narodni
N U dlozisté
1 L Sedé
6 literatury

The Computational Power of Bi-Greedy In-Branching Programs, and its Bounds

Z4k, Stanislav
1994

Dostupny z http://www.nusl.cz/ntk/nusl-33546

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 04.05.2024

Dalsi dokumenty muzete najit prostrednictvim vyhledavaciho rozhrani nusl.cz .

http://www.nusl.cz/ntk/nusl-33546
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

The computational power of bi-greedy
in-branching programs, and its bounds.

Stanislav Zak

Technical report No. 601

17. listopadu 1994

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod vodarenskou vézi 2, 182 07 Prague 8, Czech Republic
phone: (+422) 66414244 fax: (4+422) 8585789
e-mail: stan@uivt.cas.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

The computational power of bi-greedy
in-branching programs, and its bounds.

Stanislav Zak

Technical report No. 601
17. listopadu 1994

Abstract

A natural notion of inert bits is introduced. Based on this notion a new restriction on
branching programs - in-branching programs — is defined.

It is proved that in-branching programs are a generalization of 1-branching programs.
Further it is proved that the language of exactly-half cliques, which is subexponentially
hard for 1-branching programs, is polynomially easy for in-branching programs even
with the additional restriction bi-greedy.

A language is defined which is proved to be not easy (in some sense) for bi-greedy
in-branching programs.

Keywords

branching programs

1 Introduction

In the theory of branching programs this work is similar to papers on lower bounds
for 1-branching programs, real-time branching programs, syntactic k-times branching
programs, and so on [1]-[9]. The work is based on an observation that during a com-
putation on an input word some non-asked bits become inert step by step — “inert”
means they have no influence upon the result of the computation. The restriction “in-
branching” is a natural one, during any computation each in-branching program never

asks bits which have become inert.

We prove that each minimal 1-branching program is in-branching. Further for
the language of exactly-half-cliques, which requires subexponentially many vertices
on l-branching programs [8], we prove that on in-branching programs with another
restriction “bi-greedy”, it requires only polynomially many vertices (O(n?)).

The notion of a greedy computation means that at the moment in which the com-
putation asks a new (not yet asked) bit, it must choose such a bit ¢ that, after this
action, a maximum growth of the set of inert bits follows. “Bi-greedy” requires the
growth of inertia on both branches (i = 0, ¢ = 1). It seems probable that each reason-
able algorithm determines during any computation its set of inert bits in a quick way.
On the other hand, our definition of greedy computations seems to be an “ad hoc”
definition.

The second part of the work is devoted to the definition of a Boolean function J
and to the investigation of its properties. At the end it is proved that this function is
difficult for bi-greedy in-branching programs of polynomial size, at least in that sense
that it requires many inquiries of some bits of some inputs.

2 Preliminaries

We will now introduce the usual definition of branching programs and of other notions
we shall use in the next sections.

Definition. Let n be a natural number, n > 0, and [= {1,...,n} be the set of
bits. By a branching program P (over) we understand an oriented acyclic (finite)
graph with one source. The out-degree of each vertex is not greater than 2. The
branching vertices (out-degree = 2) are labeled by bits from I, one out-going edge is

labeled by 0, the other one by 1. The sinks (out-degree = 0) are labeled by 0 and 1.

Definition. Let u be an input word for an branching program P, u € {0,1}". By
the computation of the program P on the word u — comp(u) — we mean the sequence

{v;}5_ | of vertices of P such that

a) vy is the source of P
b) vy is a sink of P

c) If the out-degree of v; = 1 then v;1; is the vertice pointed to by the edge out-going
from wv;.

d) If the out-degree of v; = 2 and the label of v; = j € I then v;4 is the vertice pointed
to by the edge out-going from v; which is labeled by u; (v = (u1,...u,) € {0,1}").

We see that each input word determines a path in P from the source to a sink. —
Sometimes we shall say that an input word u or a computation comp(u) goes through
a vertex v.

Definition. Let P be a branching program and « be an input word. We say that
comp(u) asks a bit 7 iff there is a vertex v € comp(u) with out-degree = 2 which is
labeled by ¢ (comp(u) asks ¢ in v; it is an inquiry of 7).

Definition. Let P be a branching program. We say that P is a k-branching
program iff for each bit ¢ and each input word u the computation comp(u) asks bit ¢
in at most k vertices of P.

Definition. Let P be a branching program. By its size we mean the number of its
vertices.

Definition. Let P be a branching program. By the Boolean function fp of n vari-
ables computed by P we understand the function given by the following prescription:
for u € {0,1}", fp(u) is equal to the label of the last vertex of comp(u) (this vertex is
a sink).

Definition. Let f, be a Boolean function of n variables. By the complexity of f,
we mean the size of a minimal branching program which computes f,. Let {f,} be a
sequence of Boolean functions. By its complexity we mean a function s such that s(n)
is the complexity of f,,.

A language L C {0,1} determines a sequence of Boolean function; thus, we speak
about the complexity of L.

We see that we can also define the complexity of a sequence of Boolean functions
using branching programs which are restricted in some sense (e.g. k-branching pro-

grams). Naturally, the derived complexity grows with the severity of the restriction.

We recall some usual operations over branching programs.

a) It is possible to join a sink of a branching program with the source of another
branching program. The resulting structure is a branching program, too.

b) It is possible to eliminate an edge out-going from a branching vertex (together with
vertices, labels, and edges which become unnecessary).

c) It is possible to declare a vertex to be the source of a new branching program.

d) It is possible to reduce the sets of vertices and edges to those ones which are used
by computations on a subset of input words.

e) It is possible to join two vertices of a branching program if the circumstances allow
such an operation.

In the constructions in the next sections, we shall use only the operations a), ... e).

3 In-branching programs and their basic proper-
ties

Definition. Let I = {1,...,n} be a set of bits. Let A C [. We say that « is an
assignment of A iff @ mapps A into {0,1}. Let 8 be an assignment of the set [— A.
Then we define [a,] =4 u where u = (uy,...,u,) € {0,1}" is such that v; = «o(¢) if
i € A and u; = () otherwise.

Similarly we define [...] for more pairwise disjoint arguments.

Definition. Let f be a Boolean function of n variables. Let « be an assignment
of the set A, ACI. Let BC I, AN B =10. Then B is called (a, f)-inert iff for each
assignment p of the set I — (A U B) and for each two assignments og, oy of the set B

f[aoop]) = f([aor1p]) holds.

Lemma 1. Let B be an (a, f)-inert set. Let By C B. Then By is an («, f)-inert
set, too.

Proof. From the definition.

Lemma 2. Let B!, B? be an (a, f)-inert sets, B' N B? = (). Then B'U B? is an
(o, f)-inert set, too.

Proof. Let p be an assignment of the set I — (AU B* U B*). Let 04,01 be an
assignment of the set B*U B%. Let a§, 03 and o}, c{ be the corresponding assignments

of the sets B!, B2

[(laoop]) =
= f(laosogp])
aciaip]) since B' is (a, f) — inert

a
acioip]) since B? is (a, f) — inert

Therefore B' U B? is an (a, f)-inert set. Q.E.D.

Lemma 3. Let B', B? be (a, f)-inert sets. Then B* U B? is an (a, f)-inert set,
too.

Proof. Let us put C* = B',C* = B? — B, According to Lemma 1, C* is (a, f)-
inert. C'' N C?* = () therefore C* U C? is (a, f)-inert according to Lemma 2. We see
that B* U B? is («, f)-inert since B' U B* = C* U 2. Q.E.D.

Corollary. Let f be a Boolean function of n variables and « be an assignment of
the set A C I ={l,...,n}. Then there is a unique maximal (a, f)-inert set.

Now we shall apply our notion “(«, f)-inert” in the theory of branching programs.

Definition. Let P be a branching program. Let u be an input word and v be a
vertex of P, v € comp(u). Let B C I ={l,...,n}. We say that B is (u,v)-inert iff
AN B =0 and B is (a, f)-inert where f is the function computed by P, A is the set
of bits asked before v during the computation comp(u) and « is the assignment of A
which is given by the values of bits of v = uy ... u,.

Along different computations, different sets of inert bits arise.

Definition. Let P be a branching program. We say that P is an in-branching
program iff for each input word u and for each vertex v, v € comp(u), in v and in the
vertices following v in comp(u) no (u,v)-inert bit is asked.

Each in-branching program never asks any inert bit.

Lemma 4. Let P be an in-branching program, u be an input word, vy, vy be
vertices, vy,vy € comp(u), vy precedes vy. Let By be the maximum (u,vq)-inert set,

similarly By. Then By C Bs.

Proof. Let f be a function computed by P, for ¢« = 1,2, A; be the set of bits asked
during comp(u) before v;, and «; be the corresponding assignment. Let j € By. Let
o,0' be assignments of the set {j}. For each assignment p of the set I — (A U {j})
the following holds:

f([ezop]) =
= f(loa(az — a1)op])
= f([or(ag — ay)a'p]) — since {5} is (ay, f) — inert
= flaso'p]).

Hence j is an (aq, f)-inert bit and therefore j belongs to Bs. Q.E.D.

For the sake of completness, we introduce a basic lemma concerning 1-branching
programs.

Lemma 5. Let P be a 1-branching program. Let uq, uy be input words such that
comp(uy) joins comp(uy) in a vertex v. For i = 1,2 let A; be the set of bits asked
during comp(u;) before v.

Then for ¢ = 1,2 in v and in the vertices following v in comp(u;), comp(u;) never asks
any bit from the set A; U A,.

Proof. We shall prove this for comp(uq). Let us be an input word such that wus
is equal to ug on the set A; U Ay and w3 is equal to uy otherwise. comp(us) follows
comp(usy) to v where it meets comp(uy). Outside of A;UA; uy equals ug and so comp(uy)
does not branch with comp(us). comp(uy) may not ask any bit ¢ from A; — Ay since in
this case comp(us) would ask i repeatedly. Hence, in v and bellow v comp(uy) never

asks any bit from A; U Aj,. Q.E.D.

Lemma 6. Let P be a 1-branching program. Let uq, uy be input words such that
comp(uy) joins comp(uy) in a vertex v. For ¢ = 1,2 let A; be the sets of bits asked by
comp(u;) before v, let B; be the maximal (u;, v)-inert sets.

Then B1 — (Al U AQ) == B2 — (Al U AQ)

Proof. Let f be the function computed by P. For : = 1,2 let a; be the assignment
corresponding to A; (and w;). Let j € By — (A1 U Ay). We shall prove that j is (aq, f)-
inert (j € By — (A; U Ay)). Let p be an assignment of the set [— (A; U {j}), o,0*
assignments of the set {j}.

fleaop])

= f([awadopi]) where af is the restriction of oy on the set Ays— Ay, and py is
the restriction of p on the set [—(A;UAyU{j}) - according
to Lemma 5 the computations on these arguments join in
v, outside of Ay U A, they are the same and therefore they
never branch,

= f([anadolp]) — since jis (ay, f)-inert
f([a2atp]) according to Lemma 5 as above. Hence j € By — (A1 U Aj).
Q.E.D.

Lemma 7. Let P be a l-branching program and v be its vertex. Let {w;]i =
L,...,k} be the set of all input words u such that comp(u) goes through v. For

5

i = 1,...,k, let A; be the set of bits asked by comp(u;) before v | let B; be the
maximal (u;, v)-inert set. Let C' = JA;. Then B; — C is the same for all e = 1,... k.

Proof. We shall prove By — (' = B, — (.
B1 - C —

k

1=3

- (Bl Al U A2 U A

= (By— (A1 UAy)) — U A; according to Lemma 6
=3

= B,—-C

Q.E.D.

Theorem 1 Each minimal 1-branching program is an in-branching program.

Proof. By contradiction. Let us suppose there is a minimal 1-branching program
P which during a computation asks an inert bit ¢ in a vertex v. According to Lemma
5 and Lemma 7 the bit ¢ is inert for all computations which go through v. As to all
edges pointing to v, we repoint them to one of the successors of v, and we delete v
from P. Let P! be the resulting program. We see that P! is a 1-branching program,
P! computes the same function as P does, and P! has less vertices than P has. A
contradiction. Q.E.D.

Definition. Let P be an in-branching program which computes a function f. Let
u be an input word. Let v be a vertex, v € comp(u). Let A be the set asked by comp(u)
before v and « be the corresponding assignment. Let B be the maximum («, f)-inert
set. Let ¢ be a bit, 7 ¢ AU B.
For j = 0,1 we put 5; = aU{(7,)}. Let B; be the maximum (/3;, f)-inert set. Then we
define the growth of the inert set for the choice ¢ = j Inj(u,v,i) =4 card(B;)—card(B).

