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Abstract� The main purpose of this paper is to prove global convergence of the new
trust region method based on smoothed CGS algorithm� This method is suprisingly
convenient for numerical solution of large sparse systems of nonlinear equations as it is
demonstrated by numerical experiments� A modi�cation of the proposed trust region
method do not use matrices� so it can be used for large dense systems of nonlinear
equations�
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�� Introduction

Let fj � Rn � R� � � j � n� be real�valued functions with continuous second
order derivatives� We are concerned with �nding a solution x� � Rn of the system of
nonlinear equations�

fj�x� 	 
� � � j � n ���

If such a solution exists then it is a global minimum of the function

F �x� 	 ����� k f�x� k�	 �����fT �x�f�x� ���

where f�x� 	 �f��x�� � � � � fn�x�
T �
Numerical methods for solving systems of nonlinear equations are usually derived

from the Newton method� The Newton method is iterative and its iteration step has
the form

x� 	 x� d ���

where x and x� are old and new vectors of variables respectively and d 	 x� � x is
the direction vector obtained as a solution of the linear system

�



J�x�d 	 �f�x� ���

where J�x� is the Jacobian matrix of the original system ��� �its rows are gradients of
the functions fj�x�� � � j � n��

If the Jacobian matrix J�x� is not invertible then the linear system ��� has no
solution and the direction vector d � Rn is not de�ned� Furthermore� if the Jacobian
matrix J�x� is ill�conditioned then the direction vector d � Rn can have a too large
euclidean norm and� therefore� the next point x� 	 x � d can lie outside the region
where the linearization ��� holds� For this reason the Newton method ������� has to
be modi�ed to have global convergence properties�

The most commonly used globalization approach for the Newton method is based
on a trust region strategy applied to minimization of the function ���� Let us de�
note gj�x� and Gj�x� as the gradients and the Hessian matrices of the functions
fj � Rn � R� � � j � n respectively� and g�x� and G�x� the gradient and the
Hessian matrix of the function F � Rn � R respectively� Then� using ���� we obtain

g�x� 	
nX

j��

fj�x� gj�x� 	 JT �x� f�x� ���

and

G�x� 	
nX

j��

gj�x� g
T
j �x� �

nX
j��

fj�x� Gj�x� 	 JT �x� J�x� �
nX

j��

fj�x� Gj�x� ���

LetB�x� be some approximation of the Hessian matrixG�x� �usuallyB�x� 	 JT �x� J�x��
and

Q�d� 	 �����dTBd� gTd ���

where g 	 g�x� and B 	 B�x�� Then a typical iteration step of a trust region strategy
applied to minimization of the function ��� has the following form�

�T�� Direction determination �
Choose d � Rn so that

k d k� � ��a�

k d k� ��k Bd� g k� � k g k ��b�

and

�Q�d� � ��� k g k min �k d k� k g k � k B k� ���

�



where � � 
 is a trust region bound� 
 � � � ��� � �� ��� � 
 ���� and ��� do not
depend on the iteration step� g 	 g�x� and B 	 B�x��

�T�� Stepsize selection �
Set

x� 	 x� d if F �x� d� � F �x� ��
a�

x� 	 x if F �x� d� � F �x� ��
b�

�T�� Trust region update �
Compute

	 	 �F �x� d�� F �x�
�Q�d� ����

When 	 � �	� then determine the value


 	
�

� f� � �F �x� d� � F �x�
�gTd g
�quadratic interpolation� and set

�� 	 �
� k d k if 
 � �
� ���a�

�� 	 
 k d k if �
� � 
 � �
� ���b�

�� 	 �
� k d k if �
� � 
 ���c�

When �	� � 	 � �	� then set

�� 	 min ��� ��� k d k� ����

When �	� � 	 then set

�� 	 min �max ��� ��� k d k�� ��� k d k� ��� ����

Here 
 � �
� � �
� � � � ��� � ���� 
 � �	� � �	� � � and �� � 
 �barred constants
do not depend on the iteration step��

The trust region strategy with the iteration step �T����T�� has strong global con�
vergence properties �see Refs� ����� Even if it also works well for inde�nite matri�
ces B�x�� we con�ne our attention to the positive semide�nite case which appears if
B�x� 	 JT �x� J�x��

�



The most complicated part of the trust region strategy is computing the vector
d � Rn satisfying the conditions �������� There exist two basic possibilities� First� the
vector d � Rn can be obtained as a solution of the problem

d 	 arg min
kd���k��

Q�d����

which leads to the repeated solution of the equation �B��I� d���� g 	 
 for selected
values of �� This way produces a well�convergent algorithm but for a large number of
variables it is time consuming� The second possibility is very natural� The equation
Bd � g 	 
 is solved by some iterative method which generates the vectors di � Rn�
i � N � having the following properties�

�D�� There exists an index k � N � such that

k Bdk � g k� � k g k ����

for a given 
 � � � ��

�D�� The sequence Q�di�� � � i � k� is nonincreasing� i� e�

Q�di��� � Q�di� ����

for � � i � k�

�D�� It holds that

Q�d�� � ���� k g k� � k B k ����

and

Q��d�� � ���� k g k k �d� k ����

for 
 � � � ��

The resulting vector d � Rn is then obtained as

d 	 �d� if k d� k� � ���a�

d 	 di � ��di�� � di� if k di k� � �k di�� k ���b�

d 	 dk if k dk k� � ���c�

�



where the scaling factor � � 
 is chosen so that k d k	 �� It is obvious that this
choice together with �D����D�� implies ��������

Steihaug Ref�� has proved that the conditions �D����D�� are satis�ed for the con�
jugate gradient method applied to the equation Bd � g 	 
� Our main propose is to
prove that these conditions are also satis�ed for the smoothed CGS method applied
to the equation Jd� f 	 
� This leads to the new inexact trust region method whose
numerical properties are suprisingly good as it will be shown in Section ��

	� Inexact Trust Region Method Based on Smoothed CGS
algorithm

First we slightly reformulate the conditions ������� and �D����D�� to obtain con�
ditions more convenient for systems of nonlinear equations� Instead of ������� we use
the conditions

k d k� � ��
a�

k d k� ��k Jd� f k� � k f k ��
b�

and

k f k � k Jd� f k� � ��� min �k J kk d k� k f k� ����

where � � 
 is a trust region bound 
 � � � ��� � �� ��� � 
 ���� and ��� do not depend
on the iteration step� f 	 f�x� and J 	 J�x��

Lemma 	�
 Let B�x� 	 JT �x� J�x�� Then ���� imply ����

Proof � Using B 	 JT J we obtain

Q�d� 	 �����dTJTJd� fTJd 	 ������k Jd� f k� � k f k�� ����

�see ��� and ����� Therefore ���� implies

�Q�d� 	 ������k f k � k Jd� f k��k f k � k Jd� f k�
� ����� k f k �k f k � k Jd� f k�
� ��� k f k min�k J kk d k� k f k�
	 ��� k J kk f k min�k d k� k J kk f k � k J k��
� ��� k JTf k min�k d k� k JTf k � k JTJ k�
	 ��� k g k min�k d k� k g k � k B k�

since k g k	k JTf k�k J kk f k and k B k	k JT J k	k J k�� �

�



Lemma 	�	 Let B�x� 	 JT �x�J�x�� Then ��
b� implies

k d k� ��� ���� k g k � k B k ����

Proof � From ��
b� we obtain

j k Jd k � k f k j�k Jd� f k� ��� k f k
since � � ���� Therefore either

k Jd k�k f k
or

k Jd k�k f k and k f k � k Jd k� ��� k f k
holds� This together gives

k Jd k� �� � ���� k f k
since ��� � �� Therefore

k J k k d k�k Jd k� �� � ���� k f k
which implies

k d k � ��� ���� k f k � k J k	 ��� ���� k J kk f k � k J k�
� ��� ���� k JTf k � k JTJ k	 ��� ���� k g k � k B k

and ���� is proved� �

The inequality ����� which is also a consequence of ��b�� is important for proving
global convergence of the trust region method �see Ref����

Using Lemma ��� and Lemma ��� we can reformulate �D����D�� as follows

�D��� There exists an index k � N � such that

k Jdk � f k� � k f k ����

for a given 
 � � � �� Note that this assumption requires that breakdown not
occur �as we will see later��

�D��� The sequence k Jdi � f k� � � i � k� is nonincreasing� i�e�

k Jdi�� � f k �k Jdi � f k ����

for � � i � k�

�



�D��� It holds that

k Jd� � f k � k f k� �� ��� k f k ����

and

k J�d� � f k � k f k� �� ��� k J kk �d� k ����

for 
 � � � ��

The resulting vector d � Rn is again obtained by ���� so that �D�����D��� implies
��
������ with ��� 	 min ����� ����� This together with Lemma ��� and Lemma ���
guarantees global convergence of the trust region method under the standard weak
assumptions �see Ref����

The equation Jd � f 	 
 can be solved by many iterative methods� Especially
advantageous for our purpose are methods with short recurrences based on the un�
symmetric Lanczos process� We focus our attention to the so�called transpose free
methods since they allow us to easily compute

Jv � f�x � 
v�� f�x�


 k v k ����

for an arbitrary vector v �
 is a small di�erence�� The �rst discovered and most simple
method of this type is the conjugate gradient squared �CGS� algorithm introduced in
Ref�� which is represented by the following iterative process�

�d� 	 
� d� 	 
� �r� 	 �f� r� 	 �f ���a�

p� 	 
� q� 	 
� 
� 	 
� g� 	 rmarbitrary ���b�

and

ui 	 �ri�� � 
i��qi�� ���c�

pi 	 ui � 
i���qi�� � 
i��pi��� ���d�

vi 	 J pi ���e�

�i 	 gT� �ri���g
T
� vi ���f�

qi 	 ui � �ivi ���g�

�



�di 	 �di�� � �i�ui � qi� ���h�

�ri 	 �ri�� � �iJ�ui � qi� ���i�


i 	 gT� �ri�g
T
� �ri�� ���j�

for i � N � Note that �ri 	 ��J �di � f� for i � N � In Ref�� it was proved that the CGS
algorithm terminates in at most n steps with �rn 	 ��J �dn�f� 	 
 if the computations
are exact and if division by zero �breakdown� does not occur� Therefore �D��� with
dk 	 �dk is satis�ed for the CGS algorithm if breakdown does not occur�

The main disadvantage of the CGS algorithm is the fact that the sequence k �ri k 	
k J �di � f k� � � i � n is not nonincreasing� Therefore the CGS algorithm has to be
smoothed� We use the quasi�minimized CGS algorithm �QCGS� described in Ref���
The QCGS algorithm di�ers from the CGS algorithm in that it uses two additional
recurrences

di 	 �di � �i�di�� � �di�� �ipi ���k�

ri 	 �ri � �i�ri�� � �ri� � �ivi ���l�

where �i and �i are chosen to minimize k ri k �again ri 	 ��Jdi � f��� From this
minimization property we obtain k ri k�k �ri k �if we set �i 	 
 and �i 	 
� and
k ri k�k ri�� k �if we set �i 	 � and �i 	 
�� Therefore �D��� and �D��� are satis�ed
for the QCGS algorithm if the breakdown does not occur� It remains to formulate
conditions that guarantee the assumption �D����
Lemma 	�� Let r� be generated by the QCGS algorithm� Then

k r� k�� �� � �rT� v��
�

k r� k� k v� k� � k f k
� ��
�

Proof� Let �r� 	 r� � ��v� where �� is chosen to minimize k �r� k� Since

k �r� k�	k r� k� �� ��rT� v� � ��� k v� k� ����

we get

� k �r� k� ���� 	 � rT� v� � � �� k v� k�

so that k �r� k� �and consequently k �r� k� is minimal for

�� 	 �rT� v�� k v� k�

If we substitute this value into ����� we obtain

�



k �r� k�	k r� k� ��rT� v��
�

k v� k� 	 ��� �rT� v��
�

k r� k�k v� k� � k f k
�

since k r� k	k f k� But k r� k�k �r� k from the minimization property of k r� k so
that ��
� holds� �

Corollary 	�
 Let r� be generated by the QCGS algorithm and let

cos��
�
	 rT� v���k r� kk v� k� � �

p
��� ����

Then ���� holds�

Proof� From ��
� we obtain

k f k� � k r� k�� cos� �� k f k�

so that

� k f k �k f k � k r� k� � �k f k � k r� k��k f k � k r� k�
	 k f k� � k r� k�� cos� �� k f k�

which using ���� gives

k f k � k r� k� ����� cos� �� k f k	 ���� k f k
and ���� is proved since k r� k	k Jd� � f k� �

Now we derive an explicit expression for the coe�cients �i and �i in ���e�� Denote
Vi 	 �ri�� � �ri� vi
 and ci 	 ��i� �i
T � Then from ���l� we obtain

ri 	 �ri � Vici ����

since

k ri k�	 �rTi �ri � ��rTi Vici � cTi V
T
i Vici

we get

� k ri k� ��ci 	 �V T
i �ri � �V T

i Vici

so that k ri k� �and consequently k ri k� is minimal for

ci 	 ��V T
i Vi�

��V T
i �ri ����

If we substitute this expression into ����� we obtain

ri 	 �ri � Vi�V
T
i Vi�

��V T
i �ri 	 Pi�ri ����

�




where Pi 	 I � Vi�V T
i Vi���V T

i is an orthogonal projection matrix �symmetric and
idempotent� which projects �ri into the subspace orthogonal to the vectors ri�� � �ri
and vi so that Pi�ri�� � �ri� 	 
� This fact and ���� imply

ri 	 Pi�ri 	 Piri�� ����

Now we use ���� for proving ���� in the assumption �D����

Lemma 	�� Let r� be generated by the QCGS algorithm� let ���� hold and let

��J� � ������ ���� ����

where ��J� 	k J kk J�� k is the condition number of the matrix J � Then ���� holds
for 
 � � � ��

Proof� The equalities in ���� imply d� 	 
 and r� 	 �f � Using ���� we obtain

r� 	 P�r� 	 �P�f
so that

d� 	 d� � d� 	 J���r� � r�� 	 J���f � P�f�

Therefore

k d� k�k J�� kk I � P� kk f k	k J�� kk f k
since the idempotent matrix I � P� has unit norm� This implies

k J kk d� k� ��J� k f k ����

where ��J� 	k J kk J�� k is the condition number of the matrix J � Using ���� and
���� we get

k f k � k Jd� � f k� � ��� k f k� � ���
��J�

k J kk d� k ����

If 
 � � � � then 
 � �� � � so that

k f k� � k J��d�� � f k� 	 fTf � ��dT� J
TJd� � ��fTJd� � fTf

	 ���dT� JTJd� � ��fTJd�

� ��dT� JTJd� � ��fTJd�

	 ��k f k� � k Jd� � f k��

Therefore

��



� k f k �k f k � k J��d�� � f k� � k f k� � k J��d�� � f k�
� ��k f k� � k Jd� � f k��
� � k f k �k f k � k Jd� � f k�

which together with ���� gives

k f k � k J��d�� � f k � ������k f k � k Jd� � f k�
� ����

��J�
k J kk d� k

	
���

��J�
k J kk �d� k

Using ���� we then obtain ����� �

Now we are in a position to describe the complete inexact trust region method
based on the smoothed CGS algorithm and prove its global convergence�

Algorithm 	�


Data � 
 � �
� � �
� � � � ��� � ���� 
 � �	� � �	� � �� 
 � ��� � �� 
 � ��� � ��

 � ��� 
 � ��� �k � N � �l � N �

Step 
 � Choose an initial point x � Rn� Compute the values fj �	 fj�x� of the
functions fj �Rn�R� � � j � n� at the point x � Rn and� consequently�
the vector f �	 f�x�� Compute the value F �	 F �x� of the objective
function F � Rn � R by ���� Set � �	 
� � �	 �������n� Set k �	 ��

Step 	 � If F � �� then stop� Otherwise compute the gradients gj �	 gj�x� of the
functions fj �Rn�R� � � j � n� at the point x � Rn �by numerical dif�
ferentiation� and� consequently� the Jacobian matrix J �	 J�x�� Compute
the gradient g �	 g�x� of the objective function F � Rn � R by ���� Set
l �	 ��

Step � � If � 	 
 then set � �	 min�k g k	 � k Jg k�� �F� k g k� ���� Set

� �	 min�
q
k f k� � k� ����� Compute the vector d � Rn by the following

subalgorithm �

Step �a � Set d �	 
� �d �	 
� r �	 �f � �r �	 �f � p �	 
� q �	 
 and � �	 �� Set
i �	 ��

Step �b � Set �� �	 � and compute � �	 gT �r� Set 
 �	 ���� and compute
u �	 �r � 
q� p �	 u � 
�q � 
p�� v �	 Jp� Set � �	 ��gTv and
compute q �	 u � �v� �d �	 �d � ��u � q�� �r �	 �r � �J�u � q�� Set
V �	 �r � �r� v
 and compute c �	 ��V TV � D���V T �r where D is a
small diagonal matrix �usually zero� which serves to eliminate possible
singularity of the matrix V TV �

��



Step �c � Compute s �	 �c� � ���d � �d� � c�p where c� and c� are elements of
the vector c � R�� If k d � s k� � then determine 
 � � � � so
that k d � �s k	 �� set d �	 d � �s and go to Step �� Otherwise set
d �	 d � s and compute r �	 �r � c��r � �r� � c�v�

Step �d � If either i 	 �n or k r k� � k f k then go to Step �� otherwise set
i �	 i� � and go to Step �b�

Step � � Set x� �	 x � d� Compute the values f�j �	 fj�x�� of the functions
fj � Rn � R� � � j � n� at the point x� � Rn and� consequently� the
vector f� �	 f�x��� Compute the value F� �	 F �x�� of the objective
function F � Rn � R by ���� Compute the value Q�d� 	 �k Jd � f k�
� k f k���� and set 	 �	 �F� � F ��Q�d�� When 	 � �	� then compute
� �	 �F� � F ��fTJd� 
 �	 ������ � ��� and set � �	 �
� k d k if

 � �
�� � �	 
 k d k if �
� � 
 � �
�� � �	 �
� k d k if �
� � 
� When
�	� � 	 � �	� then set � �	 min��� ��� k d k�� When �	� � 	 then compute
� �	 max��� ��� k d k� and set � �	 min��� ��� k d k� ����

Step � � If 	 � 
 and l � �l then stop �too many reductions�� If 	 � 
 and l � �l
then set l �	 l � � and go to Step �� If 	 � 
 and k � �k then stop �too
many iterations�� If 	 � 
 and k � �k then set x �	 x�� f �	 f�� F �	 F��
set k �	 k � � and go to Step ��

The maximum number of iterations �k � N serves as an alternative termination
criterion in the case when the convergence is too slow� The maximum number of
reductions �l � N serves as a safeguard against a possible in�nite cycle�

There are two possibilities when Algorithm ��� can fail� If �� 	 
 or gTv 	 
 in
Step �b then division by zero �breakdown� prevents continued computations� We have
not treated this situation since it did not appear in any of our test examples� The
matrix V TV � D is used in Step �b to remove the situation when V TV is singular�
The technique for its construction is the same as in Ref���

We suppose in the subsequent considerations that all computations were performed
accurately and that �k	�l	�� We use the following assumption on functions fj � R

n �
R� � � j � n�
�A� The functions fj � Rn � R� � � j � n� have continuous second�order derivatives

and there exist constants C� � 
� C� � 
� C	 � 
 such that j fj�x� j � C��
k gj�x� k� C�� k Gj�x� k� C	� � � j � n� for all x � Rn�

This assumption is relatively strong� Apparently� it could be weakened� but� for our
purposes� it is quite convenient�
Theorem 	�
 Let Assumption �A� be satis�ed� Let xk � Rn� k � N � be the
sequence generated by Algorithm ���� where breakdown does not occur� Let there
exist constants C
 � 
 and C� � 
 such that

��



k f�xk� kk J�xk�f�xk� k
fT �xk�J�xk�f�xk�

� C
 ��
�

��J�xk�� � C� ����

for k � N � Then

lim inf
k��

k f�xk� k	 
 ����

Proof � From the de�nition of the Jacobian matrix we have

k JT �x�J�x� k �
nX

j��

k gj�x�gTj �x� k

	
nX

j��

k gj�x� k�

� nC�
�

and ��� implies

k G�x� k � k JT �x�J�x� k � k
nX

j��

fj�x�Gj�x� k

� nC�
� �

nX
j��

j fj�x� j k Gj�x� k

� n�C�
� � C�C	�

Therefore both matrices B�x� 	 JT �x�J�x� and G�x� are bounded from above� The
conditions �D��� and �D��� are satis�ed from the nature of the QCGS algorithm and
from the fact that breakdown does not occur� Using ��
� and Corollary ��� we get ����
with ��� 	 ����C�


 �� Using ���� and Lemma ��� we obtain ���� with ��� 	 ����C�

C���

Therefore the condition �D��� is also satis�ed� This together implies ��
� and ����
that have the same signi�cance as ��� and ���� Thus� Algorithm ��� is exactly the
trust region method �T����T�� described in Section �� Therefore� since both matrices
B�x� 	 JT �x�J�x� and G�x� are bounded from above� we can apply the proof of global
convergence proposed in Ref��� �


� Computational Experiments

In this section we present results of a comparative study of three trust region
methods for large sparse systems of nonlinear equations� The �rst method� which
we denote QCGS�� is represented by Algorithm ���� This algorithm contains several

��



parameters� We have used the values �
� 	 
�
�� �
� 	 
���� ��� 	 �� ��� 	 �
�� �	� 	 
���
�	� 	 
��� ��� 	 �
�	� ��� 	 
��� �� 	 �
	� �� 	 �
���� �k 	 �


� �l 	 �
 in all numerical
experiments� The derivatives �elements of the Jacobian matrix� are computed by the
formula

Jji 	
fj�x� 
ei�� fj�x�



����

where ei is i�th column of the unit matrix and 
 	 �
�
� If the Jacobian matrix is
sparse then only the nonzero elements are computed by formula �����

The second method� which we denote QCGS�� is a modi�cation of the previous
one� Instead of computing the Jacobian matrix� we use formula ���� to compute of
the vectors Jp and J�u� q� in Step �b of Algorithm ���� The quadratic function Q�d�
in Step � of Algorithm ��� is computed using the formula

Jd 	
f�x� 
d�� f�x�


 k d k
where again 
 	 �
�
� Note that this method uses no matrices �it uses only several
n�dimensional vectors��

The third method� which we denote CGLS� is derived from the conjugate gradient
method applied to the system JTJd� JTf 	 
 �see Refs� ����� This method uses the
following iterative process�

d� 	 
� r� 	 �f ���a�

v� 	 JTr�� �� 	k v� k� ���b�

p� 	 v� ���c�

and

ui 	 Jpi� 
i 	k ui k� ���d�

di 	 di�� � ��i�
i�pi� ri 	 ri�� � ��i�
i�ui ���e�

vi�� 	 JT ri� �i�� 	k vi�� k� ���f�

pi�� 	 vi�� � ��i����i�pi ���g�

for i � N � instead of ����� The other parts of Algorithm ��� remain unchanged�
All test results were obtained by means of the �� problems given in the Appendix�

All these problems were considered with �

 variables� Therefore sparse Jacobian
matrices were used� A summary of the results for all problems is given in tables ����

��



Table �� Results of experiments for QCGS� algorithm �n 	 �

�

Problem IT IF P

��� �� �� ���
��� ��� ��� ���
��� � �� ���
��� � �� ���
��� �� �
� ���
��� �� �� ���
��� �� ��� ���
��� �� �
� ���
��� �� ��� ���
���
 � �� ���
���� �� �� ��

���� �� �� ���
���� �
 �� ���
���� � �� ���
���� � �� ���
���� �� �� ���
���� � �� ���

P
��� ����

Time 
��
�
�

��



Table �� Results of experiments for QCGS� algorithm �n 	 �

�

Problem IT IF P

��� �� ��� ���
��� ��� ��� ���
��� � �� ���
��� � �� ���
��� �
� ���� ���
��� �� ��� ���
��� �� ��� ��

��� �� ��� ���
��� �� ��� ���
���
 � �� ���
���� �� �� ���
���� �� ��� ���
���� �
 �
� ���
���� � �� ���
���� � �� ���
���� �� �
�� ���
���� � �� ���

P
��� �
��

Time ��
��
�

��



Table �� Results of experiments for CGLS algorithm �n 	 �

�

Problem IT IF P

��� �� �
� ���
��� ��� ��� ���
��� � �� ���
��� �� ��� �
�
��� �

 �


 �
�
��� �� �� ���
��� �� ��� ���
��� ��� �

� �


��� �� ��� �


���
 �� ��� ���
���� �� �
� ���
���� �� �� ���
���� �� �� ���
���� �� �� ���
���� �
 �� ���
���� �
� �

� �
�
���� �
 �
 ��


P
���
 ����

Time �������

Rows of these tables correspond to individual problems and columns contain num�
bers of iterations denoted IT� numbers of objective function evaluations denoted IF
and the logarithms of the �nal values of the objective function denoted P�

Tables ��� show that the QCGS� algorithm is much better� measured in both the
number of function evaluations and the number of successfully solved problems� than
the CGLS algorithm which is frequently used for nonlinear least squares� The CGLS
algorithm found a wrong local minimum of the function ��� in the case of problems
� and �� Also in the case of problems �� � and �� the CGLS algorithm probably
converged to a wrong local minimum of the function ��� but �


 function evaluations
did not su�ce�

��



The QCGS� algorithm is slightly worse� measured in the number of function eval�
uations� than the QCGS� algorithm� In the other hand the QCGS� algorithm does
not use matrices so it is very convenient for large dense problems�

�� Appendix

Our test problems consist of searching for a solution to the system of nonlinear
equations

fk�x� 	 
� � � k � n

We begin at the starting point x� We suppose n is even and use functions the div
�integer division� and mod �remainder after integer division��

Problem ��
 Countercurrent reactors problem � �Ref����

� 	 ���

fk�x� 	 � � �� � ��xk�� � xk�� � �xk��� � k 	 �

fk�x� 	 ���� ��xk�� � xk�� � �xk��� � k 	 �

fk�x� 	 �xk�� � ��� ��xk�� � xk�� � �xk��� � mod �k� �� 	 � � � � k � n� �

fk�x� 	 �xk�� � ��� ��xk�� � xk�� � �xk��� � mod �k� �� 	 
 � � � k � n� �

fk�x� 	 �xk�� � xk�� � �xk��� � k 	 n� �

fk�x� 	 �xk�� � ��� ��� xk�� � �xk��� � k 	 n

xl 	 
�� � mod �l� �� 	 �

xl 	 
�� � mod �l� �� 	 � or mod �l� �� 	 


xl 	 
�� � mod �l� �� 	 � or mod �l� �� 	 �

xl 	 
�� � mod �l� �� 	 � or mod �l� �� 	 �

xl 	 
�� � mod �l� �� 	 �

Problem ��	 Extended Powell badly scaled function �Ref�����

fk�x� 	 �



 xk xk�� � � � mod �k� �� 	 �

fk�x� 	 exp��xk��� � exp��xk�� ��


� � mod �k� �� 	 �

��



xl 	 
 � mod �l� �� 	 �

xl 	 � � mod �l� �� 	 


Problem ��� A trigonometric system �Ref��
��

i 	 div �k � �� ��

fk�x� 	 � � �i� ���� � cosxk�� sinxk �

�
�i��X

j��i��

cosxj

xl 	 ��n l � �

Problem ��� A trigonometric � exponential system �trigexp �� �Ref��
��

fk�x� 	 �x	k � �xk�� � � �

�sin�xk � xk��� sin�xk � xk��� � k 	 �

fk�x� 	 �x	k � �xk�� � � �

�sin�xk � xk��� sin�xk � xk��� �

��xk � xk�� exp�xk�� � xk�� � � � � k � n

fk�x� 	 �xk � xk�� exp�xk�� � xk�� � � k 	 n

xl 	 
 l � �

Problem ��� A trigonometric � exponential system �trigexp �� �Ref��
��

fk�x� 	 ��xk � xk���
	 � � � �xk�� �

�sin�xk � xk�� � xk��� sin�xk � xk�� � xk��� � mod �k� �� 	 �� k 	 �

fk�x� 	 ���xk�� � xk�
	 � �
 � �xk�� �

�� sin�xk�� � xk�� � xk� sin�xk�� � xk�� � xk� �

���xk � xk���
	 � � � �xk�� �

�sin�xk � xk�� � xk��� sin�xk � xk�� � xk��� � mod �k� �� 	 �� � � k � n

fk�x� 	 ���xk�� � xk�
	 � �
 � �xk�� �

�� sin�xk�� � xk�� � xk� sin�xk�� � xk�� � xk� � mod �k� �� 	 �� k 	 n

fk�x� 	 �xk � �xk�� � xk��� exp�xk�� � xk � xk���� � � mod �k� �� 	 


xl 	 �� l � �

�




Problem ��� Singular Broyden problem �Ref�����

fk�x� 	 ��� � �xk�xk � �xk�� � ��� � k 	 �

fk�x� 	 ��� � �xk�xk � xk�� � �xk�� � ��� � � � k � n

fk�x� 	 ��� � �xk�xk � xk�� � ��� � k 	 n

xl 	 ��� l � �

Problem ��
 Tridiagonal system �Ref�����

fk�x� 	 ��xk � x�k��� � k 	 �

fk�x� 	 �xk�x
�
k � xk���� ��� � xk� � ��xk � x�k��� � � � k � n

fk�x� 	 �xk�x
�
k � xk���� ��� � xk� � k 	 n

xl 	 ��� l � �

Problem ��� Five�diagonal system �Ref�����

fk�x� 	 ��xk � x�k��� � xk�� � x�k�� � k 	 �

fk�x� 	 �xk�x
�
k � xk���� ��� � xk� �

���xk � x�k��� � xk�� � x�k�� � k 	 �

fk�x� 	 �xk�x
�
k � xk���� ��� � xk� �

���xk � x�k��� � x�k�� � xk�� � xk�� � x�k�� � � � k � n� �

fk�x� 	 �xk�x
�
k � xk���� ��� � xk� �

���xk � x�k��� � x�k�� � xk�� � k 	 n� �

fk�x� 	 �xk�x
�
k � xk���� ��� � xk� � x�k�� � xk�� � k 	 n

xl 	 ��� l � �

Problem ��� Seven�diagonal system �Ref�����

fk�x� 	 ��xk � x�k��� � xk�� � x�k�� � xk�� � x�k�	 � k 	 �

fk�x� 	 �xk�x
�
k � xk���� ��� � xk� �

���xk � x�k��� � x�k�� � xk�� � x�k�� � xk�� � x�k�	 � k 	 �

fk�x� 	 �xk�x
�
k � xk���� ��� � xk� �

���xk � x�k��� � x�k�� � xk�� � xk�� � x�k�� �

�x�k�� � xk�� � x�k�	 � k 	 �

fk�x� 	 �xk�x
�
k � xk���� ��� � xk� �

��



���xk � x�k��� � x�k�� � xk�� � xk�� � x�k�� �

�x�k�� � xk�� � xk�	 � x�k�	 � � � k � n � �

fk�x� 	 �xk�x
�
k � xk���� ��� � xk� �

���xk � x�k��� � x�k�� � xk�� � xk�� � x�k�� �

�x�k�� � xk�� � xk�	 � k 	 n� �

fk�x� 	 �xk�x
�
k � xk���� ��� � xk� �

���xk � x�k��� � x�k�� � xk�� � xk�� �

�x�k�� � xk�	 � k 	 n� �

fk�x� 	 �xk�x
�
k � xk���� ��� � xk� � x�k�� � xk�� �

�x�k�� � xk�	 � k 	 n

xl 	 ��� l � �

Problem ��
� Structured Jacobian problem �Ref�����

fk�x� 	 ��x�k � �xk � �xk�� � �xn�
 � xn�	 �
�xn�� � 
��xn�� � xn � � � k 	 �

fk�x� 	 ��x�k � �xk � xk�� � �xk�� � �xn�
 � xn�	 �
�xn�� � 
��xn�� � xn � � � � � k � n

fk�x� 	 ��x�k � �xk � xk�� � �xn�
 � xn�	 �
�xn�� � 
��xn�� � xn � � � k 	 n

xl 	 ��� l � �

Problem ��

 Extended Rosenbrock function�

fk�x� 	 �
�xk�� � x�k� � mod �k� �� 	 �

fk�x� 	 � � xk�� � mod �k� �� 	 


xl 	 ���� � mod �l� �� 	 �

xl 	 ��
 � mod �l� �� 	 


Problem ��
	 Extended Powell singular function�

fk�x� 	 xk � �
xk�� � mod �k� �� 	 �

fk�x� 	
p
��xk�� � xk��� � mod �k� �� 	 �

fk�x� 	 �xk�� � �xk�
� � mod �k� �� 	 �

fk�x� 	
p
�
�xk�	 � xk�

� � mod �k� �� 	 


��



xl 	 � � mod �l� �� 	 �

xl 	 �� � mod �l� �� 	 �

xl 	 
 � mod �l� �� 	 �

xl 	 � � mod �l� �� 	 


Problem ��
� Extended Cragg and Levy function�

fk�x� 	 �exp�xk�� xk���
� � mod �k� �� 	 �

fk�x� 	 �
�xk � xk���
	 � mod �k� �� 	 �

fk�x� 	 tan��xk � xk��� � mod �k� �� 	 �

fk�x� 	 xk � � � mod �k� �� 	 


xl 	 � � mod �l� �� 	 �

xl 	 � � mod �l� �� 		 �

Problem ��
� Broyden tridiagonal function�

fk�x� 	 xk�
��xk � �� � �xk�� � � � k 	 �

fk�x� 	 xk�
��xk � �� � xk�� � �xk�� � � � � � k � n

fk�x� 	 xk�
��xk � ��� � � xk�� � k 	 n

xl 	 ��� l � �

Problem ��
� Broyden banded problem �Ref�����

k� 	 max ��� k � ��� k� 	 min �n� k � ��

fk�x� 	 �� � �x�k�xk � � �
k�X

i�k�

xi�� � xi�

xl 	 ��� l � �

Problem ��
� Discrete boundary value problem �Ref�����

h 	 ���n � ��

��



fk�x� 	 �xk � h��xk � � � hk�	��� xk�� � k 	 �

fk�x� 	 �xk � h��xk � � � hk�	��� xk�� � xk�� � � � k � n

fk�x� 	 �xk � h��xk � � � hk�	��� xk�� � k 	 n

xl 	 lh �lh� ��� l � �

Problem ��

 Broyden tridiagonal problem �Ref�����

fk�x� 	 �� � �xk�xk � �xk�� � � � k 	 �

fk�x� 	 �� � �xk�xk � xk�� � �xk�� � � � � � k � n

fk�x� 	 �� � �xk�xk � xk�� � � � k 	 n

xl 	 ��� l � �
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