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Possible for GMRES

Anne Greenbaum* Vlastimil Ptak Zdenék Strakos!

September 22, 1994

Abstract

Given a nonincreasing positive sequence, f(0) > f(1) > ... >
f(n—1)>0,it is shown that there exists an n by n matrix A and a
vector ¥ with ||r°|| = £(0) such that f(k) = [|7*]|, k = 1,...,n — 1,
where 7% is the residual at step k of the GMRES algorithm applied to
the linear system Az = b, with initial residual »° = b— A2". Moreover,
the matrix A can be chosen to have any desired eigenvalues.

1 Introduction

The GMRES algorithm [2] is a popular iterative technique for solving large
sparse nonsymmetric (non-Hermitian) linear systems. Let A be an n by n
nonsingular matrix and b an n-dimensional vector (both may be complex).
To solve a linear system Az = b, given an initial guess z° for the solution,
the algorithm constructs successive approximations z*, k = 1,2, ..., from the
affine spaces

2% + span{r®, Ar®, ..., AF10Y, (1)
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where r° = b — Az° is the initial residual. The approximations are chosen to
minimize the Euclidean norm of the residual vector r* = b — Axz*, i.e,

"l =

P = _min | [ =, 2

ueAK(Ar
where Ki(A,r%) = span{r® Ar% ... A*=1r0} is the k-th Krylov subspace
generated by A and r®. We call AKy(A,r°) the k-th Krylov residual subspace.

In a previous paper [1] it was shown that any convergence curve that
can be generated by the GMRES algorithm can be generated by the algo-
rithm applied to a matrix having any desired eigenvalues. This is in marked
contrast to the situation for normal matrices, where the eigenvalues of the
matrix, together with the initial residual, completely determine the GMRES
convergence curve. This dramatically illustrates the fact that when highly
nonnormal matrices are allowed, eigenvalue information alone cannot guar-
antee fast convergence of GMRES.

The residual norms of successive GMRES approximations are nonincreas-
ing, since the residuals are being minimized over a set of expanding subspaces.
The question arises, however, as to whether every nonincreasing sequence of
residual norms is possible for the GMRES algorithm applied to some linear
system. Considering the result from [1] mentioned above, the question is
formulated in the following way: Given a nonincreasing positive sequence
f0) > f(1) > ... > f(n—1) > 0, and a set of nonzero complex numbers
{A1,..., A}, is there an n by n matrix A having eigenvalues Ay,..., A,, and
an initial residual v with [|r°]| = f(0), such that the GMRES algorithm
applied to the linear system Az = b, with initial residual r°, generates ap-
proximations z* such that ||7*|| = f(k), k = 1,...,n — 17 In this paper we
answer this question affirmatively and show how to construct such a matrix
and initial residual. Moreover, for a given convergence behavior, we charac-
terize all the matrices and initial residuals for which GMRES generates the
prescribed sequence of residual norms.

Note that the assumption f(n — 1) > 0 means that the related GMRES
porcedure does not converge to the exact solution until the step n and the
dimensions of both K, (A,r") and AK,(A,r°) are equal to n. Using that
assumption will simplify the notation; the modification of the results to the
general case is straightforward.

Throughout the paper we assume exact arithmetic.



2 Constructing a Problem with a Given
Convergence Curve and any Prescribed
Nonzero Eigenvalues

In this section, we construct a matrix A and a right hand side b, solving the
question formulated in the introduction, without using the results from [1].
In the next section we give an alternative characterization of the solutions,
which is based on [1].

We start with a simple analysis of some properties of the desired solution.
Since the residual vectors generated by the GMRES algorithm applied to a
linear system Az = b, with initial guess 2°, are completely determined by
the matrix A and the initial residual r°, we can assume without loss of
generality that the initial guess z° is zero and the right-hand side vector

b is the initial residual. We will refer to this procedure as GMRES(A, b).
Suppose that A and b represent the unknown matrix and right hand side.

Let W = {w',...,w"} be an orthonormal basis for the Krylov residual space
AK,(A,b) such that span{w!,....w'} = AK;(A,b), j = 1,2,...,n, and let
W be the matrix with the orthonormal columns (w',...,w"). From the

minimization property (2) it is clear that b can be expanded as

= > (bw’)u, (3)
7=1
where |(b,w’)| = \/\rf 1H |77]|*, r® = b, ||#"|| = 0. Given a nonincreasing
sequence f( ) > f(1) . > f(n—1) > 0, define the differences g(k) by

(k) = J(F(k=1)2 = (F(k)2, k=1,....n—1 (4)

The conditions ||b|| = f(0), ||7/|| = f(5),7 = 1,2, ...,n — 1, will then be satis-
fied if the coordinates of b in the basis W are determined by the prescribed
sequence of residual norms,

Wb = (g(1).....g(n — 1), f(n — 1))". (5)

Let A = {1, Ay, A}, Ay £ 0,5 =1,2,...,n, be a set of nonzero points
in the complex plane. Consider the monic polynomial



Z”—nz::ozjzj =(z—M)(z—A2)... (2= M) (6)

Clearly, ag # 0.

Construction of the matrix A and the right hand side b is straightforward.
The idea is the following. Matrix A can be considered as a linear operator
on the n-dimensional Hilbert space C™. We denote this operator by A; its
matrix representation in the standard basis € = {ey,..., e, } gives the desired
matrix A,

Af = A.

A is uniquely determined by its values on any set of basis vectors.
Let ¥V = {v',...,v"} be any orthonormal basis in C", and let V' be the

matrix with the orthonormal columns (v',... v"). Let b satisfy
Vb= (g(1),. .. 9(n = 1), fln = 1))". (7)
Since f(n — 1) is nonzero, the set of vectors B = {b,v',... v" "} is linearly

independent and also forms a basis for C™. Let B be the matrix with columns
(b,v',...,v" ). Then, the operator A is simply determined by the equations

Ab = !

Avl = ?

Avn—Z déf n—1

d
Apn1 =y aph + oot + .. 4 a_ oL

[ts matrix representation in the basis B is

0 ... 0 Qg
1 0 «
e R (9)
1 Qn—1

which is the companion matrix corresponding to the set of eigenvalues A.
Finally, the matrix A is given by



A=A = BAPB™. (10)

Summarizing, we have proved the following theorem:

Theorem 2.1.
Given a nonincreasing positive sequence f(0) > f(1) > ... > f(n—1) >0
and a set of nonzero complex numbers {A1; Ay, ..., A, }, there exists a matrix

A with eigenvalues Ay, Ag,..., A, and a right hand side b with ||b]] = f(0)
such the residual vectors r* at each step of GMRES( A, b) satisfy ||r*|| = f(k),
=12, .n—1.

It is obvious that the whole subject can be formulated in terms of linear
operators and operator equations on a finite dimensional Hilbert space.

For any chosen orthonormal basis V, the matrix A and the right hand side
b can be constructed via (6), (9), (10) and (4), (7). In the next section, we
characterize all the matrices and right hand sides for which GMRES generates
the prescribed sequence of residual norms.

3 An Alternative Characterization of the
Solution

In [1] it was shown that many different matrices can generate the same Krylov
residual spaces. We start with a slightly generalized formulation of the the-
orem from [1].

Theorem 3.1.

Let By C Ey C ... C FE, be a sequence of subspaces of C", where E;
is of dimension j, j = 1,2,...,n, and let b be any n-dimensional vector.
By W = {w',...,v"} w denote an orthonormal basis of F, such that
span {wi, ... ]} E;, 5 =1,2,...,n, by W the matrix with orthonor-
mal columns (wl, c W ) Let A be any nonsingular linear operator on £,

represented by its matrix A in the standard basis £, A = A%,

Then AK;(A,b) = E;, 5 = 1,2,...,n, if and only if (b,w™) # 0 and the

operator A has in the basis W matrix



AY = RH,

where R is any nonsingular upper triangular matrix and

0 ... 0 1/{b,w™)
i 1 ) 0 —(b,w >/ b, w™) ‘ (1)
0 ... 1 —(byw"H/{b,w™)

Proof: The condition AK;(A,b) = FE;, j =1,2,...,n, is equivalent to

A(b,w' w0 = WR (12)
for some nonsingular upper triangular matrix E. We can also write
byw') 1 0
Albw,. .y = aw | 1 . (13)
bow™) 0 ... 0

Substituting this expression into (12) and solving for A finishes the proof.
Note that H is the inverse of the righmost matrix in (13). O

Prior to applying Theorem 3.1. to our problem, we prove the following
useful Lemma.

Lemma 3.2
For any nonsingular matrix A and orthonormal matrix @, GMRES(QAQ*, b)
generates the same sequence of residual norms as GMRES(A, Q*b).

Proof. Denoting by 7% the k-th residual for GMRES(QAQ*,b), and by #*
the k-th residual for GMRES(A, @*b), and using (2), we can write



17 = minlb— ((QAQ7)b.....(QAQ")"b) y]| =
= min[Q°b — (A(Qb)...., A*(Q"Y)) yl| =

.

a

Using Theorem 3.1. and Lemma 3.2, the solution of our question formulated
in the Introduction is again very simple.

Given a sequence f(0) > f(1) > ... f(n — 1) > 0, the right hand side
vector b must satisfy (b, w’)| = g(j), j = 1,...,n— 1, where ¢(j) is given by
(4), and [(b,w™)| = f(n —1), for some orthonormal set {w", ..., w"}. Equiv-

alently, if the vectors w?!,...w™ are scaled by the appropriate complex units,
then the right hand side vector must satisfy (5). In order that AK;(A,b) span
the same space as {w!,...,w’} for all j = 1,...,n, it follows from Theorem

3.1 that A must be of the form WRHW*, where H is given by (11) and R
is some nonsingular upper triangular matrix. Thus, all matrices A and right
hand side vectors b for which GMRES(A, b) generates the required residual
norms must be such that A is of the form WR[:]W*, where H is given by
(11) and b satisfies (5), for some orthonormal matrix W. It follows from
Lemma 3.2 that for all matrix-vector pairs A, b of this form, GMRES(A, b)
does indeed generate residual vectors with the required norms.
If we take, using the notation from (4), (6)

1 0 ... 0 ay + apg(1)
0 1 0 az + apg(2)
R=1| 1 - : , (14)
0 1 apo1 + agg(n — 1)
00 ... 0 agf(n—1)

then HR is a companion matrix corresponding to the eigenvalues {1, Ay, .. .,
An}. Since the matrix HR is similar to R]:], it follows that, with this choice
of R, the matrix A = WRHW™ has any desired eigenvalues.

Note that for the simplest choice W = I, b = (g(1),9(2),...,9(n —
1), f(n — 1)), the matrices H (11) resp. R (14) are identical to the ma-

trices B! resp. BA® from the previous section,



jam)
jam)
jam)

1/f(n —1)
—g9(1)/f(n —1)
Bl'=H= : :
L0 —g(n—2)/f(n—1)
1 —gn—=1)/f(n —1)

and A is given by RIT. Emphasizing the fact that any nonincreasing conver-

—
<o
<o

gence curve can be considered, these simple formulas form a useful tool for
constructing numerical experiments.

4 Conclusions and Open Questions

The results of this paper and [1] demonstrate clearly that eigenvalues are
not the relevant quantities in determining the behavior of GMRES for non-
normal matrices. Any nonincreasing convergence curve can be obtained with
GMRES applied to a matrix having any desired eigenvalues. Different quan-
tities on which to base a convergence analysis have been suggested by others,
for example, [5], [4]. It remains an open problem to determine the most ap-
propriate set of system parameters for describing the behavior of GMRES.
Another open problem is to determine what convergence curves are possible
for the envelope of GMRES [3]. That is, if one does not consider a partic-
ular initial residual but instead considers the worst possible initial residual
for each step k, max),o= ||[7*]|, k¥ = 1,...,n — 1, where the vectors r* are
generated by GMRES(A,r?), then the sequence of norms must again be non-
increasing, but not every nonincreasing sequence is possible. It remains an
open problem to characterize the possible sequences.
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