Definition. Let P be an in-branching program. We say that P is a bi-greedy in-
branching program iff for each input word u, for each branching vertex v € comp(u), v
labeled by a bit ¢,, the following holds:
if there is a bit ¢, ¢ ¢ AU B such that
Ing(u,v,1) >0 and Inq(u,v,7) >0
then Ing(u,v,7,) > 0 and]nl(U, 0, 1y) >
and Ing(u,v,i,) + Ing(u,v,,) Z (u v,t) + Inq(u,v,i) where A is the set of bits
asked before v during comp(u) and B is the maximal (u, v)-inert set.

4 The computational power of bi-greedy in-branching
programs

In this section we shall prove that in-branching programs are more powerful than 1-
branching programs. The well-known language of exactly-half-cliques [2], [8] which
requires a subexponential size of 1-branching programs, can be recognized by in-
branching programs of the size O(n®). The other restriction “bi-greedy” is gratis for
exactly-half-cliques (Lemma 1).

Definition. Let G be a finite graph, G = (V, E), V # ((vertices), F CV x V
(edges), card(V) = m, m is an even number. We say that (7 is an exactly-half-clique
if there is a set of vertices Vi, V4 C V, such that card(V1) = m/2 and £ =V} x V4.

Let G = (V, E) be a graph; let us assume that V' is indexed, V = {vy,...,v,,}. By
the code of G we may understand a binary m x m matrix A = (a;;) where a;; = 1
iff (v;,v;) € E. Since we work with graphs which are unoriented and ireflexive, the
matrix is symmetric with zeroes on its diagonal. Therefore it suffices to take only the
half of matrix A which is above the diagonal. Now we define the code of G as a binary
string of length m.(m —1)/2 divided into m — 1 parts. The first part is of length m —1,
it corresponds to vy and it describes the edges going to other vertices. The i-th part
corresponds to the vertex v;, it describes the edges going from v; to vyy,..., v, and
therefore its length is m — «.

Now, let us realize some properties of the codes of the graphs which are exactly-
half-cliques.

a) In the parts corresponding to the vertices not belonging to the clique, there are
only zeroes.

b) Each part of the code corresponding to vertex v of the exactly-half-clique is a suffix
of all parts corresponding to the vertices of the exactly-half-clique which precede
VAN vV, ... U

¢) For each in-branching program P which computes the function of exactly-half-
cliques and for each input word w it holds: If there is an assignment of not-yet-
asked bits which, together with the asked bits, gives a code of an exactly-halt-
clique, then no not-yet-asked bit is inert. In the other case, all not-yet-asked bits
are inert.

Lemma 1. Let P be an in-branching program which computes the function f of
exactly-half-cliques. Then for each computation it holds:

a) If a new bit ¢ is asked then in at most one of the branches (i = 0,7 = 1) a growth
of the set of inert bits is possible.

b) In the case of a growth of the set of inert bits all not-yet-asked bits become inert.

Proof. a) By contradiction. Let u be an input word, v € comp(u), v is labeled by a
bit i. Let A be the set of bits asked by comp(u) before v and « be the corresponding

assignment of A. If some inert bits arise in both branches (¢ = 0,7 = 1), then in
both branches there is no possibility to expand « to the code of an exactly-half-clique.
Hence, 7 is an inert bit. A contradiction. Q.E.D.
b) Obvious.

Corollary. FEach in-branching program computing the function of exactly-half-
cliques is a bi-greedy in-branching program.

Theorem 2 Let f be the function of exactly-half-cliques. Then the complexity of
f on bi-greedy in-branching programs is at most O(n?).

Proof. According to Lemma 1, each in-branching program which computes f (on
words of a length n) is a bi-greedy in-branching program. So, our task is to construct
an in-branching program P with at most O(n?) vertices which computes f on words
of length n.

Step I. On each input word, P finds the leftmost one. If during the action the

first one i1s not yet found, and it is clear that the input word is not a code of any
exactly-half-clique, the result is 0. If the first one is found, but too close to the end
of some part corresponding to a vertex, it is clear that the input is not a code of any
exactly-half clique and the result is 0.
The resulting part of P is a tree which at each leaf except one has the set of the inputs
with the leftmost one on the same position. The remaining leaf collects the inputs with
too many zeroes from the left. Some of leaves of this tree are sinks of our P which we
are constructing, and they are labeled by 0. The constructed part of P has less than 2n
vertices. The number of leaves without any label is not greater than n — in Step Il we
shall join them with the parts of P constructed there. The condition “in-branching”
is fulfilled trivially.

Step II. We are in the situation when the leftmost one is found. This one is located
in a part of the code which corresponds to a vertex of the graph belonging to a half-
clique. The leading zeroes of this part say that some vertices do not belong to that
half-clique and that the parts (of the code) pointed to by them must be filled by zeroes.
This fact is checked in Step II.

The resulting fragments — simple trees — are joined with unlabeled out-going vertices
of the fragment of P from Step I. The size of the constructed part of P is not greater
than 2n%. There are at most n leaves which are not sinks P; in Step III we shall

join them with the fragments of P constructed there. The condition “in-branching” is

fulfilled trivially.

Step I1I. We shall check whether

a) In the part p of the code with the leftmost one there is exactly m/2 — 1 ones.
b) In the parts of the code pointed to by zeroes from the part p there are only zeroes.

c¢) The parts of the code pointed to by one’s from the part p are suffixes of p.

Each input word is a code of an exactly-half-clique iff the conditions a), b), ¢) are
fulfilled. The fragments of P for checking a), then b), and then ¢) are trivial, they
fulfill the condition “in-branching” and they do not require many vertices.

So, the in-branching program P has at most O(n?) vertices. Q.E.D.

5 The bounds of the computational power of bi-
greedy in-branching programs

We shall construct a Boolean function .J such that, on bi-greedy in-branching programs,
J requires many repeated inquiries of some bits of some inputs. The definition of J is
not simple, therefore we start with its informal description.

In the set of all input bits we shall define some move, say from the left to the right,
which will consist of a sequence of jumps. Each input will be accepted or rejected
according to the situation after the last jump. The length (and the direction in the
case of the interpretation in two dimensions) will depend on a small set of bits in the
given place, and on the memory after the preceding jumps. A simple interaction of
these two things decides about the change of the memory and about the length (and
the direction) of the next jump.

At this moment it is easy to see that, if we choose reasonable parameters, then the
resulting function J will be computable within polynomial time. In the case of su-
perlogarithmic (jump) memory, Turing machines with logarithmic tape and branching
programs of polynomial size will have some difficulties, maybe.

Definition. Let A = (a;;)7%_, be a binary matrix. Let d be a natural number, 0 <

d < m. Forany a;; € A,1 < m—d+1, we define d-fibre of a;; tiw =ar (Aijye ey Uivd—1;)-

In the following we shall speak about fibres in two senses — as a sequence of 0,1 (as
a binary word) as it is defined, or as a sequence of indices (as a sequence of places).

9

Definition. For k € Nk > 0,d € N, k.d+ 1 < m, we define the k-th d-diagonal
of A ¢l =as (aij)ipjmh.dsa-
Informally: the k-th d-diagonal is the diagonal going through aj 4411 and it is parallel
with the direction “south-west - north-east”.
The last (the longest) d-diagonal will be called the control diagonal.

Definition. For d,k € N,(k + 1).d < m we define the k-th d-level u of A u¢ =
U ta.

aEcg
It is clear that uf Nuf,, = 0.

For ¢t € {0,1}% we shall use the notation ||t||; for the number of 1’s in the word ¢,
similarly ||t]|o for the number of 0’s.
For t,t, € {0,1}%, ¢, @ to(€ {0,1}) stands for the sum modulo 2 componentwise.

Definition. Let A be an m x m binary matrix, d € N,0 < d < m. We define a
partial function Jump? : {0,1}¢ x A — {0,1}¢ x A as follows: Let M € {0,1}%,a;; €
Aand i +d < m. Jump (M, a;;) =g (M’ a;, jv;,) where M' = M @ ti”,il =
|M|lo, 71 = ||M']]1. (Let us notice that iy + j; = d.) 7

Under the circumstances as given in the definition, M is called the input memory,
M’ the output memory.

Let us notice that for M € {0,1}? and any element of k-th d-diagonal ¢¢ the second
item of Jump?(M,a) is an element of k + 1-st d-diagonal. Informally, we may say that
Jump® jumps from k-th d-diagonal to the k + 1-st diagonal for any appropriate k. It
is possible to iterate these jumps if the output memory of one jump becomes the input
memory of the next one.

Definition. Let d,m,n € N,d,m,n > 1,2d < m,n = m x m. By a Boolean
function J¢ : {0,1}" — {0,1} we mean the function which is given by the following
prescription. The input word we understand as an m x m matrix A = (a;)7_;.
Starting with the input memory M = 0% and the element a;; we iterate the function
Jump? (from a d-diagonal to the next one) until the control diagonal is reached. Let
M’ be the input memory for the control diagonal and let a be the element reached (by
Jump?) upon it. Then J¢ =1 iff M’ =1,.

Definition. Let A be as above. By its critical elements we mean the element
a1, and other elements which become arguments when we iterate the function Jump?
(with the starting input memory 0%). By a critical fibre, we mean such a fibre that its
first element is critical.

Lemma 1. Let M, M’ € {0,1}¢ and let a be an element of the k-th d-diagonal. If
M # M’ then Jump®(M,a) # Jump?(M', a).

10

Proof. M &1t,# M' & 1,.

Lemma 2. Let M, M, € {0,1}¢ and let ay,a; € A, a1 # as, be elements of the
k-th d-diagonal, b be an element of the k + 1-st d-diagonal.
If Jump®(My,a,) = (M, b) and Jump?(My,ay) = (M}, b) then M| # Mj.

Proof. The jump from a; to b defines a vector (on A). Similarly the jump from
as to b. Since ay # ay, these two vectors are different. According to the definition of
Jump?, these vectors are given by the numbers of 0’s and 1’s in the output memories

M, M. Hence M # M. Q.E.D.

Lemma 3. Let A be an input matrix, a be a critical element of the k-th d-diagonal,
t be its fibre. Let A’ be an input matrix which differs from A only on t.
Then, starting with the k4 1-th d-diagonal, the trajectory of Jump? on A differs from
that on A’ in each iteration either in reached element or in the (output/)input memory.

Proof. The input memory for the (critical) fibre t is the same in both cases. The
output memories are different since ¢ in A differs from ¢ in A’. So, on the k 4 1-st
d-diagonal, either the reached elements or at least the input memories differ. For the
next iterations we apply Lemma 1, 2. Q.E.D.

Now, we shall prove that bi-greedy in-branching programs computing the function
J¢ have a useful property.

Definition. Let P be a branching program which computes the function J¢. Let u
be an input word and v be a vertex of P, v € comp(u). We say that comp(u) “follows
a natural algorithm before v” if the following holds:

a) before v comp(u) asks only the elements of the critical fibres of u

b) before v (during comp(u)) for any bit @ of any critical fibre ¢ of u, the first inquiry
of a follows after the first inquiries of all bits of all critical fibres which precede ¢.

Theorem 3 Let P be a bi-greedy in-branching program which computes the func-
tion J9. Let u be an input word and v,w be vertices of P such that during comp(u) v
immediately precedes w. If comp(u) follows natural algorithm before v then comp(u)
follows a natural algorithm before w.

Proof. Let us investigate the set of inert bits (of comp(u)) before v. Let t be the
critical fibre of the highest level asked by comp(u) before v. If we fix the assignment
given by comp(u) before v, then the leading elements of all fibres potentially reachable
(by Jump?) are in the south-east quadrant given by the leading element of . If, in ¢,
ko of 0’s and ky of 1’s were found before v, then the ceiling of the quadrant in question
descends about kg rows and the west wall of the quadrant shifts about &; columns to

11

the east. This follows from the definition of Jump? and J.
It is clear that each bit is not inert iff it is reachable (this means an element of a

reachable fibre).

To prove our Theorem, we must find out what is the inquiry in the vertex v. The
Theorem holds trivially if out-degree of v < 2, or if the inquiry in v is not a first inquiry
of a bit. If it is a first inquiry of a bit, then it is an inquiry of a non-inert bit, since
P is in-branching. “Non-inert” implies reachable — it is a bit in ¢ or in the quadrant
defined above. There are three possibilities which we have to judge — the bit ¢ asked
in v

a) is a bit of t or —if ¢ is completely asked before v — of the next fibre #';
b) is a bit of another fibre of the quadrant not at the control level;

c) is a bit of a fibre at the control level;

Case a) For both branches ¢ = 0,7 = 1 there is a growth of the set of inert bits
(¢ = 0 implies a decreasing of the ceiling of the quadrant, ¢ = 1 implies a shift of the
west wall of the quadrant).

Case b) The branch ¢ = 0 never implies a growth of the set of inert bits. It is
necessary to discuss three types of the position of ¢ «) ¢ is in a fibre at the ceiling of
the quadrant; 3) ¢ is in a fibre of the west wall of the quadrant; v) ¢ is in a fibre inside
of the quadrant.

Case c) The potential growth of the set of inert bits is at most one-sided (it is
necessary to discuss three types of the position of ¢, as above).

Now it is clear that the assumption “bi-greedy” implies that the inquiry in v is
according to the case a). Q.E.D.

Corollary. Let P be a bi-greedy in-branching program which computes J¢. Then
for each input word u, comp(u) asks only bits of critical fibres and the first inquiries
respect the ordering of the levels.

Now, we shall prove that J¢ is hard for bi-greedy branching programs.

Definition. Let A be an input matrix. By a zone we mean a sequence of d+1
adjacent d-levels. On the zero-th level all fibres are of the form 0¢, on the i-th level all
fibres are of the form 011097,

Theorem 2. Let P be a bi-greedy in-branching program of size p which computes
the function J?. Let ¢ be a fibre and K be a set of input words such that they differ
only on bits of ¢, and ¢ is critical for all of them. Let the d-level of ¢ be followed (not

12

necessarily immediately) by S zones (in inputs from K'). Then for all v € K, except
at most p of them, during the computation on u there are S inquiries of bits of ¢.

Proof. For all v € K, let us investigate all vertices of P where comp(u) asks a zone
for the first time. There are at most p vertices v with a unique v € K such that in v
comp(u) asks a zone for the first time. Let K’ be the set of such inputs. We see that
|K'| < p.

Since P is a bi-greedy in-branching program, for all v € K — K’ comp(u) may ask
only bits of critical fibres, and the first inquiries of critical fibres are ordered according
to d-levels (Theorem 1 and Corollary). Let v € K — K’ and v be a vertex where
comp(u) asks a zone for the first time — let ¢ be the inquired bit. Let us investigate the
part of comp(u) beginning at v and ending by the vertex where comp(u) asks for the
first time a bit outside of the zone in question. Since u € K — K’, thereis u; € K — K’
such that v € comp(u;). According to Lemma 3 the iterations of Jump? reach the
fibre of ¢ in different input memories. Each zone is constructed in such a way, that in
the case of different input memories, the iterations of Jump? on u and u; must reach
different fibres of one of d-levels of the zone in question. Hence comp(u) and comp(u,)
must branch. Since v and u; differ only on bits of ¢, there is an inquiry of a bit of ¢.

Q.E.D.

The maximum value of S from the Theorem is (y/n — d)/d.(d + 1) — in this case ¢
is on the 0-th d-level.

Corollary. Let P be a bi-greedy in-branching program of size p which computes a
function J¢. If 2¢ > p, then there is an input word u and a bit ¢ such that during the
computation comp(u) 7 is asked at least (/n — d)/d*.(d + 1) times.

13

Bibliography

[1] L. Babai, P. Hajnal, E. Szemeredi, G. Turan: A Lower Bound for Read-once
Branching Programs — JCSS 35, (1987), 153-162.

[2] A. Borodin, A. Razborov, R. Smolensky: On Lower Bounds for Read-k-times
Branching Programs — Computational Complexity 3, 1-18.

[3] S. Jukna: A Note on Read-k-times Branching Programs - Universitdt Dortmund
- Forschungsbericht Nr. 448, 1992.

[4] K. Kriegel, S. Waack: Exponential Lower Bounds for Real-time Branching Pro-
grams - Proc. FCT’87, LNCS 278, 263-267.

[5] P. Pudlék: A Lower Bound on Complexity of Branching Programs - MFCS’84,
LNCS 176, 480-489.

[6] D. Sieling: New Lower Bounds and Hierarchy Results for Restricted Branching
Programs - Universitat Dortmund, Forschungsbericht Nr. 494, 1993.

[7] 1. Wegener: On the Complexity of Branching Programs and Decision Trees for
Clique Functions - JACM 35, 1988, 461-471.

[8] S. Zak: An Exponential Lower Bound for One-time-only Branching Programs -
MFCS’84, LNCS 176, 562-566.

[9] S. Zak: An Exponential Lower Bound for Real-time Branching Programs - Infor-
mation and Control, Vol. 71, No 1/2, 87-94.

14

