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Abstract

In the paper mixed�hybrid approximation of the potential �uid �ow problem based on
the prismatic discretization of the domain is presented� Trilateral prismatic elements
with vertical faces and nonparallel bases suitable for the modelling of the real geological
circumstances are considered� The set of linearly independent vector basis functions
is de�ned	 existence and uniqueness of the approximate solution from the resulting
symmetric inde�nite system are examined� Possible approaches in the solution of the
discretized system are discussed�
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� Introduction

The solution of underground water �ow problem in the real conditions must re�ect
complex geological structure of sedimented minerals� Layers of the strati�ed rocks
with substantially di
erent physical properties must be modelled using the appro�
priate discretization of the geological region� These geological characteristics can be
correspondingly described by the mixed�hybrid �nite element method using trilateral
prismatic elements with vertical faces and generally nonparallel bases�

An outline of the paper is as follows� First	 we introduce the mathematical for�
mulation of the problem� In Section �	 we consider the mixed�hybrid formulation�
Finite�dimensional approximation	 existence and uniqueness of the approximate so�
lution are derived in Section �� Finally	 di
erent approaches in the solution of the
discretized linear system with symmetric inde�nite matrix are discussed and promising
ways are proposed�

Let  be a bounded domain in R� with a Lipschitz continuous boundary �� The
potential �uid �ow in a saturated porous media can be modelled by the velocity u
given by Darcy�s law

u � �A��rp� �����

where p is the piezometric potential ��uid pressure� and A�� is symmetric and uni�
formly positive de�nite second rank tensor of hydraulic permeability of the porous
medium	 i�e� there exists a positive constant �� such that

��k�k
�
� � �A���x��� ��

holds for all � � R� and almost all x � � Further we assume �A���x��ij � L��� for
all i� j � f�� �� �g� Consider also the continuity equation for the incompressible �ow

r � u � q� �����

where q represents the density of potential sources in the medium� The boundary
conditions are given by

p � pD on �D� �����

u � n � �A��rp � n � uN on �N � �����

where � � �D � �N are such that �D � �N � � and n is the outward normal
vector de�ned �almost everywhere� on the boundary ��

A remark on the notation� We denote by L��� the Lebesgue space de�ned as

L��� � f� � � R�
Z
�
j�j�dx �	g

with the scalar product ���� ������ �
R
� ����dx and the standard norm k�k��� �

��� ��
�

�

���� Further we denote by L��� the Lebesgue space of vector valued functions v	
where the components vi	 i � �� � � � � � belong to space L��� and consider the Sobolev
space

H��� � f	 � L����r	 � L���g

�



with the scalar product �	�� 	����� �
R
��	�	� �r	� � r	��dx and the norm k	k��� �

�	�	�
�

�

���� We introduce the space of the vector valued functions

H�div�� � fv � L���� r � v � L���g

with the norm de�ned as k v kdiv���
�
k v k���� � k r � v k����

��

� � We shall also denote

the bilinear form � �� 
 ����
R
�� �
dS	 where � and 
 are the functions from L�����

� Mixed�hybrid formulation of the problem

Denote the Eh the collection of subdomains of the domain  and the collection of
faces of subdomains e � Eh which are not adjacent to the boundary �D by �h �
�e�Eh�e� �D	 where h is the discretization parameter �see ����

h � max
e�Eh

fdiam eg�

Denote the restriction of any function on subdomain e � Eh by the superscript e	
i�e� �e � �je� Let us introduce the functional spaces de�ned on the Eh and �h�
Let H�div� Eh� be the space of square integrable vector functions v � L���	 whose
divergences are square integrable on every subdomain e � Eh	 i�e�

H�div� Eh� � fv � L���� r � ve � L��e�� 
e � Ehg �����

with the norm given as

k v kdiv�Eh� �k v k���� �
X
e�Eh

k r � ve k���e�
�

� � �����

We consider also the space of traces

H
�

�

D��h� � f
 � �h � R� �	 � H�
D��� 
 � �h	g� �����

where the space H�
D�� is de�ned as H�

D�� � f	 � H���� �	 � � on �Dg and
�	 � 	j�� is the trace of the function 	 � H��� on the boundary �� �h	 � 	j�h is

the trace of the function 	 � H��� on the structure of faces �h� The space H
�

�

D��h� is
equipped with the norm

k 
 k �

�
��h

� inf
��H�

D
���
fj	j���� �h	 � 
 on �hg� �����

where j	j��� denotes the seminorm j	j��� � �r	�r	�
�

�

����

Thus	 the mixed�hybrid formulation of the problem �����	 ����� with boundary
conditions �����	 ����� and the discretization Eh of the domain  can be stated as
follows �see also ����	 �����

find �u� p� � � H�div� Eh�� L����H
�

�

D��h� such that �

�



X
e�Eh

f�A��ue�ve���e � �pe�r � ve���e� � e�ne � ve ��e��hg � �����

�
X
e�Eh

� peD�n
e � ve ��e���D� 
v � H�div� Eh��

�
X
e�Eh

�r � ue� �e���e � �
X
e�Eh

�qe� �e���e� 
�e � L���� �����

X
e�Eh

� ne � ue� 
e ��e�
X
e�Eh

� ueN � 

e ��e���N � 

 � H

�

�

D��h�� �����

� Discretization of the domain and �nite � dimen�

sional approximation

In this section we introduce the discretization of the domain  and the lowest order
�nite�dimensional approximation of ������������

Assume from now that the domain  is polyhedron and is subdivided in a collection
of subdomains	 such that every subdomain is a trilateral prism with the suitable chosen
vertices x��x�	 x��x	�x
�x�

x� � �x�� y�� z�� � x� � �x�� y�� z�� � x� � �x�� y�� z�� �
x	 � �x�� y�� z	� � x
 � �x�� y�� z
� � x� � �x�� y�� z�� �

We allow also the elements that approximate boundary of the domain	 such that for
some i � f�� �� �g is xi � xi��	 or there exist i� j � f�� �� �g� i � j such that xi � xi��
and xj � xj���

�

�

x� x�

x	 x�

x�

x


ne�

ne�

Z
ZZ�

�
��R

�
���

ne	 ne


ne�

FIG ���

We will assume that obtained mesh is strongly regular	 i�e� there exists a positive
constant � independent of the mesh size h such that for every element edges d	 d� from
the decomposition Eh is d��d � �� Denote by � the minimum angle of the triangulation
obtained as a horizontal projection of the prismatic mesh�

The velocity function u will be approximated with the vector functions linear on
every element e � Eh� We de�ne the Raviart�Thomas space RT��e�

RT��e� � fve� ve�x� �

X
i�

�jvj�x�� x � eg� �����

�



with linearly inependent basis functions vej � j � �� ���� �� of the form

ve� � ke�

�
��

�
�

x� � �e��

�
�	 � ve� � ke�

�
��

�
�

x� � �e��

�
�	 � �����

ve� � ke�

�
��

x� � �e��
x� � �e��
�e�x� � �e��

�
�	 � ve	 � ke	

�
��

x� � �e	�
x� � �e	�
�e	x� � �e	�

�
�	 � ve
 � ke


�
��

x� � �e
�
x� � �e
�
�e
x� � �e
�

�
�	

such that
Fj�v

e
i � �

Z
fej

nej � v
e
idS � �ij� i� j � �� ���� �� �����

Here f ej denotes the j�th face of the element e and nej its outward normal vector �with
respect to the element e��

LEMMA ���� The system of functional equations

Fj�v
e
i � ��

Z
fe
j

nej � v
e
idS � �ij� i� j � �� � � � � �

generates the unique set of basis vector functions of the form ������

PROOF� Substituting ����� into ����� we obtain

Z
fe
j

kei �n
e
j�x� � nej�x� � nej��

e
i x� � nej��

e
i� � nej��

e
i� � nej��

e
i��dS � �ij� �����

For i � j we get the condition

nej��
e
i� � nej��

e
i� � nej��

e
i� � nej�xT��f

e
j ��

e
i � nej�xT��f

e
j � � nej�xT��f

e
j ��

where xT �f ej � denotes the centre of gravity of the j�th face� Thus for i � �� � we have

�ei� � xT��f
e
j �� i � �� j � � or i � �� j � �� �����

From ����� we obtain

kei � fnei��xT��f
e
i �� xT��f

e
j ��jf

e
i jg

��� �����

where jf ei j denotes area of the i�th face	 so jf ei j � �� For i � �� �� � we obtain the
system of equations for unknowns �ei�	 �

e
i�	 �

e
i� and �ei �

nej��
e
i� � nej��

e
i� � nej��

e
i� � nej�xT��f

e
j ��

e
i � nej�xT��f

e
j � � nej�xT��f

e
j �

j � �� � �����

nej��
e
i� � nej��

e
i� � nej�xT��f

e
j � � nej�xT��f

e
j �

j � �� �� �� j � i � �����

�



Arbitrary two vectors from the set fne��n
e
	�n

e

g are linearly indenpendent� Hence	 the

system ����� has a unique solution aei����� � ��ei�� �
e
i��� Consider the subdeterminant

ne��n
e
��







� �xT��f e� �
� �xT��f e� �






 � ne��n
e
���xT��f

e
� �� xT��f

e
� �� � ��

Then substituting for �ei� and �ei�	 the system ����� has the unique solution ��ei�� �
e
i ��

For kei we have
kei �n

e
i � xi�f

e
i �� nei � a

e
i������jf

e
i j � �� �����

The coe�cient kei is invariant of the translation� We use translation of the element
e to element �e such that x� � f �ej � f �ei for some j � i� Then the right hand side of
the system ����� is equal zero	 i�e� n�ej�xT��f

�e
j � � n�ej�xT��f

�e
j � � � and so a�ei����� � ��� ���

Estimate then
n�e
i � xi�f

�e
i � � jn�e

i jjxi�f
�e
i �j sin � � ��

Therefore
kei � k�ei � �n�e

i � xi�f
�e
i ��

��jf �ei j
�� � ��

�

We de�ne also

RT�
���Eh� � fvh � L���� veh � RT��e�� 
e � Ehg� ������

the space that consists the vector functions linear on every element� We note that in
the case of nonparallel bases these functions are not continuous across the interelement
boundaries �h� Denote the space of scalar functions constant on the element e by
M��e� with basis function of the form�

�eh�x� � �� x � e� �eh�x� � �� x �� e�

Then we introduce the space

M�
���Eh� � f�h � L���� �eh �M��e�� 
e � Ehg ������

which consists element�wise constant functions that will approximate the piezometric
potential p� Let M��f� be the space of constant functions on the interelement face
f � �h and the space M�

����h� de�ned as

M�
����h� � f
h � �h � R� 
fh �M��f�� 
f � �hg ������

which consists the functions constant on every face from �h� Further pD�h	 uN�h be
the functions from M�

����� which approximate the functions pD and uN given in the
boundary conditions and which satisfy

Z
f
�pD�h � pD�dS � �� 
f � �D� ������

Z
f
�uN�h � uN �dS � �� 
f � �N � ������

�



Then the Raviart�Thomas approximation of the mixed�hybrid formulation for the prob�
lem reads as follows �we refer also to ��� or ������

find �uh� ph� h� � RT�
���Eh��M�

���Eh��M�
����h� such that

X
e�Eh

f�A��uh�vh���e � �ph�r � vh���e� � h�n
e � vh ��e��hg �

�� pD�h�n
e � vh ��e� 
vh � RT�

���Eh�� ������

�
X
e�Eh

�r � uh� �h���e � ��qh� �h����� 
�h �M�
���Eh�� ������

X
e�Eh

� ne � uh� 
h ��e�� uN�h� 
h ���N � 

h �M�
���D��h�� ������

Next	 the system of linear equations equivalent to the problem ������ � ������ will be
derived� Let ej � Eh	 j � �� � � � � J be the numbered system of prismatic elements� On
every element we have de�ned �ve�dimensional space RT��e� of linear vector functions
vei 	 i � �� � � � � �� The �nite�dimensional space RT�

���Eh� is then spanned by � � J
linearly independent basis functions vi	 i � �� � � � � I � � � J � Let fk	 k � �� � � � �K	 be
the numbered system of interelement faces from �h� By introduced approximation	 the
functions uh	 ph and h belong to spaces RT�

���Eh�	 M
�
���Eh� and M�

����h� respectively
and so can be expanded in the form

uh�x� �
X
i�I

�uivi�x�� ph�x� �
X
j�J

�pj�j�x�� x � �

h�x� �
X
k�K

�k
k�x�� x � �h�

We denote by u � ��u�� ���� �uI�T � p � ��p�� ���� �pJ�T �  � ���� ���� �K�T and

Aij � �A��vi�vj����� i � �� � � � � I� j � �� � � � � I ������

Bij � ��r � vi� ����ej � i � �� � � � � I� j � �� � � � � J ������

Cik �� nk � vi� � �fk � i � �� � � � � I� k � �� � � � �K� ������

Here nk is the outward normal vector to the face fk with respect to the element corre�
sponding to the support of the function vi� Then we compute

�q��i � � � pD�h�ni � vi ���D � i � �� � � � � I� ������

�q��j � ��q� ����ej � j � �� � � � � J� ������

�q��k � � uN�h� � �fk � k � �� � � � �K� ������

Substituting uh	 ph and h into ������ � ������ we can now write the system of linear
equations

�



�
B�

A B C
BT

CT


CA
�
B�
u
p



CA �

�
B�
q�
q�
q�


CA � ������

LEMMA ���� Assuming �D � � the matrix �B C � � RI�J�K de�ned in ����	�
and ����
� has full column rank� i�e� rank �B C � � J �K�

PROOF� Suppose Bp�C � � holds for some vectors p and � Then vT �Bp�C� �
�� 
v � RI � Equivalently	 we have

�
X
e�Eh

�r � v� p���e �
X
e�Eh

� ne � v�  ��e��h� �� 
v � RT�
���Eh� � ������

Using the Green formula on the �rst term in ������ we have for all v � RT�
���Eh�

�
X
e�Eh

� ne � v� p ��e �
X
e�Eh

� ne � v�  ��e��h�

�
X
e�Eh

� ne � v� � p ��e��h �
X
e�Eh

� ne � v� p ��e���D� �� ������

Because Dirichlet boundary condition is de�ned at least one face from �D	 there
exists  e � Eh such that � e � �D � �� Then for some  v	  e � supp� v� we have
� n�e � v� p ���e���D� � and so p � � on  e� Consequently p � � also on some faces
belonging to �h� Since the �rst sum in ������ implies  � p on �h we get p � � on all
e � Eh and  � � on all f � �h� �

� The solution of the discretized linear system

A considerable interest has been devoted to the solution of the set of linear equations
������ in recent years� These systems arise frequently	 e�g� from mixed �nite element
or �nite di
erence discretizations of Stokes equations in computational �uid dynamics
or other second order elliptic problems�

We will brie�y recall some possible ways in the solution of ������ and particularly
we will concentrate on some approaches	 which we consider to be promising�

Consider �rst the Uzawa�like approach �see ���	 ����	 often advocated as an e�cient
solution technique� These algorithms are in fact variants of some classical iterative
schemes applied to the system of linear equations� As an example	 the inexact Uzawa
scheme for ������ uses the splitting matrix of the form

M �

�
B�
QA

BT �
�
QMB

CT �
�
QMC


CA � �����

whereQA is an approximation of the matrixA� QMB and QMC are some preconditioning
matrices and �� � are �xed parameters� This leads to the iterative scheme�

�



ui�� � ui �Q��
A �q� � �Aui �Bpi � Ci��

pi�� � pi � �Q��
MB�q� �BTui���

i�� � i � �Q��
MC�q� � CTui���

Note that in the !exact" case �QA � A� this is a �rst order Richardson iteration
with the two �xed parameters applied to the Schur complement system for unknowns
�pT � T �T preconditioned by the matrix diag�QMB� QMC��

Since the Uzawa�like algorithms are stationary iterative methods	 it is only natural
to apply the standard and powerful nonstationary conjugate gradient method for the
solution of the systems with symmetric positive de�nite matrix �see ����� We have two
possible ways to reduce the problem ������ to subproblems with symmetric and positive
de�nite matrix� We can use a partial substitution for the unknown u to obtain the
Schur complement system for the unknowns �pT � T �T � This approach was discussed in
���� Similarly	 two successive substitutions were used in ���	 where Schur complement
system for the unknown vector  was solved�

Although block diagonal block matrix can be easily invertible in the scalar comput�
ing environment	 another e�cient strategy may be based on the solution of the global
system ������ by the preconditioned conjugate gradient method� The system ������ is	
however	 symmetric inde�nite� Motivated by ��� and ��� suppose that QA satis�es

