF�X� is di�erentiable and ill�conditioned�
�KSF�� � the model function FF�X� is nondi�erentiable�

The option �KSF�� is default� Other speci
cations� which can improve the computational e�ciency
and robustness of optimization methods� are a lower bound of the objective function values and an
upper bound of the stepsize� Both these values depend on a de
nition of the objective function and can
be speci
ed by the statements �FMIN�lower bound �for the objective function� and �XMAX�upper
bound �for the stepsize�� We recommend a de
nition of �FMIN� whenever it is possible� and a de
nition
of �XMAX� whenever the objective function contains exponentials�

If �MODEL��FL�� we suppose the model function is linear of the form

FF�X� �
NFX
I��

GF�I� �X�I�

In this case we need not specify the value and the
rst derivatives of the model function by the macrovari�
ables �FMODELF and �GMODELF as in the general case� Instead� we must specify the coe�cients
GF�I�� �� I� NF� �constant gradient� using the macrovariable �INPUT�

�ADD�INPUT�
GF��� � constant derivative �FF�X� �X���
GF��� � constant derivative �FF�X� �X���
GF��� � constant derivative �FF�X� �X���
#$
GF�NF� � constant derivative �FF�X� �X�NF�

�ENDADD

If �MODEL��FL�� we usually assume that either the box constraints or the general constraints are given�
In this case the optimization problem is the linear programming problem�

If �MODEL��FQ�� we suppose the model function is quadratic of the form

FF�X� �
NFX
I��

GF�I� �X�I� �
�

�

NFX
I��

NFX
J��

HF�K� �X�I� �X�J�

where K�MAX�I�J���MAX�I�J���� ��MIN�I�J�� In this case we need not specify the value� the
rst
derivatives and the second derivatives of the model function by the macrovariables �FMODELF� �GMOD�
ELF and �HMODELF as in the general case� The coe�cients GF�I�� �� I� NF� �constant gradient� are
speci
ed in the same way as in the linear case� The coe�cients HF�K�� �� K� NF��NF��� �� �the
constant Hessian matrix� must be speci
ed using the macrovariable �INPUT� If �HESF��D�� then the
Hessian matrix is assumed to be dense and we specify only its upper half�

��

�ADD�INPUT�
HF��� � constant derivative ��FF�X� �X����

HF��� � constant derivative ��FF�X� �X���� X���
HF��� � constant derivative ��FF�X� �X����

HF��� � constant derivative ��FF�X� �X���� X���
HF��� � constant derivative ��FF�X� �X���� X���
HF�
� � constant derivative ��FF�X� �X����

#
HF�NF��NF��� �� � constant derivative ��FF�X� �X�NF��

�ENDADD

If �MODEL��FQ�� we usually assume that either the box constraints or the general constraints are given�
In this case the optimization problem is the quadratic programming problem�

If the model function is linear or quadratic� then the options �KCF and �KSF need not be de
ned�
since they are not used�

	��� Speci�cation of the model function �sparse problems�

The UFO system contains optimization methods that take into account the sparsity pattern of the
Hessian matrix HF� This possibility decreases computational time and storage requirements for large�
scale optimization problems� In this case� we use the option �HESF��S� which means that the sparsity
pattern is speci
ed� All other speci
cations remain the same as in the case of dense problems� The
sparsity pattern of the Hessian matrix is speci
ed using the macrovariable �INPUT� Two integer vectors
IH and JH are used where IH�I�� �� I� NF��� are pointers and JH�K�� �� K� M� are indices of nonzero
elements� Only the upper half of the Hessian matrix is assumed and the nonzero elements are ordered
by the rows� The number of nonzero elements must be speci
ed using the statement �M�number of
elements� The number of nonzero elements could be greater then it is needed �two times say� since it is
used for the declaration of working
elds� For example� if we have the Hessian matrix

HF �

�
BBB�

hF��� hF��� hF��� �� hF��
hF��� hF��� �� hF��� �
hF��� �� hF��� �� hF���
�� hF��� �� hF��� ��
hF��� �� hF��� �� hF��

�
CCCA

then we have to set�

�NF��
�M��� �the minimum required value is M����
�ADD�INPUT�

IH������ IH������ IH�����
IH����	� IH������� IH�
����
JH������ JH������ JH������ JH������ JH�����
JH�
���� JH������ JH������ JH�	���� JH������

�ENDADD

All diagonal elements of the sparse Hessian matrix are assumed to be nonzero�
As in the case of the dense problem� the second derivatives of the model function can be speci
ed using

the macrovariable �HMODELF� If �HESF��S� then only nonzero elements of the upper half �including
the diagonal� of the Hessian matrix are speci
ed� For the above example the speci
cation has the form�

��

�SET�HMODELF�
HF����hF��� HF����h

F
��� HF����h

F
��� HF����h

F
��

HF����hF��� HF�
��h
F
��� HF����h

F
��� HF����h

F
��

HF�	��hF��� HF�����h
F
��

�ENDSET

If the model function is quadratic �i�e� if �MODEL��FQ�� and if �HESF��S�� then the coe�cients
HF�K�� �� K� M� �constant sparse Hessian matrix� must be speci
ed using the macrovariable �INPUT�
If the matrix given in the above example is the constant sparse Hessian matrix� we use the speci
cation�

�ADD�INPUT�
HF����hF��� HF����h

F
��� HF����h

F
��� HF����h

F
��

HF����hF��� HF�
��h
F
��� HF����h

F
��� HF����h

F
��

HF�	��hF��� HF�����h
F
��

�ENDADD

	��� Objective functions for discrete approximation

If we set �MODEL��AF�� then we suppose the objective function F�X� has the form�

F�X� �
NAX

KA��

FA�KA�X� if KBA � �

or

F�X� �
NAX

KA��

AW�KA� � �FA�KA�X� �AM�KA�� if KBA � �

where FA�KA�X�� �� KA� NA� are smooth approximating functions� This form of the objective function
is very useful in large�scale optimization when the approximating functions FA�KA�X�� �� KA� NA� are
assumed to have sparse gradients�

If we set �MODEL��AP�� then we suppose the objective function F�X� has the form�

F�X� �
�

R

NAX
KA��

jFA�KA�X�j � �R if KBA � �

or

F�X� �
�
R

NAX
KA��

jAW�KA� � �FA�KA�X� �AM�KA��j � �R if KBA � �

where FA�KA�X�� �� KA� NA� are smooth approximating functions� and R�� is a real exponent� The
value of the exponent is speci
ed by the choice �REXP�R �default value is �REXP���� Since the most
used value of the exponent is R��� and since the computations are simplest and the most e�cient for
such a choice� we can use the speci
cation �MODEL��AQ� in this case �minimization of sum of squares��
Moreover� �MODEL��AQ� is formally set whenever we chose �MODEL��AP� and �REXP���

If we set �MODEL��AM�� then we suppose the objective function F�X� has the form�

F�X� � max
��KA�NA

��FA�KA�X�� if �IEXT � ��

F�X� � max
��KA�NA

�jFA�KA�X�j� if �IEXT � �

F�X� � max
��KA�NA

��FA�KA�X�� if �IEXT � ��

��

for �KBA��� or

F�X� � max
��KA�NA

��AW�KA� � �FA�KA�X� �AM�KA��� if �IEXT � ��

F�X� � max
��KA�NA

�jAW�KA� � �FA�KA�X� �AM�KA��j� if �IEXT � �

F�X� � max
��KA�NA

��AW�KA� � �FA�KA�X� �AM�KA��� if �IEXT � ��

for �KBA��� where FA�KA�X�� �� KA� NA� are smooth approximating functions� The default value
is �IEXT�� �the minimax or the Chebyshev approximation��

The option �KBA serves as a decision between a simple objective function and a more complicated
one� The simple objective function uses no additional
elds� while the more complicated one uses at
most two additional
elds� AM and AW� The vector AM usually contains frequently used observations
which can be included into the functions FA�KA�X�� �� KA� NA� in the case of the simple objective
function� Observations AM�KA�� �� KA� NA� are speci
ed using the macrovariable �INPUT� Their
default values are AM�KA���� �� KA� NA� The vector AW serves for possible scaling speci
ed by the
option �NORMA�

�NORMA�� � no scaling is performed� In this case AW�KA���� �� KA� NA�
�NORMA�� � scaling parameters are determined automatically so that AW�KA��jAM�KA�j� ��

KA� NA�
�NORMA�� � scaling parameters must be speci
ed by the user by means of the macrovariable �IN�

PUT�

The number of approximating functions NA must be speci
ed using the statement �NA�number of
functions in all the above cases�

	��� Speci�cation of the approximating functions �dense problems�

The approximating functions FA�KA�X�� �� KA� NA� must be de
ned by the user either directly�
in the full dialogue mode� or using corresponding macrovariables� in the batch �or mixed� mode� Values
of the approximating functions are speci
ed using the macrovariable �FMODELA�

�SET�FMODELA�
FA � value FA�KA�X�
�for a given index KA and given values of variables X�I�� �� I� NF�

�ENDSET

The
rst derivatives of the approximating functions are speci
ed using the macrovariable �GMODELA�

�SET�GMODELA�
GA��� � derivative �FA�KA�X� �X���
GA��� � derivative �FA�KA�X� �X���
GA��� � derivative �FA�KA�X� �X���
#$
GA�NF� � derivative �FA�KA�X� �X�NF�
�for a given index KA and given values of variables X�I�� �� I� NF�

�ENDSET

The second derivatives of the approximating functions are speci
ed using the macrovariable �HMODELA�
If �JACA��D�� then the Hessian matrices are assumed to be dense and we specify only their upper half�

�

�SET�HMODELA�
HA��� � derivative ��FA�KA�X� �X����

HA��� � derivative ��FA�KA�X� �X����X���
HA��� � derivative ��FA�KA�X� �X����

HA��� � derivative ��FA�KA�X� �X����X���
HA��� � derivative ��FA�KA�X� �X����X���
HA�
� � derivative ��FA�KA�X� �X����

#$
HA�NF��NF��� �� � derivative ��FA�KA�X� �X�NF��

�for a given index KA and given values of variables X�I�� �� I� NF�
�ENDSET

If the macrovariables �GMODELA or �HMODELA are not de
ned� we suppose that the
rst or
the second derivatives of the approximating functions are not given analytically� In this case� they are
computed numerically� using the UFO system routines� whenever it is required� If it is advantageous to
compute
rst derivatives of the approximating functions FA�KA�X�� �� KA� NA� together with their
values� we can collect the models �FMODELA and �GMODELA into the commonmodel �FGMODELA�
Similarlywe can collect the models �FMODELA� �GMODELA and �HMODELA into the commonmodel
�FGHMODELA�

To improve the e�ciency of the computation� we can specify additional information about the approx�
imating functions FA�KA�X�� �� KA� NA� The
rst piece of information� useful for an automatic choice
of the optimization method� is the computational complexity speci
ed by the macrovariable �KCA�

�KCA�� � evaluations of the approximating functions FA�KA�X�� �� KA� NA� are very easy
�they take at most O�NF� simple operations��

�KCA�� � evaluations of the approximating functions FA�KA�X�� �� KA� NA� are of medium
complexity �they take at least O�NF� complicated operations and at most O�NF��
simple operations��

�KCA�� � evaluations of the approximating functions FA�KA�X�� �� KA� NA� are extremely
di�cult �they take at least O�NF�� complicated or O�NF�� simple operations��

The option �KCA�� is default� An additional useful piece of information is the analytical complexity
�conditioning�� which is speci
ed by the macrovariable �KSA�

�KSA�� � the approximating functions FA�KA�X�� �� KA� NA� are well�conditioned�
�KSA�� � the approximating functions FA�KA�X�� �� KA� NA� are ill�conditioned�

The option �KSA�� is default�
If some of the approximating functions are linear having the form

FA�KA�X� �
NFX
I��

AG��KA� �� �NF� I� �X�I�

we can specify them separately� Then the number of linear approximating functions must be speci
ed
using the statement �NAL�number of linear functions �default value is �NAL���� We always suppose
that the
rst NAL approximating functions are linear� Then the coe�cients AG��KA����NF�I�� �� KA�
NAL� �� I� NF� are speci
ed using the macrovariable �INPUT and the macrovariables �FMODELA�
�GMODELA� �HMODELA are used only for the speci
cation of the nonlinear approximating functions
FA�KA�X�� NAL�KA� NA�

��

	��� Speci�cation of the approximating functions �sparse problems�

The UFO system contains optimization methods that take into account the sparsity pattern of the
Jacobian matrix AG� This possibility decreases computational time and storage requirements for large�
scale optimization problems� In this case� we use the option �JACA��S� which means that the sparsity
pattern is speci
ed� All other speci
cations remain the same as in the case of dense problems� The sparsity
pattern of the Jacobian matrix is speci
ed using the macrovariable �INPUT� Two integer vectors IAG
and JAG are used where IAG�KA�� �� KA� NA��� are pointers and JAG�K�� �� K� IAG�NA������
are indices of nonzero elements� Nonzero elements are ordered by the gradients of the approximating
functions� The number of nonzero elements must be speci
ed using the statement �MA�number of
elements� For example� if we have the gradients

GA���X� � �gA��� � � � � gA����

GA���X� � �� � gA��� � � gA����

GA���X� � �� � � � gA��� � ��

GA���X� � �gA��� g
A
��� g

A
��� � ��

GA���X� � �� � � � gA��� g
A
����

and the Jacobian matrix

AG�X� �

�
BBB�

gA�� � � � � � gA��
� � gA�� � � � gA��
� � � � gA�� � �
gA�� � gA�� � gA�� � �
� � � � gA�� � gA��

�
CCCA

then we have to set�

�NA��
�MA���
�ADD�INPUT�

IAG������ IAG������ IAG�����
IAG����
� IAG����	� IAG�
����
JAG������ JAG������ JAG������ JAG������ JAG�����
JAG�
���� JAG������ JAG������ JAG�	���� JAG������

�ENDADD

As in the case of the dense problem� the
rst derivatives of the approximating functions can be speci
ed
using the macrovariable �GMODELA� If �JACA��S� then only nonzero elements of the gradients are
speci
ed� For the above example the speci
cation has the form�

�SET�GMODELA�
IF �KA�EQ��� THEN

GA��� � �FA���X� �X���
GA��� � �FA���X� �X���

ELSE IF �KA�EQ��� THEN
GA��� � �FA���X� �X���
GA��� � �FA���X� �X���

��

ELSE IF �KA�EQ��� THEN
GA��� � �FA���X� �X���

ELSE IF �KA�EQ��� THEN
GA��� � �FA���X� �X���
GA��� � �FA���X� �X���
GA��� � �FA���X� �X���

ELSE
GA��� � �FA���X� �X���
GA��� � �FA���X� �X���

ENDIF
�ENDSET

If some of the approximating functions are linear �i�e� if �NAL��� and if �JACA��S�� then the
coe�cients AG�K�� �� K� IAG�NAL����� �constant part of the sparse Jacobian matrix�� must be
speci
ed using the macrovariable �INPUT� If the matrix given in the above example is the constant
sparse Jacobian matrix� we use the speci
cation�

�ADD�INPUT�
AG����gA��� AG����gA��� AG����gA��� AG����gA��
AG����gA��� AG�
��gA��� AG����gA��� AG����gA��
AG�	��gA��� AG�����gA��

�ENDADD

There is another possibility which can be useful when all approximating functions are linear� It is based
on the usage of the special procedure UKMAI� that serves for direct input of individual Jacobian matrix
elements� The procedure UKMAI� is formally called using the statement

CALL UKMAI��K�I�GAKI�IAG�JAG�AG�

where K is an index of a given approximating function �row of the Jacobian matrix�� I is an index
of a given variable �column of the Jacobian matrix�� and GAKI is a numerical value of the element
�FA�K�X� �X�I�� For the example given above we can write�

�ADD�INPUT�
CALL UKMAI������gA���IAG�JAG�AG�
CALL UKMAI������gA���IAG�JAG�AG�
CALL UKMAI������gA���IAG�JAG�AG�
CALL UKMAI������gA���IAG�JAG�AG�
CALL UKMAI������gA���IAG�JAG�AG�
CALL UKMAI������gA���IAG�JAG�AG�
CALL UKMAI������gA���IAG�JAG�AG�
CALL UKMAI������gA���IAG�JAG�AG�
CALL UKMAI������gA���IAG�JAG�AG�
CALL UKMAI������gA���IAG�JAG�AG�

�ENDADD

The main advantage of the last possibility is the fact that it is not necessary to specify beforehand the

elds IAG and JAG�

If we use the option �JACA��S�� then we can specify a form of the objective function sparse Hessian
matrix� There are four possibilities�

�	

�HESF��D� � dense Hessian matrix�
�HESF��B� � partitioned sparse Hessian matrix� This matrix is a sum of simple Hessian matrices

which correspond to the individual approximating functions� Only nonzero blocks are
stored�

�HESF��S� � general sparse Hessian matrix �the same as the model function Hessian matrix
corresponding to the option �HESF��S���

�HESF��NO� � Hessian matrix is not used�

This speci
cation serves only for an internal realization of optimization methods and has no in�uence on
the user�s input� The default option is �HESF��B��

	�
� Objective functions for optimization of dynamical systems

If we set �MODEL��DF�� then we suppose the objective function F�X� has the form�

F�X� �

Z TAMAX

TAMIN

FA�X�YA�TA��TA�dTA� FF�X�YA�TAMAX��TAMAX�

where FA�X�YA�TA��TA� is a smooth subintegral function and FF�X�YA�TAMAX��TAMAX� is a smooth
terminal function� At the same time

dYA�KE�TA�
dTA

� FE�KE�X�YA�TA��TA�� YA�KE�TAMIN� � FY�KE�X�

where FE�KE�X�YA�TA��TA�� �� KE� NE� are smooth state functions and FY�KE�X�� �� KE� NE�
are smooth initial functions�

If we set �MODEL��DQ�� then we suppose the objective function F�X� has the form�

F�X� �
�
�

Z TAMAX

TAMIN

NEX
KE��

WE�KE�TA� � �YA�KE�TA��YE�KE�TA��� dTA

�
�

�

NEX
KE��

EW�KE� � �YA�KE�TAMAX�� EY�KE���

At the same time

dYA�KE�TA�
dTA

� FE�KE�X�YA�TA��TA�� YA�KE�TAMIN� � FY�KE�X�

where FE�KE�X�YA�TA��TA�� �� KE� NE� are smooth state functions and FY�KE�X�� �� KE� NE�
are smooth initial functions�

If we set �MODEL��NO�� then we consider the initial value problem

dYA�KE�TA�

dTA
� FE�KE�YA�TA��TA�� YA�KE�TAMIN� is given

where FE�KE�YA�TA��TA�� �� KE� NE� are smooth state functions�

The number of di�erential equations NE must be speci
ed using the statement �NE�number of
di�erential equations in all the above cases�

	��� Speci�cation of the state functions

The state functions FE�KE�X�YA�TA��TA�� �� KE� NE� must be de
ned by the user either directly�
in the full dialogue mode� or using corresponding macrovariables� in the batch �or mixed� mode� Values
of the state functions are speci
ed using the macrovariable �FMODELE�

��

�SET�FMODELE�
FE � value FE�KE�X�YA�TA��TA�
�for a given index KE� given vector of variables X�
given vector of state variables YA�TA� and given time TA�

�ENDSET

The
rst derivatives of the state functions according to the variables are speci
ed using the macrovariable
�GMODELE�

�SET�GMODELE�
GE��� � derivative �FE�KE�X�YA�TA��TA� �X���
GE��� � derivative �FE�KE�X�YA�TA��TA� �X���
GE��� � derivative �FE�KE�X�YA�TA��TA� �X���
#$
GE�NF� � derivative �FE�KE�X�YA�TA��TA� �X�NF�
�for a given index KE� given vector of variables X�
given vector of state variables YA�TA� and given time TA�

�ENDSET

The
rst derivatives of the state functions according to the state variables are speci
ed using the
macrovariable �DMODELE�

�SET�DMODELE�
DE��� � derivative �FE�KE�X�YA�TA��TA� �YA���
DE��� � derivative �FE�KE�X�YA�TA��TA� �YA���
DE��� � derivative �FE�KE�X�YA�TA��TA� �YA���
#$
DE�NE� � derivative �FE�KE�X�YA�TA��TA� �YA�NE�
�for a given index KE� given vector of variables X�
given vector of state variables YA�TA� and given time TA�

�ENDSET

If it is advantageous to compute
rst derivatives of the state functions FE�KE�X�YA�TA��TA�� ��
KE� NE� together with their values� we can collect the models �FMODELE� �GMODELE and �DMOD�
ELE into the commonmodel �FGDMODELA� Partially we can collect the models �FMODELE� �GMOD�
ELE or �FMODELE� �DMODELE or �GMODELE� �DMODELE into the common models �FGMOD�
ELE or �FDMODELE or �GDMODELE respectively�

If �MODEL��DQ� we have to de
ne the functions WE�KE�TA� and YE�KE�TA�� �� KE� NE� for a
given index KE and given time TA� These functions can be speci
ed using the macrovariable �FMODELE
together with the state function FE�KE�X�YA�TA��TA��

�SET�FMODELE�
FE � value FE�KE�X�YA�TA��TA�
WE � value WE�KE�TA�
YE � value YE�KE�TA�
�for a given index KE� given vector of variables X�
given vector of state variables YA�TA� and given time TA�

�ENDSET

The default values WE�KE�TA��� and YE�KE�TA��� cannot be speci
ed� they are supposed automat�
ically�

��

	��� Speci�cation of the initial functions

The initial functions FY�KE�X�� �� KE� NE� must be de
ned by the user either directly� in the
full dialogue mode� or using corresponding macrovariables� in the batch �or mixed� mode� Values of the
initial functions are speci
ed using the macrovariable �FMODELY�

�SET�FMODELY�
FE � value FY�KE�X�
�for a given index KE and given vector of variables X�

�ENDSET

The
rst derivatives of the initial functions according the variables are speci
ed using the macrovariable
�GMODELY�

�SET�GMODELY�
GE��� � derivative �FY�KE�X� �X���
GE��� � derivative �FY�KE�X� �X���
GE��� � derivative �FY�KE�X� �X���
#$
GE�NF� � derivative �FY�KE�X� �X�NF�
�for a given index KE and given vector of variables X�

�ENDSET

If it is advantageous to compute
rst derivatives of the initial functions FY�KE�X�� �� KE� NE�
together with their values� we can collect the models �FMODELY and �GMODELY into the common
model �FGMODELY�

If the initial values YA�KE�TAMIN�� �� KE� NE� do not depend on the variables X�I�� �� I� NF�
they can be speci
ed using the macrovariable �INPUT�

�ADD�INPUT�
YA��� � initial value YA���TAMIN�
YA��� � initial value YA���TAMIN�
YA��� � initial value YA���TAMIN�
#$
YA�NE� � initial value YA�NE�TAMIN�

�ENDADD

	�
�� Speci�cation of the subintegral function

If �MODEL��DF� then the subintegral function FA�X�YA�TA��TA� must be de
ned by the user either
directly� in the full dialogue mode� or using corresponding macrovariables� in the batch �or mixed� mode�
Value of the subintegral function is speci
ed using the macrovariable �FMODELA�

�SET�FMODELA�
FA � value FA�X�YA�TA��TA�
�for a given vector of variables X� given vector of state variables YA�TA�
and given time TA�

�ENDSET

The
rst derivatives of the subintegral function according the variables are speci
ed using the macrovari�
able �GMODELA�

��

�SET�GMODELA�
GA��� � derivative �FA�X�YA�TA��TA� �X���
GA��� � derivative �FA�X�YA�TA��TA� �X���
GA��� � derivative �FA�X�YA�TA��TA� �X���
#$
GA�NF� � derivative �FA�X�YA�TA��TA� �X�NF�
�for a given vector of variables X� given vector of state variables YA�TA�
and given time TA�

�ENDSET

The
rst derivatives of the subintegral function according the state variables are speci
ed using the
macrovariable �DMODELA�

�SET�DMODELA�
DA��� � derivative �FA�X�YA�TA��TA� �YA���
DA��� � derivative �FA�X�YA�TA��TA� �YA���
DA��� � derivative �FA�X�YA�TA��TA� �YA���
#$
DA�NE� � derivative �FA�X�YA�TA��TA� �YA�NE�
�for a given vector of variables X� given vector of state variables YA�TA�
and given time TA�

�ENDSET

If it is advantageous to compute
rst derivatives of the subintegral function FA�X�YA�TA��TA� to�
gether with its value� we can collect the models �FMODELA� �GMODELA and �DMODELA into the
common model �FGDMODELA� Partially we can collect the models �FMODELA� �GMODELA or
�FMODELA� �DMODELA or �GMODELA� �DMODELA into the common models �FGMODELA or
�FDMODELA or �GDMODELA respectively�

If �MODEL��DQ� and the objective function contains the integral part� we have to set �MOD�
ELA��YES� and de
ne the functions WE�KE�TA� and YE�KE�TA�� �� KE� NE� using the macrovari�
able �FMODELE�

	�

� Speci�cation of the terminal function

If �MODEL��DF� then the terminal function FF�X�YA�TAMAX��TAMAX� must be de
ned by the
user either directly� in the full dialogue mode� or using corresponding macrovariables� in the batch �or
mixed� mode� Value of the terminal function is speci
ed using the macrovariable �FMODELF�

�SET�FMODELF�
FF � value FF�X�YA�TAMAX��TAMAX�
�for a given vector of variables X� given vector of state variables YA�TAMAX�
and given time TAMAX�

�ENDSET

The
rst derivatives of the terminal function according the variables are speci
ed using the macrovariable
�GMODELF�

��

�SET�GMODELF�
GF��� � derivative �FF�X�YA�TAMAX��TAMAX� �X���
GF��� � derivative �FF�X�YA�TAMAX��TAMAX� �X���
GF��� � derivative �FF�X�YA�TAMAX��TAMAX� �X���
#$
GF�NF� � derivative �FF�X�YA�TAMAX��TAMAX� �X�NF�
�for a given vector of variables X� given vector of state variables YA�TAMAX�
and given time TAMAX�

�ENDSET

The
rst derivatives of the terminal function according the state variables are speci
ed using the macrovari�
able �DMODELF�

�SET�DMODELF�
DF��� � derivative �FF�X�YA�TAMAX��TAMAX� �YA���
DF��� � derivative �FF�X�YA�TAMAX��TAMAX� �YA���
DF��� � derivative �FF�X�YA�TAMAX��TAMAX� �YA���
#$
DF�NE� � derivative �FF�X�YA�TAMAX��TAMAX� �YA�NE�
�for a given vector of variables X� given vector of state variables YA�TAMAX�
and given time TAMAX�

�ENDSET

If it is advantageous to compute
rst derivatives of the terminal function FF�X�YA�TAMAX��TAMAX�
together with its value� we can collect the models �FMODELF� �GMODELF and �DMODELF into
the common model �FGDMODELF� Partially we can collect the models �FMODELF� �GMODELF or
�FMODELF� �DMODELF or �GMODELF� �DMODELF into the common models �FGMODELF or
�FDMODELF or �GDMODELF respectively�

If �MODEL��DQ� and the objective function contains the terminal part� we have to set �MOD�
ELF��YES� and de
ne the coe�cients EW�KE� and EY�KE�� �� KE� NE� using the macrovariable
�INPUT�

�ADD�INPUT�
EW��� � value EW���� EY��� � value EY���
EW��� � value EW���� EY��� � value EY���
EW��� � value EW���� EY��� � value EY���
#$
EW�NE� � value EW�NE�� EY�NE� � value EY�NE�

�ENDADD

	�
	� Optimization with general constraints�

If there are no general constraints we set �KBC��� In the oposite case we set �KBC�� or �KBC���
If �KBC�� or �KBC�� then

FC�KC�X� � unbounded � if IC�KC� � �
CL�KC� � FC�KC�X� � if IC�KC� � �

FC�KC�X� � CU�KC� � if IC�KC� � �
CL�KC� � FC�KC�X� � CU�KC� � if IC�KC� � �
CL�KC� � FC�KC�X� � CU�KC� � if IC�KC� � �

��

where �� KC� NC� The option �KBC�� must be chosen if IC�KC��� for at least one index �� KC�
NC� Then two di�erent
elds XL�KC� and XU�KC�� �� KC� NC are declared� In the opposite case we
set �KBC�� and only one common
eld XL�KC��XU�KC�� �� KC� NC is declared�

Types of general constraints IC�KC�� ��KC� NC� and lower and upper bounds XL�KC� and XU�KC��
�� KC� NC� can be speci
ed using the macrovariable �INPUT� Default values are IC�KC��� and
XL�KC��XU�KC���� �� KC� NC� For example�

�KBF��� �NC��
�ADD�INPUT�

IC������ CL����cL�
IC������ CL����cL�
IC������ CL����cL� � CU����c

L
�

�ENDADD

	�
�� Speci�cation of the constraint functions �dense problems�

The constraint functions FC�KC�X�� �� KC� NC� must be de
ned by the user either directly� in the
full dialogue mode� or using corresponding macrovariables� in the batch �or mixed� mode� Values of the
constraint functions are speci
ed using the macrovariable �FMODELC�

�SET�FMODELC�
FC � value FC�KC�X�
�for a given index KC and given values of variables X�I�� �� I� NF�

�ENDSET

The
rst derivatives of the constraint functions are speci
ed using the macrovariable �GMODELC�

�SET�GMODELC�
GC��� � derivative �FC�KC�X� �X���
GC��� � derivative �FC�KC�X� �X���
GC��� � derivative �FC�KC�X� �X���
#$
GC�NF� � derivative �FC�KC�X� �X�NF�
�for a given index KC and given values of variables X�I�� �� I� NF�

�ENDSET

The second derivatives of the constraint functions are speci
ed using the macrovariable �HMODELC� If
�JACC��D�� then the Hessian matrices are assumed to be dense and we specify only their upper half�

�SET�HMODELC�
HC��� � derivative ��FC�KC�X� �X����

HC��� � derivative ��FC�KC�X� �X����X���
HC��� � derivative ��FC�KC�X� �X����

HC��� � derivative ��FC�KC�X� �X����X���
HC��� � derivative ��FC�KC�X� �X����X���
HC�
� � derivative ��FC�KC�X� �X����

#$
HC�NF��NF��� �� � derivative ��FC�KC�X� �X�NF��

�for a given index KC and given values of variables X�I�� �� I� NF�
�ENDSET

If the macrovariables �GMODELC or �HMODELC are not de
ned� we suppose that the
rst or
the second derivatives of the constraint functions are not given analytically� In this case� they are

��

computed numericaly� using the UFO system routines� whenever it is required� If it is advantageous
to compute
rst derivatives of the constraint functions FC�KC�X�� �� KC� NC� together with their
values� we can collect the models �FMODELC and �GMODELC into the commonmodel �FGMODELC�
Similarlywe can collect the models �FMODELC� �GMODELC and �HMODELC into the commonmodel
�FGHMODELC�

To improve the e�ciency of the computation� we can specify additional information about the con�
straint functions FC�KC�X�� �� KC� NC� The
rst piece of information� useful for an automatic choice
of the optimization method� is the computational complexity speci
ed by the macrovariable �KCC�

�KCC� � � evaluations of the constraint functions FC�KC�X�� �� KC� NC� are very easy �they
take at most O�NF� simple operations��

�KCC� � � evaluations of the constraint functions FC�KC�X�� �� KC� NC� are of medium
complexity �they take at least O�NF� complicated operations and at most O�NF��
simple operations��

�KCC� � � evaluations of the constraint functions FC�KC�X�� �� KC� NC� are extremely
di�cult �they take at least O�NF�� complicated or O�NF�� simple operations��

The option �KCC�� is default� An additional useful piece of information is the analytical complexity
�conditioning�� which is speci
ed by the macrovariable �KSC�

�KSC� � � the constraint functions FC�KC�X�� � � KC � NC� are well�conditioned�
�KSC� � � the constraint functions FC�KC�X�� � � KC � NC� are ill�conditioned�

The option �KSC�� is default�
If some of the constraint functions are linear having the form

FC�KC�X� �
NFX
I��

CG��KC� �� �NF� I� �X�I�

we can specify them separately� Then the number of linear constraint functions must be speci
ed using
the statement �NCL�number of linear functions �default value is �NCL���� We always suppose that
the
rst NCL constraint functions are linear� Then the coe�cients CG��KC����NF�I�� �� KC� NCL�
�� I� NF� are speci
ed using the macrovariable �INPUT and the macrovariables �FMODELC� �GMOD�
ELC� �HMODELC are used only for the speci
cation of the nonlinear constraint functions FC�KC�X��
NCL�KC� NC�

	�
�� Speci�cation of the constraint functions �sparse problems�

The UFO system contains optimization methods that take into account the sparsity pattern of the
Jacobian matrix CG� This possibility decreases computational time and storage requirements for large�
scale optimization problems� In this case� we use option �JACC��S� which means that the sparsity pattern
is speci
ed� All other speci
cations remain the same as in the case of dense problems� The sparsity pattern
of the Jacobian matrix is speci
ed using the macrovariable �INPUT� Two integer vectors ICG and JCG
are used where ICG�KC�� �� KC� NC��� are pointers and JCG�K�� �� K� ICG�NC������ are indices of
nonzero elements� Nonzero elements are ordered by the gradients of the constraint functions� The number
of nonzero elements must be speci
ed using the statement �MC�number of elements� The number of
nonzero elements could be greater then it is needed �two times say� since it is used for declaration of
working
elds� For example if we have the gradients

GA���X� � �gC��� � � � � gC����

GA���X� � �� � gC��� � � gC����

�

GA���X� � �� � � � gC��� � ��

GA���X� � �gC��� g
C
��� g

C
��� � ��

GA���X� � �� � � � gC��� g
C
����

and the Jacobian matrix

AG�X� �

�
BBB�

gA�� � � � � � gA��
� � gA�� � � � gA��
� � � � gA�� � �
gA�� � gA�� � gA�� � �
� � � � gA�� � gA��

�
CCCA

then we have to set�

�NC��
�MC��� �the minimum required value is MC����
�ADD�INPUT�

ICG������ ICG������ ICG�����
ICG����
� ICG����	� ICG�
����
JCG������ JCG������ JCG������ JCG������ JCG�����
JCG�
���� JCG������ JCG������ JCG�	���� JCG������

�ENDADD

As in the case of the dense problem� the
rst derivatives of the constraint functions can be speci
ed
using the macrovariable �GMODELC� If �JACC��S� then only the nonzero elements of the gradients are
speci
ed� For the above example the speci
cation has the form�

�SET�GMODELC�
IF �KC�EQ��� THEN

GC��� � �FC���X� �X���
GC��� � �FC���X� �X���

ELSE IF �KC�EQ��� THEN
GC��� � �FC���X� �X���
GC��� � �FC���X� �X���

ELSE IF �KC�EQ��� THEN
GC��� � �FC���X� �X���

ELSE IF �KC�EQ��� THEN
GC��� � �FC���X� �X���
GC��� � �FC���X� �X���
GC��� � �FC���X� �X���

ELSE
GC��� � �FC���X� �X���
GC��� � �FC���X� �X���

ENDIF
�ENDSET

If some of the constraint functions are linear �i�e� if �NCL��� and if �JACC��S�� then the coe�cients
CG�K�� �� K� ICG�NCL����� �constant part of the sparse Jacobian matrix�� must be speci
ed using
the macrovariable �INPUT� If the matrix given in the above example is the constant sparse Jacobian
matrix� we use the speci
cation�

��

�ADD�INPUT�
CG����gC��� CG����gC��� CG����gC��� CG����gC��
CG����gC��� CG�
��gC��� CG����gC��� CG����gC��
CG�	��gC��� CG�����gC��

�ENDADD

There is another possibility which can be useful when all constraint functions are linear� It is based on
the usage of the special procedure UKMCI� that serves for direct input of individual Jacobian matrix
elements� The procedure UKMCI� is formally called using the statement

CALL UKMCI��K�I�GCKI�ICG�JCG�CG�

where K is an index of a given constraint function �row of the Jacobian matrix�� I is an index of a given
variable �column of the Jacobian matrix�� and GCKI is a numerical value of the element �FC�K�X� �X�I��
For the example given above we can write�

�ADD�INPUT�
CALL UKMCI������gC���ICG�JCG�CG�
CALL UKMCI������gC���ICG�JCG�CG�
CALL UKMCI������gC���ICG�JCG�CG�
CALL UKMCI������gC���ICG�JCG�CG�
CALL UKMCI������gC���ICG�JCG�CG�
CALL UKMCI������gC���ICG�JCG�CG�
CALL UKMCI������gC���ICG�JCG�CG�
CALL UKMCI������gC���ICG�JCG�CG�
CALL UKMCI������gC���ICG�JCG�CG�
CALL UKMCI������gC���ICG�JCG�CG�

�ENDADD

The main advantage of the last possibility is the fact that it is not necessary to specify beforehand
the
elds ICG and JCG� If the number of constraints are very large then we can use a slightly more
complicated procedure UKMCI�� which uses dynamic structures and therefore works more quickly� The
procedure UKMCI� is formally called using the statement

CALL UKMCI��K�I�GCKI�ICG�JCG�CG�LCG�

where K is an index of a given constraint function �row of the Jacobian matrix�� I is an index of a given
variable �column of the Jacobian matrix�� GCKI is a numerical value of the element �FC�K�X� �X�I�
and LCG is an auxiliary working
eld�

	�
�� Additional speci�cations concerning optimization problems

Useful speci
cations� which can improve the computational e�ciency and robustness of the optimiza�
tion methods� are a lower bound for the objective function value and an upper bound for the stepsize�
Both of these values depend on a de
nition of the objective function and can be speci
ed by the statements
�FMIN�lower bound �for the objective function value� and �XMAX�upper bound �for the stepsize��
We recommend a de
nition of �FMIN� whenever it is possible� and a de
nition of �XMAX� whenever
the objective function contains exponentials� If the objective function is a sum of powers �or a sum of
squares�� then automatically �FMIN��� The default option for the maximum stepsize is �XMAX������

If there are no general constraints and if the number of variables is not greater than ��� then we can
use global optimization methods� A decision between local and global optimization is e�ected by means
of macrovariable �EXTREM�

��

�EXTREM��L� � a local extremum is found that usually contains the starting point in its region of
attractivity�

�EXTREM��G� � all extrema in the given region are found and a global extremum is determined�

The default option is �EXTREM��L�� If �EXTREM��G�� we cannot use the commonmodels �FGMOD�
ELF and �FGHMODELF for a common speci
cation of the value � the gradient and the Hessian matrix
of the model function� Similarly we cannot use the common models �FGMODELA and �FGHMODELA
for a speci
cation of the approximating functions�

The global optimization is performed over a bounded region speci
ed by lower and upper bounds
XL�I� and XU�I�� �� I� NF� If these bounds are not speci
ed �using the macrovariable �INPUT��
they are computed from the initial values of variables and from the given maximum stepsize� so that
XL�I��X�I��XMAX and XU�I��X�I��XMAX� �� I� NF� The maximum stepsize is speci
ed� as in
the case given above� using the statement �XMAX�maximum stepsize� The default option is again
�XMAX������

Additional useful speci
cations� concerning the solution precision� are bounds used in termination
criteria� These bounds can be speci
ed by the macrovariables �TOLX� �TOLF� �TOLB� �TOLG� �TOLC
and MIC� MIT� MFV�

�TOLX � lower bound for a relative change of variables�
�TOLF � lower bound for a relative change of function values�
�TOLB � lower bound for the objective function value�
�TOLG � lower bound for the objective function gradient norm�
�TOLC � lower bound for the violated constraint functions�

�MIC � maximum number of penalty function changes�
�MIT � maximum number of iterations�
�MFV � maximum number of function evaluations�

The default values are �TOLX�����D���� �TOLF�����D��
�� �TOLB������D
��� �TOLG�����D�
��
�TOLC�����D�
� and MIC��� MIT����� MFV������

�	

� Optimization methods in the UFO system

The UFO system has a modular structure� All optimizationmethods can be set up using the individual
simple modules� For example� the most used variable metric methods are set up using the modules for
the objective function evaluation� direction determination� stepsize selection and variable metric update�
The UFO system optimization methods can be partitioned into several classes which are speci
ed using
the macrovariable �CLASS�

�CLASS��CD� � conjugate direction methods that use no matrices�
�CLASS��VM� � variable metric methods that use an approximation of the Hessian matrix which is

updated in each iteration�
�CLASS��MN� � modi
ed Newton methods that use the Hessian matrix computed either analytically

or numerically�
�CLASS��GN� � modi
ed Gauss�Newton methods for nonlinear least squares problems that use the

normal equation matrix as an approximation of the Hessian matrix�
�CLASS��MG� � modi
ed Gauss methods for nonlinear least squares problems that use the Jacobian

matrix for the de
nition of the linear least squares problem�
�CLASS��QN� � quasi�Newton methods for nonlinear least squares problems and nonlinear equations

in the case when the
rst derivatives are not speci
ed analytically�
�CLASS��BD� � biconjugate direction methods for nonlinear least squares problems and nonlinear

equations in the case when the
rst derivatives are not speci
ed analytically�
�CLASS��LP� � special methods for linear programming problems�
�CLASS��QP� � special methods for quadratic programming problems�
�CLASS��SQ� � recursive quadratic programming methods for nonlinear programming problems�
�CLASS��SM� � recursive quadratic programming methods for minimax problems�
�CLASS��BM� � bundle methods for nonsmooth optimization�

The individual methods from the above classes can be chosen using additional speci
cations� The
most important ones concerning direction determination and stepsize selection are a type of the method�
a form of the method� a kind of the matrix decomposition and a number of the method� A type of the
method is speci
ed by the macrovariable �TYPE�

�TYPE��L� � line search methods�
�TYPE��G� � general trust region methods�
�TYPE��T� � special trust region methods for nonlinear least squares problems�
�TYPE��M� � modi
ed Marquardt methods for nonlinear least squares problems�

A form of the method is speci
ed by the macrovariable �FORM� It is used for conjugate and bicon�
jugate direction methods and for sequential quadratic programming methods� and it will be explained
later� A kind of the matrix decomposition is speci
ed by the macrovariable �DECOMP�

�DECOMP��M� � the symmetric matrix is used as an input for the direction determination�
�DECOMP��G� � the LDLT decomposition without permutations is used as an input for the direction

determination� This decomposition is usually obtained by the Gill�Murray algorithm
�����

�DECOMP��S� � the LDLT decomposition with permutations is used as an input for the direction
determination� This decomposition is usually obtained by the Schnabel�Eskow algo�
rithm ��
��

�DECOMP��B� � the block LDLT decomposition with permutations is used as an input for the di�
rection determination� This decomposition is usually obtained by the Bunch�Parlett
algorithm � 	��

�DECOMP��I� � the inverse of a symmetric matrix is used as an input for the direction determination�

��

�DECOMP��R� � the RTR decomposition without permutation is used as an input for the direction de�
termination� This decomposition is usually obtained by the recursive QR factorization
�����

�DECOMP��C� � the RTR decomposition with permutations is used as an input for the direction de�
termination� This decomposition is usually obtained by an application of the rank
revealing algoritm �����

�DECOMP��A� � the rectangular matrix is used as an input for the direction determination�
�DECOMP��Q� � the QR decomposition of a rectangular matrix without permutations is used as an

input for the direction determination� This decomposition is usually obtained using
the Householder re�ection with the explicitly stored orthogonal matrix Q�

�DECOMP��E� � the general square matrix is used as an input for the direction determination in the
case NA�NF �system of nonlinear equations��

The serial number of the method is speci
ed by the macrovariable �NUMBER� It determines an
individual realization of the direction determination and it will be explained later�

All options used for the method selection have default values which follows from the knowledge bases
coded in the individual templates� Therefore� they need not be speci
ed by the user� The possibilities
we describe can serve for users that are familiar with optimization methods�

Almost all optimization methods have di�erent realizations for three di�erent representations of the
objective function� If �HESF��D� then dense variants for either unconstrained or box constrained or
linearly constrained �with dense linear constraints� problems can be used� If �HESF��S� then sparse
variants for either unconstrained or box constrained problems can be used� Moreover� conjugate direction
methods ��CLASS��CD�� and sparse variable metric methods ��CLASS��VM�� can also solve linearly
constrained problems with sparse linear constraints ��JACC��S��� If �HESF��B� then sparse variants for
either unconstrained or box constrained problems can be used�

If the problem has nonlinear constraints then only special methods with the speci
cation �CLASS��SQ�
can be used�

��
� Conjugate direction methods

Conjugate direction methods are speci
ed by the statement �CLASS��CD�� These methods are very
e�cient for large problems with computationally simple objective functions ��KCF�� or �KCA���� The
main advantage of conjugate direction methods is that matrices are not used� This fact highly decreases
storage requirements�

The individual conjugate direction methods are speci
ed by the macrovariable �FORM�

�FORM��C� � conjugate gradient methods� These methods are the simplest ones from all conju�
gate direction methods and they require the fewest storage requirements� However�
they usually consume a greater number of function evaluations then other conjugate
direction methods�

�FORM��V� � variable metric methods with limited storage� These methods allow us to prescribe
storage requirements using the number of VM steps �the number of necessary used
vectors is approximately two times greater than the number of VM steps�� The num�
ber of VM steps is speci
ed by the macrovariable �MF� Variable metric methods with
limited storage usually consume fewer function evaluations then conjugate gradient
methods�

�FORM��M� � inexact di�erence version of the modi
ed Newton method ����� This method is im�
plemented either as the line search method or as the trust region method� It can be
very e�cient but� since it consumes a greater number of gradient evalutions� it can be
slower then other conjugate direction methods� particularly if the objective function
is more complicated ��KCF�� or �KCA����

There are two families of conjugate gradient methods implemented in the UFO system�

��

�NUMBER�� � basic conjugate gradient methods described in ��
�� The individual methods are spec�
i
ed using the macrovariables �MET� �MET� and �MET��

�NUMBER�� � generalized conjugate gradient methods introduced in ��
�� The individual methods
are speci
ed using the macrovariable �MET��

If �MET�� then the steepest descent method is used� If �MET�� then the Fletcher�Reeves method
���� is used� If �MET�� then the Polak�Ribiere method �
�� is used� If �MET�� then the Hestenes�Stiefel
method ���� is used� The macrovariable �MET� speci
es the restart procedure as it is described in ��
�
�it can have the values ����������
���� The macrovariable �MET� speci
es the scaling parameter as it is
described in ��
� �it can have the values �����

Similarly� the UFO system contains two variable metric methods with limited storage�

�NUMBER�� � The BFGS method with limited storage described in �
��� The default number of VM
steps is �MF����

�NUMBER�� � The extended BFGS method with limited storage described in ����� The default
number of VM steps is �MF���

Both these methods are realized either without scaling ��MET���� or with scaling described in ����
��MET�����

The possible speci
cations �type�form�number� for the conjugate direction methods in the uncon�
strained case are�

L�C��� L�V���
L�C��� L�V���

L�M���
G�M���

In both the box constrained and the linearly constrained cases we cannot use speci
cations with �FORM��M��

��	� Variable metric methods

Variable metric methods are speci
ed by the statement �CLASS��VM�� These methods are most
commonly used for either unconstrained or linearly constrained optimizations� Variable metric methods
use a symmetric �usually positive de
nite� matrix which is updated in every iteration in such a way
that it approximates the Hessian matrix of the objective function as well as possible� In the UFO
system� the variable metric methods are realized in three di�erent forms �for �HESF��D�� �HESF��S�
and �HESF��B�� depending on the Hessian matrix speci
cation�

There are two families of variable metric methods for dense problems ��HESF��D�� which are distin�
guished using the macrovariable �UPDATE�

�UPDATE��B� � the Broyden family � ��� Variable metric methods from this family are the most
commonly used ones since they are very robust and e�cient�

�UPDATE��D� � the Davidon family ����� Variable metric methods from this family are similar to
the previous ones� The only di�erence is that projections into the new subspace are
computed which guarantees the quadratic termination property even in the case of
an imperfect line search�

The individual methods are speci
ed using the macrovariables �MET� �MET�� and �MET��
The macrovariable �MET determines the variable metric update� If �MET�� then the BFGS method

� ��� ����� ��
�� ���� is used� If �MET�� then the DFP method ��
�� ��
� is used� If �MET�� then the
Hoshino method ���� is used� If �MET�� then the safeguarded rank�one method ���� is used� If �MET��
then the optimally conditioned method ���� is used� If �MET�
 then the rank�one based method ����
from the preconvex part of the Broyden family is used� If �MET�� then the variationally derived method
���� from the preconvex part of the Broyden family is used� If �MET�� then the heuristic method �	��

��

is used� If �MET�	 then the method ����� derived from the matrix decomposition is used� If �MET���
then the method ����� which minimizes the angle between the direction vector and the negative gradient
is used� If �MET��� then the method �	�� which minimizes the norm of the direction vector is used� If
�MET��� then the least prior deviation method �	�� is used� The default value is �MET���

The macrovariable �MET� determines the Oren �scaling� parameter �

�� If �MET��� then no scaling
is used� If �MET��� then initial scaling ���� is used� If �MET��� then controlled scaling ���� is used� If
�MET��� then scaling in each iteration is used� The default value is �MET���� The scaling parameter
is determined using heuristic rules given in �	���

The macrovariable �MET� determines the Biggs �nonquadratic model� parameter ���� If �MET���
then the unit value of the parameter is used� If �MET��� then the Spedicato value ��	� of the parameter
is used� The default value is �MET����

The possible speci
cations �type�decomposition�number� for dense variable metric methods in the
unconstrained case are�

L�G��� L�B��� L�I���
L�M���

G�G��� G�B��
G�M���
G�M���

T�G���
T�G���

In both the box constrained and the linearly constrained cases we cannot use speci
cations with �DE�
COMP��B��

If the Hessian matrix is sparse with a general pattern ��HESF��S�� then the sparse variable metric
methods are used that preserve this pattern� The individual variable metric updates �or families� are
speci
ed using the macrovariable �UPDATE�

�UPDATE��T� � the fractioned Toint complete update �the best method given in �	���� This update
can be used only if �DECOMP��M� and �NUMBER���

�UPDATE��G� � the fractioned Marwill projection �	��� This update can be used only if �DE�
COMP��M� and �NUMBER���

�UPDATE��M� � the simple Marwill projection �
��� This update can be used only if �DECOMP��M��
�UPDATE��V� � incomplete sparse variable metric updates from the Broyden family� These updates

can be used only if �DECOMP��G��

The particular incomplete sparse variable metric update is speci
ed using the macrovariable �MET
which can acquire the values ������ If �MET�� then the BFGS method is used� If �MET�� then the
DFP method is used� If �MET�� then the Hoshino method is used�

Fractioned updates with the speci
cations �UPDATE��T� or �UPDATE��G� can be used only in the
unconstrained case� The possible speci
cations �type�decomposition�number� for sparse variable metric
methods in the unconstrained case are�

L�G��� L�M���
L�M���

G�G���
G�M���
G�M���

In both the box constrained and the linearly constrained cases we can use only speci
cations with
�DECOMP��M� and �NUMBER��� Similarly� if the fractioned updates ��UPDATE��T� and �UP�
DATE��G�� are required then only speci
cations with �DECOMP��M� and �NUMBER�� can be used�

��

If the Hessian matrix is sparse with a partitioned pattern ��HESF��B�� then the partitioned variable
metric methods ���� are used� These methods are robust but they usually have greater storage require�
ments then sparse variable metric methods� Partitioned variable metric methods belong to the Broyden
family of updates ��UPDATE��B��� The particular partitioned variable metric update is speci
ed using
the macrovariable �MET which can have the values �������� If �MET�� then the BFGS method is used�
If �MET�� then the DFP method is used� If �MET�� then the Hoshino method is used� If �MET��
then the original �unsafeguarded� rank�one method is used�

The possible speci
cations �type�decomposition�number� for partitioned variable metric methods in
the unconstrained case are�

L�G��� L�M���
L�M���

G�G���
G�M���
G�M���

In the box constrained case we can use only speci
cations with �DECOMP��M� and �NUMBER��� If
�DECOMP��M� and �NUMBER�� then the partitioned structure can be transformed into the general
sparse structure before direction determination using the speci
cation �HESR��S�� This transformation
slightly increases storage requirements but the computations are faster due to cheaper matrix vector
multiplications� This transformation is automatically performed if we do not use speci
cations with
�DECOMP��M� and �NUMBER���

���� Modi�ed Newton methods

Modi
ed Newton methods are speci
ed by the statement �CLASS��MN�� These methods use the
Hessian matrix of the objective function which is computed either analytically or numerically� The UFO
system performs a numerical computation of the Hessian matrix automatically whenever the macrovari�
able �HMODELF �or �FGHMODELF� is not de
ned� Modi
ed Newton methods are realized in three
di�erent forms �for �HESF��D�� �HESF��S� and �HESF��B�� depending on the Hessian matrix speci�

cation� Even if the modi
ed Newton methods can be realized as the line search methods� it is more
advantageous to realize them as the trust region methods ��TYPE��G���

If the Hessian matrix is dense ��HESF��D�� then all second derivatives have to be given analyti�
cally or they are computed numericaly using di�erences of gradients� The possible speci
cations �type�
decomposition�number� for dense modi
ed Newton methods in the unconstrained case are�

L�G��� L�S��� L�B���
L�M���

G�G��� G�S��� G�B���
G�M���
G�M���
G�M�
�

In both the box constrained and the linearly constrained cases we cannot use speci
cations with �DE�
COMP��S� and �DECOMP��B��

If the Hessian matrix is sparse with a general pattern ��HESF��S�� then only the structurally nonzero
second order derivatives have to be given analytically using the prescribed pattern� Numerical compu�
tation of the second derivatives is based on the fact that a substantially lower number of di�erences
have to be used in the comparison with the dense case� The determination of suitable di�erences is a
combinatorial problem equivalent to some graph coloring problem ����� �����

If �MODEL��AQ� �sum of squares� then the combination ����� of both the modi
ed Newton and the
modi
ed Gauss�Newton methods can be used� This choice is possible using the macrovariable �MET� If
�MET�� then the modi
ed Newton method is used� If �MET�� then the combined method is used� The

��

default value is �MET��� The possible speci
cations �type�decomposition�number� for sparse modi
ed
Newton methods in the unconstrained case are�

L�G��� L�M���
L�M���

G�G���
G�M���
G�M���

In the box constrained case we can use only speci
cations with �DECOMP��M� and �NUMBER���
If the Hessian matrix is sparse with a partitioned pattern ��HESF��B�� then only the nonzero second

derivatives of the approximating functions have to be given analytically using the prescribed pattern�
Numerical computation of the second derivatives is based on the fact that the approximating functions
depend on a minor number of variables so that the number of di�erences is substantially lower in com�
parison with the dense case�

If �MODEL��AQ� �sum of squares� then the combination ����� of both the modi
ed Newton and the
modi
ed Gauss�Newton methods can be used� This choice is possible using the macrovariable �MET�
If �MET�� then the modi
ed Newton method is used� If �MET�� then the combined method is used�
The default value is �MET��� The possible speci
cations �type�decomposition�number� for partitioned
modi
ed Newton methods are�

L�M���
G�M���

���� Modi�ed Gauss�Newton methods

Modi
ed Gauss�Newton methods are speci
ed by the statement �CLASS��GN�� These methods are
special optimization methods for either nonlinear least squares ��MODEL��AQ�� or nonlinear least pow�
ers ��MODEL��AP�� problems� Modi
ed Gauss�Newton methods are based on the fact that the
rst
term in the Hessian matrix expression� depending on the
rst derivatives of the approximating functions
only� is a good approximation of the whole Hessian matrix� The second term in the Hessian matrix
expression can be approximated using the variable metric updates�

�UPDATE��NO�� no update is used� The method uses only the normal equation matrix �the
rst part
of the Hessian matrix expression��

�UPDATE��S� � the Dennis structured approach ��	� is used� The second part of the Hessian matrix
is approximated using modi
ed variable metric updates� This part is added to the
normal equation matrix if conditions for leaving the modi
ed Gauss�Newton method
are satis
ed�

�UPDATE��D� � the Brown�Dennis structured approach ����� is used� The Hessian matrices of approx�
imating functions are approximated using variable metric updates� These matrices
serve for approximating the second part of the Hessian matrix which is added to the
normal equation matrix if conditions for leaving the modi
ed Gauss�Newton method
are satis
ed�

�UPDATE��F� � the Fletcher hybrid approach � ��� ���� is used� The Hessian matrix is approximated
either by the normal equation matrix or by the matrix obtained using the variable
metric updates� The decision between the two cases is based on the rate of function
value decrease and on the normal equation matrix conditioning�

�UPDATE��B� � a variable metric update from the Broyden class is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modi
ed Gauss�Newton method are satis
ed ������

�UPDATE��M� � a sparse update based on the Marwill projection is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modi
ed Gauss�Newton method are satis
ed ������

��

The default value is �UPDATE��NO�� The particular variable metric updates from the above families
are speci
ed using the macrovariable �MET� If �MET�� then the BFGS method is used� If �MET��
then the DFP method is used� If �MET�� then the Hoshino method is used� If �MET�� then the
original �unsafeguarded� rank�one method is used� All these choices are possible if either �UPDATE��S�
or �UPDATE��D� is speci
ed� The value �MET�� is default in this case� If either �UPDATE��F� or
�UPDATE��B� is speci
ed then we can use the values �MET��� �MET�� and �MET��� The value
�MET�� is default in this case� If �UPDATE��M� is speci
ed then we can use only the value �MET���
The variable metric updates ��UPDATE�F� �UPDATE��B� and �UPDATE��M�� can be realized either
as simple updates �normal equation matrix is updated� or as cumulative updates �previous approximation
of the Hessian matrix is updated�� as it is described in ������ Decision between these possibilities is
mediated by the macrovariable �MOT�� If �MOT��� then the cumulative update is used� If �MOT���
then the simple update is used�

Modi
ed Gauss�Newton methods are realized in three di�erent forms �for �HESF��D�� �HESF��S�
and �HESF��B�� depending on the Hessian matrix speci
cation� Even if the modi
ed Gauss�Newton
methods can be realized as the line search methods it is more advantageous to realize them as the trust
region methods ��TYPE��G���

If the Hessian matrix is speci
ed to be dense ��HESF��D�� then the normal equation matrix is also
dense� In this case� we can use hybrid methods with updates �UPDATE��S�� �UPDATE��F� and �UP�
DATE��B�� If the normal equation matrix is dense� then modi
ed Gauss�Newton methods can be realized
with additional special matrix decompositions that cannot be used in other cases� If �DECOMP��R� then
the recursive QR decomposition �
�� is used with an additional correction of the upper triangular matrixR�
If �DECOMP��C� then� moreover� the upper triangular matrix R is changed using the rank revealing al�
gorithm ���� that can improve its conditioning� The possible speci
cations �type�decomposition�number�
for dense modi
ed Gauss�Newton methods in the unconstrained case are�

L�G�� � L�S��� L�R��� L�C��� L�M���
L�M���
L�M���

G�G��� G�S��� G�R��� G�C��� G�M���
G�M��
G�M���
G�M���
G�M�
�

T�G��� T�S��� T�R��� T�C���
T�G���

T�S��� T�C��� T�M���
M�M���
M�M���

In both the box constrained and the linearly constrained cases we cannot use speci
cations with �DE�
COMP��S�� �DECOMP��R� and �DECOMP��C�� If either �DECOMP��S� or �DECOMP��C� then
variable metric updates cannot be used ��UPDATE��NO��� Moreover� the speci
cation �UPDATE��S�
can be used only together with the choice �DECOMP��M��

If the Hessian matrix is speci
ed to be sparse with a general pattern ��HESF��S�� then the normal
equation matrix has the same structure� In this case� we can use hybrid methods with updates �UP�
DATE��D� and �UPDATE��M�� Nevertheless� the sparse Gauss�Newton methods work more quickly
than the partitioned ones since their linear equation solutions take a lower number of operations� The
sparse Gauss�Newton methods can be used only in the unconstrained case� The possible speci
cations
�type�decomposition�number� for sparse modi
ed Newton methods in the unconstrained case are�

�

L�G��� L�M���
L�M���

G�G���
G�M���
G�M���
G�M���

T�G���
T�M���

In the box constrained case we can use only speci
cations with �DECOMP��M� and �NUMBER���
If the Hessian matrix is speci
ed to be sparse with a partitioned pattern ��HESF��B�� then the normal

equation matrix has the same structure� If it is the case then we can use hybrid methods with updates
�UPDATE��S�� �UPDATE��D�� �UPDATE��F� and �UPDATE��B�� The possible speci
cations �type�
decomposition�number� for partitioned Gauss�Newton methods are�

L�M���
G�M���

The speci
cation of the Hessian matrix pattern has an internal importance only with in�uence to the
method choice� The user has to specify the pattern of the Jacobian matrix �see chapter ��� It is clear
that �JACA��S� must be speci
ed if �HESF��S� or �HESF��B��

���� Modi�ed Gauss methods

Modi
ed Gauss methods are speci
ed by the statement �CLASS��MG��We use this name for methods
which linearize the least squares problem in each iteration and which use the Jacobian matrix only
�modi
ed Gauss�Newton methods use the normal equation matrix��

Modi
ed Gauss methods are realized in two di�erent forms �for �JACA��D� and �JACA��S�� de�
pending on the Jacobian matrix speci
cation� Even if the modi
ed Gauss methods can be realized as the
line search methods� it is more advantageous to realize them as the trust region methods ��TYPE��G���

If the Jacobian matrix is speci
ed to be dense ��JACA��D�� then we cannot use hybrid methods
with variable metric updates �the speci
cation �UPDATE��NO is only permitted�� Moreover� the dense
modi
ed Gauss methods can be used only in the unconstrained case� The possible speci
cations �type�
decomposition�number� for dense modi
ed Gauss methods are�

L�A���
L�A���
G�A���
G�A���

If the Jacobian matrix is speci
ed to be sparse ��JACA��S�� then we can use hybrid methods with
simple variable metric updates�

�UPDATE��NO�� no update is used� The method uses original Jacobian matrix�
�UPDATE��V� � the simple factorized BFGS update ����� is used� The second part of the Hessian

matrix is approximated by the rank�one update of the Jacobian matrix�
�UPDATE��R� � the simple factorized rank�one update ����� is used� The second part of the Hessian

matrix is approximated by the addition of a dense row to the Jacobian matrix�

The main advantage of sparse modi
ed Gauss methods consists in the fact that the Hessian matrix is
dense if the sparse Jacobian matrix has some dense rows� In this case the sparse modi
ed Gauss�Newton
methods cannot be used� The possible speci
cations �type�decomposition�number� for sparse modi
ed
Gauss methods are�

��

L�A���
L�A���
G�A���
G�A���
G�A���
G�A���

In the box constrained case we can use only speci
cations with either �NUMBER�� or �NUMBER���

���� Quasi�Newton methods

Quasi�Newton methods are speci
ed by the statement �CLASS��QN�� These methods are special
optimization methods for nonlinear least squares ��MODEL��AQ�� problems including systems of non�
linear equations in the case when the
rst derivatives are not speci
ed analytically �the macrovariable
�GMODELA is not de
ned�� Quasi�Newton methods use a rectangular matrix which is updated in ev�
ery iteration in such a way that it aproximates the Jacobian matrix as well as possible� In the UFO
system�the quasi�Newton methods are realized in two di�erent forms �for �JACA��D� and �JACA��S��
depending on the Jacobian matrix speci
cation�

There are two possibilities for dense problems ��JACA��D�� which are distinguished using the macrovari�
able �UPDATE�
�UPDATE��NO�� no update is used� Every approximation of the Jacobian matrix is computed numer�

ically using di�erences�
�UPDATE��B� � the Broyden family �	�� of rank�one updates is used in almost all iterations� Only

after restart� the Jacobian matrix is approximated numerically using di�erences�
When �UPDATE��B� then the individual quasi�Newton methods are speci
ed using the macrovariable
�MET� If �MET�� then the
rst �good� Broyden update �	�� is used� If �MET�� then the second
Broyden update �	�� is used� If �MET�� then the second Greenstadt update �		� is used� If �MET��
then the
rst Greenstadt update �		� is used� If �MET�� then the
rst Todd OC update �	�� is used� If
�MET�
 then the
rst Todd OCX update �	�� is used� If �MET�� then the second Todd OC update
�	�� is used� If �MET�� then the second Todd OCX update �	�� is used� The default value is �MET���

The possible speci
cations �type�decomposition�number� for dense quasi�Newton methods are�

L�Q���
L�A��� L�E���

G�Q���
G�Q���

G�A��� G�E���
G�A���

G�Q���

The speci
cation �DECOMP��E� can be used only if NA�NF �system of nonlinear equations��
If the Jacobian matrix is sparse with a general pattern ��JACA��S�� then the sparse quasi�Newton

updates are used that preserve this pattern� There exist two possibilities which are distinguished using
the macrovariable �UPDATE�
�UPDATE��NO�� no update is used� Every approximation of the Jacobian matrix is computed numer�

ically using di�erences�
�UPDATE��B� � the Schubert update �	�� for sparse Jacobian matrices is used in almost all iterations�

Only after restart� the Jacobian matrix is approximated numerically using di�erences�
The possible speci
cations �type�decomposition�number� for sparse quasi�Newton methods are�

��

L�A��� L�E���
L�A��� L�E���
G�A���
G�A��� G�E���
G�A���
G�A���

The speci
cation �DECOMP��E� can be used only if NA�NF �system of nonlinear equations��

��
� Biconjugate direction methods

Biconjugate direction methods are speci
ed by the statement �CLASS��BD�� These methods are
special optimization methods for solving systems of nonlinear equations ��MODEL��AQ�� in the case
when the
rst derivatives are not speci
ed analytically �the macrovariable �GMODELA is not de
ned��
Therefore only the case NA�NF is permitted� Biconjugate direction methods are very e�cient for
large problems with computationally simple functions in nonlinear equations ��KCA���� The main
advantage of biconjugate direction methods is that matrices are not used� This fact highly decreases
storage requirements�

The individual biconjugate direction methods are speci
ed by the macrovariable �FORM�
�FORM��E� � inexact di�erence version of the Newton method for systems of nonlinear equations

�	
�� This method is implemented either as the line search method or as the trust
region method and it is based on smoothed CGS algorithm�

The possible speci
cations �type�decomposition�number� for the biconjugate direction methods are�

L�E���
G�E���

���� Methods for linear programming problems

Linear programming methods are speci
ed by the statement �CLASS��LP�� These methods are re�
alized in two di�erent forms �for �JACC��D� and �JACC��S�� depending on the constraint Jacobian
matrix speci
cation�

If the constraint Jacobian matrix is dense ��JACC��D�� then we can use two di�erent linear program�
ming methods based on the active set strategy�

�NUMBER�� � primal reduced gradient �null�space� method �like the method proposed in ����� which
is a special implementation of the steepest descent reduced gradient method�

�NUMBER�� � primal projected gradient �range�space� method which is a special implementation of
the steepest descent projected gradient method�

The possible speci
cations �type�form�number� for dense linear programming methods are L�L�� and
L�L���

If the constraint Jacobian matrix is sparse ��JACC��S�� then we can use one linear programming
method based on the simplex algorithm�

�NUMBER�� � primal reduced gradient �null�space� method which is described in ��	��

The possible speci
cation �type�form�number� for sparse linear programming methods is L�L���

���� Methods for quadratic programming problems

Quadratic programming methods are speci
ed by the statement �CLASS��QP�� These methods are
realized in two di�erent forms �for �JACC��D� and �JACC��S�� depending on the constraint Jacobian
matrix speci
cation�

�	

If the constraint Jacobian matrix is dense ��JACC��D�� then we can use three di�erent quadratic
programming methods based on the active set strategy�

�NUMBER�� � primal reduced gradient �null�space� method �like the method proposed in ����� which
is a special implementation of the Newton reduced gradient method�

�NUMBER�� � primal projected gradient �range�space� method �like the method proposed in �����
which is a special implementation of the Newton projected gradient method�

�NUMBER�� � dual projected gradient �range�space� method �like the method proposed in ������

The possible speci
cations �type�form�number� for dense quadratic programming methods are L�L���
L�L�� and L�L���

If the constraint Jacobian matrix is sparse ��JACC��S�� then we can use one quadratic programming
method based on the simplex algorithm�

�NUMBER�� � primal reduced gradient �null�space� method which is described in ��	��

The possible speci
cation �type�form�number� for sparse linear programming methods is L�L���

��
�� Recursive quadratic programming methods for nonlinear programming problems�

Recursive quadratic programming methods for nonlinear programming problems are speci
ed by
the statement �CLASS��SQ�� These methods are realized in two di�erent forms �for �JACC��D� and
�JACC��S�� depending on the constraint Jacobian matrix speci
cation�

If the constraint Jacobian matrix is dense ��JACC��D�� then recursive quadratic programmingmeth�
ods are realized as the line search methods ��TYPE��L�� with the l��penalty function� They are like the
methods proposed in ����� The quadratic term �an approximation of the Lagrangian function Hessian
matrix� is constructed using the variable metric updates belonging to the Broyden family� The particular
variable metric update is speci
ed by the macrovariable �MET� which can have the values ����������
��
�see part ��� above�� The quadratic programming subproblem is solved using the dual projected gra�
dient �range�space� method which is like the method proposed in ����� The special line search method
��MES��� can be successfully used�

If the constraint Jacobian matrix is sparse ��JACC��S�� then only linear constraints can be speci
ed�
The primal reduced gradient �null�space� method proposed in ��	� is used for solving the quadratic
subproblem�

��

� Recursive quadratic programming methods for minimax problems�

Recursive quadratic programming methods for minimax problems are speci
ed by the statement
�CLASS��SM�� These methods use a solution of the special quadratic programming subproblem derived
from the minimax problem and they are realized only for dense problems ��JACA��D� and �JACC��D���
The special quadratic programming subproblem is solved by the special dual projected gradient �range�
space� method proposed in ����� These methods are realized as either line search methods or trust region
methods� The possible speci
cations �type�form�number� for recursive minimax quadratic programming
methods are L�Q�� and G�Q���

If �MODEL��AM� is speci
ed then the minimax problem is considered and the method described in
���� �which is like the method proposed in ����� is used� The quadratic term �an approximation of the
Lagrangian function Hessian matrix� is constructed using the variable metric updates belonging to the
Broyden family� The particular variable metric update is speci
ed by the macrovariable �MET� which can
have the values ����������
�� �see part ��� above�� The special line search method ��MES��� described
in ���� can be successfully used�

If �MODEL��AM� is not speci
ed then the nonlinear programming problem is considered� In this
case� the minimax problem is constructed using l��penalty function� which is solved by the method
described in �����

��

��
	� Bundle methods

Bundle methods for nonsmooth optimization problems are speci
ed by the statement �CLASS��BM��
These methods use a solution of the special quadratic programming subproblem derived from the cutting
plane approach� This subproblem is in fact the same as in recursive quadratic programming methods
for minimax problems� Bundle methods are realized only for dense problems ��JACA��D��� The special
quadratic programming subproblem is solved by the special dual projected gradient �range�space� method
proposed in ����� There are contained only simple methods in the present version� realized as line search
methods� The possible speci
cation �type�form�number� for bundle methods is L�Q���

��
�� Methods for initial value problems for ordinary di�erential equations

Methods for initial value problems for ordinary di�erential equations are speci
ed using the macrovari�
able �SOLVER� There are contained only two Runge�Kutta type methods in the present version�

�SOLVER��DP��� the Dormand and Prince method of the
fth order with stepsize control�
�SOLVER��DP��� the Dormand and Prince method of the eighth order with stepsize control�

These methods� described in ������ use stepsize control based on local truncation error and they are
supposed for nonsti� systems�

Solution of initial value problem for ordinary di�erential equations can be stored for subsequent
processing� An extent of stored data is determined using the macrovariable �MED� If �MED�� then no
data are stored� If �MED�� then data in all solution steps are stored� If �MED�� then data in equidistant
mesh points are stored� Number of mesh points is speci
ed using the statement �NA�number of mesh
points in the last case�

��
�� Methods for direction determination

Optimization methods� contained in the UFO system� are usually implemented in such a way that
they use the same modules for direction determination� These modules� realized with di�erent kinds of
matrix decomposition� are distinguished using the macrovariables �TYPE and �NUMBER� The meaning
of the speci
cation �TYPE was explained above� Now we explain the speci
cation �NUMBER�

If �TYPE��L� then line search methods are supposed� In this case� relatively simple procedures for
direction determination are used� There are three possibilities�

�NUMBER�� � direct methods for solving linear systems based on various matrix decompositions�
The Gill�Murray decomposition ���� is utilized if �DECOMP��M�� If �HESF��S� then
the sparse symbolic decomposition is determined before the iterative process� So
only numerical computations with known factors are carried out in all subsequent
iterations�

�NUMBER�� � an alternative possibility to the previous case� The Schnabel�Eskow decomposition
��
� is applied if �DECOMP��M��

�NUMBER�� � an inexact conjugate gradient method for solving linear systems ����� The precision
determination is speci
ed by the macrovariable �MOS� If �MOS�� then the simple
strategy is used� If �MOS�� then the geometric decreasing strategy is used� If
�MOS�� then the harmonic decreasing strategy is used�

If the line search method is used then a descent property of the determined direction is tested� If

�sT g
 �� k s kk g k

where sTg is the directional derivative� s is the direction� and g is the objective function gradient� then
the direction is accepted� In the opposite case the optimization method is restarted� The value �� is
speci
ed using the macrovariable �EPS��

��

If �TYPE��G� then trust region methods are supposed� The initial trust region radius can be speci
ed
by the statement �XDEL�trust region radius� but the default automatically derived value is recom�
mended� Trust region methods can be internally scaled� This way is very advantageous for nonlinear
regression problems containing exponentials� The trust region scaling is speci
ed by the macrovariable
�MOS�� If �MOS��� then no scaling is performed� If �MOS��� then the scaling coe�cients are derived
from the normal equation matrix diagonal elements �
��� There are seven trust region methods in the
UFO system�

�NUMBER�� � so�called dog�leg methods based on various matrix decompositions� The Gill�Murray
decomposition ���� is utilized if �DECOMP��M�� The individual dog�leg methods are
speci
ed by the macrovariable �MOS� If �MOS�� then the single dog�leg method �
	�
is used� Is �MOS�� then the double dog�leg method ���� is used� If �MOS�� then
the triple dog�leg method is used� If �MOS�� then the optimum dog�leg method ����
is used� If �HESF��S� then the sparse symbolic decomposition is determined before
the iterative process� So only numerical computations with known factors are carried
out in all subsequent iterations

�NUMBER�� � an alternative possibility to the previous case� The Schnabel�Eskow decomposition
��
� is applied if �DECOMP��M�� If either �DECOMP��G� or �DECOMP��Q� then
so�called multiple dog�leg methods ����� are supposed� The number of dog�leg steps
is speci
ed by the statement �MOS�number of steps in the last case�

�NUMBER�� � an inexact conjugate gradient trust region method ����� The precision determination
is speci
ed by the macrovariable �MOS� If �MOS�� then the simple strategy is used�
If �MOS�� then the geometric decreasing strategy is used� If �MOS�� then the
harmonic decreasing strategy is used�

�NUMBER�� � either inexact LSQR trust region method ��	� if �DECOMP��A� or combined Lanczos
and CG method ����� if �DECOMP��M�� If �MOS�� then the simple strategy is
used� If�MOS�� then the geometric decreasing strategy is used� If �MOS�� then
the harmonic decreasing strategy is used�

�NUMBER�� � an optimum locally constrained trust region method �
��� The Gill�Murray decompo�
sition ���� is utilized if �DECOMP��M��

�NUMBER�
 � an alternative possibility to the previous case� The Schnabel�Eskow decomposition
��
� is applied if �DECOMP��M��

If �TYPE��T� then only the speci
cations �NUMBER��� �NUMBER�� and �NUMBER�� can be
used� These speci
cations have the same meaning as in the case �TYPE��G�� but the implementation
is simpler� If �NUMBER�� then the simpli
ed optimum locally constrained trust region method �
�� is
used�

If �TYPE��M� then Levenberg�Marquardt type methods are supposed�
�NUMBER�� � a modi
ed Marquardt method proposed by Fletcher �����
�NUMBER�� � a spiral algorithm proposed by Steen and Byrne ���
��

��
�� Methods for stepsize selection

Stepsize selection is a very important part of line search methods� There are two types of stepsize
selection procedures implemented in the UFO system� speci
ed by the macrovariable �KDS� The value
of the macrovariable �KDS is usually derived internally from the order of analytically given derivatives�
If only the function values are given analytically then always �KDS��� In the opposite case the value
of the macrovariable �KDS can be speci
ed by the user� If �KDS�� then only the function values are
used for stepsize selection� If �KDS�� then the function values and the
rst directional derivatives are
used� If �KDS�� then� in addition� the Hessian matrices or their approximations are computed during
the stepsize selection �this case is very useful if modi
ed Gauss�Newton methods are used��

The particular stepsize selection method is speci
ed by the macrovariable �MES� If �KDS�� then we
have the following possibilities�

��

�MES�� � The uniformly increasing extrapolation or bisection interpolation is used�
�MES�� � Two point quadratic extrapolation or interpolation is used�
�MES�� � Three point quadratic extrapolation or interpolation is used�
�MES�� � Three point cubic extrapolation or interpolation is used�
�MES�� � Special extrapolation or interpolation is used based on the special form of the objective

function�

If �KDS�� or �KDS�� then the following possibilities� based on the
rst directional derivatives� can be
used�

�MES�� � the uniformly increasing extrapolation or bisection interpolation is used�
�MES�� � quadratic extrapolation or interpolation �with one directional derivative� is used�
�MES�� � quadratic extrapolation or interpolation �with two directional derivatives� is used�
�MES�� � cubic extrapolation or interpolation ��
� is used�
�MES�� � conic extrapolation or interpolation � �� is used�

Another useful speci
cation for the stepsize selection is a termination criterion� which is determined
using the macrovariable �KTERS�

�KTERS�� � nonmonotone line search procedure proposed in ���� is used� The absolute value of
the macrovariable �KTERS� which cannot be greater then ��� gives the number of
nonmonotone steps�

�KTERS�� � perfect stepsize� The relative precision of the stepsize parameter is given by the value
�EPS��

�KTERS�� � the Goldstein stepsize ����� The termination precision is given by the value �EPS��
�KTERS�� � the Curry�Altman stepsize ���� �Wolfe conditions�� The termination precision is given

by the values �EPS� and �EPS��
�KTRES�� � the extended Curry�Altman stepsize ���� �strict Wolfe conditions�� The termination

precision is given by the values �EPS� and �EPS��
�KTERS�� � the Armijo stepsize � ��� The termination is given by the value �EPS��
�KTERS�
 � the
rst stepsize� The stepsize selection is terminated after the
rst function evalua�

tion�

The last useful speci
cation for the stepsize selection is an initial stepsize choice which is determined
by the macrovariable �INITS� The initial stepsize is usually computed by the rule

� � min�c���c��%F�s
Tg��

where sT g is the initial directional derivative and %F � F � Fmin or %F � Fold � F if the value of
the macrovariable �INITS is positive or negative respectively� The absolute value of the macrovariable
�INITS determines the coe�cients c� and c� If jINITSj�� then c� � � and c� � �� If jINITSj�� then
c� � � and c� � �� If jINITSj�� then c� � � and c� � �� If jINITSj�� then c� � � and c� � ��

��
�� Methods for numerical di�erentiation

The UFO system computes derivatives of the model function �of the approximating functions� of the
constraint funcions� numerically whenever they are not given analytically� This is made possible by the
macroprocessor that generates a corresponding part of the control program� The main problem of a
numerical di�erentiation is a di�erence determination which has to be chosen in such a way that the
total in�uence of both the cancellation and the roundo� error is as small as possible� There are three
possibilities in the UFO system which are distinguished using the macrovatiable �MCG�

�MCG�� � a simple di�erence determination described in ���� is used�
�MCG�� � an optimum di�erence determination proposed in ���� is used�
�MCG�� � an optimum di�erence determination proposed in ���� is used�

��

The default option is �MCG��� The above possibilities are used for a computation of the model function

rst order derivatives� The other �second order derivatives or derivatives of the approximating functions
and constraint functions� are always computed with the simple di�erence determination�

��

� Methods for objective function evaluation in the case of dynamical systems optimiza�
tion

If either �MODEL��DF� or �MODEL��DQ� then the objective function is computed from the solution
of an initial value problem for ordinary di�erential equations� The initial value problem is solved and
the integral criterion is evaluated using integration methods speci
ed by the macrovariable �SOLVER
as it is described above� If the partial derivatives of all the used functions are given analyticaly then
the gradient of the objective function is computed by integration methods� There are two possibilities
speci
ed by the macrovariable �SYSTEM�

�SYSTEM��F�� forward integration using an augmented systen of ordinary di�erential equations�
�SYSTEM��B�� backward integration using the adjoint system of ordinary di�erential equations�

The default value is �SYSTEM��F�� In the case of modi
ed Gauss�Newton methods ��CLASS��GN��� an
approximation of the Hessian matrix is also computed using forward integration of an augmented system�

��
�� Global optimization methods

Global optimization methods are used if �EXTREM��G� is speci
ed� Global optimization methods
use local optimization ones for
nding local minima� Therefore the particular local optimization method
has to be chosen using the macrovariables �CLASS and �TYPE and others� Individual global optimization
methods are speci
ed using the macrovariables �GCLASS and �GTYPE� The UFO system contains four
classes of global optimization methods�

�GCLASS�� � random search methods� These methods are simple� robust but less e�cient�
�GCLASS�� � continuation methods� These methods use some penalty functions which are adjusted

after reaching an arbitrary local minimum so that another local minimum is found�
�GCLASS�� � clustering methods� These methods are based on randomly generated sample points

which are processed using clustering algorithms to determine attractivity regions
�clusters� of the individual minima� The attractivity regions �clusters� obtained are
not searched repeatedly�

�GCLASS�� � multi level methods� Modern stochastic methods that involve a combination of sam�
pling and local search techniques� These methods combine strong theoretical prop�
erties with an attractive computational behaviour� These methods are simpler� but
more e�cient than clustering methods�

If �GCLASS��� then we can choose four types of global optimization methods�

�GTYPE�� � singlestart methods� Random points� uniformly distributed in the given region� are
generated and a local minimization method is started from the point with the lowest
function value�

�GTYPE�� � multistart methods� Random points� uniformly distributed in a given region� are
generated and a local minimization is started from every point� Obtained local minima
are compared and selected�

�GTYPE�� � modi
ed multistart methods� Random points� uniformly distributed in a given region�
are generated and a local minimization is started whenever a point is found which
has a lower function value than that reached up to date�

��

�GTYPE�� � Bayesian reduced multistart methods �
�� Random samples of points are repeatedly
generated� Every random sample is reduced and a local minimization is started from
all points belonging to the reduced sample� Obtained local minima are compared and
selected� This process is repeated while the Bayessian termination criterion is not
satis
ed�

If �GCLASS��� then we can choose three types of global optimization methods�

�GTYPE�� � tunneling function methods ��	�� These methods consist of two phases� a local mini�
mization phase and a tunneling phase� The starting point for the second phase is the
local minimum� At the end of the tunneling phase a new point is found which has a
function value equal or lower then the starting point�

�GTYPE�� � combined tunneling function and random search methods� In this case a random
search is used in the tunneling phase� if minimization of a tunneling function failed
to
nd a new starting point�

�GTYPE�� �
lled function methods ��	�� ����� The idea of
lled function methods is based on a

lled function� This function has a maximum in the point of a known minimum of
the objective function� On the other hand� this function does not have minimizers
or saddle points in any basin of a higher minimizer of the objective function� but it
does have minimizer or saddle point in a basin of a lower minimizer of the objective
function�

If �GCLASS��� then we can choose two types of global optimization methods�

�GTYPE�� � density clustering method � ��� Density clustering refers to a class of clustering tech�
niques using nonparametric probability density estimates to form clusters� All un�
clustered points from reduced sample which are within the threshold distance from
the seed point are added to the cluster�

�GTYPE�� � single linkage clustering method � ��� In this case� the next two clusters to be merged
are those for which the distance between the nearest points is the smallest� When
this distance becomes larger than the threshold distance� the procedure is stopped�
Starting with each point in a separate cluster� the points at distances less than the
threshold distance are linked� A cluster is recognised as a set of points linked together�

If �GCLASS��� then we can choose three types of global optimization methods�

�GTYPE�� � multi level single linkage method ����� In this case� the function values of the sample
points are used in a very simple manner to obtain a very powerful method� The local
search procedure is applied to every sample point� except if there is another sample
point within the critical distance which has a smaller function value� Clusters can be
constructed by associating a point to a local minimum if there exists a chain of points
linking it to that minimum� such that the distance between each successive pair is
at most equal to the critical distance and the function value is decreasing along the
chain� A point in this way could be assigned to more than one minimum�

�GTYPE�� � multi level mode analysis method ����� This method is a generalization of the mode
analysis method� Region is partitioned into cells� After sample reduction� it is deter�
mined which cells contain enough points to be !full"� For each full cell the function
value of the cell is de
ned to be equal to the smallest function value of any of the
sample points in the cell� Finally� for every full cell� local minimization is applied
except if a cell has a neighbouring cell which is full and has a smaller function value�

�GTYPE�� � modi
ed multi level single linkage method� This is a multi level single linkage method
with some modi
cations that are described in �����

��

The number of points randomly generated in the given region can be speci
ed using the macrovariable
�MNRND� The default value is usually �������NF� Since it depends on the number of variables and for
NF��� it is too large� we recommend the use of global optimization methods up to �� variables only�
If we use clustering or multi level single linkage methods ��GCLASS�� or �GCLASS��� then we can
specify additional parameters�

�MNLMIN � maximum considered number of local minima� The default value is ������NF�
�GAMA � reduction of random sample �typically ���D� � ���D��� Greater value of GAMA

usually leads to greater number of local minima� but it required greater amount of
work�

�SIGMA � parameter of cluster or single linkage termination �typically � � ���

�

�� Special tools of the UFO system

The UFO system contains special tools that facilitate the user�s activity� There are tools for checking
the correctness of optimization problems� testing optimization methods and printing important informa�
tion�

��
� Checking optimization problems

The values� gradients� Hessian matrices of the model function or the approximating functions or
the constraint functions are speci
ed using the macrovariables �FMODELF� �GMODELF� �HMODELF
or �FMODELA� �GMODELA� �HMODELA or �FMODELC� �GMODELC� �HMODELC respectively�
Sometimes checking the correctness of these models is needed� If it is the case then both the analytical
and the numerical diferentiation can be compared� Checking optimization problems can be speci
ed
using the macrovariable �TEST� If �TEST��NO� then no checking is performed� If �TEST��YES� then
both the analytical and the numerical di�erentiation is executed before optimization is started and the
derivatives obtained are printed� Only the derivatives that are analytically speci
ed �the
rst� the second�
are checked� Finally� if �TEST��ONLY� then only checking is performed and optimization is not started�
An output of checking a optimization problem has the following form�

STANDARD TEST OF EXTERNAL SUBROUTINES

�������������������������������������

PROBLEM NO �

PROBLEM

�������

NF
 � KDF
 � KSF
 � KCF
 � NORMF
 �

NA
 � NAL
 � MAL
 � KDA
 �� KSA
 � KCA
 � NORMA
 �

NC
 � NCL
 � MCL
 � KDC
 � KSC
 � KCC
 � NORMC
 �

PARAMETERS

����������

X
 ������������D��� �����������D���

DERIVATIVES

�����������

FF A
 �
�
�������D���

GF N
 ������

���D��� ������������D���

GF A
 ������������D��� ������������D���

HF N
 �����������D��� �����������D��� �����������D���

HF A
 �����������D��� �����������D��� �����������D���

FC A
 ������������D���

GC N
 �����������D��� �����������D���

GC A
 �����������D��� �����������D���

FC A
 �����������D���

GC N
 ������������D��� �

��D���

GC A
 ������������D��� �����������D���

FC A
 �����������D���

GC N
 ������������D��� �����������D���

GC A
 ������������D��� �����������D���

��

Here the letter �N� indicates a numerical di�erentiation and the letter �A� indicates an analytical
di�erentiation�

� �	� Testing optimization methods

The UFO system contains a great number of subroutines that serve for testing optimization methods�
All these subroutines begin with the letter �E� �external�� Input subroutines have the second letter �I�
and the third letter �U� or �L� or �N� for unconstrained or linearly constrained or nonlinearly constrained
problems respectively� The model speci
cation subroutines have the second letter �F� or �A� or �C� for a
model function or approximating functions or constraint functions respectively� and the third letter �F�
or �G� or �H� for values or gradients or Hessian matrices respectively� The fourth letter is always �U� or
�D� or �S� or �B� for universal or dense or sparse or partitioned problems respectively� The last two digits
specify individual test problems collections� Tests corresponding to individual test problems collections
are realized using the following test input
les�

TEST����UFO � Tests for unconstrained optimization ��� dense problems from ����� ������ External
subroutines EIUD��� EFFU��� EFGU��� EFHD�� are used�

TEST����UFO � Tests for sum of squares minimization ��� dense problems from �
���� External sub�
routines EIUD��� EAFU��� EAGU�� are used�

TEST����UFO � Tests for linearly constrained optimization ��
 dense problems from ������ External
subroutines EILD��� EFFU��� EFGU�� are used�

TEST����UFO � Tests for medium�size linear programming �
 dense problems�� External subroutine
EILD�� is used�

TEST����UFO � Tests for medium�size quadratic programming �� dense problems�� External subrou�
tine EILD�� is used�

TEST�
��UFO � Tests for minimax �� dense problems from ������ External subroutines EIUD�
�
EAFU�
� EAGU�
 are used�

TEST����UFO � Tests for inequality constrained nonlinear programming ��� dense problems from ������
External subroutines EIND��� EFFU��� EFGU��� ECFU��� ECGU�� are used�

TEST����UFO � Tests for equality constrained nonlinear programming ��� dense problems from ������
External subroutines EIND��� EFFU��� EFGU��� ECFU��� ECGU�� are used�

TEST�	��UFO � Tests for unconstrained global optimization ��� problems from �	���� External sub�
routines EIUD�	� EFFU�	� EFGU�	 are used�

TEST����UFO � Tests for unconstrained optimization ��� sparse problems from ����� �	���� External
subroutines EIUS��� EFFU��� EFGU�� are used�

TEST����UFO � Tests for large�scale linear programming ��� sparse problems�� External subroutine
EILS�� is used�

TEST����UFO � Tests for large�scale quadratic programming ��� sparse problems�� External subrou�
tine EILS�� is used�

TEST����UFO � Tests for linearly constrained optimization �� sparse problems�� External subroutines
EILS��� EFFU��� EFGU�� are used�

TEST����UFO � Tests for unconstrained optimization ��� partitioned problems from ����� �	���� Ex�
ternal subroutines EIUB��� EAFU��� EAGU�� are used�

TEST����UFO � Tests for sum of squares minimization �� partitioned problems from ��	��� External
subroutines EIUB��� EAFU��� EAGU�� are used�

TEST�
��UFO � Extended tests for unconstrained optimization ��� dense problems from ����� �����
�
���� External subroutines EIUD�
� EFFU�
� EFGU�
 are used�

TEST����UFO � Tests for nonlinear equations solutions ��� dense problems�� External subroutines
EIUD��� EAFU��� EUGU�� are used�

TEST����UFO � Test for nonlinear equations ��� sparse problems from �	
��� External subroutines
EIUS��� EAFU��� EAGU�� are used�

TEST����UFO � Tests for sum of squares minimization �
 dense problems from ������ External sub�
routines EIUD��� EAFU��� EAGU�� are used�

��

In these input
les� all necessary macrovariables are de
ned and the external subroutines are called�
The external subroutines with the last two digits ���� � � ��� are brie�y described in the text
les E���TXT�
� � � � E���TXT�

To demonstrate the use of the test input
le we perform a test of sum of squares minimization using
hybrid method realized as a trust region method� The test input
le TEST��A�UFO has the form�

�SET�INPUT�

NF
NFD

NA
NAD

CALL EIUD���NF�NA�NAL�X�FMIN�XMAX�NEXT�IEXT�IERR�

IF�NEXT�EQ��� XMAX
����P �

IF�IERR�NE��� GO TO

�ENDSET

�SET�FMODELA�

CALL EAFU���NF�KA�X�FA�NEXT�

�ENDSET

�SET�GMODELA�

CALL EAGU���NF�KA�X�GA�NEXT�

�ENDSET

�NF
��

�NA
��

�KOUT
�

�KOUT�
�

�KOUT�
���

�KOUT�
�

�LOUT
�

�MOUT
�

�MIT
���

�MODEL
�AQ�

�CLASS
�GN�

�TYPE
�G�

�DECOMP
�M�

�NUMBER
�

�UPDATE
�F�

�TOLX
�����P����

�TOLF
�����P����

�TOLG
�����P���

�BATCH

INTEGER NFD�NAD

INTEGER NITT������NFVT������NFGT������NDCT������NSUC������NTEST

�GLOBAL

�INITIATION

�TSTART

NFD
NF

NAD
NA

NTEST
�

NTEST
NTEST��

NITT�NTEST�
�

NFVT�NTEST�
�

NFGT�NTEST�
�

NDCT�NTEST�
�

�	

NSUC�NTEST�
�

DO

 NEXT
����

�INPUT

�METHOD

NITT�NTEST�
NITT�NTEST��NIT

NFVT�NTEST�
NFVT�NTEST��NFV

NFGT�NTEST�
NFGT�NTEST��NFG

NDCT�NTEST�
NDCT�NTEST��NUP

IF�ITERM�GT���AND�ITERM�LT���� NSUC�NTEST�
NSUC�NTEST���

 CONTINUE

WRITE�ITR����NTEST�NITT�NTEST��NFVT�NTEST��NFGT�NTEST��

� NDCT�NTEST��NSUC�NTEST�

IF �KOUT�EQ���� THEN

WRITE�IWR����NTEST�NITT�NTEST��NFVT�NTEST��NFGT�NTEST��

� NDCT�NTEST��NSUC�NTEST�

ENDIF

�� FORMAT�� TEST
��I���X��IT
��I���X��IF
��I���X��IG
��I���X�

� �ID
��I��� � ��I��

�TSTOP

�END

The result �screen output� obtained has the following form �each row corresponds to one test problem
and the last row is a summary��

� NIT
 �� NFV
 �� NFG
 �� NDC
 �� F
 ���
D��
 G
 ����D���

� NIT
 �� NFV
 �� NFG
 �
 NDC
 �� F
 ����D��� G
 �
��D���

� NIT
 �� NFV
 �� NFG
 �� NDC
 �� F
 ����D��� G
 ����D���

� NIT
 �� NFV
 �
 NFG
 �� NDC
 �� F
 ����D��� G
 �
��D���

� NIT
 � NFV
 � NFG
 � NDC
 � F
 ���
D��� G
 ����D���

� NIT
 �� NFV
 �
 NFG
 �� NDC
 �� F
 ����D��� G
 ����D���

� NIT
 �� NFV
 �� NFG
 �� NDC
 �� F
 ����D��� G
 ���
D��

� NIT
 � NFV
 � NFG
 � NDC
 � F
 ����D��� G
 �
��D���

 NIT
 � NFV
 � NFG
 � NDC
 � F
 ����D��� G
 ����D���

�� NIT
 ��� NFV
 ��� NFG
 ��� NDC
 ��� F
 ����D��� G
 ����D���

�� NIT
 �� NFV
 �
 NFG
 �� NDC
 ��
 F
 ����D��� G
 �
��D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 �� F
 ����D��� G
 ����D��

�� NIT
 �� NFV
 �� NFG
 �� NDC
 �� F
 ���
D��
 G
 ����D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 ��� F
 ���
D��� G
 ����D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 �
 F
 ����D��� G
 ��
�D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 �� F
 ���
D��� G
 ��
�D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 ��
 F
 ����D��� G
 ����D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 ��� F
 ��
�D��� G
 ����D���

�
 NIT
 �� NFV
 �� NFG
 �� NDC
 �
 F
 ���
D��� G
 ����D���

�� NIT
 � NFV
 � NFG
 � NDC
 �� F
 ����D��
 G
 ����D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 �� F
 ����D��� G
 ����D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 �� F
 ����D��
 G
 ����D���

�� NIT
 �
 NFV
 �� NFG
 �� NDC
 �� F
 ���
D��� G
 ����D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 �� F
 ����D��� G
 ����D���

�� NIT
 �� NFV
 �� NFG
 �� NDC
 �� F
 ����D��� G
 ��
�D���

�

�� NIT

 NFV
 �� NFG
 �� NDC
 �� F
 ����D��� G
 ��
�D���

�� NIT
 � NFV
 � NFG
 � NDC

 F
 �
��D��� G
 ����D���

�� NIT
 � NFV
 � NFG
 � NDC
 �� F
 ����D��� G
 ���
D���

�
 NIT
 � NFV
 � NFG
 � NDC
 � F
 ��

D��� G
 ����D���

�� NIT
 � NFV
 � NFG
 � NDC
 � F
 ����D��� G
 ����D���

TEST
 � IT
 ��� IF
 ��� IG
 ��� ID
 ���� � ��

TIME
 ����������

���� Print speci�cations

The UFO system contains a great number of standard output procedures which are controlled using
the macrovariables �KOUT� �KOUT�� �KOUT�� �KOUT�� �LOUT� �MOUT� �NOUT� These output
procedures are useful namely for debugging new optimization methods� Besides standard output pro�
cedures� user�s output and post�processing subroutines can be used� The UFO system works with two
output
les� the screen output for basic information and the basic output �a printer usually� for extended
information� The Fortran number of the screen output de
nes the common variable ITR and the Fortran
number of the basic output de
nes the common variable IWR�

A print level in the basic output is determined using the macrovariables �KOUT� �KOUT�� �KOUT��
�KOUT�� �LOUT and �NOUT� The macrovariable �KOUT can have the following values�

�KOUT��� � Paper saving print� Only several rows with basic informations are printed for every
solution� This type of print is useful for testing optimization methods�

�KOUT� � � Print is suppressed �the basic output is empty�� In this case� only the screen output
is supposed�

�KOUT� � � Basic print� The heading and the
nal results are printed together with selected
information on each accepted iteration�

�KOUT� � � Extended print� Additional information� obtained from stepsize selections and vari�
able metric updates� is printed�

�KOUT� � � Extended print� Additional information� obtained from direction determinations� is
printed�

�KOUT� � � Extended print� Additional information� obtained from linear constraint additions
and deletions� is printed�

�KOUT� � � Extended print� Additional information� obtained from numerical diferentiations� is
printed�

A selection of iterations� accepted for print� is controlled by the contents of the macrovariables
�KOUT�� �KOUT�� �KOUT�� If KOUT�� KOUT� then only the iterations whose numbers are be�
tween KOUT� and KOUT� are assumed but always KOUT��� ones are omitted �KOUT� is a lower
bound� KOUT� is an upper bound and KOUT� is a step�� Similarly if KOUT��KOUT� then only
the iterations whose numbers are less than KOUT� or greater then KOUT� are assumed but always
KOUT��� ones are omitted�

While the macrovariable �KOUT speci
es which information is printed� the macrovariable �LOUT
speci
es how much information is printed�

�LOUT� � � Basic print� The basic information �� row only� is printed in each accepted iteration�
�LOUT�� � � Extended print� Additional scalar variables are printed�
�LOUT�� � � Extended print� Additional vectors �usually gradients� are printed�
�LOUT�� � � Extended print� Aditional matrices �usually Hessian matrices� are printed�

If �LOUT�� then a short quantity of printed informations is assumed� If �LOUT�� then an extended
quantity of printed information is assumed�

The macrovariable �NOUT controls a size of the heading� If �NOUT�� then the short heading is
printed� If �NOUT�� then the extended heading is printed�

�

A print level in the screen output is determined using the macrovariables �MOUT which can have
the following values�

�MOUT� � � Screen output is suppressed�
�MOUT�� � � Basis screen output� The
nal results appear on the screen�
�MOUT�� � � Extended screen output� Selected information from every iteration appears on the

screen�

Is �MOUT�� then short
nal results �scalar variables� appear on the screen� If �MOUT�� then extended

nal results �vectors� appear on the screen�

In the case of global optimization� the additional macrovariables �KOUTG and �MOUTG are used
for a print speci
cation� The macrovariable �KOUTG controls the basic output�

�KOUTG�� � Print is suppressed �the basic output is empty�� In this case� only the screen output
is supposed�

�KOUTG�� � Basic print� The heading and the
nal results are printed together with all successful
steps of global optimization�

�KOUTG�� � Extended print� Additional information� obtained from the local optimization� is
printed with the extent speci
ed by the macrovariable �KOUT�

Similarly� the macrovariable �MOUTG controls the screen output�

�MOUTG�� � Screen output is suppressed�
�MOUTG�� � Basic screen output� The
nal results appear on the screen�
�MOUTG�� � Basic screen output� The
nal results together with all successful steps of global

optimization appear on the screen�
�MOUTG�� � Extended screen output� Additional information� obtained from the local optimiza�

tion� appears on the screen with the extent speci
ed by the macrovariable �MOUT�

To show a typical basic output which corresponds to the choices �KOUT��� �KOUT���� �LOUT���
�NOUT�� we propose the following results from unconstrained optimization�

UNCONSTRAINED MINIMIZATION USING UFO SYSTEM

���

OPTIMIZATION SUBROUTINE � U�FDU�

DIRECTION DETERMINATION � UDDLI�

STEP SIZE DETERMINATION � US�L��

FUNCTION DETERMINATION � UF�F��

GRADIENT DETERMINATION � UF�GS�

H MATRIX DETERMINATION �

VARIABLE METRIC UPDATE � UUDBI�

PROBLEM

�������

NF
 � KDF
 � KSF
 � KCF
 � KBF
 � ISNF
 � NORMF
 �

NA
 � NAL
 � MAL
 � KDA
�� KSA
 � KCA
 � KBA
 � ISNA
 � NORMA
 �

NC
 � NCL
 � MCL
 � KDC
�� KSC
 � KCC
 � KBC
 � ISNC
 � NORMC
 �

FINAL RESULTS

�������������

FF
 ����������
�D���

X
 ������
�����D��� �����������D���

�

TERMINATION� ITERM
� GRAD TOL F
�����D��� G
 ����D��� D
 ����D���

STATISTICS

����������

NIT
 �� NDEC
 �

NFV
 �� NAV
 � NCV
 � NRES
 �

NFG
 � NAG
 � NCG
 � NREM
 �

NFH
 � NAH
 � NCH
 � NADD
 �

Here the optimization subroutines used are listed on the top followed by problem speci
cations� After brief
results the termination causes are written� The termination cause ITERM�� �GRAD TOL� corresponds
to the attainment of required gradient norm� F is the objective function value� G is the maximumabsolute
value of gradient elements and D is the maximum relative change of variables� The statistics contain
the number of iterations NIT� the number of decompositions NDEC� the number of restarts NRES� the
number of constraint deletions or additions NREM or NADD respectively� and a set of data concerns
numbers �N� of model function �F� or approximating functions �A� or constraint functions �C� values
�V� or gradients �G� or Hessian matrices �H� evaluations respectively�

If the user�s output and post�processing subroutines are used then they are included to the control
program using the macrovariable �OUTPUT�

�SET�OUTPUT�
Calling post�processing subroutines�
Calling output subroutines�

�ENDSET

Parameters of user�s output and post�processing subroutines must satisfy the UFO conventions� For
example the vector of variables� the model function value� the model function gradient must be denoted
X� FF� GF respectively �see chapter ���

���� Graphical output

The graphical output can be used only on PC computers under the MS DOS system� This possi�
bility is not allowed on the UNIX workstations� If we want to use graphical output� we have to set
�GRAPH��YES� �the default value is �GRAPH��NO��� In this case both iterations and
nal results
appear in the graphical mode� Final results are divided into several groups which can be successively
displayed� We can change the displayed group by typing particular characters from the keyboard�

Change of the displayed group of
nal results�

F � �function� � Value of the objective function and statistics�
V � �variables� � Values of variables �with their bounds if KBF����
A � �approximation� � Values of approximating functions �with their prescribed values if KBA���� Values

of selected components of a solution of the set of ordinary di�erential equations
at the prescribed mesh points if NE���

C � �constraints� � Values of constraint functions �with their bounds if KBC����
D � �data� � Data which specify the problem solved �sizes of problem and additional speci
ca�

tions��
O � �options� � Options which specify the method used�

Exit�

Q � �quit� � Exit from the graphical output�

After typing each character we must use ENTER�

�

If we have chosen either V �variables� or A �approximation� or C �constraints�� then results can be
displayed graphically by typing G �graph� from the keyboard� A graphical picture appears on the screen
in this case� It contains either values of variables with indices I� �� I � NF� or values of the approximating
functions with indices KA� � � KA � NA� or values of the constraint functions with indices KC� � � KC
� NC� If we have chosen A �approximation� in the case of NE��� then the graphical picture contains a
component �with the index VAR� of a solution of the set of ordinary di�erential equations at the mesh
points AT�KA�� � � KA � NA� We have to de
ne the index VAR from the keyboard in this case� The
graphical picture can be changed by typing particular characters from the keyboard�

Change of the representation�

V � �values� � Values are drawn�
O � �ordinates� � Values and ordinates from zero axis are drawn�
C � �curves� � Values are connected by a curve�
M � �mixed� � Curve and ordinates are drawn�

Change of the graph �if either KBF�� or KBA�� or KBC����

F � �functions� � Either values of variables X�I�� � � I � NF� or values of approximating functions
AF�KA�� � � KA � NA� or values of constraint functions CF�KC�� � � KC �
NC� are demonstrated�

A � �approximation� � Either values of variables X�I� together with their bounds XL�I� and XU�I�� � � I
� NF� or values of approximating functions AF�KA� together with their prescribed
values AM�KA� � � � KA � NA� or values of constraint functions CF�KC� together
with their bounds CL�KC� and CU�KC�� � � KC � NC� are demonstrated�

D � �di�erences� � Either di�erences between variables and their bounds or di�erences between ap�
proximating functions and their prescribed values or di�erences between constraint
functions and their bounds are demonstrated�

Continuation �if either NF � ��� or NA � ��� or NC � �����

P � �previous� � Previous set of at most ��� values is drawn�
N � �next� � Next set of at most ��� values is drawn�

New graph or return�

W � �new� � This possibility can be used only if NE��� Then a new component �with a new
index VAR� of a solution of the set of ordinary di�erential equations is drawn� We
have to de
ne a new index VAR from the keyboard in this case�

Q � �quit� � Return to the displayed group of
nal results�

After typing each character we must use ENTER�
If we have chosen F �function� as a group of
nal results in the case of NE��� we can drawn an

orbit of two components of a solution of the set of ordinary di�erential equations by typing G �graph�
from the keyboard� This graphical picture can be changed by typing characters V �values�� C �curves��
N �new components�� Q �quit� respectively like the gra
cal picture described above� Indices of selected
components have to be de
ned from the keyboard�

Another possibility is speci
ed setting either �MAP��YES� or �MAP��EXTENDED� �default value
is �MAP��NO��� In this case� if we have chosen F �function� as a group of
nal results� we can drawn a
colored map of the objective function by typing M �map� from the keyboard� We can change this colored
map by typing particular characters from the keyboard�

Change of the map�

L � �linear� � Linear scale of the colored map�
G � �logarithmic� � Logarithmic scale of the colored map�
R � �re
nement� � Re
nement of the linearly scaled colored map�
B � �back� � Back re
nement of the linearly scaled colored map�

�

New map or return�

W � �new� � Selection of new variables and drawing a new color map�
Q � �quit� � Return to the displayed group of
nal results�

After typing each character we must use ENTER�
If we set �MAP��YES� then one picture for two variables is drawn� If we set �MAP��EXTENDED�

then three pictures for all combinations of two from three variables are drawn� In both cases we have
to de
ne from the keyboard an index VAR and bounds XL�VAR�� XU�VAR� for every used variable
�according to the text appeared on the screen��

Besides these possibilities we can stop every iteration for scaning iterative process� It is speci
ed if
we set �STEPS��YES� �the default value is �STEPS��NO���

���� Tracing in the UFO control program

Tracing in the UFO control program is an useful tool for debugging optimization algorithms on main�
frames� If it is the case� then we specify �TRACE��YES�� Besides simple tracing� we can prescribe scalar
integer or real variables whose values will be printed together with labels� This possibility can be speci
ed
using the macrovariables �IDEB and �RDEB�

�IDEB � �list of integer variables separated by commas�
�RDEB � �list of real variables separated by commas�

If the macrovariables �IDEB or �RDEB are not speci
ed no integer or real variables are printed�
Tracing is executed only in the accepted iterations whose numbers are determined using the macrovari�

ables �KOUT�� �KOUT�� �KOUT� �see above��

�

�� Application of the UFO system �examples�

Before the solution to a given problem� the input
le containing the problem description and other
speci
cations for macroprocessor has usually to be prepared� This input
le can contain only the macroin�
struction �STANDARD �input
le STANDARD�UFO�� Then a full dialogue is processed� However� a
more advantageous possibility is to prepare an input
le containing a problem description while a method
selection is left to the dialogue� Moreover� since a method selection can be made automatically using
knowledge bases coded in UFO templates� the batch mode is recommended�

Writing input
le instructions� we have to observe some conventions� Since a control program contains
a great number of common variables� we recommend using variables beginning with the letter �W� for
a problem description to avoid their double use� Real variables of this type should be declared at the
beginning of the control program by the statement �FLOAT �for example �FLOAT W�W��W��� Simple
integers I�J�K�L need not be declared� We recommend using statement numbers less then ����� for a
problem description to avoid their double use�

The basic implementation of the UFO system is in double precision arithmetic� Therefore� usually
�FLOAT��REAL��� and �P��D�� We recommend writing real constants always in the form with �P
or D speci
cation �for example ����P �� ����P�� or ���D �� ���D��� since the conversions from a single
precision� that depend on a compiler� can be incorrect� Instead of the constants ���D�� ���D�� ���D��
���D�� ���D�� ���D�� ���D�� we can use the common variables ZERO� ONE� TWO� THREE� FOUR�
FIVE� TEN which contain corresponding values�

In the following text� we demonstrate the application of the UFO system to �� typical problems�
Every example consists of the problem description� the problem speci
cation �input
le�� comments to
the problem speci
cation and the problem solution �screen output�� All input
les contain necessary data
and can be used in the batch mode� These input
les are included to the UFO system as the demo�
les
PROB���UFO�� � � �PROB���UFO�

��
� Optimization with simple bounds

a� Problem description�
Suppose we have to
nd a maximum of the objective function

F �x� �
�
n�

� nY
i��

xi
�
� �

with simple bounds � � xi � i for � � i � n� where n � �� The starting point is xi � � for � � i � n� The
solution point is xi � i for � � i � n and the corresponding maximum value of the objective function is
F � �����

b� Problem speci
cation �input
le��

�FLOAT W

�SET�INPUT�

DO � I
��NF

X�I�
��D� � XL�I�
��D� � XU�I�
DBLE�I� � IX�I�
�

� CONTINUE

�ENDSET

�SET�FGMODELF�

W
��D�

DO � I
��NF

W
W�X�I�	DBLE�I�

� CONTINUE

FF
W���D�

DO � I
��NF

GF�I�
W	X�I�

� CONTINUE

�ENDSET

�IEXT
�

�NF
�

�KBF
�

�MOUT
��

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

Using the macrovariable �INPUT we specify initial values and simple bounds for variables� Using the
macrovariable �FGMODELF we specify analytically the value and the gradient of the model function�
Because we look for a maximum� we set �IEXT���

d� Problem solution �screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV

 NFG

 F
 ����D��� G
 ����D���

� NIT
 � NFV

 NFG

 NDC
 � F
 ����D��� G
 ����D���

FF
������������D���

X
 �����������D��� �����������D��� �����������D��� �����������D���

�����������D���

��	� Minimization of the sum of squares

a� problem description�
Suppose we have to
nd a minimum of the objective function

F �x� �
�
�

mX
i��

�
x�e

�x�ti � x�e
�x�ti � x	e

�x�ti � yi
��

where m � ��� ti � i��� and yi � e�ti��e���ti��e��ti for � � i � m� The starting point is x� � �� x� �
�� x� � �� x� � �� x� � �� x	 � �� The solution point is x� � �� x� � ��� x� � �� x� � �� x� � �� x	 � � and
the corresponding minimum value of the objective function is F � ��

b� Problem speci
cation �input
le��

�FLOAT W�WA�WB�WC

�SET�INPUT�

X���
��D� � X���
��D� � X���
��D�

X���
��D� � X���
��D� � X���
��D�

DO � KA
��NA

W
���D��DBLE�KA�

AM�KA�
EXP��W����D��EXP�����D��W����D��EXP����D��W�

�

� CONTINUE

XMAX
��D�

FMIN
��D�

�ENDSET

�SET�FMODELA�

W
���D��FLOAT�KA�

WA
EXP��W�X����

WB
EXP��W�X����

WC
EXP��W�X����

FA
X����WA�X����WB�X����WC

�ENDSET

�NF
�

�NA
��

�NAL
�

�KBA
�

�MOUT
��

�MODEL
�AQ�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

Using the macrovariable �INPUT we specify the initial values of variables and the vector AM contain�
ing values yi� � � i � m� Since the approximating functions contain exponentials� we de
ne the maximum
stepsize �XMAX���� Using the macrovariable �FGMODELA we specify analytically the values of the
approximating function� The gradients of the approximating functions are computed numerically� For
the sum of squares minimization we must set �MODEL��AQ�� The speci
cation �KBA�� indicates that
the vector AM is used�

d� Problem solution �screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ��
�D��� G
 ��
�D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ��
�D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT

 NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 �
 NFG
 � F
 ���
D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 � F
 �
��D��� G
 ����D���

NIT
 �� NFV

� NFG
 � F
 �
��D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 �
��D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 ��� NFG
 � F
 ����D��� G
 ����D���

� NIT
 �� NFV
 ��� NFG
 � NDC
 �� F
 ����D��� G
 ����D���

X
 �����������D��� �����������D��� �����������D��� �����������D���

�����������D��� �����������D���

�

���� Minimax approximation

a� Problem description�

Suppose we have to
nd a minimum of the objective function

F �x� � max
��i�m

j
x� � tix�

� � tix� � t�ix� � t�ix�
� yij

where m � ��� ti � �i� ������ � and yi � e�ti for � � i � m� Starting point is x� � ���� x� � �� x� �
�� x� � �� x� � �� The solution point is x� � ��			�� x� � �����
� x� � �����

� x� � ������� x� �
������	 and the corresponding minimum value of the objective function is F � ��������������

b� Problem speci
cation �input
le��

�FLOAT W

�SET�INPUT�

X���
���D� � X���
���D� � X���
���D�

X���
���D� � X���
���D�

�ENDSET

�SET�FMODELA�

W
���D��DBLE�KA�������D�

FA
�X����W�X����	����D��W��X����W��X����W�X�������EXP�W�

�ENDSET

�MODEL
�AM�

�NF
�

�NA
��

�NAL
�

�MOUT
��

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

Using the macrovariable �INPUT we specify the initial values of variables� Using the macrovari�
able �FGMODELA we specify analytically the values of the approximating functions� The gradients
of the approximating functions are computed numerically� For minimax approximation we must set
�MODEL��AM��

d� Problem solution �screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ��
�D��� G
 ��
�D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

	

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �
 NFG
 � F
 ����D��� G
 ��
�D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 � F
 ���
D��� G
 ����D���

NIT

 NFV
 �� NFG
 � F
 ����D��� G
 ����D���

NIT
 �� NFV
 �
 NFG
 � F
 ����D��� G
 ����D���

� NIT
 �� NFV
 �
 NFG
 � NDC
 � F
 ����D��� G
 ����D���

X
 �

�������D��� �����������D��� ������������D��� ����������
D���

�����
��
���D���

���� Optimization with linear constraints

a� problem speci
cation�

Suppose we have to
nd a minimum of the objective function

F �x� � �x� � x��
� � �x� � ��� � �x� � ��� � �x� � ��	

Over the set given by the linear constraints

x� � x� � x� � �x� � �

x� � �x� �

The starting point is x� � ��� x� � �� x� � �� x� � �� x� � ���� The solution point is x� � �� x� �
�� x� � �� x� � �� x� � � and the corresponding minimum value of the objective function is F � ��

b� Problem speci
cation �input
le��

�SET�INPUT�

X���
 ��D� � X���
 ��D� � X���
 ��D�

X���
���D� � X���
���D�

IC���
� � CL���
��D�

CG���
��D� � CG���
��D� � CG���
��D�

CG���
��D� � CG���
��D�

IC���
� � CL���
��D�

CG���
��D� � CG���
��D� � CG���
��D�

CG�
�
��D� � CG����
��D�

FMIN
��D�

�ENDSET

�SET�FMODELF�

FF
�X����X���������X������D������ �

�X������D�������X������D�����

�ENDSET

�SET�GMODELF�

GF���
 ��D���X����X����

GF���
���D���X����X����

GF���
 ��D���X������D��

��

GF���
 ��D���X������D�����

GF���
 ��D���X������D�����

�ENDSET

�NF
�

�NC
�

�NCL
�

�KBC
�

�MOUT
��

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

Using the macrovariable �INPUT we specify the initial values of variables and types and values of
the general constraints� Since there are only the equality constraints� we can specify only the left sides
�CL��� and CL���� and we can set �KBC��� The speci
cation �FMIN�� is used since the objective
function value cannot be less then zero� Using the macrovariable �FMODELF we specify analytically the
value of the model function� Using the macrovariable �GMODELF we specify analytically the gradient
of the model function�

d� Problem solution �screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 �
��D���

NIT
 � NFV
 � NFG
 � F
 �
��D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV

 NFG

 F
 ����D��� G
 ����D���

NIT

 NFV
 �� NFG
 �� F
 ��
�D��� G
 �
��D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ���
D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ��
�D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ��
�D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �
 NFG
 �
 F
 ����D��� G
 �

�D���

NIT
 �
 NFV
 �� NFG
 �� F
 ��
�D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ���
D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��
 G
 ���
D���

��

NIT
 �� NFV
 �� NFG
 �� F
 �
�
D��� G
 ��

D���

NIT
 �� NFV
 �� NFG
 �� F
 ��
�D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ��
�D���

NIT
 �
 NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ��
�D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ��

D��� G
 ����D���

� NIT
 �� NFV
 �� NFG
 �� NDC
 � F
 ��

D��� G
 ����D���

FF
 ��

�
���
�D���

X
 ��������
��D��� �����������D��� �

���
D��� �

��
����D���

�����������D���

���� Optimization with nonlinear constraints �nonlinear programming�

a� Problem description�

Suppose we have to
nd a maximum of the objective function

F �x� � x�x�

over the set given by the simple bounds x�
 �� x�
 �� x�
 �� x

 � and by the nonlinear constraints

�x� � x	�
� � �x� � x
�

�
 �

x�x� � x�x�p
x�� � x��

 �

x�x	 � x�x
p
x�� � x��

 �

x�x� � �x� � x��x� � x�x�p
�x� � x��� � x��

 �

x�x� � �x� � x��x
 � x�x	p
�x� � x�� � x��

 �

The starting point is x� � ���� x� � ���� x� � ���� x� � ����� x� � ���� x	 � ���� x
 � ���� The
solution point is x� � ������ x� � ������ x� � ������ x� � ������ x� � ������ x	 � ������ x
 � �����
and the corresponding minimum value of the objective function is F � ������

b� Problem speci
cation �input
le��

�FLOAT W

�SET�INPUT�

X���
 ���D� � XL���
 ���D� � IX���
 �

X���
 ���D�

X���
 ���D� � XL���
 ���D� � IX���
 �

X���
����D�

X���
 ���D� � XL���
 ���D� � IX���
 �

X���
 ���D�

X���
 ���D� � XL���
 ���D� � IX���
 �

CL���
���D� � IC���
 �

CL���
���D� � IC���
 �

��

CL���
���D� � IC���
 �

CL���
���D� � IC���
 �

CL���
���D� � IC���
 �

�ENDSET

�SET�FMODELF�

FF
X����X���

�ENDSET

�SET�FMODELC�

IF �KC�LE��� THEN

ELSE IF �KC�EQ��� THEN

FC
�X����X���������X����X�������

ELSE IF �KC�EQ��� THEN

W
SQRT�X�������X�������

FC
�X����X����X����X����	W

ELSE IF �KC�EQ��� THEN

W
SQRT�X�������X�������

FC
�X����X����X����X����	W

ELSE IF �KC�EQ��� THEN

W
SQRT��X����X��������X�������

FC
�X����X�����X����X�����X����X����X����	W

ELSE IF �KC�EQ��� THEN

W
SQRT��X����X��������X�������

FC
�X����X�����X����X�����X����X����X����	W

ENDIF

�ENDSET

�NF
�

�NC
�

�NCL
�

�KBF
�

�KBC
�

�MOUT
��

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

Using the macrovariable �INPUT we specify initial values and simple bounds for variables and types
and values of the general constraints� Since there are only one�sided simple bounds and one�sided general
constraints� we set �KBF�� and �KBC��� Using the macrovariable �FMODELF we specify analytically
the value of the model function� The gradient of the model function is computed numerically�

d� Problem solution �screen output��

NIC
 � NIT
 � NFV
 � NFG
 � F
 ����D��� C
 ��
�D��� G
 ����D���

NIC
 � NIT
 � NFV
 �
 NFG
 � F
 ����D��� C
 �
��D��� G
 ����D���

NIC
 � NIT
 � NFV
 �� NFG
 � F
 ��
�D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 �� NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 �� NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV
 �� NFG
 � F
 ����D��� C
 ����D��� G
 �
�
D���

��

NIC
 � NIT
 � NFV
 �� NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 � NFV

� NFG
 � F
 ����D��� C
 ����D��� G
 ��
�D���

NIC
 � NIT
 � NFV
 ��� NFG
 � F
 ����D��� C
 ��
�D��� G
 ����D���

NIC
 � NIT

 NFV
 ��� NFG
 � F
 ����D��� C
 ���
D��� G
 ��
�D���

NIC
 � NIT
 �� NFV
 ��� NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 �� NFV
 ��� NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

NIC
 � NIT
 �� NFV
 ��� NFG
 � F
 ����D��� C
 ����D��� G
 ����D���

� NIC
 � NIT
 �� NFV
 ��� NFG
 � F
 ����D��� C
 ����D��� G
 ��
�D���

FF
 �����������D���

X
 ����������
D��� �����������D��� �����������D��� ����������
D���

�����������D��� �����������D��� �����������D���

���� Global optimization

a� Problem description�

Suppose we have to
nd a global minimum of the objective function

F �x� � �x� � ����x� � ��� � �x� � ����x� � ��� � x��x
�
�

over the set given by the inequalities ��� � x� � �� and ��� � x� � ��� The starting point is x� � ��
x� � �� The solution point is x� � �������� x� � �
����� and the global minimumvalue of the objective
function is F � ���
���

b� Problem speci
cation �input
le��

�SET�INPUT�

XL���
����D� � XU���
���D�

XL���
����D� � XU���
���D�

�ENDSET

�SET�FMODELF�

FF
��X������D����X������D������� �

��X������D����X������D��������X����X�������

�ENDSET

�NF
�

�KOUTG
�

�MOUTG
�

�EXTREM
�G�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

Using the macrovariable �INPUT we specify bounds de
ning the investigated region� Using the
macrovariable �FMODELF we specify analytically the value of the model function� The gradient of
the model function is computed numerically� Since we require to
nd a global minimum we set �EX�
TREM��G��

��

d� Problem solution �screen output��

� NIT
 �� NFV
 �
 NDC
 � F
 �����D���

� NIT
 � NFV
 �
 NDC
 � F
 �����D���

� NIT
 � NFV
 �� NDC
 � F
 �����D���

� NIT
 �� NFV
 �� NDC
 � F
 �����D���

� NIT
 � NFV
 �� NDC
 � F
 �����D���

� NIT
 �� NFV
 �� NDC
 � F
 �����D���

��EXTREM F
 �����D��� X

�������D��� �������D���

��EXTREM F
 �����D��� X

������
D��� ������D���

��EXTREM F
 �����D��� X

������D��� �������D���

��EXTREM F
 �����D��� X

������D��� ������D���

STATISTICS�

NEXTREM
 � NFVT
 ��� NFGT
 � NFHT
 �

��
� Large scale optimization �sparse Hessian matrix�

a� Problem description�

Suppose we have to
nd a minimum of the objective function

F �x� �
nX
i��

�
��� �xi�xi � xi�� � xi�� � �

��
� xn�� � x� � �

where n � ���� The starting point is xi � �� for � � i � n� The minimum value of the objective function
is F � ��

b� Problem speci
cation �input
le��

�FLOAT A

�SET�INPUT�

DO � I
��NF

X�I�
����D�

J
���I�����

IH�I�
J

JH�J�
I

JH�J���
I��

� CONTINUE

IH�NF���
��NF

�ENDSET

��

�SET�FMODELF�

FF
���D�

DO � J
��NF

A
����D�����D��X�J���X�J�����D�

IF �J�GT��� A
A�X�J���

IF �J�LT�NF� A
A�X�J���

FF
FF�A�A

� CONTINUE

�ENDSET

�SET�GMODELF�

GF���
���D�

DO � J
��NF

A
����D�����D��X�J���X�J�����D�

IF �J�GT��� A
A�X�J���

IF �J�LT�NF� A
A�X�J���

A
A�A

GF�J�
GF�J��A�����D�����D��X�J��

IF �J�GT��� GF�J���
GF�J����A

IF �J�LT�NF� GF�J���
�A

� CONTINUE

�ENDSET

�NF
���

�M
���

�MOUT
�

�HESF
�S�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

Using the macrovariable �INPUT we specify the initial values of variables and the sparsity pattern of
the Hessian matrix� The sparse Hessian matrix� indicated by the statement �HESF��S�� is tridiagonal so
that the number of its upper half nonzero elements is ��NF����		� We set �M���� since a greater space
is needed for sparse matrix processing� Using the macrovariable �FMODELF we specify analytically the
value of the model function� Using the macrovariable �GMODELF we specify analytically the gradient
of the model function�

d� problem solution �screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 �� F
 ����D��� G
 ��

D���

NIT
 � NFV
 � NFG
 �� F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 �� F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 �� F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 �� F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 �� F
 ����D��� G
 ����D���

NIT
 � NFV

 NFG
 �� F
 �
��D��� G
 ����D���

NIT

 NFV
 �� NFG
 �� F
 ����D��� G
 �
��D���

� NIT

 NFV
 �� NFG
 �� NDC
 � F
 ����D��� G
 �
��D���

�

���� Large�scale optimization �sparse Jacobian matrix�

a� Problem description�

Suppose we have to
nd a minimum of the objective function

F �x� �
nX
i��

fAi �x�

where n���� and

fAi �x� �
�
��� �xi�xi � xi�� � �

��
� i � �

fAi �x� �
�
��� �xi�xi � xi�� � xi�� � �

��
� � � i � n� �

fAi �x� �
�
��� �xi�xi � xi�� � �

��
� i � n

The starting point is xi � �� for � � i � n� The minimum value of the objective function is F � �� �This
problem is equivalent to the previous problem��

b� Problem speci
cation �input
le��

�FLOAT A

�SET�INPUT�

DO � I
��NF

X�I�
����D�

� CONTINUE

L
�

DO � I
��NF

IAG�I�
L

IF �I�GT��� THEN

JAG�L�
I��

L
L��

ENDIF

JAG�L�
I

L
L��

IF �I�LT�NF� THEN

JAG�L�
I��

L
L��

ENDIF

� CONTINUE

IAG�NF���
L

�ENDSET

�SET�FMODELA�

A
����D�����D��X�KA���X�KA�����D�

IF �KA�GT��� A
A�X�KA���

IF �KA�LT�NF� A
A�X�KA���

FA
A�A

�ENDSET

��

�SET�GMODELA�

A
����D�����D��X�KA���X�KA�����D�

IF �KA�GT��� A
A�X�KA���

IF �KA�LT�NF� A
A�X�KA���

A
A�A

GA�KA�
A�����D�����D��X�KA��

IF �KA�GT��� GA�KA���
�A

IF �KA�LT�NF� GA�KA���
�A

�ENDSET

�NF
���

�NA
���

�MA
���

�M
���

�MOUT
�

�MODEL
�AF�

�JACA
�S�

�HESF
�B�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

Using the macrovariable �INPUT we specify the initial values of variables and the sparsity pattern of
the Jacobian matrix� The sparse Jacobian matrix� indicated by the statement �JACA��S�� is tridiagonal
and the number of its nonzero elements is ��NF����	�� Therefore we set �MA����� Since we use the
partitioned Hessian matrix� indicated by the statement �HESF��B�� we must specify the number of its
nonzero elements �it is
�NF���� Therefore we set �M�
��� Using the macrovariable �FMODELA we
specify analytically the values of the approximating functions� Using the macrovariable �GMODELA we
specify analytically the gradients of the approximating functions� For the sum of values minimization we
must set �MODEL��AF��

d� problem solution �screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ��
�D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ���
D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ��
�D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ���
D���

NIT
 � NFV

 NFG

 F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 �� F
 ���
D��� G
 ����D���

NIT
 � NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT

 NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 ��
�D��� G
 ��
�D���

NIT
 �� NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

NIT
 �� NFV
 �� NFG
 �� F
 �
��D��� G
 ����D���

� NIT
 �� NFV
 �� NFG
 �� NDC
 � F
 �
��D��� G
 ����D���

��

���� Large�scale sum of squares optimization �sparse Jacobian matrix�

a� Problem description�

Suppose we have to
nd a minimum of the objective function

F �x� �
nX
i��

�
fAi �x�

��

where n � ��� and

fAi �x� � ��� �xi�xi � xi�� � � � i � �

fAi �x� � ��� �xi�xi � xi�� � xi�� � � � � � i � n� �

fAi �x� � ��� �xi�xi � xi�� � � � i � n

The starting point is xi � �� for � � i � n� The minimum value of the objective function is F � ��
�This problem is equivalent to the previous problem��

b� Problem speci
cation �input
le��

�SET�INPUT�

DO � I
��NF

X�I�
����D�

� CONTINUE

L
�

DO � I
��NA

IAG�I�
L

IF �I�GT��� THEN

JAG�L�
I��

L
L��

ENDIF

JAG�L�
I

L
L��

IF �I�LT�NA� THEN

JAG�L�
I��

L
L��

ENDIF

� CONTINUE

IAG�NA���
L

�ENDSET

�SET�FMODELA�

I
KA

FA
����D�����D��X�I���X�I�����D�

IF �I�GT��� FA
FA�X�I���

IF �I�LT�NA� FA
FA�X�I���

�ENDSET

�SET�GMODELA�

�	

I
KA

GA�I�
���D�����D��X�I�

IF �I�GT��� GA�I���
����D�

IF �I�LT�NA� GA�I���
����D�

�ENDSET

�NF
���

�NA
���

�MA
���

�MOUT
�

�MODEL
�AQ�

�JACA
�S�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

Using the macrovariable �INPUT we specify the initial values of variables and the sparsity pattern of
the Jacobian matrix� The sparse Jacobian matrix� indicated by the statement �JACA��S�� is tridiagonal
and the number of its nonzero elements is ��NF����	�� Therefore we set �MA����� Since we do
not use the sparse Hessian matrix� we do not specify the number of its nonzero elements� Using the
macrovariable �FMODELA we specify analytically the values of the approximating functions� Using the
macrovariable �GMODELA we specify analytically the gradients of the approximating functions� For
the sum of squares minimization we must set �MODEL��AQ��

d� problem solution �screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ��
�D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ���
D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��
 G
 ����D���

NIT
 � NFV

 NFG

 F
 ����D��� G
 ����D���

� NIT
 � NFV

 NFG

 NDC
 � F
 ����D��� G
 ����D���

��
�� Large�scale nonlinear equations

a� Problem description�

Suppose we have to solve a system of the nonlinear equations

fAi �x� � ��� �xi�xi � xi�� � � � � � i � �

fAi �x� � ��� �xi�xi � xi�� � xi�� � � � � � � � i � n� �

fAi �x� � ��� �xi�xi � xi�� � � � � � i � n

��

where n����� The starting point is xi � �� for � � i � n� The minimum value of the objective function
is F � �� �This problem is equivalent to the previous problem��

b� Problem speci
cation �input
le��

�SET�INPUT�

DO � I
��NF

X�I�
����D�

� CONTINUE

�ENDSET

�SET�FMODELA�

I
KA

FA
����D�����D��X�I���X�I�����D�

IF �I�GT��� FA
FA�X�I���

IF �I�LT�NA� FA
FA�X�I���

�ENDSET

�NF
���

�NA
���

�MOUT
�

�MODEL
�AQ�

�JACA
�NO�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

Using the macrovariable �INPUT we specify the initial values of variables� Using the macrovariable
�FMODELA we specify analytically the values of functions in the nonlinear equations� For solving
nonlinear equations we must set �MODEL��AQ��

d� problem solution �screen output��

NIT
 � NFV
 � F
 ����D���

NIT
 � NFV
 � F
 ����D���

NIT
 � NFV

 F
 ����D���

NIT
 � NFV
 �� F
 ����D���

NIT
 � NFV
 �
 F
 �
��D���

NIT
 � NFV
 �� F
 ���
D���

� NIT
 � NFV
 �� NDC
 � F
 ���
D���

��

� Large scale linear programming

a� Problem description�

Suppose we have to
nd a maximum of the linear function

F �x� �
nX
i��

����ixi

��

with simple bounds ��� � xi � ��� � � xi � n� and linear constraints

�xi � xi�� � xi�� � i� � � i � nC

where n � �� and nC � ��� The starting point is not given� The maximum value of the linear objective
function is F � ��

b� Problem speci
cation �input
le��

�SET�INPUT�

DO � I
��NF

IX�I�
�

XL�I�
����D�

XU�I�
 ���D�

GF�I�
FLOAT�������I�

� CONTINUE

DO � KC
��NC

IC�KC�
�

CL�KC�
FLOAT�KC�

CALL UKMCI��KC�KC�����D��ICG�JCG�CG�

CALL UKMCI��KC�KC������D��ICG�JCG�CG�

CALL UKMCI��KC�KC�������D��ICG�JCG�CG�

� CONTINUE

�ENDSET

�IEXT
�

�NF
��

�NC
��

�NCL
��

�MC
���

�KBF
�

�KBC
�

�LOUT
�

�MOUT
��

�MODEL
�FL�

�JACC
�S�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

Using the macrovariable �INPUT we specify bounds for variables and the sparsity pattern with
numerical values of the constraint Jacobian matrix� We use the procedure UKMCI�� The sparse Jacobian
matrix� indicated by the statement �JACC��S�� is tridiagonal and the number of its nonzero elements
is ���NF������� We set �MC���� as a su�ciently large dimension for auxiliary
elds� The option
�MODEL��FL� indicates the linear programming problem�

d� Problem solution �screen output��

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �� F
 �
��D���

NUMITR
 � IJNEW
 �
 IJOLD
 �� KINP
 � IU
 �
 F
 ����D���

��

NUMITR
 � IJNEW
 � IJOLD
 �� KINP
 � IU
 �
 F
 ����D���

� NUMITR
 � NEL
 � NREF
 � KINP
 � IU
 �
 F
 ����D��� ITERL
 �

NUMITR
 � IJNEW
 �� IJOLD
 �
 KINP
 � IU
 �
 F
��
��D���

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �� F
�����D���

NUMITR
 � IJNEW
 � IJOLD
 �� KINP
 � IU
 �� F
�����D���

� NUMITR
 � NEL
 � NREF
 � KINP
 � IU
 �� F
�����D��� ITERL
 �

� NIT
 � NFV
 � NFG
 � NDC
 ��� F
 ����D��� G
 ����D���

FF
 �����������D���

X
������������D��� �����������D��� �����������D��� ������������D���

������������D��� ������������D��� ������������D��� ������������D���

������������D��� ������������D��� ������������D��� ������������D���

������������D��� ������������D��� ������������D��� ������������D���

������������D��� ������������D��� ������������D��� ������������D���

��
	� Large scale quadratic programming

a� Problem description�

Suppose we have to
nd a minimum of the quadratic function

F �x� �
k��X
i��

�xk�i�� � xk�i�
�

with simple bounds �i � xi � �i��� �����i�� � �i� � xk�i � ��
��i�� � �i�� � � i � k � �� �k � xk �
�k��� and linear constraints

xk�i � xi�� � xi � �� � � i � k � �

where �i � � � ���������i� � � i � k � �� and where n � �k � � � ��� nC � k � � � ��� The starting
point is not given� The minimum value of the quadratic objective function is F � ��

b� Problem speci
cation �input
le��

�FLOAT WA�WB�WC

�SET�INPUT�

WA
����D�� WB
����D�

DO � I
��NC

J
I�NC��

WC
���D�������D�����I���

IX�I�
�� XL�I�
WA� XU�I�
WB

IX�J�
�� XL�J�
���D���WC�WA�� XU�J�
���D���WC�WA�

GF�I�
���D�

GF�J�
���D�

WA
WB� WB
WC

IC�I�
�� CL�I�
���D�

CALL UKMCI��I�J����D��ICG�JCG�CG�

CALL UKMCI��I�I����D��ICG�JCG�CG�

CALL UKMCI��I�I�������D��ICG�JCG�CG�

IH�I�
�

� CONTINUE

IX�NC���
�� XL�NC���
WA� XU�NC���
WB

��

GF�NC���
�

IH�NC���
�� IH�NC���
�

K
NC��

DO � I
K�NF��

IH�I���
IH�I���

� CONTINUE

IH�NF���
IH�NF���

J
�

DO � I
K�NF

JH�J�
I� JH�J���
I��

HF�J�
���D�� HF�J���
����D�

IF �I�EQ�K�OR�I�EQ�NF� HF�J�
���D�

J
J��

� CONTINUE

�ENDSET

�NF
��

�NC
��

�NCL
��

�MC
���

�M
���

�KBF
�

�KBC
�

�MOUT
��

�MODEL
�FQ�

�JACC
�S�

�HESF
�S�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

Using the macrovariable �INPUT we specify bounds for variables� the sparsity pattern with numerical
values of the model Hessian matrix� and the sparsity pattern with numerical values of the constraint
Jacobian matrix� We use the procedure UKMCI�� The sparse Hessian matrix� indicated by the statement
�HESF��S�� is very simple and the number of its upper half nonzero elements is ���N�NC�����	� We
set M����� as a su�ciently large dimension for working
elds� The sparse Jacobian matrix� indicated
by the statement �JACC��S�� is tridiagonal and the number of its nonzero elements is ��NC�
�� We set
�MC���� as a su�ciently large dimension for working
elds� The option �MODEL��FQ� indicates the
linear programming problem�

d� Problem solution �screen output��

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �
 F
 ��
�D���

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �
 F
 ��
�D���

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �
 F
 ����D���

NUMITR
 � IJNEW
 �
 IJOLD
 �
 KINP
 � IU
 �
 F
 ����D���

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �
 F
 �
��D���

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �
 F
 ����D���

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �
 F
 ����D���

��

NUMITR
 � IJNEW
 �� IJOLD
 �� KINP
 � IU
 �
 F
 ����D���

NUMITR

 IJNEW
 � IJOLD
 �� KINP
 � IU
 �
 F
 ����D���

� NUMITR

 NEL
 � NREF
 � KINP
 � IU
 �
 F
 ����D��� ITERL
 �

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 � IU
 �
 F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 � IU
 �
 F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 � IU
 �
 F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �
 F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �
 F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP

 NCGR
 �
 IU
 �� F
 ���
����D��� G
 ��
�D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �
 IU
 �� F
 ���
��
�D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ���
��
�D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ���
��
�D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ���
��
�D��� G
 ���
D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP

 NCGR
 �� IU
 �� F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ���
���
D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP

 NCGR
 �� IU
 �� F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP

 NCGR
 �� IU
 �� F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ���
����D��� G
 ��
�D���

NAQ
 � NIQ
 � NSBSP
 �� NCGR
 �� IU
 �� F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP

 NCGR
 �� IU
 �� F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �
 IU
 �� F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ���
����D��� G
 ��
�D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ���
���
D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ���
���
D��� G
 ��
�D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �
 F
 ���
����D��� G
 ��
�D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �
 F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ���
����D��� G
 ���
D���

NAQ
 � NIQ
 � NSBSP
 � NCGR
 �� IU
 �� F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR

� IU
 �� F
 ���
����D��� G
 ����D���

NAQ
 � NIQ
 � NSBSP
 � NCGR

� IU
 �� F
 ���
����D��� G
 �
��D���

NAQ
 � NIQ
 � NSBSP
 � NCGR

� IU
 �� F
 ���
����D��� G
 ����D���

� NAQ
 � NIQ
 � NSBSP
 � NCGR

� IU
 �� F
 ���
����D��� G
 ����D���

� NIT
 � NFV
 � NFG
 � NDC
 ��� F
 ���
D��� G
 ����D���

FF
 ���
�������D���

X
 �����
�����D��� �����������D��� �����������D��� �����������D���

���������
�D��� �����������D��� �����������D��� �������
���D���

�����������D��� ���
�������D��� �������
���D��� ����
������D���

�����������D��� �����������D��� �����������D��� �����������D���

�����
�����D��� ���
�������D��� �������
���D��� �����������D���

������
����D��� �����������D��� �����������D��� �����������D���

�����������D��� ������
����D��� �����������D��� �����������D���

��
��
�����D��� �����������D��� �����������D��� �����������D���

������
����D��� �����
��
��D��� ���������
�D��� �����������D���

�
���������D��� �
���������D��� �
���������D��� �
���������D���

�
����
�
��D���

��

��
�� Large scale optimization with linear constraints

a� Problem description�

The problem we have solved is in fact the Hock and Schittkowski problem number ��	 �see ����� which
has �
 variables and � linear constraints�

b� Problem speci
cation �input
eld��

�FLOAT WI�WJ

�SET�INPUT�

DO � I
��NF

X�I�
����D�� XL�I�
���D�� XU�I�
���D�� IX�I�
�

� CONTINUE

IH� ��
 �� IH� ��
 �� IH� ��
��� IH� ��
��� IH� ��
�

IH� ��
��� IH� ��
��� IH� ��
��� IH�
�
��� IH����
��

IH����
��� IH����
��� IH����
��� IH����
��� IH����
��

IH����
��� IH����
���

JH� ��
 �� JH� ��
 �� JH� ��
 �� JH� ��
 �� JH� ��
��

JH� ��
 �� JH� ��
 �� JH� ��
 �� JH�
�
���

JH����
 �� JH����
 �� JH����

� JH����
��� JH����
��

JH����
 �� JH����
 �� JH����
��� JH����
���

JH��
�
 �� JH����
 �� JH����
��� JH����
��� JH����
��

JH����
 �� JH����
 �� JH����
���

JH����
 �� JH����
��� JH��
�
���

JH����
 �� JH����
��� JH����
���

JH����

� JH����
��� JH����
���

JH����
��� JH����
���

JH����
��� JH��
�
���

JH����
��� JH����
���

JH����
��� JH����
���

JH����
���

JH����
���

JH����
���

DO � I
��NC

IC�I�
�

� CONTINUE

CL���
 ���D�

CL���
 ���D�

CL���
����D�

CL���
����D�

CL���
 ���D�

CL���
 ���D�

CL���
 ���D�

CL���
����D�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ���
D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI����
� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI������� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ���
D��ICG�JCG�CG�

CALL UKMCI���� ������
D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �����
�D��ICG�JCG�CG�

CALL UKMCI���� ������
D��ICG�JCG�CG�

CALL UKMCI������� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �� ��
�D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI������� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ���
D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI������� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI������� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI����
������D��ICG�JCG�CG�

CALL UKMCI������� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI���� �������D��ICG�JCG�CG�

CALL UKMCI���� �� ����D��ICG�JCG�CG�

CALL UKMCI������� ����D��ICG�JCG�CG�

�ENDSET

�SET�FGMODELF�

FF
���D�

��

DO � I
��NF

GF�I�
���D�

� CONTINUE

DO � I
��NF

WI
X�I���X�I�����D������D�

K�
IH�I�

K�
IH�I�����

DO � K
K��K�

J
JH�K�

WJ
X�J���X�J�����D������D�

FF
FF�WI�WJ

GF�I�
GF�I������D��X�I�����D���WJ

GF�J�
GF�J��WI�����D��X�J�����D��

� CONTINUE

� CONTINUE

�ENDSET

�NF
��

�M
���

�NC
�

�NCL
�

�MC
���

�KBF
�

�KBC
�

�MOUT
��

�JACC
�S�

�HESF
�S�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

Using the macrovariable �INPUT we specify bounds for variables� the sparsity pattern with numeri�
cal values of the model Hessian matrix� and the sparsity pattern with numerical values of the constraint
Jacobian matrix� We use the procedure UKMCI�� The sparse Hessian matrix is indicated by the state�
ment �HESF��S�� The sparse Jacobian matrix is indicated by the statement �JACC��S�� The option
�MODEL��FF� indicates a general objective function� Using the macrovariable �FGMODELF we spec�
ify analytically the value and the gradient of the model function�

d� Problem solution �screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV

 NFG

 F
 ����D��� G
 ����D���

NIT
 � NFV
 �� NFG
 �� F
 ����D��� G
 �
��D���

��

NIT

 NFV
 �� NFG
 �� F
 ����D��� G
 ����D���

� NIT

 NFV
 �� NFG
 �� NDC
 ��� F
 ����D��� G
 ����D���

FF
 �����

�
��D���

X
 ��
��������D��� ��
�
������D��� ����������
D��� �����������D���

����

�����D��� �
���������D��� �����
�����D��� �������
���D���

�������
���D��� �����������D��� �����������D��� ������������D��

�����������D��� �����������D��� ����������
D��� �����������D���

��
�� Optimization of dynamical systems � general integral criterion

a� Problem description�

Suppose we have to
nd a minimum of the objective function

F �x� �
�
�

Z T

�
�y���t� � y���t��dt�

�
�
�y���T � � y���T ��

where T � ��� and where

dy��t�
dt

� y��t�� y���� � x�

dy��t�
dt

� ��� y���t��y��t� � y��t�� y���� � �

b� Problem speci
cation �input
eld��

�SET�INPUT�

X���
ZERO

TA
ZERO

TAMAX
���D �

�ENDSET

�SET�FMODELF�

FF
HALF��YA�������YA�������

�ENDSET

�SET�DMODELF�

DF���
YA���

DF���
YA���

�ENDSET

�SET�FMODELA�

FA
HALF��YA�������YA�������

�ENDSET

�SET�DMODELA�

DA���
YA���

DA���
YA���

�ENDSET

�SET�FMODELE�

GO TO ����� KE

� FE
YA���

GO TO �

� FE
�ONE�YA��������YA����YA���

� CONTINUE

�	

�ENDSET

�SET�DMODELE�

GO TO ����� KE

� DE���
ZERO

DE���
ONE

GO TO �

� DE���
�ONE�TWO�YA����YA���

DE���
ONE�YA������

� CONTINUE

�ENDSET

�SET�FMODELY�

GO TO ����� KE

� FE
X���

GO TO

� FE
ONE

 CONTINUE

�ENDSET

�SET�GMODELY�

GO TO ������� KE

�� GE���
ONE

GO TO ��

�� GE���
ZERO

�� CONTINUE

�ENDSET

�NF
�

�NE
�

�MODEL
�DF�

�MOUT
��

�TOLR
�����P�
�

�TOLA
�����P�
�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

Using the macrovariable �INPUT we specify as the initial value of the variable x� as the initial
and terminal times � and T respectively� Using the macrovariables �FMODELA and �DMODELA we
specify subintegral function and using the macrovariables �FMODELF and �DMODELF we specify
terminal function� Right hand sides of the di�erential equations are speci
ed using the macrovariables
�FMODELE and �DMODELE while initial values and their derivatives are given using the macrovariables
�FMODELY and �GMODELY� The option �MODEL��DF� indicates general integral criterion�

d� Problem solution �screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ��
�D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ��
�D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ��
�D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ��
�D��� G
 ����D���

	�

� NIT
 � NFV
 � NFG
 � NDC
 � F
 ��
�D��� G
 ����D���

FF
 �����������D���

X
 ����
������D���

��
�� Optimization of dynamical systems � special integral criterion

a� Problem description�

Suppose we have to
nd a minimum of the objective function

F �x� �
�
�

Z T

�

�y��t�� ���� � t���dt

where T � � and where

dy��t�

dt
� �x�y��t�� y���� � x�

b� Problem speci
cation �input
eld��

�SET�INPUT�

X���
���D �

X���
���D �

TA
ZERO

TAMAX
ONE

�ENDSET

�SET�FMODELE�

FE
�X����YA������

YE
ONE	�ONE�TA�

WE
ONE

�ENDSET

�SET�GDMODELE�

GE���
�YA������

GE���
ZERO

DE���
�TWO�X����YA���

�ENDSET

�SET�FMODELY�

FE
X���

�ENDSET

�SET�GMODELY�

GE���
ZERO

GE���
ONE

�ENDSET

�MODELA
�YES�

�NF
�

�NE
�

�MODEL
�DQ�

�CLASS
�GN�

�UPDATE
�F�

�MOUT
��

�TOLR
�����P�
�

	�

�TOLA
�����P�
�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

Using the macrovariable �INPUT we specify as the initial values of the variables x� and x� as the
initial and terminal times � and T respectively� Right hand side of the di�erential equation is speci
ed
using the macrovariables �FMODELE and �GDMODELE while initial values and their derivatives are
given using the macrovariables �FMODELY and �GMODELY� The option �MODEL��DQ� together with
�MODELA��YES� indicates special integral criterion�

d� Problem solution �screen output��

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ��
�D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ����D���

NIT
 � NFV
 � NFG
 � F
 ��
�D��� G
 ��
�D���

NIT
 � NFV
 � NFG
 � F
 ����D��� G
 ��
�D���

� NIT
 � NFV
 � NFG
 � NDC
 � F
 ����D��� G
 ��
�D���

X
 �

���D��� �

�D���

��
�� Initial value problem for ordinary di�erential equations

a� Problem description�

Suppose we have to
nd a solution of the Van der Pol equation

dy��t�
dt

� y��t�� y���� � �

dy��t�
dt

� ��� y���t��y��t� � y��t�� y���� � �

in the interval � � t � T where T � ���

b� Problem speci
cation �input
eld��

�SET�INPUT�

YA���
���D�

YA���
���D�

TA
���D�

TAMAX
���D�

�ENDSET

�SET�FMODELE�

IF �KE�EQ��� THEN

FE
YA���

ELSE

	�

FE
����D��YA��������YA����YA���

ENDIF

�ENDSET

�NA
����

�NE
�

�MODEL
�NO�

�MOUT
��

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

Using the macrovariable �INPUT we specify as the initial values of the variables y� and y� as the
initial and terminal times � and T respectively� Right hand sides of the di�erential equations are speci
ed
using the macrovariable �FMODELE� The option �MODEL��NO� indicates integration of a system of
ordinary di�erential equations�

d� Problem solution �screen output��

� NSTP
 �� NACC
 �� NREJ
 �� NEV
����

� AT
 �������D���

AY
 �������D��� �������D���

� AT
 ��
����D���

AY
 ��

���D��� �����
��D���

� AT
 �������D���

AY
 ��
�
��D��� �������
D���

� AT
 �������D���

AY
 �������D��� ��������D���

� AT
 ���
���D���

AY
 �������D��� �����
��D���

� AT
 �������D���

AY
 �������D��� ����
���D���

� AT
 ���
���D���

AY
 �������D��� ��������D���

� AT
 ��
����D���

AY
 �������D��� ��������D���

 AT
 �������D���

AY
 �����
��D��� ��������D���

�� AT
 �����
�D���

AY
 ��
��
��D��� ��������D���

�� AT
 �������D���

AY
 ������
�D��� �������
D���

�� AT
 ��

���D���

AY
 �������
D��� ��������D���

�� AT
 �����

D���

AY
 ���

�
�D��� ������
�D���

�� AT
 �������D���

AY
 ��������D��� �������D���

�� AT
 �������D���

AY
 ���
����D��� �������D���

	�

�� AT
 �������D���

AY
 ��������D��� �������D���

�� AT
 ������
D���

AY
 ��������D��� �������D���

�� AT
 �����
�D���

AY
 ��������D��� �
����
D���

�
 AT
 ��

���D���

AY
 ��������D��� ���
���D���

�� AT
 ���
���D���

AY
 �����
�D��� �������D���

�� AT
 �������D���

AY
 �������D��� �������D���

�� AT
 �������D���

AY
 �����
�D��� �������D���

�� AT
 ���
���D���

AY
 �������D��� �������D���

�� AT
 �������D���

AY
 �������D��� �������D���

�� AT
 �������D���

AY
 ��
����D��� ����
�
�D���

�� AT
 �������D���

AY
 ��
����D��� ��������D���

�� AT
 �������D���

AY
 �������D��� ������
�D���

�� AT
 ���
���D���

AY
 �����
�D��� ���

���D���

�
 AT
 �����
�D���

AY
 �����
�D��� ��������D���

�� AT
 �����
�D���

AY
 ���
���D��� ��������D���

�� AT
 ��
����D���

AY
 ��������D��� ������
�D���

�� AT
 �
�����D���

AY
 ��
�����D��� ��������D���

�� AT
 �
���
�D���

AY
 �����
��D��� ��������D���

�� AT
 �
�����D���

AY
 ��������D��� �����
�
D���

�� AT
 �
�����D���

AY
 ���

���D��� ��������D���

�� AT
 �������D���

AY
 ��������D��� ���
���D���

	�

References

��� M�Altman� Generalized gradient methods of minimizing a functional� Bull� Acad� Polon� Sci�� Ser�
Sci� Math� Astronom� Phys� �� ��	

� ��������

��� L�Armijo� Minimization of functions having continuous partial derivatives� Paci
c J� Math� �

��	

� ����

��� M�Al�Baali� R�Fletcher� Variational methods for nonlinear least squares� JOTA �
 ��	��� ��������

��� M�C�Biggs� Minimization algorithms making use of nonquadratic properties of the objective func�
tion� J� Inst� math� Appl� � ��	��� ��������

��� P�Bjorstadt� J�Nocedal� Analysis of a new algorithm for one�dimensional minimization� Computing
�� ��	�	� 	������

�
� C�G�E�Boender� A�H�G�Rinnoy Kan� Bayessian stopping rules for multistart global optimization
methods� Math� Programming �� ��	��� �	����

��� C�G�E�Boender� A�H�G�Rinnoy Kan� G�T�Timmer� L�Stougie� A stochastic method for global opti�
mization� Mathematical programming �� ��	��� ��������

��� C�G�Broyden� The convergence of a class of double rank minimization algorithms� Part � � general
considerations� Part � � the new algorithm� J� Inst� Math� Appl�
 ��	��� �
�	�� ��������

�	� J�R� Bunch� B�N� Parlett� Direct methods for solving symmetric inde
nite systems of linear equa�
tions� SIAM J� Numer� Anal� � ��	���
�	�
���

���� R�H�Byrd� R�B�Schnabel� G�A�Shultz� Approximate solution of the trust region problem by mini�
mization over two�dimensional subspaces� Math� Programming �� ��	��� �����
��

���� T�F�Chan� Rank revealing QR factorizations� Linear Algebra Appl� �� �	 ��	���
�����

���� T�F�Coleman� B�S�Garbow J�S�Mor&� Software for estimation sparse Hessian matrices� ACM Trans�
of Math� Software �� ��	��� �
���
��

���� T�F�Coleman� Large sparse numerical optimization� Springer�Verlag� Berlin� �	���

���� A�R� Conn� N�I�M� Gould� P�L� Toint� Testing a class of methods for solving minimization problems
with simple bounds on the variables� Mat� Comput� �� ��	��� �		�����

���� H�Curry� The method of steepest descent for nonlinear minimization problems� Quart� Appl�
Math� � ��	��� �����
��

��
� W�C�Davidon� Variable metric method for minimisation� A�E�C� Research and Development Report
ANL��		�� �	�	�

���� W�C�Davidon� Optimally conditioned optimization algorithms without line searches� Math� Pro�
gramming 	 ��	��� �����

���� R�S�Dembo� T�Steihaug� Truncated�Newton algorithms for large�scale unconstrained minimization�
Math� Programming �
 ��	��� �	������

��	� J�E�Dennis� Some computational techniques for the nonlinear least squares problem� In� !Numerical
solution of nonlinear algebraic equations" �G�D�Byrne� C�A�Hall� eds�� Academic Press� London
�	���

	�

���� J�E�Dennis� H�H�W�Mei� An unconstrained optimization algorithmwhich uses function and gradient
values� Report No� TR������
� Dept� of Computer Sci�� Cornell University �	���

���� J�E�Dennis� R�B�Schnabel� Numerical methods for unconstrained optimization and nonlinear equa�
tions� Prentice�Hall� Englewood Cli�s� New Jersey �	���

���� R�Fletcher� A new approach to variable metric algorithms� Computer J� �� ��	��� ��������

���� R�Fletcher� A modi
ed Marquardt subroutine for nonlinear least squares� Report No� R�
�		�
Theoretical Physics Division� A�E�R�E� Harwell� �	���

���� R�Fletcher� A general quadratic programming algorithm� J� Inst� Math� Appl� � ��	��� �
�	��

���� R�Fletcher� Practical methods of optimization� Part �� Unconstrained optimization� Wiley� New
York� �	���

��
� R�Fletcher� M�J�D�Powell� A rapidly convergent descent method for minimization� Computer J�

��	
�� �
���
��

���� R�Fletcher� C�M�Reeves� Function minimization by conjugate gradients� Computer J� � ��	
��
��	�����

���� R�Fletcher� C�Xu� Hybrid methods for nonlinear least squares� IMA J� Numer� Anal� � ��	���
������	�

��	� R�P�Ge� A
lled function method for
nding a global minimizer of a function of several variables�
Math� Programming �
 ��		�� �	������

���� R�P�Ge� Y�F�Qin� A Class of
lled functions for
nding global minimizers of a function of several
variables� JOTA �� ��	��� ��������

���� J�C�Gilbert� C�Lemarechal� Some numerical experiments with variable�storage quasi�Newton algo�
rithms� Math� Programming� �� ��	�	� ��������

���� P�E�Gill� W�Murray� A numerically stable form of the simplex algorithm� Linear Algebra Appl� �
��	��� 		�����

���� P�E�Gill�W�Murray� Newton type methods for unconstrained and linearly constrained optimization�
Math� Programming � ��	��� ��������

���� P�E�Gill�W�Murray� Numerically stable methods for quadratic programming� Math� Programming
�� ��	��� ��	�����

���� P�E�Gill� W�Murray� M�H�Wright� Practical optimization� Academic Press� London �	���

��
� D�Goldfarb� A family of variable metric algorithms derived by variational means� Math Comput�
�� ��	��� ����
�

���� D�Goldfarb� A�U�Idnani� A numerically stable dual method for solving strictly convex quadratic
programms� Report No� ������� Dept�of Computer Sci�� The City College of New York� �	���

���� A�A�Goldstein� On steepest descent� SIAM J� Control � ��	
�� ��������

��	� G�H�Golub� C�F�Van Loan� Matrix computations �second edition�� Johns Hopkins University Press�
Baltimore �	�	�

���� A�Griewank� P�L�Toint� Partitioned variable metric updates for large scale structured optimization
problems� Numer� Math� �	 ��	��� ��	�����

	

���� L�Grippo� F�Lampariello� S�Lucidi� A nonmonotone line search technique for Newton�s method�
SIAM J� Numer� Anal� �� ��	�
� ������
�

���� S�P�Han� Variable metric methods for minimizing a class of nondi�erentiable functions� Math�
Programming �� ��	��� �����

���� M�R�Hestenes� C�M�Stiefel� Methods of conjugate gradient for solving linear systems� J� Res� NBS
�	 ��	
�� ��	���
�

���� W�Hock� K�Schittkowski� Test examples for nonlinear programming codes� Lecture notes in eco�
nomics and mathematical systems ���� Springer Verlag� Berlin �	���

���� S�Hoshino� A formulation of variable metric methods� J� Inst� Math� Appl� �� ��	��� �	������

��
� Y�F�Hu� Y�Liu� C�Storey� E�cient generalized conjugate gradient algorithms� Part � � theory� Part
� � implementation� JOTA
	 ��		�� ��	����� ��	�����

���� Y�F�Hu� C�Storey� Motivating quasi�Newton updates by preconditioned conjugate gradient meth�
ods� Report No� A���� Dept� of Math� Sci�� Loughborough Univ� of Technology� Loughborough
�		��

���� C�L�Lawson� R�J�Hanson� Solving least squares problems� Prentice�Hall� Englewood Cli�s� New
Jersey �	���

��	� A�V�Levy� A�Montalvo� The tunneling algorithm for the global minimization of functions� SIAM
Journal Sci� Stat� Comp�
 ��	��� ����	�

���� P�Lindstrom� P�A�Wedin� A new linesearch algorithm for nonlinear least squares problems� Math�
Programming �	 ��	��� �
���	
�

���� D�C�Liu� J�Nocedal� On the limited memory BFGS method for large�scale optimization� Math�
Programming �� ��	�	� ��������

���� L�Luk'an� Dual method for solving a special problem of quadratic programming as a subproblem
at linearly constrained nonlinear minimax approximation� Kybernetika �� ��	��� ��������

���� L�Luk'an� An implementation of recursive quadratic programming variable metric methods for
linearly constrained nonlinear minimax approximation� Kybernetika �� ��	��� ������

���� L�Luk'an� Variable metric methods� Unconstrained minimization� Academia� Prague �		� �in
Czech��

���� L�Luk'an� Computational experience with improved variable metric methods for unconstrained
minimization� Kybernetika �
 ��		�� ��������

��
� L�Luk'an� Computational experience with improved conjugate gradient methods for unconstrained
minimization� Report No� ���� Institute of Computer and Information Sciences� Czechoslovak
Academy of Sciences� Prague �		��

���� L�Luk'an� A note on comparison of statistical software for nonlinear regression� Computational
Statistics Quaterly
 ��		�� ��������

���� L�Luk'an� On variationally derived scalling and variable metric methods from the preconvex part of
Broyden�s family� Report No� �	
� Institute of Computer and Information Sciences� Czechoslovak
Academy of Sciences� Prague �		��

��	� L�Luk'an� Inexact trust region method for large sparse nonlinear least squares� Report No� ����
Institute of Computer and Information Sciences� Czechoslovak Academy of Sciences� Prague �		��

	�

�
�� L�Luk'an� E�cient trust region method for nonlinear least squares� Report No� ���� Institute of
Computer and Information Sciences� Czechoslovak Academy of Sciences� Prague �		��

�
�� E�S�Marwill� Exploiting sparsity in Newton�like methods� Ph�D� Thesis� Cornell University� Ithaca
�	���

�
�� J�J�Mor&� The Levenberg�Maquardt algorithm� Implementation and theory� In� !Numerical Anal�
ysis" �G�A�Watson ed�� Springer Verlag� Berlin �	���

�
�� J�J�Mor&� B�S�Garbow� K�E�Hillstr(m� Testing unconstrained optimization software� ACM Trans�
Math� Software � ��	��� ������

�
�� J�J�Mor&� D�C�Sorensen� Computing a trust region step� Report No� ANL������� Argonne National
Laboratory� �	���

�
�� J�Nocedal� Updating quasi�Newton Matrices with limited storage� Math� Comput� �� ��	���
��������

�

� S�S�Oren� D�G�Luenberger� Self scaling variable metric �SSVM� algorithms� Part � � criteria and
su�cient condition for scaling a class of algorithms� Part � � implementation and experiments�
Management Sci� �� ��	��� �����
�� �
������

�
�� S�S�Oren� E� Spedicato� Optimal conditioning of self scaling variable metric algorithms� Math
Programming �� ��	�
� ���	��

�
�� E�Polak� G�Ribi&re� Note sur la convergence des methodes de directions conjug&es� Revue Francaise
Inform� Mech� Oper� �
�R���	
	� ������

�
	� M�J�D�Powell� A new algorithm for unconstrained optimization� In� !Nonlinear Programming"
�J�B�Rosen O�L�Mangasarian� K�Ritter eds�� Academic Press� London �	���

���� M�J�D�Powell� Convergence properties of a class of minimization algoritms� In !Nonlinear Pro�
gramming �" �O�L�Mangasarian� R�R�Meyer� S�M�Robinson eds��� Academic Press� London �	���

���� M�J�D�Powell� Restart procedures of the conjugate gradient method� Math� Programming ��
��	��� ��������

���� M�J�D�Powell� A fast algorithmfor nonlinearly constrained optimization calculations� In�!Numerical
analysis" �G�A�Watson ed��� Springer Verlag� Berlin �	���

���� M�J�D�Powell� Convergence properties of algorithms for nonlinear optimization� Report No� DAMPT
�	�� NA�� University of Cambridge� �	���

���� A�H�G�Rinnoy Kan� C�G�E�Boender� G�T�Timmer� A stochastic approach to global optimization�
Computational Mathematical Programming� NATO ASI Series Vol� F���

���� A�H�G�RinnoyKan� G�T�Timmer� Stochastic global optimizationmethods� Part I� Clustering meth�
ods� Part II� Multi�level methods� Math� Programming �	 ��	���� North�Holland �
��
� ������

��
� R�B�Schnabel� E�Eskow� A new Choleski factorization� SIAM J� Sci� Stat� Comput� �� ��		���
���
������

���� D�F�Shanno� Conditioning of quasi�Newton methods for function minimization� Math� Comput�
�� ��	���
���
�
�

���� D�F�Shanno� K�J�Phua� Matrix conditioning and nonlinear optimization� Math� Programming ��
��	��� �����
��

	�

��	� E�Spedicato� A class of rank�one positive de
nite quasi�Newton updates for unconstrained mini�
mization� Math� Operationsforsch� Statist� Ser� Optimization �� ��	
��
�����

���� E�Spedicato� M�T�Vespucci� Numerical experiments with variations of the Gauss�Newton algorithm
for nonlinear least squares� JOTA �� ��	��� ������	�

���� T�Steihaug� Local and superlinear convergence for truncated iterated projections methods� Math�
Programming �� ��	��� ��
��	��

���� T�Steihaug� The conjugate gradient method and trust regions in large�scale optimization� SIAM J�
Numer� Anal� �� ��	���
�
�
���

���� G�W�Stewart� A modi
cation of Davidon�s minimization method to accept di�erence approxima�
tions of derivatives� J� ACM �� ��	
�� ������

���� M�)i'ka� Macroprocessor BEL for the UFO system �version �	�	�� Report No� ��� �in Czech��
Institute of Computer and Information Sciences� Czechoslovak Academy of Sciences� Prague �	�	�

���� M�)i'ka� Macroprocessor UFO �version �		��� Report No� ��� �in Czech�� Institute of Computer
and Information Sciences� Czechoslovak Academy of Sciences� Prague �		��

��
� P�L�Toint� On sparse and symmetric matrix updating subject to a linear equation� Math of Comp�
�� ��	��� 	���	
��

���� P�L�Toint� On large scale nonlinear least squares calculations� SIAM J� Sci� Stat� Comput� �
��	��� ��
�����

���� D�Touati�Ahmed� C�Storey� E�cient hybrid conjugate gradient techniques� JOTA
� ��		��� pp�
��	��	��

��	� M�T*ma� A quadratic programming algorithm for large and sparse problems� Kybernetika ��
��		�� �����
��

�	�� M�T*ma� Sparse fractioned variable metric updates� Report No� �	�� Institute of Computer and
Information Sciences� Czechoslovak Academy of Sciences� Prague �		��

�	�� H�Yabe� T�Takahashi� Factorized quasi�Newton methods for nonlinear least squares problems�
Math� Programming �� ��		�� �������

�	�� A�+ilinskas� A�A�Thorn� Global optimization� Springer Verlag� Berlin �		��

�	�� C�G�Broyden� A class of methods for solving nonlinear simultaneous equations� Math� of Comput�
�	 ��	
�� �����	��

�	�� C�M�Ip� M�J�Todd� Optimal conditioning and convergence in rank one quasi�Newton updates�
SIAM J� Numer� Anal� �� ��	��� ��
�����

�	�� L�Luk'an� Computational experience with known variable metric updates� Report No� ���� Insti�
tute of Computer and Information Sciences� Czechoslovak Academy of Sciences� Prague �		��

�	
� L�Luk'an� Inexact trust region methods for large sparse systems of nonlinear equations� Report No�
���� Institute of Computer and Information Sciences� Czechoslovak Academy of Sciences� Prague
�		��

�	�� R�B�Mi,in� J�L�Nazareth� The least�prior deviation quasi�Newton update� Technical Report� Dept�
of Pure and Applied Math�� Washington State University� Pullman �		��

�	�� L�K�Schubert� Modi
cation of a quasi�Newton method for nonlinear equations with a sparse Jaco�
bian� Math� of Comput� �� ��	��� ������ ��		�� �������

		

�		� E�Spedicato� J�Greenstadt� On some classes of variationally derived quasi�Newton methods for
systems of nonlinear algebraic equations� Numer� Math� �	 ��	��� �
������

����� Y�Zhang� R�P�Tewarson� Least�change updates to Choleski factors subject to nonlinear quasi�
Newton condition� IMA J� Numer� Anal� � ��	��� ��	�����

����� Y�Zhang� R�P�Tewarson� Quasi�Newton algorithms with updates from the preconvex part of Broy�
den�s family� IMA J� Numer� Anal� � ��	��� ������	�

����� K�M�Brown� J�E�Dennis� A new algorithm for nonlinear least squares curve
tting� In� !Mathe�
matical Software" �J�Rice ed�� Academic Press� London �	���

����� E�Hairer� S�P�Norsett� G�Wanner� Solving ordinary di�erential equations I� Springer Series in Com�
putational Mathematics �� Springer Verlag� Berlin �	���

����� L�Luk'an� Combined trust region methods for nonlinear least squares� Report No� ���� Institute
of Computer Science� Academy of Sciences of the Czech Republic� Prague �		��

����� L�Luk'an� Hybrid methods for large sparse nonlinear least squares� Report No� �
�� Institute of
Computer Science� Academy of Sciences of the Czech Republic� Prague �		��

���
� N�M�Steen� G�D�Byrne� The problem of minimizing nonlinear functionals� I� Least squares� In�
!Numerical solution of nonlinear algebraic equations" �G�D�Byrne� C�A�Hall� eds�� Academic Press�
London �	���

���

