narodni
N U dlozisté
1 L Sedé
6 literatury

Inexact Trust Region Method for Large Sparse Systems of Nonlinear Equations

Luksan, Ladislav
1993

Dostupny z http://www.nusl.cz/ntk/nusl-33459

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 30.09.2024

Dalsi dokumenty muzete najit prostrednictvim vyhledavaciho rozhrani nusl.cz .


http://www.nusl.cz/ntk/nusl-33459
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER
SCIENCE

ACADEMY OF SCIENCES OF THE CZECH
REPUBLIC

Prague

Inexact Trust Region Method for Large
Sparse Systems of Nonlinear Equations

L. Luksan

Technical Report No. V-547
February 1993

Akademie véd Ceské republiky
USTAV INFORMATIKY A VYPOCETNI TECHNIKY
Institute of Computer Science, Academy of Sciences of the Czech
Republic
Pod vodarenskou vézi 2, 182 07 Prague 8, Czech Republic
E-mail: ICS@uivt.cas.cz
Fax: (+422) 8585789 Phone: (4422) 846669, (+422) 66051111



Inexact Trust Region Method for

Large Sparse Systems of
Nonlinear Equations

Ladislav Luksan

Institute of Computer Science,
Academy of Sciences of the Czech Republic, Pod vodarenskou vézi 2,
18207 Prague 8, Czech Republic

Technical Report No. V-547, February 1993

Abstract. The main purpose of this paper is to prove global convergence of the new
trust region method based on smoothed CGS algorithm. This method is suprisingly
convenient for numerical solution of large sparse systems of nonlinear equations as it is
demonstrated by numerical experiments. A modification of the proposed trust region
method do not use matrices, so it can be used for large dense systems of nonlinear
equations.

Key Words. nonlinear equations, sparse systems, trust region methods
1. Introduction

Let f;: R" — R, 1 <j < n, be real-valued functions with continuous second
order derivatives. We are concerned with finding a solution z* € R" of the system of
nonlinear equations.

[itx) =0, 1<j<n (1)

If such a solution exists then it is a global minimum of the function

F(z) = (1/2) || f(2) |*= (1/2)f" () f(2) (2)
where f(z) = [fi(x),..., fu(2)]T.

Numerical methods for solving systems of nonlinear equations are usually derived

from the Newton method. The Newton method is iterative and its iteration step has
the form

T =ax+d (3)

where z and 2T are old and new vectors of variables respectively and d = 27 — x is

the direction vector obtained as a solution of the linear system



J(x)d = —f(x) (4)
where J(x) is the Jacobian matrix of the original system (1) (its rows are gradients of
the functions f;(z), 1 <j < n).

If the Jacobian matrix J(x) is not invertible then the linear system (4) has no
solution and the direction vector d € R" is not defined. Furthermore, if the Jacobian
matrix J(x) is ill-conditioned then the direction vector d € R" can have a too large
euclidean norm and, therefore, the next point ¥ = x + d can lie outside the region
where the linearization (4) holds. For this reason the Newton method (3)-(4) has to
be modified to have global convergence properties.

The most commonly used globalization approach for the Newton method is based
on a trust region strategy applied to minimization of the function (2). Let us de-
note g;(x) and G;(x) as the gradients and the Hessian matrices of the functions
fi+ R*— R, 1 < j < n respectively, and g(x) and G(z) the gradient and the
Hessian matrix of the function F':  R"™ — R respectively. Then, using (2), we obtain

o) = 32 () ) = () S(2) )

and

Gle) = 3 0,(e) g7 () + 3 F0) Gi) = (@) T+ 3 (o) Gyl (0

Let B(x) be some approximation of the Hessian matrix G(z) (usually B(x) = J(z) J(z))
and
Q) = (1/2)d" Bd + ¢"d Q

where g = g(¢) and B = B(x). Then a typical iteration step of a trust region strategy
applied to minimization of the function (2) has the following form.

(T1) Direction determination :

Choose d € R™ so that

[dl<A (8a)
[dll<A=|Bd+g|<w]yg] (8b)

and
—Q(d) =z e |l g|[min (| d][, gl /Il BI) (9)



(T2)

(T3)

where A > 0 is a trust region bound, 0 <w < wy < 1, € > 0 (wy and € do not

depend on the iteration step) ¢ = ¢g(x) and B = B(x).

Stepsize selection :
Set

et =a+d if Flz+d) < F(x)

xt =z it Fle+d)> F(x)

Trust region update :
Compute

p=[Fle+d) - F(2)]/Q(d)
When p < py then determine the value

1

f=5 {1 —[F(z+d)— F(2)]/g7d }

(quadratic interpolation) and set
At =4 |ld] it p< B
At =3l d]l it fr<B<py
At =5 |ld| it B2 < B
When py < p < p; then set
A¥ =min (A, 7 || d )

When p; < p then set

AT = min (max (A, % || d ), %2 || d HvA)

(10a)

(10b)

(11)

(12a)
(12h)

(12c¢)

(13)

(14)

Here 0 < /1 < fa <1 < M <A, 0<py<py<land A>0 (barred constants

do not depend on the iteration step).

The trust region strategy with the iteration step (T1)-(T3) has strong global con-
vergence properties (see Refs. 1-3). Even if it also works well for indefinite matri-
ces B(x), we confine our attention to the positive semidefinite case which appears if

B(x) = J¥(z) J(z).



The most complicated part of the trust region strategy is computing the vector
d € R" satisfying the conditions (8)-(9). There exist two basic possibilities. First, the
vector d € R" can be obtained as a solution of the problem

Q(d(N)

which leads to the repeated solution of the equation (B4 AI) d(A)+ ¢ = 0 for selected
values of A. This way produces a well-convergent algorithm but for a large number of

d =arg min
lld(M)lI<A

variables it is time consuming. The second possibility is very natural. The equation
Bd 4+ ¢g = 0 is solved by some iterative method which generates the vectors d; € R",
© € N, having the following properties.

(D1) There exists an index k& € N, such that

| Bdr +g||<w] gl (15)

for a given 0 < w < 1.

(D2) The sequence Q(d;), 1 <i < k, is nonincreasing, i. e.

Q(diy1) < Q(d;) (16)
for 1 <31 < k.

(D3) It holds that

Q) < —& [lgll* /I B (17)

and

Q(Adr) < —co || g || || Ady | (18)
for 0 < A < 1.

The resulting vector d € R" is then obtained as

d=Xd, if |d|>A (19a)
d=dp it || de <A (19¢)



where the scaling factor A > 0 is chosen so that || d |[= A. It is obvious that this
choice together with (D1)-(D3) implies (8)-(9).

Steihaug Ref.3 has proved that the conditions (D1)-(D3) are satisfied for the con-
jugate gradient method applied to the equation Bd + ¢ = 0. Our main propose is to
prove that these conditions are also satisfied for the smoothed CGS method applied
to the equation Jd+ f = 0. This leads to the new inexact trust region method whose
numerical properties are suprisingly good as it will be shown in Section 3.

2. Inexact Trust Region Method Based on Smoothed CGS
algorithm

First we slightly reformulate the conditions (8)-(9) and (D1)-(D3) to obtain con-
ditions more convenient for systems of nonlinear equations. Instead of (8)-(9) we use
the conditions

[dl<A (20a)
[dll<A=|Jd+ f|<w] f] (20b)

and
[ fIl=Jd+ =26 min(]J [ d][fI) (21)

where A > 0 is a trust region bound 0 < w <@y < 1, € > 0 (wy and € do not depend
on the iteration step) f = f(x) and J = J(x).

Lemma 2.1 Let B(x) = J%(x) J(x). Then (21) imply (9).
Proof :  Using B = JT J we obtain

Qd) = (1/2)d" " Jd + frad = (1/2)(|| Jd+f |IP =l F1I*) (22)
(see (5) and (7)). Therefore (21) implies

—Q(d) = 2)(I FI+NJd+fFIDAFN=1Jd+f1))
W2) WA =nJd+r1

co || ([ min([[ [ 171D

éo [l T IS minClld 1T WA/ 0T 1)
éo || JUS Nl min([ LA SEFA/ NI

co || g | min(l [, 1 g [l /1 BI)

since [l g |I=[l JES NI TS [ and | B l=| J7 T [I=] J |I%. 0

AVARAY

Y



Lemma 2.2 Let B(z) = J?(x).J(2). Then (20b) implies
[z =cwo)llgll /1 Bl (23)
Proof :  From (20b) we obtain

LT =10 1= Td+ fll<@o |l ]

since w < wy. Therefore either

I Jd |=]l £

or

[ Jd <[l fI and || F =l Jd][<woll [
holds. This together gives

I Jd = (1 =wo) || /1l

since wy < 1. Therefore

LN Zl Td |z (1 =wo) || £

which implies

= @=wo) £/ 1T N= @ =wo) TN/ 11

(=) 1SS/ = =) g I/ 1 Bl

and (23) is proved. O
The inequality (23), which is also a consequence of (8b), is important for proving
global convergence of the trust region method (see Ref.1).
Using Lemma 2.1 and Lemma 2.2 we can reformulate (D1)-(D3) as follows

>
>

(D1’) There exists an index k € N, such that

| Jde + [l [l 1] (24)

for a given 0 < w < 1. Note that this assumption requires that breakdown not
occur (as we will see later).

(D2’) The sequence || Jd; 4+ f ||, 1 <¢ <k, is nonincreasing, i.e.

| Jdigr + || <l Jdi+ [ | (25)

for 1 <31 < k.



(D3’) It holds that

[Jdi+ [l =l fls=2al /] (26)

and

[ JAdv+ [l = fls =2l J ]| Adi | (27)
for 0 < A < 1.

The resulting vector d € R™ is again obtained by (19) so that (D17)-(D3") implies
(20)-(21) with € = min (é,€). This together with Lemma 2.1 and Lemma 2.2
guarantees global convergence of the trust region method under the standard weak
assumptions (see Ref.1).

The equation Jd + f = 0 can be solved by many iterative methods. Especially
advantageous for our purpose are methods with short recurrences based on the un-
symmetric Lanczos process. We focus our attention to the so-called transpose free
methods since they allow us to easily compute

RN R L) el L) (23)

& [l vl
for an arbitrary vector v (6 is a small difference). The first discovered and most simple
method of this type is the conjugate gradient squared (CGS) algorithm introduced in

Ref.4 which is represented by the following iterative process.

do=0, do =0, ro=—f, ro=—Ff (29a)
po=0, g0=0, 5o =0, go=rmarbitrary (29b)
and
u; = 7i—1 + Bic1giz (29¢)
pi = wi + Bi1(qi-1 + Bicapic1) (29d)
v; = J p; (29)
ai = go Fim1/gg vi (291)
G = u; — oy (29g)



di = di_y + ai(u; + q;) (29h)

fz' == fi—l — ozZJ(uZ + Qi) (291)

Bi = ga Ti/go Tia (29))

for : € N. Note that 7; = —(chi + f) for 2 € N. In Ref4 it was proved that the CGS
algorithm terminates in at most n steps with 7, = —(Jd,,+ f) = 0 if the computations

are exact and if division by zero (breakdown) does not occur. Therefore (D1’) with
dy = czk is satisfied for the CGS algorithm if breakdown does not occur.

The main disadvantage of the CGS algorithm is the fact that the sequence || 7; || =
I Jd; + fl, 1 <4 < nis not nonincreasing. Therefore the CGS algorithm has to be
smoothed. We use the quasi-minimized CGS algorithm (QCGS) described in Ref.5.
The QCGS algorithm differs from the CGS algorithm in that it uses two additional
recurrences

d; = d; + pi(dizy — CZZ) — Vip; (29k)
ri =7+ pi(rion — 1) + v (291)
where y; and v; are chosen to minimize || r; || (again r; = —(Jd; + f)). From this

minimization property we obtain || r; [[<|| 7 || (if we set g; = 0 and »; = 0) and
| ri |IS|| ric1 || (if we set g; = 1 and v; = 0). Therefore (D17) and (D2’) are satisfied
for the QCGS algorithm if the breakdown does not occur. It remains to formulate
conditions that guarantee the assumption (D3’).

Lemma 2.3 Let r; be generated by the QCGS algorithm. Then

o < (1= 00y e (30)

7o [[2 ] v [12

Proof:  Let #; = ro + r1v; where v is chosen to minimize || 7y ||. Since
PP=1ro 1P +2 mirgor + 07 [ o |7 (31)
we get
8 721 \2/61/1:2rgv1—|—21/1 Hv1 H2

so that || 7, ||* (and consequently || 71 ||) is minimal for

= —Tgvl/ H at H2

If we substitute this value into (31), we obtain



T 2 T 2
ot - ke
Folr = T e

since || ro ||=]| f||. But || ¥+ ||<|| 71 || from the minimization property of || r1 || so

that (30) holds. 0O

=l o |I* -

Corollary 2.1  Let ry be generated by the QCGS algorithm and let

cosgr 2 rgon/([| o Il on |l) =2 Ve (32)
Then (26) holds.

Proof:  From (30) we obtain

ISP = T P> cos® o || f I
so that

2INAIAEAI =i = AEA I e DAEF =1 [
= I FIF =1l Pz cos® e || £

which using (32) gives

=N l1= (1/2)cos* o || f =260 || £
and (26) is proved since || r1 ||=|| Jdi + [ |. O

Now we derive an explicit expression for the coefficients p; and v; in (29¢). Denote
Vi =[ris1 — 71,05] and ¢; = [py, v;]T. Then from (291) we obtain

r, = 7:2 + ‘/ici (33)

since

| ro 1= 777+ 27] Vieg + ¢ Vi Vie

we get

8 H T H2 /6c2 = 2‘/2sz + Q‘CT‘/ZCZ

so that || r; ||? (and consequently || r; ||) is minimal for

e = —(VIV)y7vils, (34)

If we substitute this expression into (33), we obtain

ri =7 — Vi(VIV) TV = Py (35)

10



where P, = I — V;(VIV;)7'VT is an orthogonal projection matrix (symmetric and

idempotent) which projects 7; into the subspace orthogonal to the vectors r,_y — 7

and v; so that P;(r;_y — ;) = 0. This fact and (35) imply

r; = Py = Piriy (36)
Now we use (36) for proving (27) in the assumption (D3’).
Lemma 2.4 Let rq be generated by the QCGS algorithm, let (26) hold and let

R(J) < a/2 &) (37)

where x(J) =|| J |||| /' || is the condition number of the matrix .J. Then (27) holds
for 0 < A < 1.

Proof:  The equalities in (29) imply dy = 0 and ro = —f. Using (36) we obtain
ri=Piro=—-Pf
so that
dy =dy —dy=J(ry —r0) = JNf = Pif)
Therefore

[l <l T L= Pl £ N=1E 7000

since the idempotent matrix I — P, has unit norm. This implies

ISy i< w() A (38)
where «(J) =|| J ||| J~* || is the condition number of the matrix .J. Using (26) and
(38) we get
26
~(J)

Il =1+ flz2all fl= 7 dal (39)

If 0 < A <1then 0 < A <\ so that

PP =11 T+ NP = 1 f=Nd{ T Tdy =201 Tdy = [ f
— AT gt gdy —2X 1 Jd,
M Jtgdy =231 Jd,
ALFIZ =N Tdo+ F11)

Y

Therefore

11



20 A0 A A= TAd) + 1D = A1 =1 T(Ad) + £ |
> MISIF =1 Td+ £ 1)
= MSIANAAT =1 Tde+ £
which together with (39) gives
A=)+ 70 = A2)AN I =1 Td+ )
)\61
> J | di
> ( ) [alixie
= J ||| Adq
/<;(J) 171l Ady ]
Using (37) we then obtain (27). O

Now we are in a position to describe the complete inexact trust region method
based on the smoothed CGS algorithm and prove its global convergence.

Algorithm 2.1

Data: 0<Bi<fh<l<f<H0<pm<p<lL0<in<l 0<w<l,
0<A0<é keN,leN.

Step 1 : Choose an initial point @ € R". Compute the values f; := f;(z) of the
functions f;: R" — R, 1 < j < n, at the point * € R" and, consequently,
the vector f := f(x). Compute the value F' := F(x) of the objective
function F': R" — R by (2). Set A:=0, 7 := (7)"/". Set k := 1.

Step 2 : If F' < € then stop. Otherwise compute the gradients g; := g¢;(«) of the
functions f;: R" — R, 1 < j < n, at the point + € R" (by numerical dif-
ferentiation) and, consequently, the Jacobian matrix .J := J(z). Compute
the gradient ¢ := g(«) of the objective function F' : R* — R by (5). Set
[:=1.

Step 3: If A = 0 then set A := min(|| g |I° / || Jg |I?, 4F/ || g ||,A). Set
w = min(y/|| f|,7%, @). Compute the vector d € R" by the following

subalgorithm :
Step 3a: Set d:=0, d:= O,r:=—f,r:=—f,p:=0,qg:=0and o :=1. Set
v = 1.

Step 3b: Set & := ¢ and compute ¢ := ¢'F. Set B := o/6 and compute
u =7+ B¢, p:=u+ Bg+ Bp), v:i=Jp Set a:= o/gtv and
compute ¢ := u — av, d = d+a(u+q) Fo=7 —af(u+q). Set
V := [r — #,v] and compute ¢ :== —(VIV + D)"'VTF where D is a
small diagonal matrix (usually zero) which serves to eliminate possible
singularity of the matrix VIV,

12



Step 3c:  Compute s := (¢; — 1)(d — d) — cap where ¢; and ¢ are elements of
the vector ¢ € R* If | d + s ||> A then determine 0 < A < 1 so
that || d + As ||[= A, set d := d + As and go to Step 4. Otherwise set
d:=d+ s and compute r := 7 + ¢1(r — 7) + cv.

Step 3d :  If either ¢ = 2n or || r ||< w || f || then go to Step 4, otherwise set
t:=1+ 1 and go to Step 3b.

Step 4: Set zt := 2 4 d. Compute the values f := f;(2F) of the functions
fi: R = R, 1 < j < n, at the point 27 € R" and, consequently, the
vector [T := f(at). Compute the value F'* := F(z%) of the objective
function F' : R* — R by (2). Compute the value Q(d) = (|| Jd+ f ||
— || £ I*)/2 and set p := (F* — F)/Q(d). When p < p; then compute
a = (Ft — F)/ffJd, g = 1/(2(1 — «)) and set A := 3, || d | if
< A= Bl d A <P A=p | d]if fr < f When
p1 < p < p2 then set A := min(A,52 || d||). When py < p then compute
A = max(A, 7 || d ||) and set A :=min(A, ¥, || d ||, A).

Step 5: If p <0 and [ > [ then stop (too many reductions). If p < 0 and [ < [
then set [ := [+ 1 and go to Step 3. If p > 0 and & > k then stop (too
many iterations). If p > 0 and k < k then set x := 2, f := f F:= 't
set k:=k+ 1 and go to Step 2.

The maximum number of iterations & € N serves as an alternative termination
criterion in the case when the convergence is too slow. The maximum number of
reductions [ € N serves as a safeguard against a possible infinite cycle.

There are two possibilities when Algorithm 2.1 can fail. If & = 0 or ¢’v = 0 in
Step 3b then division by zero (breakdown) prevents continued computations. We have
not treated this situation since it did not appear in any of our test examples. The
matrix VIV + D is used in Step 3b to remove the situation when VIV is singular.
The technique for its construction is the same as in Ref.6.

We suppose in the subsequent considerations that all computations were performed
accurately and that k=1=o00. We use the following assumption on functions f; : R" —
R 1<) <n.

(A) The functions f; : R" — R, 1 < j < n, have continuous second-order derivatives
and there exist constants C; > 0, Cy > 0, C5 > 0 such that | f;(x) | < Cf,
| g;(x) [|[< Co, || Gi(z) IS Cs,1 <5 <n,forall z € R"

This assumption is relatively strong. Apparently, it could be weakened, but, for our
purposes, it is quite convenient.

Theorem 2.1  Let Assumption (A) be satisfied. Let x, € R", k& € N, be the
sequence generated by Algorithm 2.1, where breakdown does not occur. Let there
exist constants Cy > 0 and C5 > 0 such that

13



| S Cw) I () f (k) ||
T (xg)J (xg) f(2r) < Ca (40)

k(J(x)) < C; (41)
for £ € N. Then
limkinf | flzx) ||=0 (42)
Proof : From the definition of the Jacobian matrix we have

@) ) < 30 N gi()g) (o) |

I gi() II?

2
2
< n022

and (6) implies

G < 1T () (=) H+Hif;(l‘)@(l‘)

< nCi+ Y | fila) |1 Gi(a) |
=1
< n(C3 + C1Cs)

Therefore both matrices B(x) = JT(2)J(x) and G(x) are bounded from above. The
conditions (D17) and (D2’) are satisfied from the nature of the QCGS algorithm and
from the fact that breakdown does not occur. Using (40) and Corollary 2.1 we get (26)
with ¢ = 1/(4C%). Using (41) and Lemma 2.4 we obtain (27) with & = 1/(8CiC5).
Therefore the condition (D3") is also satisfied. This together implies (20) and (21)
that have the same significance as (8) and (9). Thus, Algorithm 2.1 is exactly the
trust region method (T1)-(T3) described in Section 1. Therefore, since both matrices
B(x) = J¥(x)J(x) and G(x) are bounded from above, we can apply the proof of global

convergence proposed in Ref.1. O

3. Computational Experiments

In this section we present results of a comparative study of three trust region
methods for large sparse systems of nonlinear equations. The first method, which
we denote QCGSI, is represented by Algorithm 2.1. This algorithm contains several

14



parameters. We have used the values 8, = 0.05, 3, = 0.75, 7, = 2, 7, = 105, p; = 0.1,
Py =09, 7 =10"%, & = 0.4, A =10% €= 10715, k£ = 1000, [ = 20 in all numerical
experiments. The derivatives (elements of the Jacobian matrix) are computed by the
formula

filz +de;) = filw)
)

where ¢; is i-th column of the unit matrix and § = 107%. If the Jacobian matrix is

Jii = (43)

sparse then only the nonzero elements are computed by formula (43).

The second method, which we denote QCGS2, is a modification of the previous
one. Instead of computing the Jacobian matrix, we use formula (28) to compute of
the vectors Jp and J(u + ¢) in Step 3b of Algorithm 2.1. The quadratic function Q(d)
in Step 4 of Algorithm 2.1 is computed using the formula

flx 4 6d) — f(x)
ol d

where again 6 = 107®. Note that this method uses no matrices (it uses only several

Jd =

n-dimensional vectors).
The third method, which we denote CGLS, is derived from the conjugate gradient
method applied to the system JTJd + JT f = 0 (see Refs. 7-8). This method uses the

following iterative process:

do == 0, g = —f (44&)
v =Jrg, =l o | (44b)
p1 =1 (44c)
and
U, = in, 52 :H U; H2 (44(1)
di = dioy + (7 /0:)pis ri =rice — (36w (44e)
vigr = JTri, Yipr = viga |? (44f)
Piy1 = Vig1 + (Vigr /i) pi (44g)

for ¢ € N, instead of (29). The other parts of Algorithm 2.1 remain unchanged.

All test results were obtained by means of the 17 problems given in the Appendix.
All these problems were considered with 100 variables. Therefore sparse Jacobian
matrices were used. A summary of the results for all problems is given in tables 1-3.

15



Table 1. Results of experiments for QCGSI algorithm (n = 100)

Problem 1T IF p
4.1 11 55 21
4.2 142 443 —24
4.3 3 19 —19
4.4 3 33 —19
4.5 97 509 —17
4.6 16 64 —16
4.7 51 216 —17
4.8 17 103 —17
4.9 17 135 —23

4.10 7 62 —22
4.11 16 42 —20
4.12 17 52 —16
4.13 20 57 —16
4.14 7 28 —19
4.15 8 63 —18
4.16 14 57 —23
4.17 6 24 —17

> 457 1962

Time 0:50.04

16



Table 2. Results of experiments for QCGS2 algorithm (n = 100)

Problem 1T IF p
4.1 11 355 —19
4.2 173 323 21
4.3 3 13 —19
4.4 3 47 —19
4.5 105 1373 —19
4.6 16 117 —16
4.7 65 817 —20
4.8 17 155 —16
4.9 17 121 —22

4.10 7 55 —22
4.11 17 73 —26
4.12 21 739 —14
4.13 20 203 —16
4.14 7 51 —19
4.15 8 59 —18
4.16 13 1063 —16
4.17 6 35 —17
> 514 6099
Time 1:09.05

17



Table 3. Results of experiments for CGLS algorithm (n = 100)

Problem 1T IF p
4.1 21 106 —17
4.2 317 955 —11
4.3 3 19 —16
4.4 24 133 401
4.5 400 2000 403
4.6 18 72 —16
4.7 95 383 —23
4.8 334 2003 400
4.9 37 324 400

4.10 16 142 —22
4.11 42 109 21
4.12 24 74 —16
4.13 25 71 —16
4.14 11 44 —16
4.15 10 79 21
4.16 503 2002 —08
4.17 10 40 —20
> 1890 8556
Time 7:57.47

Rows of these tables correspond to individual problems and columns contain num-
bers of iterations denoted IT, numbers of objective function evaluations denoted IF
and the logarithms of the final values of the objective function denoted P.

Tables 1-3 show that the QCGS1 algorithm is much better, measured in both the
number of function evaluations and the number of successfully solved problems, than
the CGLS algorithm which is frequently used for nonlinear least squares. The CGLS
algorithm found a wrong local minimum of the function (2) in the case of problems
4 and 9. Also in the case of problems 5, 8 and 16 the CGLS algorithm probably
converged to a wrong local minimum of the function (2) but 2000 function evaluations
did not suffice.

18



The QCGS2 algorithm is slightly worse, measured in the number of function eval-
uations, than the QCGS1 algorithm. In the other hand the QCGS2 algorithm does

not use matrices so it is very convenient for large dense problems.

4. Appendix

Our test problems consist of searching for a solution to the system of nonlinear
equations

fe(@)=0, 1<k<n

We begin at the starting point T. We suppose n is even and use functions the div
(integer division) and mod (remainder after integer division).

Problem 4.1 Countercurrent reactors problem 1 (Ref.9).

a=1/2
felx) = a—(1 —a)rppr — xp(l 4+ dagqr) L, k=1
fulz) = —(2— a)xppe — xp(1 4+ dag_q) , k=2
fe(x) = axp_g — (1 — a)apys — xp(l + 42p4q) ,mod (k,2)=1, 2<k<n-—1
fe(x) = axp_g — (2 — a)rpps — xp(l +4xp_q) ,mod (k,2)=0, 2<k<n-—1
fe(x) = axp_g — ap(l +4apyq) s k=n—1
fe(x) = arpog — (2—a) — ap(1 4+ dag_q) ,k=n

7 = 0.1 , mod(l,8)=1
7 = 0.2 |, mod(l,8) =2 or mod ([,8) =0
7 = 0.3 , mod(l,8) =3 or mod (I,8) =17
7 = 04 | mod(l,8) =4 or mod ([,8) =6
Tz = 0.5 mod (1,8) =5

Problem 4.2 Extended Powell badly scaled function (Ref.13).

fe(x) = 10000 zj xppq — 1 , mod (k,2) =1

Y

fe(x) = exp(—ag_q) + exp(—xx) — 1.0001 , mod (k,2) =2

19



T =0 ,mod(l,2)=1
T =1 ,mod(,2)=0

Problem 4.3 A trigonometric system (Ref.10).

i =div (k—1,5)

Problem 4.4 A trigonometric - exponential system (trigexp 1) (Ref.10).

fe(z) = 327 + 20 — 5+
+sin(xy — Tpqr) sin(@g + Tpg1) k=1
fu(z) = 320+ 275 —5+

+sin(axy — Xpqr) sin(xg + Tpq1) +

+day — xpq exp(@p—1 — xk) — 3, l<k<n
fe(2) = 4z, — vp_rexp(ap_r —ap) — 3, k=n
=0 [(>1

Problem 4.5 A trigonometric - exponential system (trigexp 2) (Ref.10).

fe(z) = 3(ar — p42)® — 5+ 20441 +

+sin(xy — Tpq1 — Tppo) sin(@g + Togp1 — Thg2) , mod (k,2) =1, k=1
felz) = —6(rp_2 — Slfk)S +10 — 4wy —

—2s8in(xp_g — p—1 — xp) sin(xp_2 + Tp_1 — xk) +

+3(zg — Thy2)’ — 5+ 2244 +

+sin(xy — Tpy1 — Tppo) sin(@g + o1 — Thp2) , mod (k,2) =1, 1 <k <n

frlz) = —6(xp_ — Slfk)S +10 —4apy —
—2s8in(xp_g — p—1 — xk) sin(xp—2 + ¥p—1 — k) , mod (k,2) =1, k=n
fu(x) = dap — (vh—1 — Tpg1) exp(@p-1 — 2 — 1) — 3, mod (k,2) =0
T =1, [>1

20



Problem 4.6 Singular Broyden problem (Ref.11).

Te(z) = (3 —2xp)rp — 22541 + 1)2 , k=
fulz) = (3 —2ap)xr — xp_y — 20441 + 1)2 ,l<k<n
fe(z) = (3= 2zp)op —ap1 + 1)2 , k=n

T=-1, [>1

Problem 4.7 Tridiagonal system (Ref.12).

fele) = Hap — i) c k=1
fu(z) = 8Bap(a) — o) — 2(1 — 2p) + 4(xp — :ch_l_l) , l<k<n

fele) = Sax(ag — wpn) = 2(1 — ) , k=n
T=12, [>1
Problem 4.8 Five-diagonal system (Ref.12).
felz) = 4Hay - $Z+1) + Tht1 — xﬁm , k=1
fu(z) = Sap(x; — 2p1) — 2(1 —ap) +
FA(xr = Thgy) + Thpr — Thgy k=2
fu(z) = 8Sap(ay —xp_y) — 2(1 — xp) +
‘|‘4($k_$z+1)‘|‘$z_1—$k_2—|-l’k_|_1 —:I;Z_I_Q ,2<k<n—1
fu(z) = Sap(x; — 2p1) — 2(1 —ap) +
+4(zp — i) + Th_y — Thez s k=n—1
Silz) = Bap(af —wpor) — 2(1 —wp) + iy — 2ps ck=n
T =-2, [>1
Problem 4.9 Seven-diagonal system (Ref.12).
felz) = 4Hay - $Z+1) + Tpgr — 51/'24—2 + Tht2 — 51/'24-3 , k=1
fu(z) = 8Bap(ay — 1) — 2(1 —xp) +
4wy — $Z+1) + g+ T — 51/'24-2 T Thy2 — 51?24-3 , k=2

fu(z) = 8ap(ay —xp_y) — 2(1 —xp) +

+4(zy — $z+1) + xZ_l — Tp_o + Tpy1 — $z+2 +

ol st o — oty k=3
fu(z) = 8ap(ay —xp_y) — 2(1 —xp) +

21



4 — $z+1) +Th g — Tpoy + Thpr — $z+2 +

FT g+ Thyz — Thos — Thyy C3<k<n—2
fu(z) = Sap(x; —ar1) — 2(1 —2x) +

4 — $z+1) +Th g — Tpoy + Thpr — $z+2 +

oy + T — e k=n2
fu(z) = Sap(x; —ar1) — 2(1 —2x) +

+4(xp — Thyy) + Thoy — Thoo + Tppr +

+T_y — Thos s k=n—1
fe(z) = Bap(af —xpo1) — 2(1 —ap) + 25_y — Tpo +
—I_xz—Q — Tk-3 R k =n

T=-3 [1>1

Problem 4.10 Structured Jacobian problem (Ref.11).

fe(®) = =227 + 32, — 20441 +300_g — Tz —
—Xp_o+ 052,14 — 2, +1 , k=1
fulz) = =227 43z — a4 1 — 22441 + 370y — T3 —
—Zp_o+ 05,1 — 2, +1 , 1 <k<n
fe(z) = —22F +32, — 2pq + 30y — Tpg —
—Xp_o+ 052,14 — 2, +1 , k=n
T =—1 [>1

Y

Problem 4.11 Extended Rosenbrock function.

fre(z) = 10(xpqr — sz) , mod (k,2) =1

felx) = 1 — a5 , mod (k,2) =0
T = —1.2 , mod (1,2) =1
7 = 1.0 , mod (1,2) =0

Problem 4.12 Extended Powell singular function.

fr(2) 4 10214 , mod (k,4) =1
Ji(@) = V5(ap = thya) , mod (k,4) =2
(@) = (vp_q — 224)° , mod (k,4) =3
fu(z) = \/E(xk_g — )° , mod (k,4) =0

22



T = 3 , mod (1,4) =1
T = —1 , mod (1,4) =2
T = 0 , mod (1,4) =3
T = , mod (1,4) =0
Problem 4.13 Extended Cragg and Levy function.
fk(x) = (eXp(l’k) - xk-l-l)z ) mod (k74) =1
fe(z) = 10(xp — zp41)° , mod (k,4) =2
fu(z) = tan®*(zp — 7p41) , mod (k,4) =3
fe(lx) = xp—1 , mod (k,4) =0
T , mod (1,4) =1
T = 2 , mod (1,4) # 1
Problem 4.14 Broyden tridiagonal function.
fk(l') == J}k(05$k — 3) + 2$k+1 —1 5 k=1
fe(@) = ap(052, —3)+apg + 204010 —1 , 1<k<n
fe(@) = 5052, —3) — 1 4 251 , k=n

T=-1, [>1

Problem 4.15 Broyden banded problem (Ref.13).
ki = max (1,k —5), ky=min (n,k+1)
ko

fu(z) = (24 dx)zp + 1+ Z zi(1 + ;)

1=k1

T=—1, I[>1

Problem 4.16 Discrete boundary value problem (Ref.13).

h=1/(n+1)

23



fk(l') = 2$k—|-h2($k—|-1 —|—hk>3/2—$k+1 5 E=1
fu(@) = 2z + R+ 1+ 0k )2 — 2 —2pa , 1<k <nm
fe(z) = 2z + h*(xp + 14 hk)?/2 — 214 ,k=n

T=1h(lh—1), 1>1

Problem 4.17 Broyden tridiagonal problem (Ref.13).

fk(l') == (3—2$k)$k—2$k+1—|-1 5 E=1
felx) = (3—2xp)vr —ap-1 — 20511 +1 ,1<k<n
felx) = (3 —=2xp)xr — 51+ 1 , k=n
T=-—1, [>1
References

1. Powell, M.J.D., On the Global Convergence of Trust Region Algorithms for Un-
constrained Minimization, Mathematical Programming, Vol. 29, pp. 297-303,
1984.

2. Shultz, G.A., and Schnabel, R.B., and Byrd, R.H., A Family of Trust-Region-
Based Algorithms for Unconstrained Minimization with Strong Global Conver-
gence Properties, STAM Journal on Numerical Analysis, Vol 22, pp. 47-67, 1985.

3. Steihaug, T., The Conjugate Gradient Method and Trust Regions in Large-Scale
Optimization, STAM Journal on Numerical Analysis, Vol. 20, pp. 626-637, 1983.

4. Sonneveld, P., CGS, a Fast Lanczos-Type Solver for Nonsymmetric Linear Sys-
tems, SIAM Journal on Scientific and Statistical Computations, Vol 10, pp.
36-52, 1989.

5. Tong, C.H.;, A Comparative Study of Preconditioned Lanczos Methods for Non-
symmetric Linear Systems, Sandia National Laboratories, Sandia Report No.

SAND91-8240B, Livermore, 1992.

6. Gill, P.E., and Murray, W., Newton Type Methods for Unconstrained and Lin-
early Constrained Optimization, Mathematical Programming, Vol.7, pp. 311-
350, 1974.

7. Luksan, L., Inexact Trust Region Method for Large Sparse Nonlinear Least
Squares, Academy of Sciences of the Czech Republic, Institute of Computer
and Information Sciences Report No. 501, Prague, 1991.

24



10.

11.

12.

13.

Paige, C.C., and Saunders, M.A., LSQR: An Algorithm for Sparse Linear Fqua-
tions and Sparse Least Squares, ACM Transactions on Mathematical Software,

Vol. 8, pp. 43-71, 1982.

. Bogle, .LD.L., and Perkins, J.D.; A New Sparsity Preserving Quasi-Newton Up-

date for Solving Nonlinear Equations, STAM Journal on Scientific and Statistical
Computations, Vol 11, pp. 621-630, 1990.

Toint, P.L., Numerical Solution of Large Sets of Algebraic Fquations, Mathe-
matics of Computation, Vol. 46, pp. 175-189, 1986.

Gomez-Ruggiero, M.A., and Martinez, J.M., and Moretti, A.C., Comparing Al-
gorithms for Solving Sparse Nonlinear Systems of Fquations, STAM Journal on
Scientific and Statistical Computations, Vol. 13, pp. 459-483, 1992.

Li, G., Successive Column Correction Algorithms for Solving Sparse Nonlinear
Systems of Equations, Mathematical Programming, Vol. 43, pp. 187-207, 1989.

Moré, J.J., and Garbow, B.S., and Hillstrom, K.E., Testing Unconstrained Op-
timization Software, ACM Transactions on Mathematical Software, Vol. 7, pp.
17-41, 1981.

25



