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Abstract�

Several variants of the GMRES method for solving linear nonsingular systems of

algebraic equations are described� These variants di�er in building up di�erent sets of

orthonormalized vectors used for the construction of the approximate solution� A new

ATA variant of GMRES is proposed and optimal implementations of the algorithms

are thoroughly discussed� It is shown that the described implementations are superior

to widely used schemes ORTHODIR� ORTHOMIN and their relatives�

� Introduction

Let Ax � b be a system of linear algebraic equations� where A is a real nonsin�
gular N by N matrix and b N �dimensional real vector� Many iterative methods
for solving this system start with an initial guess x� for the solution and seek the
n�th approximate solution xn in the linear variety

xn � x� �Kn�A� r
���	�	�

where r� � b � Ax� is the initial residual and Kn�A� r�� is the n � th Krylov
subspace generated by A� r��

Kn�A� r
�� � spanfr�� Ar�� � � � � An��r�g��	�
�

Then� the n� th error and the n� th residual are written in the form

x� xn � pn�A��x� x���	���

�Part of this work was performed while visiting Department of Mathematics� Link�oping

University� Sweden
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rn � pn�A�r
���	���

where pn � Pn� Pn denotes the set of polynomials of the degree at most n with the
constant term equal to one� �	�	� denes Krylov space �or subspace� methods�
based on �	��� or �	���� methods of this class are also referred to as polynomial
methods�
Among the broad variety of the Krylov space methods �surveys can be found�
e�g�� in �	��� ��	�� ����� ����� ����� �	��� ����� �
��� �		�� �

�� we will concentrate
especially on those which minimize the Euclidean norm of the residual

kb�Axnk � min
u�x��Kn�A�r�	

kb�Auk��	���

or� equivalently� for which the n�th residual rn is orthogonal to the shifted n�th
Krylov subspace Kn�A�Ar�� � AKn�A� r

��

rn � AKn�A� r
����	���

For A symmetric� the area is well mapped by the several classical papers �
���
����� �	��� �	��� In ���� and ��	�� various methods are examined in a very clear
exposition� and the most e�cient and stable versions are described� In the non�
symmetric case the state of the art is not so advanced� Numerous algorithms
generating the optimal approximation xn determined by �	��� were proposed and
named ORTHODIR� ORTHOMIN� GMRES etc� ����� ����� ����� �
�� �	��� The ap�
proximation dened by �	��� always exist and is unique� therefore all the methods
designed for computing this approximation at any step n are mathematically� i�e��
in the exact arithmetic� equivalent� In the nite precision arithmetic� hovewer�
they may have quite di�erent convergence behavior� Surprisingly many vari�
ants are used in practical computations� including the numerically unstable or
ine�cient ones� Recently� Walker and his collaborators presented several papers
studying the e�ciency and numerical stability of the GMRES implementations
����� ��	�� ����� and proposed new� simpler implementation of the GMRES method
��
�� GMRES and related methods have also been thoroughly studied and inter�
esting generalizations were proposed by van der Vorst and others ����� ����� �����
�
���
In this paper� we describe several variants of the GMRES method� Our exposi�
tion is based on the following observation� For any minimal residual method� the
approximate solution is constructed via some set of orthogonal vectors �note that
these vectors may not span the subspaces Kn�A� r�� from �	�	� and may be or�
thogonal with respect to some other than the Euclidean innerproduct�� the choice
of this set of orthogonal vectors together with the way in which the orthogonality
is enforced determine the numerical stability of the algorithm� We demonstrate
it also on the relations of the described algorithms to the other mathematically
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equivalent or related methods� We point out the e�ective and stable versions
and indicate the weak points of the unstable ones� The paper is organized as
follows� Section 
 is devoted to variants of GMRES� including a new variant
based on the ATA�orthonormal basis of the Krylov subspaces Kn�A� r��� Section
� describes implementation details� Relation to other methods are specied in
Section �� Section � presents results of numerical experiments� Section � contains
concluding remarks�
Sometimes it is useful to consider the following generalization of �	�	�

xn � x� �Kn�B�Cr
����	���

where Kn�B�Cr
�� is the n�th Krylov subspace generated by B�Cr�� B and C

are nonsingular N by N matrices� For an example we refer to the Generalized
mimimal error method �GMERR� introduced by Weiss in ����� ����� In the forth�
coming paper ����� analogical description of the variants of GMERR is given and
the relation to an other error minimization methods is discussed�
As it is well known �	��� see also �
��� ��	�� ����� methods based on �	��� require�
in general� full term recurrences� Recently� a lot of e�ort has been devoted to the
methods for nonsymmetric �non�Hermitian� systems using short recurrences �see
�	�� and the papers referred to there� which generate in most cases good� but not
optimal� approximate solution� These methods are not within the subject of this
paper�
We describe variants of various methods and point out relations between them
using the key words �minimization property� orthogonality� normalization� bases
of the Krylov subspaces� etc�� which implicitly assume� of course� exact arith�
metic� Any switch to the discussion of the actual nite precision results is always
explicitly mentioned in the text so that any confusion is avoided� It should also
be mentioned that we consider� for simplicity� the basic unpreconditioned versions
of the methods� the extension to the preconditioned ones is straight� Throughout
the paper matrices and vectors are real� For the complex case the results can
be formulated accordingly� A remark to the notation� X � �x�� � � � � xj� denotes
the matrix X with columns x�� x
� � � � � xj� Similarly �X��X
� � � � �Xl� denotes ma�
trix with column blocks X��X
� � � � �Xl� �x� y� is the Euclidean innerproduct of
vectors x and y� �x� y�Z denotes the innerproduct dened by the SPD matrix Z�
�x� y�Z � xTZy�

� Variants of the GMRES method

After a brief summarization of the classical approach due to Saad a Schultz�
we recall the variant proposed by Walker and Lu Zhou and propose a new vari�
ant based on the ATA�orthonormal basis of the Krylov space Kn�A� r��� Im�
plementation details and optimal formulation of the algorithms suitable for the
development of the computer code are discussed in Section ��
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The classical formulation of GMRES proposed by Saad and Schultz ���� is based
on the orthonormal basis Vn�� � �v�� � � � � vn��� of the Krylov space Kn���A� r��
which is computed via the Arnoldi recurrence

v� � r���� � � kr�k� AVn � Vn��Hn���n� V T
n��Vn�� � In����
�	�

It easy to see �cf� �
��� that the Arnoldi recurrence in steps 	 through n can be
viewed as a recursive column�oriented QR decomposition of the matrix �r�� AVn��

�r�� AVn� � Vn��Un����
�
�

where the upper triangular matrix Un�� and the upper Hessenberg matrixHn���n

are related by
Un�� � � � e��Hn���n���
���

Using the substitution
xn � x� � Vny

n�
���

the vector of coe�cients yn is found as the solution of the transformed least
squares problem

k�e� �Hn���ny
nk � min

y�Rn
k�e� �Hn���nyk��
���

The upper Hessenberg matrix Hn���n is then reduced to the upper triangular
matrix via the Givens transformations

Jn�Jn�� � � � J
J��Hn���n �

�
Rn

�

�
��
���

where the elementary Givens matrix Jn acts on the n�th and �n � 	��th row to
eliminate the nonzero element in the �n�	��th row of Hn���n� Subsequently� the
norm of the residual can be easily updated step by step without computing the
approximation xn explicitly�

krnk � � eTn�� Jn�Jn�� � � � J��e���
���

For krnk small enough� yn is computed from

Rny
n � � �In� �� Jn�Jn�� � � � J��e���
���

We give a brief summary� The orthonormal basis of the Krylov subspaceKn�A� r��
is in the Saad and Schultz �SS� variant of GMRES used for reducing the problem
�	��� into the transformed �upper Hessenberg� least squares problem �
���� The
last one is solved by the QR factorization of the upper Hessenberg matrix Hn���n

using the Givens rotations�
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A simpler implementation of GMRES not requiring the QR factorization of
the upper Hessenberg matrix containing the Arnoldi coe�cients was proposed
by Walker and Lu Zhou ��
�� This variant� denoted here as WLZ� computes or�
thonormal basis Qn � �q�� � � � � qn� of the shifted Krylov subspaces AKn�A� r�� �
Kn�A�Ar��� This can be done via the recursive column by column QR factoriza�
tion of the matrix �Ar�� AQn���

�Ar�� AQn��� � QnSn� QT
nQn � In��
���

where Sn is upper triangular� Then� the substitution �
��� is replaced by

xn � x� � �r�� Qn��� t
n�
�	��

and the optimality condition �	���� rewritten as QT
nr

n � �� gives

QT
nr

� �QT
nA�r

�� Qn��� t
n � ���
�		�

Combining �
�		� with �
���� we receive the upper triangular linear system for
determining the unknown vector tn�

Snt
n � QT

nr
���
�	
�

In this variant� both the residual vector and its norm can be easily updated step
by step� Indeed� using �
�	��� �
��� and �
�	
��

rn � r� �QnQ
T
nr

� � rn�� � �qn� r
�� qn��
�	��

krnk
 � krn��k
 � �qn� r
��
��
�	��

From orthogonality� QT
nr

� resp� �qn� r�� can be replaced in �
�	
� � �
�	�� by
��q�� r��� �q
� r��� � � � � �qn� rn����T resp� �qn� rn����

Summary� By generating the orthonormal basis of AKn�A� r��� the WLZ variant
provides the step by step update of the residual vector and simpler update of the
norm of the residual� as well as simpler computation of the approximate solution
than the SS variant� The basis used for determining the approximate solution is�
however� not orthogonal� which may a�ect the numerical stability of this variant�

To determine the approximate solution� the WLZ variant still requires� however�
solving an upper triangular system� One can look for a variant computing a
simple step by step update of the approximate solution� This can be done by
generating the ATA�orthonormal basis Wn � �w�� � � � � wn� of Kn�A� r

��� Indeed�
let Wn be a result of the recursive column by column QR factorization of the
matrix �r�� AWn���� assuming the innerproduct �g� h�ATA � gTATAh�

�r�� AWn��� � WnGn� W T
n A

TAWn � In�
�	��
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where Gn is upper triangular� Then� using

xn � x� �Wnf
n��
�	��

the optimality condition �	��� implies

fn � �AWn�
T r���
�	��

and the approximate solution� as well as the residual vector and the norm of the
residual can be easily updated step by step

xn � xn�� � �Awn� r
��wn�
�	��

rn � rn�� � �Awn� r
��Awn�
�	��

krnk
 � krn��k
 � �Awn� r
��
�
�
��

Analogously to the WLZ variant� �AWn�T r� resp� �Awn� r
�� can be replaced

in �
�	�� � �
�
�� by ��Aw�� r
��� �Aw
� r

��� � � � � �Awn� r
n����T resp� �Awn� r

n����
Throughout the paper� we will denote this formulation of GMRES as the ATA
variant�
In the next section� the WLZ and ATA variants described above are further
developed into detailed algorithms�

� Implementation details

Detailed schemes for the SS variant of GMRES based on the modied Gram�
Schmidt algorithm can be found e�g� in ����� ��� and ����� The implementation
of the SS variant using Householder transformations for computing the Arnoldi
basis is described in ����� ��	�� In �
��� the numerical stability of GMRES is
studied� It is shown� that even for the most stable implementations based on the
Householder transformations or iterated Gram�Schmidt algorithm� GMRES may
fail to produce for an ill�conditioned system results on the same level of accuracy
as direct methods based on the QR decomposition� Though �
�� is restricted to
the SS variant� the development can be extended �with some modications� to the
WLZ and ATA variants as well� We are not going to present these extensions here
�the forthcoming paper ���� is devoted to this subject�� Instead� we will discuss
the optimal implementations of the WLZ and ATA variants and describe detailed
schemes suitable for the development of code� For simplicity we will consider the
basic �i�e� unrestarted and unpreconditioned� forms of the algorithm� Restarting
and preconditioning can be incorporated in the well known way� see e�g� ����� ����
A modication to the truncated schemes �see Section ��
� is also straight� We
will also not present the details of the orthogonalization in computing the basis
vectors� for those we refer in �
���
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��	 Walker and Lu Zhou variants

The simplest implementation of the WLZ variant� denoted as WLZ	� is given by
the next scheme �following the argument from ��
� we use the normalized initial
residual �r� � r���� �

Algorithm WLZ��

x� is an initial guess�
set r� � b�Ax� and � � kr�k� if small enough the accept x� and exit�
�r� � r���� �� � 	�
q� � A�r��kA�r�k� S� � � kA�r�k�
for j � 	� 
� � � � � n
update the relative norm of the residual �j �
�j � �qj� �r���
�
j � �
j���	� �
j ��



j����

if �j small enough then SOLVE�xj�� quit�
extend the basis to Qj�� and the triangular matrix to Sj�� �
w � Aqj�
orthogonalize w against q�� � � � � qj and normalize the result to obtain qj���
extend Sj to Sj�� by adding the column vector of orthogonalization and
normalization coe�cients�

end�
form the �nal update�
�n�� � �qn��� �r���
SOLVE�xn����
quit�

In this scheme SOLVE�xj� stands for the following computations�

compute tj as the solution of the upper triangular system Sjt
j � ���� � � � � �j�T �

form xj � x� � � �r�� q�� � � � � qj��� t
j�

quit�

The initial residual is normalized for the reasons mentioned in ��
�� Note that
WLZ	 does not require updating the residual vector rj which keeps the work and
storage at minimum� Also the part SOLVE�xj� is considerably simpler than that
in the original scheme described in ��
�� The simplication of updating of the
solution in SOLVE�xj� does not cause� to our opinion� any additional numerical
troubles in comparison to original scheme by Walker and we recommend its use�
Unfortunately� there is a numerical drawback in the main part of the scheme�

Iterative updating the norm of the residual by the formula

�
j � �
j��f	� �qj� �r
��
��
j��g���	�
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is unreliable and may lead to an early termination of the computation caused
by underestimating of the norm of the residual due to accumulation of round�
o�� Roughly speaking� the accumulated error in computing �
j by ���	� can be
bounded by ��jN�� where � denotes the machine precision unit and �� is constant
independent on j� N and �� Once �
j becomes of the order of jN�� one cannot
trust the result of ���	� anymore� One may replace ���	�

�j � �j��sin�cos
����j��j�������
�

as proposed in ��
�� but to our opinion� and for the same reason� this does not
behave any better� For �
j � jN�� however� the results produced by WLZ	 are
satisfactory accurate� Therefore WLZ	 can be considered as the most e�ective
implementation of the WLZ variant if the method is restarted after just a few
steps� These considerations are illustrated by our examples below�
If the square of the relative norm of the residual �within possible restarts� drops
signicantly close to the level jN�� then the algorithmWLZ	 must be modied by
adding the recursive computation of the residual vector at every step� This can be
done by using �
�	��� Having the normalized residual vector �rj��� one can further
replace� with no additional costs� �qj� �r�� by �qj� �rj���� which improves numerical
behavior of the algorithm� To see that� note that the actually computed basis
vectors q�� q
� � � � � qj are not orthogonal �for simplicity of exposition we assume
that they are exactly normalized�� From �
�	�� it is clear that the approximate
solution xn computed from �
�	
� and �
�	�� corresponds to computing rn by
orthogonalization of r� against q�� q
� � � � � qn via the classical Gram�Schmidt algo�
rithm� We may therefore expect that the process is strongly a�ected by rounding
errors and the optimality condition �	��� is not satisfactorily enforced� One may
therefore look for a formulation corresponding to computing rn via the modied
Gram�Schmidt� namely�

rn � �I � qnq
T
n ��I � qn��q

T
n��� � � � �I � q�q

T
� �r

�������

which would guarantee that the optimality condition �	��� is satised to much
higher accuracy� Following ���� ��� we denote

�qj � �I � q�q
T
� � � � � �I � qj��q

T
j���qj� j � 
� � � � � n� �q� � q������

and �Qn � ��q�� � � � � �qn�� Then

�I � qnq
T
n ��I � qn��q

T
n��� � � � �I � q�q

T
� � � I �Qn

�QT
n ������

Using �
�	����
����

rn � b�Axn � r� �A�r�� Qn���t
n � r� �QnSnt

n������
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Comparing ����� and ������

�I �Qn
�QT
n �r

� � r� �QnSnt
n�

from which we receive� after a simple manipulation�

Qn� �Q
T
nr

� � Snt
n� � �������

Using the linear independence of the basis vectors q�� q
� � � � � qn� ����� implies

Snt
n � �QT

nr
�������

The i�th element of the vector �QT
nr

� is expressed as

��qi� r
�� � ��I � q�q

T
� � � � � �I � qi��q

T
i���qi� r

�� � �qi� r
i����

which nally gives the equation for determining the vector of coordinates tn

Snt
n � ��q�� r

��� �q
� r
��� � � � � �qn� r

n����T ������

From ������
rn � �I � qnq

T
n �r

n�� � rn�� � �qn� r
n���qn����	��

Consequently� we have shown that replacing QT
nr

� resp� �qn� r�� in �
�	
���
�	��
by ��q�� r��� �q
� r��� � � � � �qn� rn����T resp� �qn� rn���� one may hope for much better
numerical behavior of the algorithm� The iterative updating ���	� of the residual
norm �j will� however� face essentially the same numerical di�culty as described
above� even if �qj� �r�� is replaced by �qj� �rj���� For a stable implementation we
therefore suggest to base the stopping criterion on the norm of the residual com�
puted by ���	���
Finally� the implementation of the WLZ variant taking into consideration the
above comments on the stability is given by the scheme�

Algorithm WLZ��

x� is an initial guess�
set r� � b�Ax� and � � kr�k� if small enough the accept x� and quit�
�r� � r����
q� � A�r��kA�r�k� S� � � kA�r�k�
for j � 	� 
� � � � � n
�j � �qj� �rj����
�rj � �rj�� � �jqj�
�j � k�rjk	 if �j small enough then SOLVE�xj�� quit�
w � Aqj�
orthogonalize w against q�� � � � � qj and normalize the result to obtain qj���
extend Sj to Sj�� by adding the column vector of orthogonalization and
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normalization coe�cients�
end�
�n�� � �qn��� �rn��
SOLVE�xn����
quit�

where SOLVE�xj� has the same meaning as above� WLZ
 costs one more SAXPY
and one more DOT product per iteration than WLZ	� but� as illustrated on our
examples in Section �� it behaves much better numerically� It should be therefore
preferred over the other WLZ implementations� If the increase in the operation
count per iteration is not negligible and is to be taken into account �e�g� in
some restarted or truncated versions of the algorithm�� we suggest to consider
the combined implementation starting with WLZ	 and then switching to WLZ

if �
j drops below 	jN�� where 	 is a proper constant �e�g� 	 � 	� or 	�
��

Both WLZ	 and WLZ
 implementations of the WLZ variant of GMRES are
considerably simpler in comparison to the SS variant� On the other hand� as
noticed in ��
�� the WLZ variant has certain numerical disadvantage in using
nonorthogonal basis �r�� q�� � � � � qn�� for computing the approximate solution xn�
Assuming exact arithmetic� Walker and Lu Zhou showed that the condition num�
ber of the matrix ��r�� Qn��� is large only if the relative residual is small� Con�
sequently� this drawback seems not to be serious unless one is interested in very
accurate approximations to the solution �more precisely� very small residuals�� A
nite precision analysis of this situation still needs further work� As mentioned in
the Introduction� a detailed theoretical comparison of the numerical stability of
the WLZ and SS variants is out of the range of this paper and will be published
elsewhere�

��
 ATA variants

The ATA variant requires computing theATA�orthonormal basis w�� w
� � � � � wn

of Kn�A� r�� which represents a serious complication� We will concentrate on the
modied Gram�Schmidt orthogonalization here and show that this di�culty can
be eliminated to some extent� The usual MGS implementation

w� � r��kr�kATA�
for j � 	� 
� � � � � n
t � Awj�
for i � 	� 
� � � � � j

���		� t � t� �At�Awi�wi�
end�
wj�� � t�ktkATA�

end�
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is rather ine�cient due to the kernel operation �At�Awi� which requires an extra
matrix�vector multiplication in every substep of the MGS orthogonalization� If
we consider an additional computing of the orthonormal vectors u�� u
� � � � � un�
where uj � Awj� by the MGS process� then ���		� can be replaced in the price of
doubling the recurrences by

w� � r��kr�kATA� u� � Aw��
for j � 	� 
� � � � � n
u � Auj� t � uj�
for i � 	� 
� � � � � j

���	
� t � t� �u� ui�wi�
u � u� �u� ui�ui�

end�
uj�� � u�kuk� wj�� � t�kuk�

end�

It should be noted that in the nite precision arithmetic� the resulting basis vec�
tors wj may di�er slightly from that computed by ���		� because the recurrences
for t from ���		� and ���	
� are not equivalent in the presence of rounding errors�
For the discussion of other details we refer to Section ��	� Using ���	
�� a simple
implementation of the ATA variant is given analogously to Algorithm WLZ	 by
the next scheme�

Algorithm ATA���
x� is an initial guess�
set r� � b�Ax� and �� � kr

�k� if �� small enough then accept x� and quit�
	 � kAr�k� w� � r��	� u� � Aw��
for j � 	� 
� � � � � n
�j � �uj� r���
�
j � �
j���	� �
j ��



j����

if �j small enough then FORM�xj�� quit�
u � Auj� t � uj�
for i � 	� 
� � � � � j

i � �u� ui��
u � u� 
iui�
t � t� 
iwi�

end�
uj�� � u�kuk� wj�� � t�kuk�

end�
�n�� � �un��� r���
FORM�xn����
quit�

The procedure FORM�xm��� computes a simple updating of the solution�
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xj � x� �
Pj

i�� �jwj�
quit�

It can be done step by step� but computing the sum
Pj

i�� �jwj and the adding to
x� should be preferred for numerical reasons ��
��
Analogously to Section ��	� a more stable implementation of the ATA variant
requires the recursive updating of the residuals� which results in the Algorithm
ATA�
� In practice� similarly to the WLZ variant� both implementations can be
combined�

Algorithm ATA���
x� is an initial guess�
set r� � b�Ax�� if kr�k small enough then accept x� and quit�
	 � kAr�k� w� � r��	� u� � Aw��
for j � 	� 
� � � � � n
�j � �uj� r

j����
rj � rj�� � �juj�
if krjk small enough then FORM�xj�� quit�
u � Auj� t � uj�
for i � 	� 
� � � � � j

i � �u� ui��
u � u� 
iui�
t � t� 
iwi�

end�
uj�� � u�kuk� wj�� � t�kuk�

end�
�n�� � �un��� rn��
FORM�xn����
quit�

Computing the ATA�orthonormal basis of Kn�A� r�� via ���	
� requires one
more SAXPY operation per every substep of the MGS orthogonalization process
and about twice as storage as the MGS used in the SS or WLZ variants� On
the other hand� the ATA� implementations are considerably simpler than the
implementations of the other variants� They o�er a simple step by step updates
of both the approximation to the solution and the residual vector� Moreover� the
extra work can be easily done in parallel to the other arithmetic and algorithms
can be performed in less sequential steps than the implementations of the SS and
WLZ variants� Therefore� for parallel computer architectures� the code based
on the ATA variant may become competitive to codes based on the SS or WLZ
variants� The ATA variant of GMRES is closely related to several other methods
used for years �e�g� the method ORTHODIR�� As it will be explained in Section �
and then numerically demonstrated in Section �� the newly proposed ATA variant
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of GMRES is clearly superior to these well known relatives with respect to the
numerical stability and the accuracy of the computed solution�

� Relation to other methods

This section gives a very compact and short review of the related methods�

��	 Symmetric Case

The conjugate gradient method �CG�� an algorithm for solving systems of lin�
ear equations with symmetric positive denite �SPD� matrices� was introduced
by Hestenes and Stiefel �
��� Its iterates minimize the energy norm of the error
in the variety �	�	�� The conjugate residual method �CR� due to Stiefel ���� is�
in fact� the CG method applied to the original SPD system Ax � b assuming the
innerproduct �u� v�A � uTA v � its iterates satisfy the minimal residual property
�	���� The CG residual vectors form the orthogonal basis and the CG search
vectors the A�orthogonal basis of �	�
�� For CR� the bases are A�orthogonal and
A
�orthogonal� respectively� For any basis� the basis vectors are not normal�
ized� The orthogonalization processes are equivalent to the unnormalized ��term
recurrences�
Fridman proposed in �	�� the orthogonal direction �OD� method for solving
symmetric indenite systems which is characterized by the minimal error property

kx� xnk � min
u�x��Kn�A�Ar�	

kx� u k����	�

but his implementation was unstable� The rst numerically stable algorithms for
symmetric indenite systems were proposed by Paige and Saunders in ����� They
considered the symmetric Lanczos method ����� ���� to generate an explicit or

thonormal basis of the Krylov subspaces �	�
�� It enables them to identify clearly
the trouble with applying CG to indenite problems� A CG iterate xnCG can be
viewed as a solution of the orthogonal projection of the system A�x� x�� � r�

onto the subspace �	�
�� For A indenite� such solution simply may not exist due
to possible singularity of the projected system matrix �which is the n by n tridi�
agonal matrix having the coe�cients of the Lanczos recurrence as its columns��
Even if it exists� its computing by the CG algorithm may lead to numerical in�
stabilities� From the nonsingularity of the projected matrix at the nal Lanczos
step it follows that �at least� every second CG approximation must exist� Paige
and Saunders have proposed a stable algorithm� named SYMMLQ� for comput�
ing those� SYMMLQ produces at every step also an approximation xnL satisfying
���	�� Using the same Lanczos basis� they derived the MINRES method satisfying
the minimal residual property �	���� This method can be viewed as a numerically
stable generalization of the CR method to the symmetric indenite case� The
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same Lanczos basis of �	�
� but di�erent ways of computing the approximations
to the solution were used by Simon and Chandra ����� �	��� Their methods are
mathematically �i�e� in the exact arithmetic� equivalent to CG resp� SYMMLQ
or MINRES�
Another approach was taken by Fletcher �	�� who described the Bi�CG algo�
rithm for nonsymmetric systems �which was essentially introduced by Lanczos
������ and then modied its symmetric variant to obtain the OD method by
Fridman� This algorithm computes the orthogonal� but not normalized� basis of
Kn�A�Ar��� it faces some numerical di�culties� A stable modication� named
STOD� was proposed by Freund and Stoer ����� ��	�� In a way similar to OD� the
A
� orthogonal basis of the original Krylov subspace �	�
� can be computed and
used to form a variant of the CR method� see �	��� ��	�� �	��� While SYMMLQ
and MINRES are based on the computation of the orthonormal basis of �	�
��
methods mentioned in this paragraph compute orthogonal� but not normalized�
vectors generatingKn�A�Ar��� resp� theA
� orthogonal vectors generating �	�
��
A variant of the residual minimizing method based on �	��� which generates the
A
� orthonormal basis of �	�
� was described and used recently by Rusten ��	��
Theoretical equivalence of the methods based on the Lanczos basis and those
developed from the Bi�CG algorithm was already known by Fletcher� but there
are some inaccuracies in proofs presented in �	���
It should be mentioned� that there are several variants � mathematically equiv�
alent � of implementing the Lanczos recurrence for computing the orthonormal
basis of �	�
�� In the presence of rounding errors� however� their behavior may
be di�erent� The optimal variant� pointed out by Paige ����� can be considered
as a symmetric analogy of the Modied Gram�Schmidt process� For A SPD� re�
sults of nite precision computation do not seem to depend on the variant of the
algorithm used� unless the matrix A is very ill�conditioned� As an example may
serve the CG approximation computed via the original Hestenes and Stiefel or
SYMMLQ or the Simon�s implementation � unless the condition number of the
system matrix is extremely high �of order ���� where � is the machine precision��
the obtained convergence behavior �measured� e�g�� by the norm of the residual
or the A�norm of the error� will be almost identical for all the three variants ��
��
�
��� On the other hand� the choice of the variant may be very important in the
symmetric indenite or nonsymmetric case� In general� nite precision behavior
of the mathematically equivalent Krylov space methods may di�er remarkably
one from another�

��
 Nonsymmetric case

A natural approach to the nonsymmetric case is to apply the CG method to
the related systems with the symmetric positive denite matrix ATA or AAT �
Solving the system ATAx � ATb by the CG method was suggested already by
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Hestenes and Stiefel �
��� it is referred to as the CGNR method� Applying the
CG method to the system AATy � b� x � ATy� we get the CGNE method
proposed by Craig ���� From the minimization property of CG it follows that
CGNR is characterized by the minimal residual property on x��Kn�ATA�ATr��
while CGNE by the minimal error property on x� � Kn�ATA�ATr�� � More
stable implementations of these methods� based on the explicit computation of the
orthonormal bases for Kn�ATA� r�� and Kn�ATA�ATr�� event� Kn�ATA�ATAr��
using the bidiagonalization algorithm of Golub and Kahan �
	�� was proposed by
Paige and Saunders ����� ����� The best known method from this family� referred
to as LSQR� produces in the exact arithmetic the same approximation as CGNR�
As it was pointed out by Bj�orck in the unpublished work ���� nite precision results
of the correct CGNR implementation di�er remarkably from the LSQR results
only for the very ill�conditioned systems� which opposes to the popular belief
about the strong instability of CGNR� This observation is in a good agreement
with our remark in paragraph ��	 � both algorithms build up the basis for the
subspaces determined by the SPD matrix ATA �though this matrix is present
in the algorithm only implicitly� and� unless ATA is very ill�conditioned� we can
expect a good agreement of their nite precision results� The convergence of all
the methods mentioned in this paragraph is determined by the squares of the
singular values of the matrix A� and may therefore be rather slow�

Although there are special situations where the approaches based on ATA or
AAT are optimal �see� e�g�� �	���� in most cases the methods applied directly
to the original system Ax � b are preferred� Unfortunately� for the iterates
characterized by the minimal residual or the minimal error property on a Krylov
subspace generated by a general nonsymmetric matrix� the work and storage per
iteration increase linearly with the iteration step�

Numerous algorithms compute the iterates with the minimal residual property
�	��� in the general nonsymmetric case� As pointed out in �	��� the idea of min�
imizing the residual norm has appeared already in ����� The implementation
proposed there is unstable and the discussion of convergence is not correct�

Young and Jea in 	��� ���� described two methods with iterates satisfying
the condition �	���� ORTHOMIN� proposed rst by Vinsome in ����� and OR�
THODIR� For a general survey we refer also to �
��� For the ORTHOMINmethod�
also called GCR �see e�g� �	��� �	���� the convergence to the solution is assured
for positive real systems �i�e� systems with the matrices having positive denite
symmetric part �A � AT ��
�� ORTHODIR method converges for general non�
symmetric �nonsingular� matrix A� In both methods� the direction vectors build
up implicitly the ATA�orthogonal basis of the space Kn�A� r��� The basis vectors
are unnormalized� and orthogonalized against each other in a way equivalent to
the classical Gram�Schmidt orthogonalization� This can lead to the numerical
instabilities of these methods� The algorithm of Axelsson �
�� ��� is closely related
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to ORTHODIR and ORTHOMIN�

In all the variants described in the previous section� GMRES di�ers from these
methods by computing an orthonormal basis� used for the construction of the
solution� in a far more stable way� We emphasize that both the normalization� and
using the modied Gram�Schmidt or even more stable orthogonalization scheme
�
��� instead of classical Gram�Schmidt� make the variants of GMRES from the
previous section numerically superior to ORTHODIR� ORTHOMIN and their
modications�

Several other nonoptimal and related methods were proposed� The Arnoldi
�FOM� method ���� is also based on the computation of an orthonormal Arnoldi
basis �	�� for the connection to GMRES see ���� A deep theoretical survey of the
relations between various methods can be found in �
��� As an interesting alter�
native can be considered the methods based on the rank�one updates� Eirola nad
Nevanlinna �	
� proposed two methods of this type� one of them is mathemati�
cally equivalent to GMRES� see also �		�� ����� These methods were also studied
and some GMRES generalizations were proposed by Vuik and van der Vorst �see
����� ����� ������

There are two distinct approaches how to reduce the amount of computational
work and storage in the GMRES and related methods� The rst is simply to
restart the algorithm every m steps �see e�g�� the methods GCR�m� and GM�
RES�m� presented in �	��� ������ The second approach is to truncate the or�
thogonalization process so that the new vector in the computed basis is orthog�
onalized only against the k previous vectors �not necessarily to the last ones��
where k is some integer parameter� For examples of these methods� we refer to
ORTHODIR�k�� ORTHOMIN�k�� and GCG�LS�k� �see ����� �
�� �
��� �	��� �����
A drawback of these techniques is that both the restarted and truncated methods
are not optimal in the sense of minimization of the residual norm over the Krylov
subspace Kn�A� r

��� Consequently� this can lead to slower convergence� Even
worse� in some cases� the restarted or truncated methods may not converge to
the solution of the system� Moreover� the truncated orthogonalization may lead
to the early loss of the linear independence among the computed vectors due to
rounding errors�

� Experiments

For our experiments we considered di�erent implementations of GMRES de�
scribed above and compared their behavior in the nite precision arithmetic�
Test problems were taken from ��
� and ��	�� The matrix A and solution vector
x were of the form
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TP	�n� 	� � A �

�
�������

	 � � � � � 	
� 
 � � � � �
� � � � � � �
� � � � � � �
� � � � � � n

�
�������
� x �

�
�������

	
	
	
�
	

�
�������
�

TP
�n� 	� k� � A � �	ij� 	ij �

	
�

�

	j�i � � j � i � k

� otherwise
� x �

�
�������

	
	
	
�
	

�
�������
�

the right hand side vector was set to b � Ax� For TP	�n� 	�� the parameters
n� 	 were set to n � 	��� 	 � 
����� For TP
�n� 	� were used n � 	���
	 � 	�	� k � 
�� Computations were performed in double precision arithmetic
using Matlab ��� on the SGI Crimson workstation with R���� processor �machine
precision � � 
�

 � 	������
On Figures 	 and 
� we compared the relative norm of the true residual

kb � Axnk�kr�k� We considered the SS variant implemented via the classical
Gram�Schmidt orthogonalization �dash�dotted line�� and SS variant implemented
via the modied Gram�Schmidt �solid line�� the modied Gram�Schmidt imple�
mentation of the Algorithm WLZ
 �dashed line�� the modied Gram�Schmidt
implementation of the Algorithm ATA�
 �o�signs�� and the original implementa�
tion of ORTHODIR �	�� �dotted line�� Both gures illustrate that the modied
Gram�Schmidt implementations of SS� WLZ
 and ATA�
 are comparable and are
superior to the classical Gram�Schmidt implementation of SS or the ORTHODIR
method� that performed poorly� especially for the problem TP
�
On Figures � and �� we compared the modied Gram�Schmidt implementations
of the Algorithms WLZ	� WLZ
� and ATA�	� ATA�
� For WLZ	� we plotted the
recursive computed relative norms of the residual �j �x�marks�� for the WLZ

the norms of the updated residual vectors �rj �solid line�� Similarly� for the Algo�
rithm ATA�	� we have compared the quantities �j �o�signs� and the norm of the
vectors �rj in the Algorithm ATA�
 �dotted line�� Figures � and � illustrate our
conclusion from Section � stating that the iterative updating of the norm of the
residual becomes� after some initial norm reduction� unreliable and leads to an
early termination of the Algorithms WLZ	 and ATA�	 �TP	�� or to stagnation
�TP
�� On Fig� � the dotted line coincides with the solid one�
On Figures � and �� the relative norms of the true residual kb � Axnk�kr�k
are displayed for two di�erent ways of computing the approximate solution xj in
the Algorithm WLZ
� We considered the scheme presented in ��
� �solid line�
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and the scheme SOLVE�xj� discussed in the AlgorithmWLZ
 �o�marks�� We did
not nd any signicant di�erence between these two schemes and therefore we
recommend the use of the considerably simpler scheme SOLVE�xj�� We have also
plotted the relative norm of the true residual for the WLZ
 algorithm� where the
solution of the upper triangular system ����� was replaced by the solution of the
system �
�	
� �dotted line�� We observed very poor behavior� which is in a good
agreement with our discussion in Section ��	�
Experimental results presented here were chosen from a large set of experiments
which had been performed� All of them were in a good agreement with our
theoretical considerations described in Section � and with remarks on the related
methods from Section ��

� Conclusions

The methods ORTHODIR� ORTHOMIN� and their modications� which are
based on generating the unnormalized basis vectors and on the orthogonalization
equivalent to the classical Gram�Schmidt are clearly outperformed by the corre�
sponding variants of the GMRES method� It is clear that the normalization of the
basis vectors together with using modied Gram�Schmidt� or even more stable
orthogonalization schemes� a�ect signicantly the numerical stability of the im�
plementations discussed in the previous sections� The truncation and restarting
of the presented variants can be considered accordingly�
Measured by the numerical behavior� there is no clear winner between the vari�
ants of GMRES described in this paper� The choice of the particular variant
depends on the computer architecture� Although ATA�variant requires some�
what more work and storage� its implementation is simpler than of the other
variants� For parallel architectures� the ATA�variant may be worth to consider�
because the SS and WLZ variants need more sequential steps and are relatively
more di�cult to implement�
In the �
�� the numerical stability of the optimal implementation of the SS vari�
ant is studied� For a similar analysis of the optimal implementations of the WLZ
and ATA variants we refer to the forthcoming paper ����� Another interesting
question is the further development of the truncated schemes and their compari�
son to the other short�term approaches� We will return to this point elsewhere�
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