� � �� �
�v�Av�

�v�QA� v�
� ��

and let QT be an approximation of the matrix T

T �
�

�A�QA�Q
��
A A �A�QA�Q

��
A B

BTQ��
A �A�QA� BTQ��

A B

�
�

such that

� � �� �
�v� Tv�

�v�QT � v�
� ���

Then the product of matrices

�
B�
A�QA

I
I


CA
�
B�

Q��
A

BTQ��
A �I

CTQ��
A �I


CA
�
B�

A B C
BT

CT


CA �����

is symmetric positive de�nite matrix �see ����� Premultiplying ����� by the matrix

�
Q��
T

CTQ��
A �A�QA B �Q��

T �I

�

we obtain symmetric positive matrix with respect to the inner product

�
��
�
B�
x
p



CA �

�
B�

�x
�p
�


CA
�
�	 �

�
T
�
x
p

�
�
�
�x
�p

��
�
�
QT

�
x
p

�
�
�
�x
�p

��
� �� ���

�



Consequently	 the matrix of the system ������ is symmetrizable and following Hageman�
Young ��� we can apply the conjugate gradient method�

Another conjugate gradient�type method	 which can be applied also to symmetric
inde�nite system is MINRES method presented in ����� This strategy	 based on the
preconditioned MINRES scheme has been tested in ���� and ����	 where di
erent types
of preconditioners were investigated� Our preconditioner is based on the incomplete
Bunch�Parlett decomposition of ������	 which is obtained from the left�looking algo�
rithm based on the directed graph model �see ���� to get a structure of the rows of the
Bunch�Parlett factor L�

Detailed results of numerical experiments and comparison of di
erent approaches
used in our underground water �ow applications will be published in the forthcoming
paper �����

�



Bibliography

��� A�V� Aho	 J�E� Hopcroft	 J�D� Ullman� Data Structures and Algorithms	 Addison�
Wesley	 Reading	 MA	 �����

��� L� Bergamaschi	 S� Mantica	 F� Saleri� Mixed �nite element approximation of
Darcy�s law in porous media	 manuscript	 �����

��� J�H� Bramble	 J�E� Pasciak� A preconditioning technique for inde�nite systems
resulting from mixed approximations of elliptic problems	 Math� Comp� �� ������	
�#���

��� P�G� Ciarlet� The Finite Element Method for Elliptic Problems	 North�Holland
publishing company	 Amsterdam	 �����

��� H�C� Elman� Multigrid and Krylov subspace methods for the discrete Stokes equa�
tions	 Tech� Rep� UMIACS�TR������	 IACS	 University of Maryland	 �����

��� H�C� Elman	 G�H� Golub� Inexact and preconditioned Uzawa algorithms for saddle
point problems	 Tech� Rep� UMIACS�TR������	 IACS	 University of Maryland	
�����

��� L�A�Hageman	 D�M�Young� Applied Iterative Methods	 Academic Press	 New
York	 �����

��� M�R� Hestenes	 E�Stiefel� Methods of conjugate gradients for solving linear sys�
tems	 J� Res� Nat� Bureau of Standards �� ������	 ���#����

��� E�F� Kaasschieter	 A�J�M� Huijben� Mixed�hybrid �nite elements and streamline
computation for the potential �ow problem	 Report PN�������A	 TNO Institute
of Applied Geoscience	 Delft	 �����

���� J�Mary$ska	 D�Frydrych� Mixed�hybrid method �nite elements for the potential
�ow problem	 Proceedings of Mathematics	 Liberec	 �����

���� J� Mary%ka	 M� Rozlo&n'k	 M� T(uma� Numerical experiments with the mixed�
hybrid approximation in the underground water �ow modelling	 in preparation�

���� J�T� Oden	 J�K� Lee� Dual�mixed hybrid �nite element method for second�order
elliptic problems	 In� Mathematical Aspects of Finite Element Methods	 Lecture
Notes in Mathematics ���	 Ed� I� Galliani	 E� Magenes	 Springer�Verlag	 Berlin	
����	 ��������

��



���� C�C� Paige	 M�A�Saunders� Solution of sparse inde�nite systems of linear equa�
tions	 SIAM J� Num� Anal� �� ������	 ���#����

���� A� Ramage	 A�J� Wathen� Iterative solution techniques for the Stokes and Navier�
Stokes equations	 Int� J� Numer� Methods Fluids �� ������	 ��#���

���� T� Rusten	 R� Winther� A preconditioned for saddle point problems	 in� T� Rusten�
Iterative Methods for Mixed Finite Element Systems	 PhD� Thesis	 University of
Oslo	 �����

��


