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Abstract

In the paper mixed-hybrid approximation of the potential fluid flow problem based on
the prismatic discretization of the domain is presented. Trilateral prismatic elements
with vertical faces and nonparallel bases suitable for the modelling of the real geological
circumstances are considered. The set of linearly independent vector basis functions
is defined, existence and uniqueness of the approximate solution from the resulting
symmetric indefinite system are examined. Possible approaches in the solution of the
discretized system are discussed.

Keywords

potential flow problem in porous media, mixed-hybrid formulation, general prismatic
elements, symmetric indefinite linear systems.

1This work was supported by GA CR under grant 201/93/0067.



1 Introduction

The solution of underground water flow problem in the real conditions must reflect
complex geological structure of sedimented minerals. Layers of the stratified rocks
with substantially different physical properties must be modelled using the appro-
priate discretization of the geological region. These geological characteristics can be
correspondingly described by the mixed-hybrid finite element method using trilateral
prismatic elements with vertical faces and generally nonparallel bases.

An outline of the paper is as follows. First, we introduce the mathematical for-
mulation of the problem. In Section 2, we consider the mixed-hybrid formulation.
Finite-dimensional approximation, existence and uniqueness of the approximate so-
lution are derived in Section 3. Finally, different approaches in the solution of the
discretized linear system with symmetric indefinite matrix are discussed and promising
ways are proposed.

Let  be a bounded domain in R* with a Lipschitz continuous boundary d€). The
potential fluid flow in a saturated porous media can be modelled by the velocity u
given by Darcy’s law

u=—-A""Vp, (1.1)

where p is the piezometric potential (fluid pressure) and A~! is symmetric and uni-
formly positive definite second rank tensor of hydraulic permeability of the porous
medium, i.e. there exists a positive constant «g such that

aolléllz < (ATH(x)E,€)

holds for all £ € R? and almost all x € Q. Further we assume [A™'(x)];; € L>(Q) for
all 2,7 € {1,2,3}. Consider also the continuity equation for the incompressible flow

V-u=yq, (1.2)

where ¢ represents the density of potential sources in the medium. The boundary

conditions are given by
p=pp on O0Qp, (1.3)

u-n=-A"'Vp-n=uy on 0Oy, (1.4)

where 99 = 9Qp U 9Qy are such that 0Qp N 9Qx = 0 and n is the outward normal
vector defined (almost everywhere) on the boundary 0f).
A remark on the notation. We denote by L*(2) the Lebesgue space defined as

LX) = {6: Q= R; /Q I6[2dx < o0}

with the scalar product (¢1,¢2)00 = [o ¢162dx and the standard norm ||¢lloq =

1
(¢,0).q- Further we denote by L*(Q2) the Lebesgue space of vector valued functions v,
where the components v;, 7 = 1,...,3 belong to space L*({1) and consider the Sobolev
space

HY Q) = {p € [*(Q); Vp € L*(Q)}



with the scalar product (¢1,92)1.0 = [ole1pz + V1 - Veoldx and the norm ||¢ll10 =
1

(o, 99)159 We introduce the space of the vector valued functions

H(div,Q) = {v e L*(Q); V-v € L*(Q)}

with the norm defined as || v ||giv.0= (H vita+IV-v H?)Q)E . We shall also denote
the bilinear form < ¢, p >s0= [5q ¢pdS, where ¢ and y are the functions from L*(9Q).

2 Mixed-hybrid formulation of the problem

Denote the &, the collection of subdomains of the domain ) and the collection of
faces of subdomains ¢ € &, which are not adjacent to the boundary 9Qp by I'), =
Ueee, 0e — 0Qp, where h is the discretization parameter (see [4])

h = di :
gé%i({ iam e}

Denote the restriction of any function on subdomain e¢ € &, by the superscript e,
ie. ¢° = ¢l.. Let us introduce the functional spaces defined on the &, and T'.
Let H(div, &) be the space of square integrable vector functions v € L*(Q), whose
divergences are square integrable on every subdomain e € &, i.e.

H(div, &) = {v € L*(Q); V-v° € L*(e), Ve € &} (2.1)
with the norm given as

. 1
IV aiven= [l v 50+ 22 I V-v5.)2, (2.2)

eeé'h

We consider also the space of traces

HE(Ty)={p: ) — R; 3p € HH(Q), p =}, (2.3)

where the space Hp, () is defined as HL(Q) = {¢ € H'(Q); v¢ = 0 on dQp} and
v¢ = @|aq is the trace of the function ¢ € H*(Q) on the boundary 9Q; v, = ¢|r, is

the trace of the function » € H'() on the structure of faces I';. The space H3(T}) is
equipped with the norm

e, = weglg(mﬂ@lm; Y = pon Ty}, (2.4)

1
where [p]; o denotes the seminorm [p]; 0 = (Vi, V)g o

Thus, the mixed-hybrid formulation of the problem (1.1), (1.2) with boundary
conditions (1.3), (1.4) and the discretization &, of the domain £ can be stated as
follows (see also [12], [9]):

find (u,p,\) € H(div, &) x L*(Q) x H%(Fh) such that :
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> ATV o — (0 V- Vot < N0V Ser, ) = (2.5)

eeé'h
= Z < p€D7n6 - ve >9endQp Yv € H(div,gh);
eeé'h
=D (Vou' 60 = — > (¢, 60, Vo € Ly(); (2.6)
eeé'h eeé'h
Z <n°- ue,,ue >5.= Z < uf\,,,ue >8end0 s ‘v’,u - Hg(Fh) (27)
eeé'h eeé'h

3 Discretization of the domain and finite - dimen-
sional approximation

In this section we introduce the discretization of the domain {2 and the lowest order
finite-dimensional approximation of (2.5)-(2.7).

Assume from now that the domain €2 is polyhedron and is subdivided in a collection
of subdomains, such that every subdomain is a trilateral prism with the suitable chosen
vertices X1, Xy, X3, X4, X5, X¢

X1 = (21, 91,21) , X = (T2,92,22) » X3 = (3,3, 23) ,
X4 = (51?1,311,24) , X5 = (51?2,312,25) , Xe = (51?3,313,26) .
We allow also the elements that approximate boundary of the domain, such that for

some ¢ € {1,2,3} is x; = X;13, or there exist 7,7 € {1,2,3}, ¢ # j such that x; = x;43
and X; = Xj43.

FIG 3.1

We will assume that obtained mesh is strongly regular, i.e. there exists a positive
constant ( independent of the mesh size h such that for every element edges d, d' from
the decomposition &, is d'/d > (. Denote by n the minimum angle of the triangulation
obtained as a horizontal projection of the prismatic mesh.

The velocity function u will be approximated with the vector functions linear on
every element ¢ € &,. We define the Raviart-Thomas space RT(¢)

RT(e) = {v5; v(x) = Z_: v;vi(x), x € e}. (3.1)
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with linearly inependent basis functions v, j =1,...,5, of the form

0 0
e __ € e __ e
vi = ki 0 , Ve = k3 0 , (3.2)
T3 — a4 T3 — Q54
Ty — o Ty — g Ty — 05
e __ € € e __ € € e __ € €
vy = kg Ty — Q39 y Vg = Ry Lo — Qyy , Vs = kg Ty — Ugy
€ € € € € €
B5xs — sy Birs — ajfs B5rs — afy
such that
€ _ € € _ . N c
fj(vi)_/enj-vids_ §isr 107 =1,...,5. (3.3)

Here f¢ denotes the j-th face of the element e and n§ its outward normal vector (with
respect to the element e).

LEMMA 3.1:  The system of functional equations

Fi(ve) = /fen;-vjdsz@j, ij=1,....5

generates the unique set of basis vector functions of the form (3.2).

PROOF: Substituting (3.2) into (3.3) we obtain

e, e e e Qe e e e e e e £
/fe ks [nﬂxl + nSors + 1Sy By — nfaf — nfaq — nj30zi3]d5 = 0;j. (3.4)

J

For i # j we get the condition
nSafy + njyal, +nSsai — nSsrrs(f)B0 = nSieri(f) + nSyrre(fF),
where x7(ff) denotes the centre of gravity of the j-th face. Thus for ¢ = 1,2 we have
iy =ara(fi), i=1,g=20ri=25=1 (3.5)
From (3.4) we obtain
k= {ngalers(f7) — ars (SN (3.6)

where |ff| denotes area of the i-th face, so |ff| > 0. For ¢ = 3,4,5 we obtain the
system of equations for unknowns o5y, af,, afy and 3f;

n§10551 + njzoffz + n;:aaf:a - n§3xT3(f]¢)ﬂf = n§151?T1(f]‘6) + n;2$T2(f]‘e)

g =12 (3.7)
n;10551 + njzafz = njlel(f;) + n§2$T2(fje)
J=3,4,5; 7% . (3.8)
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Arbitrary two vectors from the set {n5,ng,nt} are linearly indenpendent. Hence, the
system (3.8) has a unique solution aj, ) = (af;, af;). Consider the subdeterminant

1 —:L’T3(f16) e e oy o .
1 —zps(fS) ‘ = nizny[rra(fi) r3(f3)] # 0.

€ €
USEUSE!

Then substituting for of, and af,, the system (3.7) has the unique solution (oS, 5f).
For kf we have

king - xi(f7) — ng - ajq ]| /7] = 1. (3.9)
The coeflicient kf is invariant of the translation. We use translation of the element
e to element € such that x3 = fjé N ff for some j # 1. Then the right hand side of
the system (3.8) is equal zero, i.e. nflel(f]é) + nfszg(f]é) =0 and so af(m) = (0,0).
Estimate then

n; - Xi(f;) = [ng{|xi(f7)|sinn > 0.

Therefore R X R R
ki =k = [nf - x (SO > 0.

We define also
RT? (&) = {v, € L*(Q); v € RT%(¢), Ve € &,}, (3.10)

the space that consists the vector functions linear on every element. We note that in
the case of nonparallel bases these functions are not continuous across the interelement
boundaries I';,. Denote the space of scalar functions constant on the element e by
MP®(e) with basis function of the form:

Ph(x)=1,x€¢; ¢h(x)=0,x¢e.
Then we introduce the space
M°, (&) = {¢n € L*(); ¢5 € M°(e), Ve € &} (3.11)

which consists element-wise constant functions that will approximate the piezometric
potential p. Let M°(f) be the space of constant functions on the interelement face

f €T}, and the space M?,(T';) defined as
M2 (Th) = {pu s T — B; pf € M(f), V[ € Th) (3.12)

which consists the functions constant on every face from I'y. Further pp, un, be
the functions from M9, (99) which approximate the functions pp and uy given in the
boundary conditions and which satisfy

[0 = po)ds =05 ¥f € 90, (3.13)
/(uN,h —un)dS = 0; Vf € 9. (3.14)
f
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Then the Raviart-Thomas approximation of the mixed-hybrid formulation for the prob-
lem reads as follows (we refer also to [9] or [10]):

fmd (uh,ph, )\h) - RT(il(gh) X Mgl(é'h) X MEI(F;L) such that

Z {(A_luhvvh)O,e - (phv \E Vh)O,e—I' < )\hv n°- Vi >86F‘|Fh} —

eeé'h
=< PD,h, n° - vy >a.; Vv, € RT(il(gh) (315)
— > (V- én)oe = —(qn, Pn)oa;  Von € M2, (En). (3.16)
eeé'h
Z <n°- Up, bh 28e=< UN hy [bh > 0Qy; \V/,uh - MEl,D(Fh)' (3.17)
eeé'h

Next, the system of linear equations equivalent to the problem (3.15) - (3.17) will be
derived. Let ¢; € &,, 7 =1,...,J be the numbered system of prismatic elements. On
every element we have defined five-dimensional space RT?(e) of linear vector functions
ve, i = 1,...,5. The finite-dimensional space RT? (&) is then spanned by 5 x .J
linearly independent basis functions v;, e =1,..., I =5 x J. Let fi, k=1,..., K, be
the numbered system of interelement faces from I',. By introduced approximation, the
functions uy, p, and A, belong to spaces RT?,(&,), M, (&) and M°,(T'},) respectively
and so can be expanded in the form

w(x) =D wivi(x), pu(x) =3 p;6;(x), x €Q,

iel JeJ
)\h(X) = Z S\k,uk(x), X € Fh.
keK
We denote by u = (1, ...,u5)", p= (p1,....ps) %, A = (5\1, ...,S\K)T and
A’L] — (A_1V27V])07Q; Z: 17...7]7 ] = 17...7] (3.18)
B = —(V-Vi,l)oﬁj; v=1,....0,5=1,...,J (3.19)
Cik =< ng 'Vi,l >fk; 1= 1,...,], k= 1,,[&7 (320)

Here ny, is the outward normal vector to the face f;, with respect to the element corre-
sponding to the support of the function v;. Then we compute

[1]i = — <ppp,ni-vi>aq,; t=1,...,1, (3.21)
[2]; = —(¢:Does 7=1,....,J, (3.22)
[q3]k = < UNJL,l > £ k= 1,. . ,[X’ (323)

Substituting uy, pr and A, into (3.15) - (3.17) we can now write the system of linear
equations



A B C u 0
BT pl=1g¢]. (3.24)
CT )\ qs3

LEMMA 3.2:  Assuming 0Qp # 0 the matriz (B C') € RVE defined in (3.19)
and (3.20) has full column rank, i.e. rank (B C)=J4+ K.

PROOF: Suppose Bp+ C\ = 0 holds for some vectors p and A. Then vT(Bp+C\) =
0, Vv € R!. Equivalently, we have

— S (Vv,ploe+ D <0V, A >aar,= 0, Vv € RTY (&). (3.25)

eeé'h eeé'h

Using the Green formula on the first term in (3.25) we have for all v € RT", (&)

— > <0 v, p>ac 4 Y, <0V, Soar,=

eeé'h eeé'h
= Z <NV, A —p>sar, — Z <1n°-v,p >scna0,=0. (3.26)
eeé'h eeé'h

Because Dirichlet boundary condition is defined at least one face from 0Qp, there
exists € € &, such that de N dQp # 0. Then for some v, € C supp(v) we have
< n®-v,p >snaa,= 0 and so p = 0 on €. Consequently p = 0 also on some faces
belonging to I',. Since the first sum in (3.26) implies A = p on 'y, we get p = 0 on all
ec & and A =0on all f eTly. O

4 The solution of the discretized linear system

A considerable interest has been devoted to the solution of the set of linear equations
(3.24) in recent years. These systems arise frequently, e.g. from mixed finite element
or finite difference discretizations of Stokes equations in computational fluid dynamics
or other second order elliptic problems.

We will briefly recall some possible ways in the solution of (3.24) and particularly
we will concentrate on some approaches, which we consider to be promising.

Consider first the Uzawa-like approach (see [6], [5]), often advocated as an efficient
solution technique. These algorithms are in fact variants of some classical iterative
schemes applied to the system of linear equations. As an example, the inexact Uzawa
scheme for (3.24) uses the splitting matrix of the form

Q4
M=|B" L1Qus , (4.1)
cr 5Quic

where () 4 is an approximation of the matrix A; Q)5 and Q) ps¢ are some preconditioning
matrices and «, 3 are fixed parameters. This leads to the iterative scheme:
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uipr = u; + Q' (1 — (Au; + Bpi + C\))
pit1 = pi + aQyp(q2 — Bluiyy)
Aig1 = X + BQiclgs — CTuyy)

Note that in the “exact” case (Q4 = A) this is a first order Richardson iteration
with the two fixed parameters applied to the Schur complement system for unknowns
(T, AT)T preconditioned by the matrix diag(Qug, Quic)-

Since the Uzawa-like algorithms are stationary iterative methods, it is only natural
to apply the standard and powerful nonstationary conjugate gradient method for the
solution of the systems with symmetric positive definite matrix (see [8]). We have two
possible ways to reduce the problem (3.24) to subproblems with symmetric and positive
definite matrix. We can use a partial substitution for the unknown u to obtain the
Schur complement system for the unknowns (p?, AT)T. This approach was discussed in
[9]. Similarly, two successive substitutions were used in [2], where Schur complement
system for the unknown vector A was solved.

Although block diagonal block matrix can be easily invertible in the scalar comput-
ing environment, another efficient strategy may be based on the solution of the global
system (3.24) by the preconditioned conjugate gradient method. The system (3.24) is,
however, symmetric indefinite. Motivated by [3] and [5] suppose that () 4 satisfies

(v, Av)
<oy £ ——=
(U, QAv v)
and let Q)7 be an approximation of the matrix T’

T ( (A-QuQ3'A (A~ QA)QZIB)
BTQZI(A o QA) BTQZIB ’

< ay

such that

(v, )
L<p < (0,01 0) < fa.

Then the product of matrices

A—=Qa Qi A B C
I BTQ7' I BT (4.2)
1) \crQy 1) \er

is symmetric positive definite matrix (see [3]). Premultiplying (4.2) by the matrix

<CTQ:G (A%A B) Q7! _1)

we obtain symmetric positive matrix with respect to the inner product

()0 G-G) - (e () () + b



Consequently, the matrix of the system (3.24) is symmetrizable and following Hageman-
Young [7] we can apply the conjugate gradient method.

Another conjugate gradient-type method, which can be applied also to symmetric
indefinite system is MINRES method presented in [13]. This strategy, based on the
preconditioned MINRES scheme has been tested in [14] and [15], where different types
of preconditioners were investigated. Our preconditioner is based on the incomplete
Bunch-Parlett decomposition of (3.24), which is obtained from the left-looking algo-
rithm based on the directed graph model (see [1]) to get a structure of the rows of the
Bunch-Parlett factor L.

Detailed results of numerical experiments and comparison of different approaches
used in our underground water flow applications will be published in the forthcoming
paper [11].
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