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1994
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Abstract

This paper deals with approximation of continuous functions by networks with radial
basis function 
RBF� units and kernel basis function 
KBF� units based on classical
convolution kernels� We derive some estimates of the approximation error as a function
of the number of hidden units�
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� Introduction

Radial basis function 
RBF� networks were introduced in the neural nettworks theory
as an alternative architecture to hierarchies of perceptrons 
Broomhead and Lowe ����
They have been successfully applied to problems such as e�g� timeseries prediction

Moody and Darken ���� Theoretically approximation properties of RBF networks
with Gaussian radial function were studied by Girosi and Poggio �� and by Hartman
et al� �� and for more general radial functions by Park and Sandberg ���

In �	� we showed how classical methods of the approximation of functions by convolu�
tions with kernel functions imply universal approximation properties of RBF networks
with non�zero integrable radial functions and introduced kernel basis function 
KBF�
units� We showed that these networks have the universal approximation property and
extended learning algorithms to KBF networks�

In this paper� we present some estimates of rates of approximation� We show that
for any of a number of classical kernel functions rate of approximation is bounded
above by terms depending on moduli of continuity and convolution approximation
error� Using Jackson�s estimate� we give an upper bound on approximation error for
KBF networks with Jackson convolution kernel� Further� we present an upper bound
on approximation error for Lipschitz continuous functions�

Chapter � recalls some de�nitions used in the paper� RBF networks are discussed in
chapter �� The approach of approximation by convolutions is presented in chapter 	�
Chapter � discusses KBF networks and �nally chapter � presents our estimates of the
error of approximation�

� Preliminaries

By R and N we denote the set of real numbers and positive integers� respectively� also�
I � ��� � and R� � ������ For a bounded function f � Rd � R the uniform norm is
de�ned by

k f k� � sup
x�Rd

jf
x�j�

As usual� for a compact subset A of Rd� C
A� denotes the set of all real�valued continu�
ous functions on A with the uniform norm and corresponding topology� A convolution

of two functions f� g � Rd � R is f � g �
R
Rd

f
x�g
x � y�dy� Let f � R � R be a

continuous function� A � R� put kfkA � supx�A jf
x�j�
�A
f� h� � sup

jx��x� j�h�

x��x��A

jf
x��� f
x��j is modulus of continuity of f on A�

�



� RBF networks

Recall here the de�nition of RBF networks�

A radial basis function �RBF� unit with d inputs is a computational unit that computes
a function from Rd to R of the form �
k x � c k �b�� where � � R � R is an even

radial� function� k � k is a norm on Rd� and c � Rd� b � R� b � � are parameters
called center and width� resp�

A radial basis function �RBF� network is a neural network with a single linear output
unit� one hidden layer with RBF units that have the same radial function � and the
same norm k � k on Rd� and d inputs�

By F
�� k � k� we denote the set of real�valued functions on Id computable by RBF
networks with the radial function � and the norm k � k with any number of hidden
units�

F
�� k � k� � ff � Id � R � f
x� �
nX
i��

wi�
k x� ci k �bi� �

n � N � ci � Rd� bi� wi � R� bi � �g�

The most popular radial function currently used in applications is the Gaussian �
t� �
exp
�t�� 
see ��� ���� By Fu
�� k � k� we denote the set of functions computable by
RBF networks with a uniform width� i�e�

Fu
�� k � k� � ff � Id �R � f
x� �
mX
i��

wi�
k x� ci k �b� �

m � N � ci � Rd� b� wi � R� b � �g�

The property of a class of feedforward networks to approximate general functions ar�
bitrarily well can be described succintly using topology� Let U be a class of functions�
T its subset� and 	 a metrics on U � The class T is said to have the universal approxi�
mation property with respect to 
U� 	� if it is dense in U with respect to the topology
induced by 	�

� Approximation by Convolutions

The approximation of functions by convolutions with various kernel functions with a
�peak� is a classical method� Weierstrass in ���� used convolutions with Gaussian
functions ��
x� � exp
�x��
��
 for the proof of his famous theorem on uniform ap�
proximation by polynomials� He approximated an arbitrary continuous function f
uniformly on compact subsets of R by

f
x� � lim
���

f � ���
p
� 
��

�



By the standard technique generalizing Weierstrass� formula 
��� one can approximate
continuous functions by sequences of convolutions f ��n� where functions f�n� n � Ng
are constructed from a non�zero integrable function � by normalizing and �sharpening��
i�e� putting �n
t� � nd�
nt�� Approximating a convolution by an appropriate Riemann
sum� we proved in �	 the following theorem�

Theorem � For every positive integer d and for every continuous function � � R �
R� with �nite non�zero integral and for every norm k � k on Rd� Fu
�� k � k� is dense
in C
Id��

In other words� the class of single hidden layer RBF networks with uniform width has
the universal approximation property�

� KBF networks

There are many classical sequences of kernel functions 
like Dirichlet�s kernel� see below�
that are not derived from one function by dilation 
multiplying the argument by n� as
in case of RBF�� To introduce general kernel functions into neural networks� in �	� we
de�ned kernel basis function 
KBF� units�

A KBF unit with d inputs computes a function Rd � R of the form kn
k x � c k��
where fkn � R � Rg is a sequence of functionsg� k � k is a norm on Rd� and c � Rd�
n � N are parameters� We call n sharpness�

A kernel basis function �KBF� network is a neural network with a single linear output
unit� one hidden layer with KBF units with the same sequence of functions fkn� n � Ng
and the same norm k � k on Rd� and d inputs�

By K
fkn� n � Ng� k � k� we denote the set of functions computable by KBF networks
with fkn� n � Ng and k � k with any number of hidden units� So

K
fkn� n � Ng� k � k� � ff � Id � R � f
x� �
mX
i��

wikni
k x� ci k��

m� ni � N � ci � Rd� wi � Rg�

By Ku
fkn� n � Ng� k � k� we denote the set of functions computable by KBF networks
with the same �n for all units in the hidden layer� i�e�

Ku
fkng� k � k� � ff � Id � R � f
x� �
mX
i��

wikn
k x� ci k� �

m� n � N � ci � Rd� wi � Rg�

�



Similarly� we obtained in �	 universal approximation property for quite general KBF
networks�

Theorem � For every positive integer d and for every sequence of continuous func�
tions fkn � R � R�� n � Ng and for every norm k � k on Rd satisfying for every
n � N and every x � Rd

R
Rd

kn
k x� y k�dy � � and for every 
 � � and every x � Rd

lim
n��

R
J��x�

kn
k x � y k�dy � �� where J�
x� � fyj y � Rd� k x � y k � 
g� the class

Ku
fkn� n � Ng� k � k� is dense in C
Id��

Note that all of the following classical kernels satisfy the assumptions of Theorem �
and so KBF networks with any of these kernels are powerful enough to approximate
continuous functions 
of course� to achieve arbitrary accuracy� one must increase the
number of hidden units��

F�ejer kernel kn
x� � �sinnx�
n 	 sinx��
Dirichlet kernel kn
x� � �sin
n� ����x�
�n sin
x���
Jackson kernel kn
x� � �sinnx�
n 	 sinx��
Abel�Poisson kernel kn
x� � ���� � 
nx��

Weierstrass kernel kn
x� � e�nx
�

Landau kernel kn
x� � 
�� x��n

� Some Estimates of the Error of Approximation

For some of the above mentioned convolution kernels upper bounds on convolution
approximation are known� The following theorem derives estimate of the rate of ap�
proximation by KBF networks depending on the error of approximation E
f� kn� �
k f � f � kn k and modulus of continuity of f and kn�

Theorem � Let a � R� A � ��a� a� A� � ���a� �a� f � A � R be a continuous
function� E
f� kn� � kf
x�� RA f
t�knkx� tkdtkA� Then for every m � N there exists
a KBF network with m hidden units computing a function g � Ku
fkng� k�k� such that
for every x � A

jf
x�� g
x�j 
 E
f� kn� � �akfkA �A�
kn�
�a

m
� � kknkA� �A
f� �a

m
��

Proof� The proof can be found in ���

	



We use this theorem to estimate the approximation error for the KBF networks based
on Jackson kernel with inputs in the interval ���� �� Consider the following operator�

�Z
��

f
t�Ln
x� t�dt �

�Z
��

f
x� t�Ln
t�dt� 
��

where Ln is the Jackson kernel

Ln
t� � ���n

�
sin
nt���

sin
t���

��
�

�Z
��

Ln
t�dt � ��

where the last relation de�nes �n� It is proved in ��� p� �� that �n � n	�

It is convenient to normalize the operator 
�� in such a way as to obtain a trigonometric
polynomial of degree n� For this purpose� we put

Kn
t� � Lr
t�� r � �
n

�
 � �

The operator Jn
x� � Jn
f� x� �
�R
��

f
x� t�Kn
t�dt is called the Jackson operator�

Theorem � Jackson� There exists a constant M such that� for each function f �
C
A�� where A � ���� � and for every n � N � jf
x�� Jn
x�j 
M�A
f�

�
n
��

Proof� The proof can be found for example in ��� p����

Theorem � There exists a constant M such that for every f � C
A�� A � ���� ��
for every n �sharpness of the Jackson kernel� and for every m � N and a function g
computable by a Jackson KBF network with m hidden units and with sharpness n such
that for every x � A

jf
x�� g�x�j 
 M�A
f�
�

r
� � �� kfkA�A�
Lr�

��

m
� � kLrkA� �A
f� ��

m
�� 
��

where r � �n
�
 � � and A� � ����� ���

Proof� From Theorems � and 	� where E
f� kn� 
M�P 
f�
�
n
�� �

Our following estimate of the approximation error is made for classes of Lipschitz func�
tions� Recall here the de�nition�

We say that f � Lip� � �  
 �� if there exists a constant C such that

jf
x�� f
y�j 
 Cjx� yj��

�



Lemma � If M �
R
R jxj�jkn
x�jdx ��� � �  
 � then f � Lip� implies

jf � kn � f j 
 CM

n�
�

Proof� The proof can be found in ��� p����

Theorem � Let a � R� A � ��a� a� A� � ���a� �a� f � A � R be a continuous
function� Let f � Lip�� � �  
 � and let M �

R
R jxj�jkn
x�jdx � � for a kernel

function kn� Then for every m � N there exists a KBF network with m hidden units
computing a function g � Ku
fkng� k�k� such that for every x � A

jf
x�� g
x�j 
 CM

n�
� �akfkA �A�
kn�

�a

m
� � kknkA� �A
f� �a

m
��

Proof� Corollary of theorem � and lemma ��

�
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