
The Computational Power of Bi-Greedy In-Branching Programs, and its Bounds

Žák, Stanislav
1994

Dostupný z http://www.nusl.cz/ntk/nusl-33546

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 04.05.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-33546
http://www.nusl.cz
http://www.nusl.cz


INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

The computational power of bi�greedy

in�branching programs� and its bounds�

Stanislav �Z�ak

Technical report No� ���

��� listopadu ����

Institute of Computer Science� Academy of Sciences of the Czech Republic
Pod vod�renskou v��� �� �	� 
� Prague 	� Czech Republic

phone� 
����� �������� fax� 
����� 	�	��	�
e�mail� stan�uivt�cas�cz



INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

The computational power of bi�greedy

in�branching programs� and its bounds�

Stanislav �Z�ak

Technical report No� ���
��� listopadu ����

Abstract

A natural notion of inert bits is introduced� Based on this notion a new restriction on
branching programs 	 in	branching programs 
 is de�ned�
It is proved that in	branching programs are a generalization of �	branching programs�
Further it is proved that the language of exactly	half cliques� which is subexponentially
hard for �	branching programs� is polynomially easy for in	branching programs even
with the additional restriction bi	greedy�
A language is de�ned which is proved to be not easy 
in some sense� for bi	greedy
in	branching programs�

Keywords

branching programs



� Introduction

In the theory of branching programs this work is similar to papers on lower bounds
for �	branching programs� real	time branching programs� syntactic k	times branching
programs� and so on ���
���� The work is based on an observation that during a com	
putation on an input word some non	asked bits become inert step by step 
 �inert�
means they have no in�uence upon the result of the computation� The restriction �in	
branching� is a natural one� during any computation each in	branching program never
asks bits which have become inert�

We prove that each minimal �	branching program is in	branching� Further for
the language of exactly	half	cliques� which requires subexponentially many vertices
on �	branching programs ���� we prove that on in	branching programs with another
restriction �bi	greedy�� it requires only polynomially many vertices 
O
n����

The notion of a greedy computation means that at the moment in which the com	
putation asks a new 
not yet asked� bit� it must choose such a bit i that� after this
action� a maximum growth of the set of inert bits follows� �Bi	greedy� requires the
growth of inertia on both branches 
i � �� i � ��� It seems probable that each reason	
able algorithm determines during any computation its set of inert bits in a quick way�
On the other hand� our de�nition of greedy computations seems to be an �ad hoc�
de�nition�

The second part of the work is devoted to the de�nition of a Boolean function J
and to the investigation of its properties� At the end it is proved that this function is
di�cult for bi	greedy in	branching programs of polynomial size� at least in that sense
that it requires many inquiries of some bits of some inputs�

� Preliminaries

We will now introduce the usual de�nition of branching programs and of other notions
we shall use in the next sections�

De�nition� Let n be a natural number� n � �� and I � f�� � � � � ng be the set of
bits� By a branching program P 
over I� we understand an oriented acyclic 
�nite�
graph with one source� The out	degree of each vertex is not greater than �� The
branching vertices 
out	degree � �� are labeled by bits from I� one out	going edge is
labeled by �� the other one by �� The sinks 
out	degree � �� are labeled by � and ��

De�nition� Let u be an input word for an branching program P � u � f�� �gn� By
the computation of the program P on the word u 
 comp
u� 
 we mean the sequence

�



fvigki�� of vertices of P such that

a� v� is the source of P

b� vk is a sink of P

c� If the out	degree of vi � � then vi�� is the vertice pointed to by the edge out	going
from vi�

d� If the out	degree of vi � � and the label of vi � j � I then vi�� is the vertice pointed
to by the edge out	going from vi which is labeled by uj 
u � 
u�� � � � un� � f�� �gn��

We see that each input word determines a path in P from the source to a sink� 

Sometimes we shall say that an input word u or a computation comp
u� goes through
a vertex v�

De�nition� Let P be a branching program and u be an input word� We say that
comp
u� asks a bit i i� there is a vertex v � comp
u� with out	degree � � which is
labeled by i 
comp
u� asks i in v� it is an inquiry of i��

De�nition� Let P be a branching program� We say that P is a k	branching
program i� for each bit i and each input word u the computation comp
u� asks bit i
in at most k vertices of P �

De�nition� Let P be a branching program� By its size we mean the number of its
vertices�

De�nition� Let P be a branching program� By the Boolean function fP of n vari	
ables computed by P we understand the function given by the following prescription�
for u � f�� �gn� fP 
u� is equal to the label of the last vertex of comp
u� 
this vertex is
a sink��

De�nition� Let fn be a Boolean function of n variables� By the complexity of fn
we mean the size of a minimal branching program which computes fn� Let ffng be a
sequence of Boolean functions� By its complexity we mean a function s such that s
n�
is the complexity of fn�

A language L � f�� �g� determines a sequence of Boolean function� thus� we speak
about the complexity of L�

We see that we can also de�ne the complexity of a sequence of Boolean functions
using branching programs which are restricted in some sense 
e�g� k	branching pro	
grams�� Naturally� the derived complexity grows with the severity of the restriction�

We recall some usual operations over branching programs�

�



a� It is possible to join a sink of a branching program with the source of another
branching program� The resulting structure is a branching program� too�

b� It is possible to eliminate an edge out	going from a branching vertex 
together with
vertices� labels� and edges which become unnecessary��

c� It is possible to declare a vertex to be the source of a new branching program�

d� It is possible to reduce the sets of vertices and edges to those ones which are used
by computations on a subset of input words�

e� It is possible to join two vertices of a branching program if the circumstances allow
such an operation�

In the constructions in the next sections� we shall use only the operations a�� � � � �e��

� In�branching programs and their basic proper�

ties

De�nition� Let I � f�� � � � � ng be a set of bits� Let A � I� We say that � is an
assignment of A i� � mapps A into f�� �g� Let � be an assignment of the set I � A�
Then we de�ne ��� �� �df u where u � 
u�� � � � � un� � f�� �gn is such that ui � �
i� if
i � A and ui � �
i� otherwise�
Similarly we de�ne �� � �� for more pairwise disjoint arguments�

De�nition� Let f be a Boolean function of n variables� Let � be an assignment
of the set A� A � I� Let B � I� A � B � �� Then B is called 
�� f�	inert i� for each
assignment � of the set I � 
A � B� and for each two assignments ��� �� of the set B
f
������� � f
������� holds�

Lemma �� Let B be an 
�� f�	inert set� Let B� � B� Then B� is an 
�� f�	inert
set� too�

Proof� From the de�nition�

Lemma �� Let B�� B� be an 
�� f�	inert sets� B� � B� � �� Then B� � B� is an

�� f�	inert set� too�

Proof� Let � be an assignment of the set I � 
A � B� � B��� Let ��� �� be an
assignment of the set B� �B�� Let ���� �

�
� and ���� �

�
� be the corresponding assignments

of the sets B�� B��

�



f
������� �

� f
������
�

����

� f
������
�

���� since B
� is 
�� f� � inert

� f
����
�
��
�
��� since B� is 
�� f� � inert

� f
�������

Therefore B� �B� is an 
�� f�	inert set� Q�E�D�

Lemma �� Let B�� B� be 
�� f�	inert sets� Then B� � B� is an 
�� f�	inert set�
too�

Proof� Let us put C� � B�� C� � B� � B�� According to Lemma �� C� is 
�� f�	
inert� C� � C� � � therefore C� � C� is 
�� f�	inert according to Lemma �� We see
that B� �B� is 
�� f�	inert since B� �B� � C� � C�� Q�E�D�

Corollary� Let f be a Boolean function of n variables and � be an assignment of
the set A � I � f�� � � � � ng� Then there is a unique maximal 
�� f�	inert set�

Now we shall apply our notion �
�� f�	inert� in the theory of branching programs�

De�nition� Let P be a branching program� Let u be an input word and v be a
vertex of P � v � comp
u�� Let B � I � f�� � � � � ng� We say that B is 
u� v�	inert i�
A � B � � and B is 
�� f�	inert where f is the function computed by P � A is the set
of bits asked before v during the computation comp
u� and � is the assignment of A
which is given by the values of bits of u � u� � � � un�

Along di�erent computations� di�erent sets of inert bits arise�

De�nition� Let P be a branching program� We say that P is an in	branching
program i� for each input word u and for each vertex v� v � comp
u�� in v and in the
vertices following v in comp
u� no 
u� v�	inert bit is asked�

Each in	branching program never asks any inert bit�

Lemma �� Let P be an in	branching program� u be an input word� v�� v� be
vertices� v�� v� � comp
u�� v� precedes v�� Let B� be the maximum 
u� v��	inert set�
similarly B�� Then B� � B��

Proof� Let f be a function computed by P � for i � �� �� Ai be the set of bits asked
during comp
u� before vi� and �i be the corresponding assignment� Let j � B�� Let
�� �� be assignments of the set fjg� For each assignment � of the set I � 
A� � fjg�
the following holds�

�



f
������� �

� f
���
�� � �������

� f
���
�� � ����
����� since fjg is 
��� f�� inert

� f
���
�����

Hence j is an 
��� f�	inert bit and therefore j belongs to B�� Q�E�D�

For the sake of completness� we introduce a basic lemma concerning �	branching
programs�

Lemma �� Let P be a �	branching program� Let u�� u� be input words such that
comp
u�� joins comp
u�� in a vertex v� For i � �� � let Ai be the set of bits asked
during comp
ui� before v�
Then for i � �� � in v and in the vertices following v in comp
ui�� comp
ui� never asks
any bit from the set A� �A��

Proof� We shall prove this for comp
u��� Let u� be an input word such that u�
is equal to u� on the set A� � A� and u� is equal to u� otherwise� comp
u�� follows
comp
u�� to v where it meets comp
u��� Outside ofA��A� u� equals u� and so comp
u��
does not branch with comp
u��� comp
u�� may not ask any bit i from A��A� since in
this case comp
u�� would ask i repeatedly� Hence� in v and bellow v comp
u�� never
asks any bit from A� � A�� Q�E�D�

Lemma �� Let P be a �	branching program� Let u�� u� be input words such that
comp
u�� joins comp
u�� in a vertex v� For i � �� � let Ai be the sets of bits asked by
comp
ui� before v� let Bi be the maximal 
ui� v�	inert sets�
Then B� � 
A� � A�� � B� � 
A� � A���

Proof� Let f be the function computed by P � For i � �� � let �i be the assignment
corresponding to Ai 
and ui�� Let j � B�� 
A��A��� We shall prove that j is 
��� f�	
inert 
j � B� � 
A� � A���� Let � be an assignment of the set I � 
A� � fjg�� �� ��
assignments of the set fjg�

f
�������
� f
����������� where ��� is the restriction of �� on the setA��A�� and �� is

the restriction of � on the set I�
A��A��fjg� 
 according
to Lemma � the computations on these arguments join in
v� outside of A� �A� they are the same and therefore they
never branch�

� f
�������
����� 
 since j is 
��� f�	inert

� f
�������� according to Lemma � as above� Hence j � B�� 
A��A���
Q�E�D�

Lemma �� Let P be a �	branching program and v be its vertex� Let fuiji �
�� � � � � kg be the set of all input words u such that comp
u� goes through v� For

�



i � �� � � � � k� let Ai be the set of bits asked by comp
ui� before v � let Bi be the
maximal 
ui� v�	inert set� Let C �

S
Ai� Then Bi � C is the same for all i � �� � � � � k�

Proof� We shall prove B� � C � B� �C�

B� �C �

� B� � 
A� �A� �
k�

i��

Ai�

� 
B� � 
A� �A����
k�

i��

Ai

� 
B� � 
A� �A����
k�

i��

Ai according to Lemma �

� B� �C

Q�E�D�

Theorem � Each minimal �	branching program is an in	branching program�

Proof� By contradiction� Let us suppose there is a minimal �	branching program
P which during a computation asks an inert bit i in a vertex v� According to Lemma
� and Lemma � the bit i is inert for all computations which go through v� As to all
edges pointing to v� we repoint them to one of the successors of v� and we delete v
from P � Let P � be the resulting program� We see that P � is a �	branching program�
P � computes the same function as P does� and P � has less vertices than P has� A
contradiction� Q�E�D�

De�nition� Let P be an in	branching program which computes a function f � Let
u be an input word� Let v be a vertex� v � comp
u�� Let A be the set asked by comp
u�
before v and � be the corresponding assignment� Let B be the maximum 
�� f�	inert
set� Let i be a bit� i 	� A �B�
For j � �� � we put �j � ��f
i� j�g� Let Bj be the maximum 
�j� f�	inert set� Then we
de�ne the growth of the inert set for the choice i � j Inj
u� v� i� �df card
Bj��card
B��

De�nition� Let P be an in	branching program� We say that P is a bi	greedy in	
branching program i� for each input word u� for each branching vertex v � comp
u�� v
labeled by a bit iv� the following holds�
if there is a bit i� i 	� A �B such that
In�
u� v� i� � � and In�
u� v� i� � �
then In�
u� v� iv� � � and In�
u� v� iv� � �
and In�
u� v� iv� � In�
u� v� iv� 
 In�
u� v� i� � In�
u� v� i� where A is the set of bits
asked before v during comp
u� and B is the maximal 
u� v�	inert set�

�



� The computational power of bi�greedy in�branching

programs

In this section we shall prove that in	branching programs are more powerful than �	
branching programs� The well	known language of exactly	half	cliques ���� ��� which
requires a subexponential size of �	branching programs� can be recognized by in	
branching programs of the size O
n��� The other restriction �bi	greedy� is gratis for
exactly	half	cliques 
Lemma ���

De�nition� Let G be a �nite graph� G � 
V�E�� V 	� � 
vertices�� E � V � V

edges�� card
V � � m� m is an even number� We say that G is an exactly	half	clique
if there is a set of vertices V�� V� � V � such that card
V�� � m	� and E � V� � V��

Let G � 
V�E� be a graph� let us assume that V is indexed� V � fv�� � � � � vmg� By
the code of G we may understand a binary m � m matrix A � 
aij� where aij � �
i� 
vi� vj� � E� Since we work with graphs which are unoriented and ire�exive� the
matrix is symmetric with zeroes on its diagonal� Therefore it su�ces to take only the
half of matrix A which is above the diagonal� Now we de�ne the code of G as a binary
string of length m�
m���	� divided into m�� parts� The �rst part is of length m���
it corresponds to v� and it describes the edges going to other vertices� The i	th part
corresponds to the vertex vi� it describes the edges going from vi to vi��� � � � � vm and
therefore its length is m� i�

Now� let us realize some properties of the codes of the graphs which are exactly	
half	cliques�

a� In the parts corresponding to the vertices not belonging to the clique� there are
only zeroes�

b� Each part of the code corresponding to vertex v of the exactly	half	clique is a su�x
of all parts corresponding to the vertices of the exactly	half	clique which precede
v in v�� � � � vm�

c� For each in	branching program P which computes the function of exactly	half	
cliques and for each input word u it holds� If there is an assignment of not	yet	
asked bits which� together with the asked bits� gives a code of an exactly	half	
clique� then no not	yet	asked bit is inert� In the other case� all not	yet	asked bits
are inert�

Lemma �� Let P be an in	branching program which computes the function f of
exactly	half	cliques� Then for each computation it holds�

�



a� If a new bit i is asked then in at most one of the branches 
i � �� i � �� a growth
of the set of inert bits is possible�

b� In the case of a growth of the set of inert bits all not	yet	asked bits become inert�

Proof� a� By contradiction� Let u be an input word� v � comp
u�� v is labeled by a
bit i� Let A be the set of bits asked by comp
u� before v and � be the corresponding
assignment of A� If some inert bits arise in both branches 
i � �� i � ��� then in
both branches there is no possibility to expand � to the code of an exactly	half	clique�
Hence� i is an inert bit� A contradiction� Q�E�D�
b� Obvious�

Corollary� Each in	branching program computing the function of exactly	half	
cliques is a bi	greedy in	branching program�

Theorem � Let f be the function of exactly	half	cliques� Then the complexity of
f on bi	greedy in	branching programs is at most O
n���

Proof� According to Lemma �� each in	branching program which computes f 
on
words of a length n� is a bi	greedy in	branching program� So� our task is to construct
an in	branching program P with at most O
n�� vertices which computes f on words
of length n�

Step I� On each input word� P �nds the leftmost one� If during the action the
�rst one is not yet found� and it is clear that the input word is not a code of any
exactly	half	clique� the result is �� If the �rst one is found� but too close to the end
of some part corresponding to a vertex� it is clear that the input is not a code of any
exactly	half clique and the result is ��
The resulting part of P is a tree which at each leaf except one has the set of the inputs
with the leftmost one on the same position� The remaining leaf collects the inputs with
too many zeroes from the left� Some of leaves of this tree are sinks of our P which we
are constructing� and they are labeled by �� The constructed part of P has less than �n
vertices� The number of leaves without any label is not greater than n 
 in Step II we
shall join them with the parts of P constructed there� The condition �in	branching�
is ful�lled trivially�

Step II� We are in the situation when the leftmost one is found� This one is located
in a part of the code which corresponds to a vertex of the graph belonging to a half	
clique� The leading zeroes of this part say that some vertices do not belong to that
half	clique and that the parts 
of the code� pointed to by themmust be �lled by zeroes�
This fact is checked in Step II�

The resulting fragments 
 simple trees 
 are joined with unlabeled out	going vertices
of the fragment of P from Step I� The size of the constructed part of P is not greater
than �n�� There are at most n leaves which are not sinks P � in Step III we shall

�



join them with the fragments of P constructed there� The condition �in	branching� is
ful�lled trivially�

Step III� We shall check whether

a� In the part p of the code with the leftmost one there is exactly m	� � � ones�

b� In the parts of the code pointed to by zeroes from the part p there are only zeroes�

c� The parts of the code pointed to by one�s from the part p are su�xes of p�

Each input word is a code of an exactly	half	clique i� the conditions a�� b�� c� are
ful�lled� The fragments of P for checking a�� then b�� and then c� are trivial� they
ful�ll the condition �in	branching� and they do not require many vertices�

So� the in	branching program P has at most O
n�� vertices� Q�E�D�

� The bounds of the computational power of bi�

greedy in�branching programs

We shall construct a Boolean function J such that� on bi	greedy in	branching programs�
J requires many repeated inquiries of some bits of some inputs� The de�nition of J is
not simple� therefore we start with its informal description�

In the set of all input bits we shall de�ne some move� say from the left to the right�
which will consist of a sequence of jumps� Each input will be accepted or rejected
according to the situation after the last jump� The length 
and the direction in the
case of the interpretation in two dimensions� will depend on a small set of bits in the
given place� and on the memory after the preceding jumps� A simple interaction of
these two things decides about the change of the memory and about the length 
and
the direction� of the next jump�

At this moment it is easy to see that� if we choose reasonable parameters� then the
resulting function J will be computable within polynomial time� In the case of su	
perlogarithmic 
jump� memory� Turing machines with logarithmic tape and branching
programs of polynomial size will have some di�culties� maybe�

De�nition� Let A � 
aij�mi�j�� be a binary matrix� Let d be a natural number� � 

d 
 m� For any aij � A� i � m�d��� we de�ne d	�bre of aij tdaij �df 
aij� � � � � ai�d���j��

In the following we shall speak about �bres in two senses 
 as a sequence of ��� 
as
a binary word� as it is de�ned� or as a sequence of indices 
as a sequence of places��

�



De�nition� For k � N� k 
 �� d � N� k�d � � � m� we de�ne the k	th d	diagonal
of A cdk �df 
aij�i�j�k�d���
Informally� the k	th d	diagonal is the diagonal going through ak�d���� and it is parallel
with the direction �south	west 	 north	east��
The last 
the longest� d	diagonal will be called the control diagonal�

De�nition� For d� k � N� 
k � ���d � m we de�ne the k	th d	level udk of A udk �dfS

a�cd
k

ta�

It is clear that udk � udk�� � ��

For t � f�� �gd we shall use the notation ktk� for the number of ��s in the word t�
similarly ktk� for the number of ��s�
For t�� t� � f�� �gd� t� 
 t�
� f�� �gd� stands for the sum modulo � componentwise�

De�nition� Let A be an m �m binary matrix� d � N� � 
 d 
 m� We de�ne a
partial function Jumpd � f�� �gd � A� f�� �gd � A as follows� Let M � f�� �gd� aij �
A and i � d � m� Jumpd
M�aij� �df 
M �� ai�i��j�j�� where M � � M 
 tdai�j � i� �
kM �k�� j� � kM �k�� 
Let us notice that i� � j� � d��

Under the circumstances as given in the de�nition� M is called the input memory�
M � the output memory�

Let us notice that for M � f�� �gd and any element of k	th d	diagonal cdk the second
item of Jumpd
M�a� is an element of k��	st d	diagonal� Informally� we may say that
Jumpd jumps from k	th d	diagonal to the k � �	st diagonal for any appropriate k� It
is possible to iterate these jumps if the output memory of one jump becomes the input
memory of the next one�

De�nition� Let d�m� n � N� d�m� n � �� �d � m�n � m � m� By a Boolean
function Jd � f�� �gn � f�� �g we mean the function which is given by the following
prescription� The input word we understand as an m � m matrix A � 
aij�mi�j���
Starting with the input memory M � �d and the element a��� we iterate the function
Jumpd 
from a d	diagonal to the next one� until the control diagonal is reached� Let
M � be the input memory for the control diagonal and let a be the element reached 
by
Jumpd� upon it� Then Jd � � i� M � � ta�

De�nition� Let A be as above� By its critical elements we mean the element
a��� and other elements which become arguments when we iterate the function Jumpd


with the starting input memory �d�� By a critical �bre� we mean such a �bre that its
�rst element is critical�

Lemma �� Let M�M � � f�� �gd and let a be an element of the k	th d	diagonal� If
M 	� M � then Jumpd
M�a� 	� Jumpd
M �� a��

��



Proof� M 
 ta 	� M � 
 ta�

Lemma �� Let M��M� � f�� �gd and let a�� a� � A� a� 	� a�� be elements of the
k	th d	diagonal� b be an element of the k � �	st d	diagonal�
If Jumpd
M�� a�� � 
M �

�� b� and Jumpd
M�� a�� � 
M �

�� b� then M �

� 	� M �

��

Proof� The jump from a� to b de�nes a vector 
on A�� Similarly the jump from
a� to b� Since a� 	� a�� these two vectors are di�erent� According to the de�nition of
Jumpd� these vectors are given by the numbers of ��s and ��s in the output memories
M �

��M
�

�� Hence M �

� 	�M �

�� Q�E�D�

Lemma �� Let A be an input matrix� a be a critical element of the k	th d	diagonal�
t be its �bre� Let A� be an input matrix which di�ers from A only on t�
Then� starting with the k��	th d	diagonal� the trajectory of Jumpd on A di�ers from
that on A� in each iteration either in reached element or in the 
output��input memory�

Proof� The input memory for the 
critical� �bre t is the same in both cases� The
output memories are di�erent since t in A di�ers from t in A�� So� on the k � �	st
d	diagonal� either the reached elements or at least the input memories di�er� For the
next iterations we apply Lemma �� �� Q�E�D�

Now� we shall prove that bi	greedy in	branching programs computing the function
Jd have a useful property�

De�nition� Let P be a branching program which computes the function Jd� Let u
be an input word and v be a vertex of P � v � comp
u�� We say that comp
u� �follows
a natural algorithm before v� if the following holds�

a� before v comp
u� asks only the elements of the critical �bres of u

b� before v 
during comp
u�� for any bit a of any critical �bre t of u� the �rst inquiry
of a follows after the �rst inquiries of all bits of all critical �bres which precede t�

Theorem � Let P be a bi	greedy in	branching program which computes the func	
tion Jd� Let u be an input word and v�w be vertices of P such that during comp
u� v
immediately precedes w� If comp
u� follows natural algorithm before v then comp
u�
follows a natural algorithm before w�

Proof� Let us investigate the set of inert bits 
of comp
u�� before v� Let t be the
critical �bre of the highest level asked by comp
u� before v� If we �x the assignment
given by comp
u� before v� then the leading elements of all �bres potentially reachable

by Jumpd� are in the south	east quadrant given by the leading element of t� If� in t�
k� of ��s and k� of ��s were found before v� then the ceiling of the quadrant in question
descends about k� rows and the west wall of the quadrant shifts about k� columns to

��



the east� This follows from the de�nition of Jumpd and Jd�
It is clear that each bit is not inert i� it is reachable 
this means an element of a
reachable �bre��

To prove our Theorem� we must �nd out what is the inquiry in the vertex v� The
Theorem holds trivially if out	degree of v 
 �� or if the inquiry in v is not a �rst inquiry
of a bit� If it is a �rst inquiry of a bit� then it is an inquiry of a non	inert bit� since
P is in	branching� �Non	inert� implies reachable 
 it is a bit in t or in the quadrant
de�ned above� There are three possibilities which we have to judge 
 the bit i asked
in v

a� is a bit of t or 
 if t is completely asked before v 
 of the next �bre t��

b� is a bit of another �bre of the quadrant not at the control level�

c� is a bit of a �bre at the control level�

Case a� For both branches i � �� i � � there is a growth of the set of inert bits

i � � implies a decreasing of the ceiling of the quadrant� i � � implies a shift of the
west wall of the quadrant��

Case b� The branch i � � never implies a growth of the set of inert bits� It is
necessary to discuss three types of the position of i �� i is in a �bre at the ceiling of
the quadrant� �� i is in a �bre of the west wall of the quadrant� �� i is in a �bre inside
of the quadrant�

Case c� The potential growth of the set of inert bits is at most one	sided 
it is
necessary to discuss three types of the position of i� as above��

Now it is clear that the assumption �bi	greedy� implies that the inquiry in v is
according to the case a�� Q�E�D�

Corollary� Let P be a bi	greedy in	branching program which computes Jd� Then
for each input word u� comp
u� asks only bits of critical �bres and the �rst inquiries
respect the ordering of the levels�

Now� we shall prove that Jd is hard for bi	greedy branching programs�

De�nition� Let A be an input matrix� By a zone we mean a sequence of d��
adjacent d	levels� On the zero	th level all �bres are of the form �d� on the i	th level all
�bres are of the form �i����d�i�

Theorem �� Let P be a bi	greedy in	branching program of size p which computes
the function Jd� Let t be a �bre and K be a set of input words such that they di�er
only on bits of t� and t is critical for all of them� Let the d	level of t be followed 
not

��



necessarily immediately� by S zones 
in inputs from K�� Then for all u � K� except
at most p of them� during the computation on u there are S inquiries of bits of t�

Proof� For all u � K� let us investigate all vertices of P where comp
u� asks a zone
for the �rst time� There are at most p vertices v with a unique u � K such that in v
comp
u� asks a zone for the �rst time� Let K � be the set of such inputs� We see that
jK �j � p�

Since P is a bi	greedy in	branching program� for all u � K �K � comp
u� may ask
only bits of critical �bres� and the �rst inquiries of critical �bres are ordered according
to d	levels 
Theorem � and Corollary�� Let u � K � K � and v be a vertex where
comp
u� asks a zone for the �rst time 
 let i be the inquired bit� Let us investigate the
part of comp
u� beginning at v and ending by the vertex where comp
u� asks for the
�rst time a bit outside of the zone in question� Since u � K�K �� there is u� � K�K �

such that v � comp
u��� According to Lemma � the iterations of Jumpd reach the
�bre of i in di�erent input memories� Each zone is constructed in such a way� that in
the case of di�erent input memories� the iterations of Jumpd on u and u� must reach
di�erent �bres of one of d	levels of the zone in question� Hence comp
u� and comp
u��
must branch� Since u and u� di�er only on bits of t� there is an inquiry of a bit of t�
Q�E�D�

The maximum value of S from the Theorem is 

p
n� d�	d�
d � �� 
 in this case t

is on the �	th d	level�

Corollary� Let P be a bi	greedy in	branching program of size p which computes a
function Jd� If �d � p� then there is an input word u and a bit i such that during the
computation comp
u� i is asked at least 


p
n� d�	d��
d� �� times�

��



Bibliography

��� L� Babai� P� Hajnal� E� Szemeredi� G� Turan� A Lower Bound for Read	once
Branching Programs 
 JCSS ��� 
������ ���	����

��� A� Borodin� A� Razborov� R� Smolensky� On Lower Bounds for Read	k	times
Branching Programs 
 Computational Complexity �� �	���

��� S� Jukna� A Note on Read	k	times Branching Programs 	 Universit at Dortmund
	 Forschungsbericht Nr� ���� �����

��� K� Kriegel� S� Waack� Exponential Lower Bounds for Real	time Branching Pro	
grams 	 Proc� FCT���� LNCS ���� ���	����

��� P� Pudl!ak� A Lower Bound on Complexity of Branching Programs 	 MFCS����
LNCS ���� ���	����

��� D� Sieling� New Lower Bounds and Hierarchy Results for Restricted Branching
Programs 	 Universit at Dortmund� Forschungsbericht Nr� ���� �����

��� I� Wegener� On the Complexity of Branching Programs and Decision Trees for
Clique Functions 	 JACM ��� ����� ���	����

��� S� "Z!ak� An Exponential Lower Bound for One	time	only Branching Programs 	
MFCS���� LNCS ���� ���	����

��� S� "Z!ak� An Exponential Lower Bound for Real	time Branching Programs 	 Infor	
mation and Control� Vol� ��� No ���� ��	���

��


