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Abstract� Consider an optimization problem where the objective function is an in�
tegral containing the solution of a system of ordinary di�erential equations� Suppose
we have e�cient optimization methods available as well as e�cient methods for initial
value problems for ordinary di�erential equations� The main purpose of this paper is to
show how these methods can be e�ciently applied to a considered problem� First the
e�cient procedures for the evaluation of gradients and Hessian matrices are described
together with an e�cient Gauss�Newton�like approximation of the Hessian matrix by
a �rst order information� Then a global and superlinear convergence of the Gauss�
Newton�like trust region method is proved� Finally several optimization methods are
proposed and computational experiments illustrating their e�ciency are shown�

Key words� Unconstrained optimization� dynamical systems� nonlinear least squares�
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 Introduction

Consider the problem of minimizing the objective function

F �x	 

Z t�

t�
fA�y�x� t	� t	 dt� fT �y�x� t�		 ��a	

where

dy�x� t	

dt

 fS�x� y�x� t	� t	� y�x� t�	 
 fI�x	 � ��b	

Here x � Rn is a parameter vector� y � Rn � t�� t�� � RnS is the solution vector�
F � Rn � R is the objective function� fA � RnS � t�� t�� � R is an approximation
function� fT � RnS � R is a terminal function� fS � Rn�RnS � t�� t��� RnS is a state
function� fI � Rn � RnS is an initial function� Suppose that all the above functions
have continuous second order derivatives on X � RnS � t�� t�� where X � Rn is a
compact set that contains all parameter vectors used in the optimization process� and
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that smooth solution of the system of ordinary di�erential equations ��b	 exists on
t�� t�� whenever x � X� In this case we can compute derivatives of both the solution
vector y�x� t	 and the integral in ��a	 with respect to the parameter vector x � Rn� by
changing the order of di�erentiation� as will be shown in Section ��

From a numerical point of view we can replace the problem ��	 by

F �x	 
 FA�x� t�	 � fT �y�x� t�		 ��a	

where

dy�x� t	

dt

 fS�x� y�x� t	� t	� y�x� t�	 
 fI�x	 ��b	

and

dFA�x� t	

dt

 fA�y�x� t	� t	� FA�x� t�	 
 � ��c	

so that the integral in ��a	 is replaced by an additional di�erential equation ��c	� The
main advantage of this replacement consist in the elimination of all interior points
of the interval t�� t��� The objective function depends only on the terminal values
y�x� t�	 and FA�x� t�	� Therefore both ��b	 and ��c	 can be solved simultaneously
using e�cient numerical methods utilizing large integration steps obtained by suitable
stepsize control�

Suppose we have available e�cient optimization methods and e�cient methods for
initial value problems of ordinary di�erential equations� The main purpose of this
paper is to show how these methods can be e�ciently applied to dynamical systems
described by ��	 or ��	� Even if the description ��	 or ��	 is not the most general� it con�
tains a broad class of real problems and it can be easily generalized using the approach
proposed in Section �� Note also that ��	 or ��	 de�ne only the objective function� If
we have available e�cient constrained optimization methods we can append arbitrary
constraints on parameters to ��	 or ��	 �

The paper is organized as follows� In Section � we describe procedures for both
the gradient and the Hessian matrix evaluations� These procedures consist in solving
di�erential equations as augmented and as adjoint �the augmented system is solved
in a forward direction while the adjoint system is solved in a backward direction	�
Furthermore� we derive a Gauss�Newton like method that is suitable for small residual
problems� Convergence properties of this method are studied in Section �� Section
� contains practical considerations concerning optimization methods and methods for
initial value problems� Numerical experiments are reported in Section �� In these
sections we use the notation d�dt and d�dx for di�erentiation with respect to t and
total di�erentiation with respect to x respectively and the notation ���x and ���y
for partial di�erentiation with respect to x and di�erentiation with respect to y re�
spectively�
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�
 Computation of derivatives

In this section we describe several procedures for computing the gradient and the
Hessian matrix �or its approximation	 of the objective function ��a	� We suppose that
all conditions stated in Section � are satis�ed so that smooth solutions of both ��b	 and
��c	 exist and their derivatives can be computed by a changing order of di�erentiation�

�a	 Gradient evaluation using forward integration�

Let u�x� t	 
 dy�x� t	�dx � RnS�n be a matrix with nS rows and n columns�
Di�erentiating ��	 we obtain

gT �x	 
 gTA�x� t�	 �
�fT �y�x� t�		

�y
u�x� t�	 ��a	

where

du�x� t	

dt


�fS�x� y�x� t	� t	

�y
u�x� t	 �

�fS�x� y�x� t	� t	

�x
� u�x� t�	 


dfI�x	

dx
��b	

and

dgTA�x� t	

dt


�fA�y�x� t	� t	

�y
u�x� t	� gTA�x� t�	 
 � ��c	

and where gT �x	 
 dF �x	�dx and gTA�x� t	 
 dFA�x� t	�dx� Thus we have to solve the
system of �nS��	�n��	 di�erential equations ��b	� ��c	 and ��b	� ��c	 in the forward
direction for simultaneous computation of both the value ��a	 and the gradient ��a	
of the objective function�

�b	 Gradient evaluation using backward integration�

Let p�t	 � RnS be an arbitrary function and y�x� t	 be a solution to the di�erential
system ��b	 so that fS�x� y�x� t	� t	�dy�x� t	�dt 
 � for all t � t�� t��� Then using ��a	
we can write

F �x	 

Z t�

t�
ffA�y�x� t	� t	 � pT �t	�fS�x� y�x� t	� t	�

dy�x� t	

dt
	g dt� fT �y�x� t�		

and utilizing integration per partes we obtain

F �x	 

Z t�

t�
ffA�y�x� t	� t	 � pT �t	fS�x� y�x� t	� t	�

dpT �t	

dt
y�x� t	g dt

�pT �t�	y�x� t�	� pT �t�	y�x� t�	 � fT �y�x� t�		 �
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The last formula can be di�erentiated with respect to the parameter vector x � Rn so
that we get

gT �x	 

Z t�

t�

��
�fA�y�x� t	� t	

�y
� pT �t	

�fS�x� y�x� t	� t	

�y
�
dpT �t	

dt

�
dy�x� t	

dx

� pT �t	
�fS�x� y�x� t	� t	

�x

�
dt

�pT �t�	
dfI�x	

dx
�

�
�fT �y�x� t�		

�y
� pT �t�	

�
dy�x� t�	

dx
�

Now we can chose the function p�t	 in such a way to eliminate terms with dy�x� t	�dt�
If we choose

�
dp�x� t	

dt

 �

�fS�x� y�x� t	� t	

�y
	Tp�x� t	��

�fA�y�x� t	� t	

�y
	T � p�x� t�	 
 �

�fT �y�x� t�		

�y
	T

then

gT �x	 

Z t�

t�
pT �x� t	

�fS�x� y�x� t	� t	

�x
dt� pT �x� t�	

dfI�x	

dx
� ��a	

This result can be summarized in the form

g�x	 
 �gA�x� t�	 � �
dfI �x	

dx
	Tp�x� t�	 ��a	

where

�
dp�x� t	

dt

 �

�fS�x� y�x� t	� t	

�y
	Tp�x� t	��

�fA�y�x� t	� t	

�y
	T � p�x� t�	 
 �

�fT �y�x� t�		

�y
	T

��b	
and

�
d�gA�x� t	

dt

 �

�fS�x� y�x� t	� t	

�x
	Tp�t	� �gA�x� t�	 
 � ��c	

�here �gA�x� t	 is di�erent from gA�x� t	 in ��		� Thus we have to solve the system of
�nS��	 di�erential equations ��b	� ��c	 in the forward direction for computation of the
value ��a	 and the system of �nS �n	 di�erential equations ��b	� ��c	 in the backward
direction for computation of the gradient ��a	�

�c	 Hessian matrix evaluation using forward integration�

Denote v�x� t	 
 du�x� t	�dx 
 d�y�x� t	�dx� � RnS�n�n� Di�erentiating ��	 we
obtain

�



G�x	 
 GA�x� t�	 � uT �x� t�	
��fT �y�x� t�		

�y�
u�x� t�	 �

�fT �y�x� t�		

�y
v�x� t�	 ��a	

where

dv�x� t	

dt



�fS�x� y�x� t	� t	

�y
v�x� t	

�

�
��fS�x� y�x� t	� t	

�y�
u�x� t	 �

��fS�x� y�x� t	� t	

�y�x

�
� u�x� t	

�
��fS�x� y�x� t	� t	

�x�y
u�x� t	 �

��fS�x� y�x� t	� t	

�x�
�

v�x� t�	 

d�fI�x	

dx�
��b	

and

dGA�x� t	

dt

 uT �x� t	

��fA�y�x� t	� t	

�y�
u�x� t	 �

�fA�y�x� t	� t	

�y
v�x� t	� GA�x� t�	 
 �

��c	
and where G�x	 
 d�F �x	�dx� and GA�x� t	 
 d�fA�x� t	�dx�� Thus we have to solve
the system of �nS � �	�n� � n� �	 di�erential equations ��b	� ��c	 and ��b	� ��c	 and
��b	� ��c	 in the forward direction for simultaneous computation of all the value ��a	
and the gradient ��a	 and the Hessian matrix ��a	 of the objective function� Note
that we have used a nonstandard matrix notation for tensor quantities� the symbol
��� means a summation over the last but one �middle	 index of a cube matrix�

�d	 Hessian matrix evaluation using backward integration�

Let u�t	 � RnS�n be an arbitrary function and p�x� t	 be a solution to the di�erential
system ��b	 so that dp�x� t	�dt � ��fS�x� y�x� t	� t	��y	Tp� ��fA�y�x� t	� t	��y	T 
 ��
Then using ��	 we can write

gT �x	 

Z t�

t�

�
pT �x� t	

�fS�x� y�x� t	� t	

�x

�

�
dpT �x� t	

dt
� pT �x� t	

�fS�x� y�x� t	� t	

�y
�
�fA�y�x� t	� t	

�y

�
u�t	

�
dt

�pT �x� t�	
dfI�x	

dx

and utilizing integration per partes we obtain

�



gT �x	 

Z t�

t�

�
pT �x� t	

�fS�x� y�x� t	� t	

�x

�

�
pT �x� t	

�fS�x� y�x� t	� t	

�y
�
�fA�y�x� t	� t	

�y

�
u�t	� pT �x� t	

du�t	

dt

�
dt

�pT �x� t�	
dfI�x	

dx
�
�fT �y�x� t�	

�y
u�t�	� pT �x� t�	u�t�	 �

The last formula can be di�erentiated with respect to the parameter vector x � Rn so
that we get

G�x	 

Z t�

t�

�
�
�fS�x� y�x� t	� t	

�x
	T
dp�x� t	

dx

� pT �x� t	

�
��fS�x� y�x� t	� t	

�x�
�
��fS�x� y�x� t	� t	

�x�y

dy�x� t	

dx

�

� uT �t	

�
pT �x� t	

�
��fS�x� y�x� t	� t	

�y�x
�
��fS�x� y�x� t	� t	

�y�
dy�x� t	

dx

��

�uT �t	
��fA�y�x� t	� t	

�y�
dy�x� t	

dx
� �

�fS�x� y�x� t	� t	

�y
u�t		T

dp�x� t	

dx

��
du�t	

dt
	T
dp�x� t	

dx

�
dt� �

dfI�x	

dx
	T
dp�x� t�	

dx
� pT �x� t�	

d�fI�x	

dx�

�uT �t�	
��fT �y�x� t�	

�y�
dy�x� t�	

dx
� uT �t�	

dp�x� t�	

dx
�

Now we can chose the function u�t	 in such a way to eliminate terms with dp�x� t	�dx�
Therefore we choose

du�x� t	

dt


�fS�x� y�x� t	� t	

�y
u�x� t	 �

�fS�x� y�x� t	� t	

�x
� u�x� t�	 


dfI�x	

dx

so that u�x� t	 
 dy�x� t	�dx by ��b	� Then

G�x	 

Z t�

t�

�
pT �x� t	

�
��fS�x� y�x� t	� t	

�x�
�
��fS�x� y�x� t	� t	

�x�y
u�x� t	

�

� uT �x� t	

�
pT �x� t	

�
��fS�x� y�x� t	� t	

�y�x
�
��fS�x� y�x� t	� t	

�y�
u�x� t	

��

�uT �x� t	
��fA�y�x� t	� t	

�y�
u�x� t	

�
dt

�pT �x� t�	
d�fI�x	

dx�
� uT �x� t�	

��fT �y�x� t�	

�y�
u�x� t�	 �

�



This result can be summarized in the form

G�x	 
 �GA�x� t�	 � pT �x� t�	
d�fI�x	

dx�
��a	

where

�
d �GA�x� t	

dt

 pT �x� t	

�
��fS�x� y�x� t	� t	

�x�
�
��fS�x� y�x� t	� t	

�x�y
u�x� t	

�

� uT �x� t	

�
pT �x� t	

�
��fS�x� y�x� t	� t	

�y�x
�
��fS�x� y�x� t	� t	

�y�
u�x� t	

��

� uT �x� t	
��fA�y�x� t	� t	

�y�
u�x� t	

�GA�x� t�	 
 uT �x� t�	
��fT �y�x� t�	

�y�
u�x� t�	 ��c	

�here �GA�x� t	 is di�erent from GA�x� t	 in ��		� Thus we have to solve the system of
�nS ��	�n��	 di�erential equations ��b	� ��c	 and ��b	� ��c	 in the forward direction
for simultaneous computation of both the value ��a	 and the gradient ��a	 and the
system of �nS � n�	 di�erential equations ��b	� ��c	 in the backward direction for
computation of the Hessian matrix ��a	�

�e	 Hessian matrix approximation using forward integration�

Suppose that the functions fA � RnS � t�� t�� � R and fT � RnS � R have the
special form

fA�y�x� t	� t	 

�

�
�y�x� t	� z�t		TW �t	�y�x� t	� z�t		 ��a	

so that

�fA�y�x� t	� t	

�y

 W �t	�y�x� t	� z�t		�

��fA�y�x� t	� t	

�y�

 W �t	

and

fT �y�x� t�		 

�

�
�y�x� t�	� z�t�		

TW��y�x� t�	� z�t�		 ��b	

so that

�fT �y�x� t�		

�y

 W��y�x� t�	� z�t�		�

��fT �y�x� t�		

�y�

 W�

where W �t	 � RnS�nS is a symmetric positive semide�nite matrix and W� �
 W �t�	
in general� If F �x	� � then necessarily y�x� t	� z�t	 so that �fA�y�x� t	� t	��y� �
and �fT �y�x� t�		��y � �� After substituting the last assertions into ��	 we obtain

�



G�x	 � B�x	 
 BA�x� t�	 � uT �x� t�	W�u�x� t�	 ��a	

and

dBA�x� t	

dt

 uT �x� t	W �t	u�x� t	� BA�x� t�	 
 � ��c	

Thus we have to solve the system of �nS � �	�n � �	 � n� di�erential equations ��b	�
��c	 and ��b	� ��c	 and ��c	 in the forward direction for simultaneous computation of
all the value ��a	 and the gradient ��a	 and the approximation of the Hessian matrix
��a	�

We have derived several procedures for both the gradient and the Hessian matrix
evaluations� In fact Hessian matrices will not be used in practical implementations
since their evaluations require a great amount of computations� Still� the formulas for
Hessian matrices allowed us to derive an e�cient procedure ��	 for their approxima�
tions which leads to e�cient Gauss�Newton�like methods�

�
 Convergence properties

In this section we will study convergence properties of Gauss�Newton�like methods
that use the matrix B�x	 given by ��	 instead of the Hessian matrixG�x	� The Gauss�
Newton�like methods are usually realized in a trust region framework which leads to
good global convergence properties� Assume a class of methods which can be described
by the following algorithmic scheme�

Algorithm ��


Data� � � �� � �� � � � ��� � � 	� � 	� � �� � � 
� � 
� � ��

Step 
� Choose an initial point x� � Rn and an initial trust region bound �� � ��
Set i �
 ��

Step 	� Compute the value Fi 
 F �xi	� the gradient gi 
 g�xi	 and the approxi�
mation of the Hessian matrix Bi 
 B�xi	 by ��	� ��	 and ��	 respectively�
If either Fi 	 
� or k gi k	 
� then stop

Step �� Determine the vector di � Rn so that

di 
 arg min
kdk��i

Qi�d	

where

Qi�d	 

�

�
dTBid� dT gi

is a local quadratic approximation of the objective function F � Rn � R
in a neighborhood of the point xi�

�



Step �� Compute the value F �xi � di	 by ��	 and the ratio 	i 
 �F �xi � di	 �
Fi	�Qi�di	� If 	i � 	� then compute the value �i� �� 	 �i 	 ��� by a
quadratic interpolation and set �i�� 
 �i k di k� If 	� 	 	i 	 	� then
set �i�� 
 �i� If 	� � 	i then set �i�� 
 max��i� �� k di k	�

Step �� If 	i 	 � then set xi�� 
 xi� i �
 i � � and go to Step �� otherwise set
xi�� 
 xi � di� i �
 i� � and go to Step ��

Typical data are �� 
 ����� �� 
 ����� �� 
 ���� 	� 
 ���� 	� 
 ���� 
� 
 ������

� 
 �����

Convergence properties of trust region methods were studied in Refs� ���� We
use these results together with classical theory of di�erential equations to prove the
global and superlinear convergence of the Gauss�Newton�like method represented by
Algorithm ���� Denote

X 
 fx � Rn � F �x	 	 F �x�	g

and assume the following conditions hold

�A�	 System ��b	 has a unique continuous solution y�x� t	 on t�� t�� for all x � X and

max
t��t��t��

k y�x� t	 k	 �K

holds for all x � X�

�A�	 FunctionsW �t	 and z�t	 are bounded on t�� t��� i�e� kW �t	k	 �K and k y�x� t	�
z�t	 k	 �K� say� on t�� t�� for all x � X� Also kW� k	 �K �

�A�	 Function fI�x	 is Lipschitz continuously di�erentiable with respect to x on X�
It means that dfI�x	�dx exists on X and

k
dfI�x�	

dx
�
dfI�x�	

dx
k	 �L k x� � x� k

for all x� � X and x� � X�

�A�	 Function fS�x� y� t	 is Lipschitz continuously di�erentiable with respect to x
and y on X � Y � t�� t�� where Y 
 fy � RnS �k y k	 �Kg� It means that
�fS�x� y� t	��x exists on X and

k
�fS�x�� y� t	

�x
�
�fS�x�� y� t	

�x
k	 �L k x� � x� k

k
�fS�x� y�� t	

�x
�
�fS�x� y�� t	

�x
k	 �L k y� � y� k

for all x � X� x� � X� x� � X� y � Y � y� � Y � y� � Y and t � t�� t��� and the
same holds for �fS�x� y� t	��y�

��



For the sake of simplicity� we use the same constant �K in both �A�	 and �A�	 and the
same constant �L in both �A�	 and �A�	�

Assuming �A�	 is very natural since we require� for optimization process� that a
bounded unique solution y�x� t	 exists for all x � X� This assumption together with
assumptions �A�	��A�	 imply an existence and continuity of the function u�x� t	 

dy�x� t	�dt which have to satisfy the equation ��b	 �see Ref �	� For subsequent con�
siderations we will need the following lemma �see Ref �	�

Lemma ��
 Consider the linear system

dy�t	�dt 
 A�t	y�t	 � b�t	� y�t�	 
 y�

with A�t	 and b�t	 continuous on t�� t��� Then

k y�t	 k	 �k y�t�	 k �
Z t

t�
k b�� 	 k d� 	 exp�

Z t

t�
k A�� 	 k d� 	

for all t � t�� t���
Now we can prove the main results�

Theorem ��
 Let the assumptions �A�	��A�	 hold� Then Algorithm ��� is globally
convergent in the sense that

lim inf
i��

k g�xi	 k
 � �

Proof � We have to prove that the matrix B�x	 given by ��	 is bounded on X and
that the gradient g�x	 given by ��	 is Lipschitz continuous on X� These conditions
already imply global convergence of a trust region method as it is proved in Refs� ����

First we prove boundedness of the matrix B�x	� Since Lipschitz continuity on a
compact set imply boundedness� we can assume that k dfI�x	�dx k	 �K on X and
k �fS�x� y� t	��x k	 �K � k �fS�x� y� t	��y k	 �K on X � Y � t�� t�� respectively �for
the sake of simplicity we use the same constant �K as in �A�	 and �A�		� If we apply
Lemma ��� on the system ��b	 we obtain

k u�x� t	 k	 � �K � �K�t� � t�		 exp� �K�t� � t�		
�

 �M

so that by ��	 we can write

k B�x	 k 	
Z t�

t�
k uT �x� t	W �t	u�x� t	 k dt� k uT �x� t�	W�u�x� t�	 k	

	 �K �M��t� � t�	 � �K �M� �

Second� we prove Lipschitz continuity of the gradient g�x	� From boundedness of
u�x� t	 
 dy�x� t	�dt on X it follows that k y�x�� t	� y�x�� t	 k	 �M k x� � x� k which
together with �A�	 gives as

��



k
�fS�x�� y�� t	

�x
�
�fS�x�� y�� t	

�x
k 	 k

�fS�x�� y�� t	

�x
�
�fS�x�� y�� t	

�x
k

� k
�fS�x�� y�� t	

�x
�
�fS�x�� y�� t	

�x
k

	 �L�k y� � y� k � k x� � x� k	

	 �L� �M � �	 k x� � x� k

as similar inequality

k
�fS�x�� y�� t	

�y
�
�fS�x�� y�� t	

�y
k	 �L� �M � �	 k x� � x� k �

Using ��	 we get

d�u�x�� t	� u�x�� t		

dt



�fS�x�� y�� t	

�y
�u�x�� t	� u�x�� t		

�

�
�fS�x�� y�� t	

�y
�
�fS�x�� y�� t	

�y

�
u�x�� t	

�

�
�fS�x�� y�� t	

�x
�
�fS�x�� y�� t	

�x

�

and

u�x�� t�	� u�x�� t�	 

dfI�x�	

dx
�
dfI�x�	

dx
�

Applying Lemma ��� on the last system and using the above inequalities together with
boundedness of u�x� t	 on X we obtain

k u�x�� t	�u�x�� t	 k	 �L���� �M��	��t��t�		 exp� �K�t��t�		 k x��x� k
�

 �N k x��x� k �

This together with �A�	 and boundedness of u�x� t	 on X gives

k uT �x�� t	W �t	�y�x�� t	� z�t		� uT �x�� t	W �t	�y�x�� t	� z�t		 k

	 k uT �x�� t	W �t	�y�x�� t	� �y�x�� t		 k

� k �u�x�� t	� u�x�� t		
TW �t	�y�x�� t	� z�t		 k

	 �K �M k y�x�� t	� y�x�� t	 k � �K� k u�x�� t	� u�x�� t	 k

	 �K� �M� � �K �N	 k x� � x� k

so that ��	 and ��	 imply

��



kg�x�	� g�x�	k 	
Z t�

t�
kuT �x�� t	W �t	�y�x�� t	� z�t		

�uT �x�� t	W �t	�y�x�� t	� z�t		k dt

� k uT �x�� t�	W��y�x�� t�	� z�t		

�uT �x�� t	W��y�x�� t�	� z�t�		 k

	 �K� �M� � �K �N	��t� � t�	 � �	 k x� � x� k

and Lipschitz continuity of the gradient g�x	 is proved� �

Theorem ��	 Let fxig�i	�� be a sequence of points generated by Algorithm ��� such
that xi � x� as i�
 where x� � Rn is a point that satis�es a second order su�cient
condition for local minimum of the function F �x	� Suppose that �A�	 and �A�	 hold
and continuous and bounded second oder derivatives ��fI�x	��x

�� ��fS�x� y� t	��x��
��fS�x� y� t	��x�y� ��fS�x� y� t	��y� exist for all x from some neighborhood X� � X
of x� � Rn and for all y � Y and t � t�� t��� Then� if F �xi	 � � as i � 
� the
sequence fxig�i	� converges superlinearly to x

� � Rn in the sense that

lim
i��

k xi�� � x� k

k xi � x� k

 �

Proof� We have to prove that B�xi	 � G�xi	 when xi � 
� This condition
together with the positive de�niteness of B�x�	 already imply superlinear convergence
of a trust region method as it is proved in Ref� ��

Continuity and boundedness of second order derivatives imply continuity and
boundedness of the function v�x� t	 
 du�x� t	�dx on X� � t�� t�� �it follows from
��b	 using Lemma ���	� Therefore we can write k v�xi� t	 k	 �C for all t � t�� t��
whenever xi � X�� Using this fact together with ��	 and ��	 we get

k G�xi	�B�xi	 k 	
Z t�

t�
k �y�xi� t	� z�t		TW �t	v�xi� t	 k dt

� k �y�xi� t�	� z�t�		
TW�v�xi� t�	 k

	 �C �K���
Z t�

t�
k W ����t	�y�xi� t	� z�t		 k dt

� �C �K��� k W ���
� �y�xi� t�	� z�t�		 k �

But from ��a	 and ��	 we obtain

�F �xi	 

Z t�

t�
�y�xi� t	� z�t		TW �t	�y�xi� t	� z�t		 dt

��y�xi� t�	� z�t�		
TW��y�xi� t�	� z�t�		



Z t�

t�
k W ����t	�y�xi� t	� z�t		 k� dt� k W

���
� �y�xi� t�	� z�t�		 k

�

��



so that F �xi	� � only ifW ����t	�y�xi� t	�z�t		� � in the L� norm andW ���
� �y�xi� t�	�

z�t�		� � in the Euclidean norm� This together with estimation of k G�xi	�B�xi	 k
proves that B�xi	� G�xi	 as i�
 �since L� norm of bounded function on bounded
interval is equivalent with the L� norm	� �

We have proved that Gauss�Newton�like method represented by Algorithm ���
converges superlinearly if it is used for zero residual problem� In the case of a large
residuum the superlinear convergence is usually lost� Therefore it is advantageous to
combine Gauss�Newton�like method with the BFGS quasi�Newton method� A very ef�
fective possibility is proposed in Ref� �� It consists in replacing Step � of Algorithm ���
by a sequence of the following two steps�

Step 	a� If i 
 � or Fi�� � Fi � �Fi�� then compute the value Fi 
 F �xi	�
the gradient gi 
 g�xi	 and the symmetric positive semide�nite matrix
Bi 
 B�xi	 by ��	� ��	 and ��	 respectively� If either Fi 	 
� or k gi k	 
�
then stop�

Step 	b� If i � � and Fi�� � Fi 	 �Fi�� then compute the value Fi 
 F �xi	� and
the gradient gi 
 g�xi	 by ��	 and ��	 respectively� If either Fi 	 
� or
k gi k	 
� then stop� Otherwise set di�� 
 xi�xi��� yi�� 
 gi� gi�� and
compute

Bi 
 Bi�� �
yi��y

T
i��

dTi��yi��
�
Bi��di���Bi��di��	T

dTi��Bi��di��
�

A typical value is � 
 ���
� We denote such a combination as GN�QN method� A
more detailed description of GN�QN�like methods is given in Refs� ����


 Practical considerations

First we would note that forward integration leads to larger systems of di�erential
equations then a backward one� On the other hand backward integration has this
unpleasant feature� the adjoint system requires the solution of the basic system ��b	
which is usually obtained by forward integration� There are two possibilities for pro�
ceeding� The �rst possibility� we denote as B�� consists in additional solution of the
basic system in the backward direction

dy�x� t	

dt

 fS�x� y�x� t	� t	� y�x� t�	� given by forward integration

This system is added to the system ��b	 and ��c	 so that the resulting system
contains �nS � n di�erential equations� When the basic system ��b	 is sensitive to
initial values and� at the same time� the value y�x� t�	 computed by forward integration
is a�ected by unneglected global truncation error then we can lose some precision and
also stability� However this situation never appeared in our numerical experiments�

��



The second possibility� we denote as B�� consists in storing the solution to the
basic system in all mesh points during forward integration� Backward integration
then uses the same mesh points as a forward one so that the solution of the basic
system is always available� If we denote by nA the number of mesh points used in
forward integration� we have to store nAnS additional values� Since mesh points are
given automatically by a stepsize control �based on local truncation error estimation	
their number could be too large� Moreover� since the adjoint system ��b	 used in
backward integration is di�erent from the basic system ��b	� the mesh points obtained
during forward integration can be unsuitable for backward integration� Also utilizing
uniformly distributed mesh points may not be suitable since solution of the basic
system can vary quickly in some parts of the integration interval so that uniformly
distributed mesh points can be insu�cient in this case�

The following table summarizes the requirements for individual procedures�

Table 
 Requirements of individual methods

method realization F realization B� realization B�
Nf 
 nS � �

QN��	 Nb 
 � irrelevant irrelevant
Ne 
 n� �
Ns 
 �
Nf 
 �nS � �	�n � �	 Nf 
 nS � � Nf 
 nS � �

QN��	 Nb 
 � Nb 
 �nS � n� Nb 
 nS � n
Ne 
 � Ne 
 � Ne 
 �
Ns 
 � Ns 
 � Ns 
 nAnS
Nf 
 �nS � �	�n � �	 Nf 
 nS � � Nf 
 nS � �

MN��	 Nb 
 � Nb 
 �nS � n� Nb 
 nS � n
Ne 
 n� � Ne 
 n� � Ne 
 n � �
Ns 
 � Ns 
 � Ns 
 nAnS
Nf 
 �nS � �	�n� � n � �	 Nf 
 �nS � �	�n� �	 Nf 
 �nS � �	�n � �	

MN��	 Nb 
 � Nb 
 nS�n� �	 � n� Nb 
 nS � n�

Ne 
 � Ne 
 � Ne 
 �
Ns 
 � Ns 
 � Ns 
 nA�nS � �	n
Nf 
 �nS � �	�n � �	 � n�

GN��	 Nb 
 � impossible impossible
Ne 
 �
Ns 
 �

��



Rows of Table � correspond to selected optimization methods�
QN��	 � quasi�Newton method with numerical di�erentiation�
QN��	 � quasi�Newton method with gradients computed by integration�
MN��	 � modi�ed Newton method with numerical di�erentiation�
MN��	 � modi�ed Newton method with Hessian matrices computed by integration�
GN��	 � Gauss�Newton method with gradients computed by integration�

Columns of Table � correspond to various realizations of evaluation�
F � forward integration�
B� � backward integration with recomputing the basic solution�
B� � backward integration with storing the basic solution�

Table � contains four numbers�
Nf � number of equations in the forward system�
Nb � number of equations in the backward system�
Ne � number of repeated evaluations during numerical di�erentiation�
Ns � number of additional stored values�

From Table � we can deduce� for example� that the total number of solved di�eren�
tial equations� which is equal �Nf � Nb	Ne� is the same for both the QN��	�F and
QN��	�F methods while the total number of stored values� which is approximately
equal ��max�Nf � Nb	 �Ns if we use the DOPRI� integration procedure� is much less
for the QN��	�F method� This observation demonstrates certain advantages to meth�
ods that use numerical di�erentiation�

Now let us concentrate our attention on numerical solution to di�erential systems�
There are two possibilities� the basic system ��b	 can be either sti� or nonsti�� We
con�ne our attention only to the nonsti� systems� In the nonsti� case we should
use high order explicit methods which give solution with high precision and utilize
su�ciently large steps� In Ref�� the Dormand�Prince methods DOPRI� and DOPRI�
were recommended which are the Runge�Kutta methods of � and � order respectively�
with automatic stepsize control� These methods require �nE and ��nE of storage space
respectively where nE is a number of di�erential equations� All numerical experiments
proposed in the next section were made using these methods� The number of forward
integration steps can be surprisingly small if the DOPRI� method is used which can
be unsuitable for backward integration� Therefore the DOPRI� method can be more
e�cient if this case occurs �see tables �a��b	�

Finally let us make several comments on optimization methods� Consider the
special case of the sum of squares ��	� If the problem has a small residuum� which
means that the optimal value of F �x	 is small� then we can use the Gauss�Newton like
method ��	� In the opposite case the Gauss�Newton like method can lose a convergence
so that quasi�Newton methods can be more e�cient� Another possibility is using the
hybrid GN�QN method as described in Section �� This method has usually good
convergence properties for both small and large residual problems� Experience with
all GN� QN and GN�QN methods is proposed in the next section�
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�
 Numerical experiments

In this section we demonstrate properties of several optimization methods with
various procedures for evaluation of gradients and approximation of Hessian matrices�
We use the following test problems�

Problem A�

Consider the objective function

F �x	 

Z �

�

�X
i	�

�yi�t	� zi�t		
�dt

where

dy��t	�dt 
 �x�y��t	 � x�y��t	� y���	 
 �

dy��t	�dt 
 �x�y��t	 � x�y��t	� y���	 
 �

dy��t	�dt 
 �x�y��t	 � x�y��t	� y���	 
 ��

and z��t	 
 �� � t� t���	 exp���t	� z��t	 
 ��� t	 exp���t	 and z��t	 
 � exp���t	�
These functions are solutions to the given di�erential system so that we have a zero
residual problem� The starting point is x� 
 ��

Problem B�

Consider the same objective function and the same di�erential system as in Prob�
lem A� but now z��t	 
 ��� � t	� z��t	 
 �� � t	 and z��t	 
 �t� �	� These functions
are not solutions to the given di�erential system so that we have a nonzero residual
problem� The starting point is x� 
 ��

Problem C�

Consider the objective function

F �x	 
 ��y���	 � �	� � y����		��

where

dy��t	�dt 
 y��t	� y���	 
 x�

dy��t	�dt 
 �����y��t	 exp�y��t	��� � ����y��t		� y��t	 
 �

dy��t	�dt 
 y
�t	� y���	 
 x�

dy
�t	�dt 
 �����y��t	 exp�y��t	��� � ����y��t		� y
�t	 
 �

This problem is a reformulation of two point boundary value problem arising in chem�
ical kinetics� It is of course a zero residual problem� The starting point is x� 
 ��
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We use these problems for demonstrating properties of the methods QN��	� QN��	�F�
QN��	�B�� QN��	�B�� GN��	 described in the previous section and also the hybrid
method GN��	�QN��	 based on ideas proposed in Ref��� Result of numerical exper�
iments are listed in three tables� Each table corresponds to one problem� Rows of
tables correspond to individual methods and column corresponds to di�erent solvers
�DOPRI� and DOPRI�	� Each table contains as numbers ni� nf � ng �ni is a num�
ber of iterations� nf is a number of function evaluations� ng is a number of gradient
evaluations	 as �nal values jF j� k g k obtained by the iterative process as consumed
computational time�

Table 	a� Results for problem A

DOPRI� � precision ���� DOPRI� � precision ����

Method ni � nf � ng jF j� k g k time ni � nf � ng jF j� k g k time
QN��	 ������ � ����� � ���� ���� ������ � ���� � ���� ����
QN��	�F �������� ����� � ���� ���� �������� ����� � ���� ����
QN��	�B� �������� ����� � ���� ���� �������� ���� � ���� ����
QN��	�B� insu�cient precision �������� ���� � ���� ����
GN��	 ����� � ����
 � ���� ���� ����� � ���� � ��� ����
GN��	�QN��	 ����� � ����
 � ���� ���� ����� � ���� � ��� ����

Table 	b Results for problem B

DOPRI� � precision ���� DOPRI� � precision ����

Method ni � nf � ng jF j� k g k time ni � nf � ng jF j� k g k time
QN��	 ������ � ���� � ���� ���� ������ � ���� � ���� ����
QN��	�F �������� ���� � ���� ���� �������� ���� � ���� ����
QN��	�B� �������� ���� � ���� ���� �������� ���� � ���� ����
QN��	�B� �������� ���� � ���� ���� �������� ���� � ���� ����
GN��	 ����� � ���� � ���� ���� ����� � ���� � ���� ����
GN��	�QN��	 ����� � ���� � ���� ���� ����� � ���� � ���� ����

Table 	c Results for problem C

DOPRI� � precision ���� DOPRI� � precision ����

Method ni � nf � ng jF j� k g k time ni � nf � ng jF j� k g k time
QN��	 �������� ����� � ���� ���� �������� ����� � ���� ����
QN��	�F �������� ����
 � ���� ���� �������� ����
 � ���� ����
QN��	�B� �������� ����
 � ���� ���� �������� ����
 � ���� ����
QN��	�B� �������� ����� � ���� ���� �������� ����� � ���� ����
GN��	 ������� ����
 � ����� ���� ������� ����
 � ����� ����
GN��	�QN��	 ������� ����
 � ����� ���� ������� ����
 � ����� ����

��



The above tables show that integration method of higher order is more e�cient� if
expressed by consumed computational time� than lower order one� even if it requires
a greater number of right hand side evaluations in each integration step� The further
observation if that the Gauss�Newton like method GN��	 is very e�cient� especially if
it is used for zero residual problems and that hybrid method GN��	�QN��	 keeps this
property also for nonzero residual problems� The most important implication of the
above tables is that methods for optimization of dynamical systems based on higher
order integration routines are able to �nd a solution with great precision �gradient can
be computed with precision about ����	�
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