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Abstract

This paper deals with approximation of continuous functions by networks with radial
basis function (RBF) units and kernel basis function (KBF) units based on classical
convolution kernels. We derive some estimates of the approximation error as a function
of the number of hidden units.
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1 Introduction

Radial basis function (RBF) networks were introduced in the neural nettworks theory
as an alternative architecture to hierarchies of perceptrons (Broomhead and Lowe [1]).
They have been successfully applied to problems such as e.g. timeseries prediction
(Moody and Darken [7]). Theoretically approximation properties of RBF networks
with Gaussian radial function were studied by Girosi and Poggio [2] and by Hartman
et al. [3] and for more general radial functions by Park and Sandberg [8].

In [4], we showed how classical methods of the approximation of functions by convolu-
tions with kernel functions imply universal approximation properties of RBF networks
with non-zero integrable radial functions and introduced kernel basis function (KBF)
units. We showed that these networks have the universal approximation property and
extended learning algorithms to KBF networks.

In this paper, we present some estimates of rates of approximation. We show that
for any of a number of classical kernel functions rate of approximation is bounded
above by terms depending on moduli of continuity and convolution approximation
error. Using Jackson’s estimate, we give an upper bound on approximation error for
KBF networks with Jackson convolution kernel. Further, we present an upper bound
on approximation error for Lipschitz continuous functions.

Chapter 2 recalls some definitions used in the paper. RBF networks are discussed in
chapter 3. The approach of approximation by convolutions is presented in chapter 4.
Chapter 5 discusses KBF networks and finally chapter 6 presents our estimates of the
error of approximation.

2 Preliminaries

By R and N we denote the set of real numbers and positive integers, respectively; also,
I=1[0,1] and Ry = [0,00). For a bounded function f:R% — R the uniform norm is
defined by

1S llee = sup |f()].

reERA

As usual, for a compact subset A of R?,C(.A) denotes the set of all real-valued continu-
ous functions on A with the uniform norm and corresponding topology. A convolution

of two functions f,g: R — Ris f+g = [ f(x)g(x —y)dy. Let f: R — R be a
RA

continuous function, A C R, put || f|l4 = sup,c4 |f(x)|.
walfyh)= sup |f(x1) — f(x2)| is modulus of continuity of f on A.

lzg —z2|<h,
r1,72€A



3 RBF networks

Recall here the definition of RBF networks.

A radial basis function (RBF) unit with d inputs is a computational unit that computes
a function from R? to R of the form &(|| z — ¢ || /b), where ¢ : R — R is an even
(radial) function, || . || is a norm on R? and ¢ € R* b € R, b > 0 are parameters
called center and width, resp.

A radial basis function (RBF) network is a neural network with a single linear output
unit, one hidden layer with RBF units that have the same radial function ¢ and the
same norm || . || on RY, and d inputs.

By F(4,] . ||) we denote the set of real-valued functions on I? computable by RBF
networks with the radial function ¢ and the norm || . || with any number of hidden
units:

Floll- ) = {f:1"=R: fla sz ol @ —ci |l /bi) :
nEN,cZ'ERd, bi,wZ'ER, bz>0}

The most popular radial function currently used in applications is the Gaussian v(t) =
exp(—t?) (see [3], [7]). By Fu(o,|| - ||) we denote the set of functions computable by
RBF networks with a uniform width, i.e.

Fudsll ) = {f: 1" =R: [(a sz o[ v —ci [l /b):
meN, ¢ € R, b, wiER,b>0}.

The property of a class of feedforward networks to approximate general functions ar-
bitrarily well can be described succintly using topology. Let U be a class of functions,
T its subset, and p a metrics on U. The class T' is said to have the universal approxi-
mation property with respect to (U, p) if it is dense in U with respect to the topology
induced by p.

4 Approximation by Convolutions

The approximation of functions by convolutions with various kernel functions with a
“peak” is a classical method. Weierstrass in 1885 used convolutions with Gaussian
functions vs(x) = exp(—x?/8)/é for the proof of his famous theorem on uniform ap-
proximation by polynomials. He approximated an arbitrary continuous function f
uniformly on compact subsets of R by

f(:z;):(lsi_r%f*%/\/; (1)



By the standard technique generalizing Weierstrass’ formula (1), one can approximate
continuous functions by sequences of convolutions f * ¢,,, where functions {¢,, n € N}
are constructed from a non-zero integrable function ¢ by normalizing and “sharpening”,
i.e. putting ¢,(t) = n?¢(nt). Approximating a convolution by an appropriate Riemann
sum, we proved in [4] the following theorem.

Theorem 1 For every positive integer d and for every continuous function ¢ : R —
Ry with finite non-zero integral and for every norm || . || on R, Fu(o,]| . ||) is dense
in C(1%).

In other words, the class of single hidden layer RBF networks with uniform width has
the universal approximation property.

5 KBF networks

There are many classical sequences of kernel functions (like Dirichlet’s kernel, see below)
that are not derived from one function by dilation (multiplying the argument by n, as
in case of RBF). To introduce general kernel functions into neural networks, in [4], we
defined kernel basis function (KBF) units.

A KBF unit with d inputs computes a function R* — R of the form k,(|| z — ¢ ||),
where {k, : R — R} is a sequence of functions}, || . || is a norm on R, and ¢ € R¢,
n € N are parameters. We call n sharpness.

A kernel basis function (KBF) network is a neural network with a single linear output
unit, one hidden layer with KBF units with the same sequence of functions {k,,n € N}
and the same norm || . || on R?, and d inputs.

By K({k., n € N}, || . ||) we denote the set of functions computable by KBF networks
with {k,, n € N} and || . || with any number of hidden units. So

‘J}—Ci H)v

K(fhan €L ) = 131 = R (o) = 3wk

m, niEN, CZ'ERd, wZ'ER}.

By K.({k., n € N'}, || . ||) we denote the set of functions computable by KBF networks
with the same ¢, for all units in the hidden layer, i.e.

Kullb b1l = 131 = RS = Swall = )

m, neN, ¢ €RY, w; €R}.



Similarly, we obtained in [4] universal approximation property for quite general KBF
networks.

Theorem 2 For every positive integer d and for every sequence of continuous func-

tions {k, : R — Ry, n € N} and for every norm || . || on R satisfying for every

n €N and every x € R [ k(|| —y ||)dy = 1 and for every § > 0 and every x € R?
RA

n—oo

Ku({kn, n € N}, || . ||) is dense in C(]d).

lim [ k(]| =y |)dy = 0, where Js(z) = {y|ly € R%, ||z —y || > &}; the class
J(g(l’)

Note that all of the following classical kernels satisfy the assumptions of Theorem 2
and so KBF networks with any of these kernels are powerful enough to approximate
continuous functions (of course, to achieve arbitrary accuracy, one must increase the
number of hidden units).

Féjer kernel En(
Dirichlet kernel En( sin(n — 1/2)x/(2nsin(x/2)]
Jackson kernel kn(x

Fon(

Fen(

Fon(

sinnz/(n - sinz)|*

- |
- |

Abel-Poisson kernel W(2) = 1/[1 4 (nz)?]
Weierstrass kernel (x) = e’
Landau kernel W) = (1 — 2?)"

6 Some Estimates of the Error of Approximation

For some of the above mentioned convolution kernels upper bounds on convolution
approximation are known. The following theorem derives estimate of the rate of ap-
proximation by KBF networks depending on the error of approximation E(f, k,) =
| f— f*k, || and modulus of continuity of f and k,.

Theorem 3 Let a« € R, A = [—a,a], A* = [-2a,2a], [ : A — R be a continuous
Junction, E(f,k,) = ||f(x)— [y f(O)ka||x —t||dt]|a. Then for every m € N there exists
a KBF network with m hidden units computing a function g € K,({kn},||.||) such that
for every x € A

2a 2a

(@) = g(2)] < B(f, k) + 2al| flla war (ko —) + [[Fnlas walf, —).

m

Proof: The proof can be found in [5].



We use this theorem to estimate the approximation error for the KBF networks based
on Jackson kernel with inputs in the interval [—m, x]. Consider the following operator:

/ F) Loz — t)dt = / Fla+ O La(t)dt, (2)

where L,, is the Jackson kernel

Lnu)::A;1<%§§%%§?)4,:sz(wdt::L

where the last relation defines \,. It is proved in [6], p. 55 that A, ~ n®.

It is convenient to normalize the operator (2) in such a way as to obtain a trigonometric
polynomial of degree n. For this purpose, we put

Ko() = L(t),  r=][

—|+1
2]+

The operator J,(z) = J,.(f,z) = jI flz +t)K,(t)dt is called the Jackson operator.

—T

Theorem 4 (Jackson) There exvists a constant M such that, for each function [ €
C(A), where A = [—=r, 7] and for every n € N, |f(x) — J(2)] < Mwa(f,1).

Proof: The proof can be found for example in [6], p.56.

Theorem 5 There exists a constant M such that for every f € C(A), A = [—n, 7],
Jor every n (sharpness of the Jackson kernel) and for every m € N and a function g
computable by a Jackson KBF network with m hidden units and with sharpness n such
that for every x € A

27 27

7))l € Ma(F o)+ 25 | flawa (Lo o) | lLae walf.20), (3)

r m

where r = [5] 4+ 1 and A* = [-27, 27].

Proof: From Theorems 3 and 4, where E(f, k,) < Mwp(f, ). O

Our following estimate of the approximation error is made for classes of Lipschitz func-
tions. Recall here the definition.

We say that f € Lipa,0 < o < 1, if there exists a constant ¢ such that

[f(@) = f(y)] < Cle —y[*



Lemma 6 If M = [ |x|*|k.(2)|dz < 00,0 < a <1 then f € Lip, implies

CM
|f * kn - f| S o
n
Proof: The proof can be found in [9], p.21.
Theorem 7 Let a« € R, A = [—a,a], A* = [-2a,2a], [ : A — R be a continuous

function. Let f € Lip,,0 < o < 1 and let M = [p|z|*|k,(2)|de < oo for a kernel
function k,. Then for every m € N there exists a KBF network with m hidden units
computing a function g € K,({kn},]||.||) such that for every x € A

2a 2a
)+ ||l ax wal(f, =).
m

CM
1) = 9@ £ =+ 20l fLa wa (i

m

Proof: Corollary of theorem 5 and lemma 6.
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