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Abstract  
 

This paper introduces “system priors” into Bayesian analysis of econometric time series and 
provides a simple and illustrative application. Unlike priors on individual parameters, system 
priors offer a simple and efficient way of formulating well-defined and economically 
meaningful priors about model properties that determine the overall behavior of the model. 
The generality of system priors is illustrated using an AR(2) process with a prior that its 
dynamics comes mostly from business-cycle frequencies. 

 
 

Abstrakt  
 

V tomto článku je názorně představeno využití „systémových“ apriorních informací 
v bayesovské analýze ekonometrických časových řad. Na rozdíl od formulace apriorních 
rozdělení pro jednotlivé parametry přestavuje použití systémových apriorních informací 
jednoduchý a účinný způsob implementace jasně definovaných a ekonomicky smysluplných 
představ o vlastnostech modelu a jeho celkovém chování. Obecnost systémových apriorních 
restrikcí je ilustrována na příkladu autoregresního procesu AR(2) s využitím apriorního 
přesvědčení, že většina dynamiky procesu je tvořena cyklickým kolísáním o délce 
hospodářského cyklu. 
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Nontechnical Summary 

This paper introduces “system priors” as a tool to incorporate prior knowledge into an economic 
model. Unlike priors about individual parameters, system priors offer a simple and efficient way 
of formulating well-defined and economically meaningful priors about high-level model 
properties. Central banks have historically been users of empirical models in forecasting and 
policy analysis. It is important that all such models represent the best use of theory and existing 
institutional knowledge. A top-down approach to incorporating prior knowledge – as embodied by 
system priors – naturally meets the needs of central banks, since policy makers do not need to 
have a view on the individual parameters or model details but have prior views about the 
aggregate model properties, for which the data are often uninformative, especially in an ever-
changing economic environment with a paucity of reliable data. With system priors, it is possible 
to reflect the practitioners’ priors in a transparent way. 

The paper provides the background theory of system priors, placing an emphasis on the elements 
and mechanics of the application of system priors. Similar to traditional Bayesian inference, the 
initial priors on the parameters are updated using the likelihood function. However, they are 
additionally updated by prior views about the high-level behavior of the model. Essentially, 
system priors penalize parameter values not conforming to the prior beliefs about the system 
properties of the model.  

The application of system priors is illustrated using the simple but relevant example of an AR(2) 
process, which, despite its simplicity, can display a wide array of diverse dynamics. In many 
cases, it might be difficult to discipline its behavior within a traditional Bayesian setup, because it 
does not provide enough flexibility to fully reproduce researchers’ prior knowledge. In our 
illustration, we incorporate a prior view that the second-order AR process is stationary and a large 
portion of its variance comes from business-cycle frequencies. Such a prior might be an advantage 
when an AR(2) process is used for modeling cyclical components of economic variables and 
researchers need to confine the parameter space to regions they find economically plausible.  

The implementation of system priors is based on the business-to-total variance ratio – a univariate 
spectral characteristic of the model that measures how much variability of the (stationary) process 
is generated by business-cycle frequencies. The ratio is a non-linear function of both 
autoregressive parameters, so the system priors result in them having a non-trivial joint prior 
distribution. In the paper, we consider two technical options for implementing prior beliefs about 
the cyclical component of the process. First, one may consider a condition that at least 60% of the 
variance of the process originates from business-cycle frequencies. Second, prior beliefs about the 
ratio can be expressed using a functional form. Given the range of admissible values for the ratio, 
a Beta-distributed prior is a feasible option. In our example we use Be(15,5), which places a large 
portion of its probability mass on processes dominated by business-cycle frequencies. The results 
show that the system prior considered is fairly informative and leads to a non-normal joint 
distribution of the parameters. Naturally, it also has an impact on the spectral characteristics of the 
model as well as on its impulse-response function. The stationarity condition itself does not 
restrict the process in an economically meaningful way, but the system priors do. While our 
system prior is not diffuse, it is very transparent, simple to implement, and easy for others to agree 
or disagree with. 
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1. Introduction 

This paper introduces “system priors,” a simple and tractable way of employing economically 
meaningful a priori judgment about model properties in statistical inference. Using Bayesian 
methods and formulating priors on individual coefficients is becoming common in many scientific 
fields, including economics. Analysts provide prior distributions about model parameters based on 
either theory or other research. However, there are often situations where the a priori beliefs of 
analysts relate to properties or features of the full model, features that can be highly non-linear 
functions of individual coefficients – often with no closed-form solution. There are also situations 
where the individual model parameters are hard to interpret and to elicit priors about, whereas the 
model system properties are easy to interpret. These are all situations where system priors offer a 
solution.  

Examples of system priors include features of the impulse-response or frequency-response 
function of the model, such as the response of the economy to a permanent disinflation shock, the 
maximum persistence of the response of inflation to a demand shock, the sign or magnitude of 
shock contributions in selected historical periods, or the signs of the responses to shocks of 
interest – for instance, a non-negative response of inflation after a positive demand shock. This 
paper explains how to implement such priors in practice.  

Even when economically meaningful priors about individual coefficients are easy to formulate, 
system priors can still be very helpful. This is because individually sensible marginal independent 
priors on coefficients may induce unintended consequences for model properties when the joint 
prior distribution does not reflect the relationships between the parameters. Abstracting from the 
existing mutual dependence of parameters may cause the implied prior on selected properties of 
the model to become implausible. This often goes unnoticed unless a prior-predictive analysis is 
carried out. System priors allow analysts to employ the prior view about the relevant system 
properties directly and may complement or replace the marginal independent priors on the 
coefficients.  

System priors were proposed by Andrle and Benes (2013) as a flexible tool for incorporating 
economically meaningful prior knowledge into Dynamic Stochastic General Equilibrium (DSGE) 
models. However, the range of potential applications is far more general. This paper introduces 
the use of system priors for time-series auto-regressive models and illustrates their use with a 
simple but relevant example. We also provide a more nuanced motivation for system priors and 
their implementation, as the exposition in Andrle and Benes (2013) may be less accessible to an 
audience unfamiliar with the DSGE literature.  

To illustrate the main principles, we assume a stationary second-order auto-regressive – AR(2) – 
process and incorporate a belief that most of its variance comes from business-cycle frequencies. 
Such a prior is useful when an AR(2) process is used for modeling cyclical components of 
economic variables and researchers need to confine the parameter space to regions they find 
economically plausible. This setting is common in many structural time-series models, where an 
AR(2) process is used to model variables in “gap” form (see, for example, Watson, 1986, Clark, 
1987, and Kuttner, 1994 for canonical examples). We illustrate how a system prior about the 
frequency distribution of the variance (spectrum) creates the joint prior distribution of both 
coefficients and facilitates the estimation. 
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Importantly, system priors are easy to implement and the integration of system priors into existing 
standard Bayesian computations is straightforward. In some sense, the procedure is related to that 
for “dummy observation” priors (Theil and Goldberger, 1961) and uses the Bayes formula to 
solve the inversion problem (going from properties to coefficients). From the non-Bayesian point 
of view, system priors can simply be interpreted as another penalty in the criterion function, along 
with the likelihood and marginal prior distribution penalties. The formal discussion below will 
make the computational implementation clear. 

2. System Priors  

The estimation of models with system priors closely follows the general principles of Bayesian 
inference. The difference rests in the form of the prior distribution formulation. To demonstrate 
this, let us start with a traditional Bayesian setup: we assume that the joint prior beliefs about a 
k 1  vector of individual parameters, θ, of a model Μ are expressed using independent 

marginal probability distributions, i.e., as: p
m
θ = p

m
θ1 ×…×p

m
θk . Other setups of priors are 

possible with no loss of generality. We further assume that given the observed data, Y, it is 
possible to evaluate the likelihood function of the model, L(Y|θ;Μ) for different parameter 
values. Applying Bayes’ law, it is well known that the posterior distribution of the parameters is 
proportional to the product of the likelihood and the prior distribution: 

 p(θ|Y;Μ) ∝ L(Y|θ;Μ) p
m

(θ). (1)

Now let us incorporate a priori views about the model’s system properties. To proceed, let us 
define a property of interest, r, that a prior view will be formulated about. The property, r, is a 
function of the individual parameters θ given the model M: r	=	h θ;M . We assume that the 
feature can be evaluated for different parameter values. Such a function may describe the impulse-
response function characteristics or frequency-domain properties of the model, for instance. As in 
the case of the individual parameters, the prior beliefs about the values of feature r can be 
summarized by a feasible functional form, specifically by a probability distribution. We will call it 
the “system prior” and denote it as p

s
r;	h,M 	≡	p

s
(h θ ;	M). Putting together the effects of the 

marginal prior, the system prior, and the likelihood function, the posterior distribution of the 
parameters emerges as  

 p(θ|Y;	Μ) ∝ L(Y|θ; Μ)  p
s
(h θ ; M) 	 p

m
θ 	 .   (2)

The form of the posterior kernel in (2) is intuitive, read from the right to left. For a given value of 
parameter θ, the posterior distribution is based on a two-step updating process. In the first step the 
marginal prior, 	p

m
, is updated with the system priors,  p

s
, resulting in a composite prior 

distribution. As the system priors operate on functions of parameters, the composite prior 
 p

s
(h θ ;	M)	  	p

m
(θ)] implies restrictions on individual coefficients but generally not in a 

unique or invertible way. In the second step, the composite prior beliefs are updated with the 
information contained in the data using a likelihood function of the model. Estimation with 
system priors thus represents a two-layer approach where beliefs about the parameters are 
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complemented with beliefs about the model properties. With diffuse marginal priors, the system 
prior will dominate the composite prior used for estimation.  

Although the composite prior emerges as the product of the marginal and system priors, these 
should not be treated as independent entities. System priors simply imply additional stochastic 
restrictions on the parameter values. To help with the intuition, it is useful to think of system 
priors as an artificial likelihood function1 summarizing the information contained in the artificial 
data on r, which are put into an auxiliary probabilistic model with a structure corresponding to 
function r	=	h θ;	M . In other words, system priors can be interpreted as measuring how likely the 
values of individual parameters are given the “as-if observed” outcomes of	r. As such, they 
penalize parameter values not conforming to the prior beliefs about the system properties of the 
model. Combining the prior distribution of the individual parameters with both the artificial and 
the conventional likelihood function results in the posterior distribution of the parameters 
expressed in (2).2  

Essentially, estimation with system priors just involves applying the Bayes inversion formula 
twice: first with the artificial likelihood function to obtain the composite prior and second with the 
conventional likelihood function of the underlying model to obtain the posterior distribution of the 
model parameters. 

Although we rely on a Bayesian interpretation of system priors in this paper, the Bayesian 
paradigm is not necessary for system priors to be used. From a non-Bayesian perspective, the 
criterion function (2) is simply a penalized likelihood problem with two types of penalties. The 
Bayesian and frequentist approaches are often closely connected. The equivalence between the 
literature on shrinkage in statistics (ridge regression, the lasso estimator) and the specific form of 
the priors in Bayesian analysis is a good example of such dual interpretation.3 If feasible, the 
criterion function (2) can be optimized numerically with respect to θ to find the posterior mode. 
The inverse Hessian matrix evaluated at the posterior mode can then serve directly for (non-
Bayesian) inference or as an important ingredient of Markov Chain Monte Carlo (MCMC) 
procedures. 

To analyze the implications of the composite joint prior distribution in greater detail, 
computations analogous to posterior sampling in (2) are needed, with evaluation of the 
conventional likelihood function switched off. Such analysis and an associated prior predictive 
analysis of the model’s properties are highly recommended to check if the formulation of the 
priors leads to desired or plausible properties of the model (see Geweke, 2010). 

In practical applications, the advantage of system priors is that existing Bayesian computations 
and computer code can stay almost unchanged when system priors are used. The only difference 
is that for a particular j-th draw of the parameter vector, θj, three instead of two components need 

                                                           
1 This brings it close to the idea of “dummy observation” priors. As pointed out in Sims (2005), “The prior takes 
the form of the likelihood function for the dummy observations.” However, the system priors are not fully 
equivalent to traditional dummy-observation priors. For example, system priors do not assume conjugacy. 
2 Regardless of whether or not Jacobian terms are involved, the resulting prior distribution of the aggregate 
model properties is key to understanding all the consequences of the prior specification used, especially in non-
trivial models.  
3 For instance, the ridge regression can be recast as a Bayesian problem with Gaussian priors. 
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to be evaluated – with the system prior component adding to the overhead.4 Given the 
computational progress made in the last decade and expected in the years to come, there is no 
need for the system priors to have closed-form solutions or conjugate forms in most setups. 

3. Relationship to the Literature 

The idea to use a prior on the properties of an economic model is not new. The use of priors 
reflecting system properties of the model is arguably the most frequent in the area of VAR 
models, perhaps due to the lower interpretability of VAR reduced-form coefficients. To name just 
a few prominent examples, the concept of system-like priors is echoed in the dummy-observation 
priors used for “shrinkage” (Doan, et al., 1986), the priors on the VAR steady-state by Villani 
(2009), the long-run behavior priors by Giannone et al. (2016), and in the DSGE-based conjugate 
priors of Del Negro and Schorfheide (2004), for instance. Useful as these approaches are, they do 
not generalize to a broad class of models or prior beliefs and are only constructed for a particular 
problem at hand – often requiring strong assumptions to derive conjugate solutions. A fully 
general and flexible solution is thus still needed. In the domain of DSGE models, for example, we 
are not aware of any related work on the use of priors about the overall model behavior, except for 
Andrle and Benes (2013). 

An approach related to system priors but based on an operationally distinct concept is the “priors 
about observables” by Jarociński and Marcet (2016).5 The authors start with a formulation of 
priors about the observed variables (i.e., about the marginal data density) and solve an inverse 
problem to derive the implied priors on individual parameters. To solve the inverse problem given 
by the Fredholm equation of the first kind, the authors propose an approximate conjugate 
algorithm based on a complex iterative fixed-point formulation.  

In contrast to their approach, the idea behind system priors is to re-cast the solution of the inverse 
problem into a Bayesian setting as another step of the Bayesian update. Note that until the 1950s 
the term “inverse probability” was used for what today is called the posterior distribution. Unlike 
the procedure by Jarociński and Marcet, system priors start directly with some – usually marginal 
independent – priors on the individual coefficients and use the system prior to update this 
information. Using coefficient priors and system priors jointly gives analysts the opportunity to 
formalize a wide variety of prior views. In VAR models, for instance, system priors can play a 
decisive role, as the interpretation of individual coefficients is often difficult, but in the case of 
more theory-based, structural, models (DSGE models and semi-structural models) researchers 
often do have meaningful prior information on interpretable coefficients alongside the system 
priors. Solving the inversion problem through the Bayesian update is also very convenient 
computationally, since standard Bayesian computations need little modification with the use of 
the Bayes formula. 

We consider the system priors approach to be general, transparent, and simpler to implement. In 
the most common setup, when the dimensionality of the coefficient vector is larger than the 

                                                           
4 All three components, however, can be evaluated independently and thus in parallel for a particular draw of the 
parameter vector, or resources can be re-used in multiple components, as both the likelihood function and the 
system priors make use of a model solution for a new vector of parameters. 
5 We would like to thank Wouter den Haan for the suggestion to contrast the two approaches to the “inverse 
problem.”  
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dimensionality of the system prior, the iterative fixed-point algorithm by Jarociński and Marcet 
that solves for the prior distribution of the coefficients inevitably faces the challenge of an ill-
posed inversion problem where multiple solutions arise and some way of selecting one solution is 
needed.6 System priors make this step very explicit, using the Bayesian update step all the way 
through the problem. Further, system priors are not limited to priors about observables and 
generalize to any property of the model that researchers have a view about. 

4. System Priors for an AR(2) Process (Example) 

After the theoretical exposition of system priors, let us proceed with an illustration using an AR(2) 
process. Second-order autoregressive models are sometimes used for modeling the cyclical 
components of output, the unemployment rate, and other economic variables (see, for example, 
Planas et al., 2008, Clark and Doh, 2014, Chan et al., 2016, and Berger et al., 2016 for some of the 
latest applications).7 Having the ability to elicit economically meaningful priors about the process 
is thus relevant for empirical work. To keep the illustration simple, we focus only on the process 
itself and do not consider the estimation of a fully specified semi-structural model. Let us consider 
a zero-mean AR(2) process: 

 y
t
	=	ϕ1y

t-1
+ ϕ2y

t-2
+ εt,    εt~N 0,σε2 . (3)

What would be reasonable priors for the two auto-regressive coefficients ϕ1and ϕ2? A common 

point of departure would be to start with normally distributed independent marginal priors for the 
individual coefficients, that is, ϕ1~N(0,σϕ1

2 ) and ϕ2~N(0,σϕ2

2 ). However, this hardly sounds right if 

the prior is supposed to convey relevant, economically meaningful information. When the 
coefficients can vary independently and the joint distribution is spread out, it implies a wide array 
of model dynamics, including wild oscillations or unstable non-stationary impulse-response 
functions. Researchers have been aware of this issue for a long time and have been striving to 
come up with better ways of formulating priors, even in the particular, and simple, example of the 
second-order autoregressive process (see, for example, Planas et al., 2008).8 

In the case of the AR(2) process, a polar-form specification of the cycle was proposed as one of 
the solutions, as it helps incorporate prior beliefs about cyclical behavior more efficiently. In the 
polar-form specification, the coefficients are analytically re-parameterized such that the priors are 
imposed on the periodicity and the amplitude of the cycle.9 However, such re-parameterization 
                                                           
6 The need to select one of multiple solutions is mentioned in Jarociński and Marcet (2016) but not discussed as 
a general principle.  
7 There are other common specifications of cyclical components in the literature, for instance the trigonometric 
form in Harvey and Trimbur (2003), which in its univariate form corresponds to a restricted ARMA(2,1) 
process. 
8 Planas et al. (2008) have recently commented on the problem with a business cycle modeled as an AR(2) 
process [p. 19]: “Indeed, assuming a normal prior distribution on parameters ϕ1,	ϕ2, we found it difficult to 
reproduce our prior knowledge by tuning the mean and the covariance matrix of the autoregressive parameters… 
In some cases, the implied distribution for the periodicity and amplitude can be counterintuitive…Putting the 
prior on the AR coefficients [in the traditional way] is probably inadequate for cyclical analysis.” 
9 The polar-form specification is as follows: (1-2acos(2/)L + A2L2)y(t)= (t), where L is the backshift operator, 
A is the amplitude, and  is the periodicity. The amplitude is given by A= ϕ  and the periodicity by 
τ = 2π/acos ϕ /2A . 
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may still be too vague for other types of a priori views about the business cycle. Further, 
analytical re-parameterization is not generally feasible except for very simple models. Luckily, 
there is absolutely no need for it. System priors usually will not have closed form solutions. Not 
having a closed-form solution may add some computing overhead but does not affect the general 
principles. 

In our application example, we incorporate a prior view that the second-order AR process is 
stationary and a large part of its variance comes from business-cycle frequencies (i.e., frequencies 
of 8-32 periods in a quarterly model). Such a prior is economically appealing if the AR(2) process 
is supposed to model the cyclical behavior of the economy.  

The process in (3) is stationary only if ϕ1+ ϕ2 < 1, ϕ2 – ϕ1 < 1 and ϕ2  < 1. These assumptions 

restrict the parameter space but they do not restrict the oscillatory properties of the model in a 
sensible way, as illustrated below. More disciplined behavior of the model can be achieved 
through a prior assumption about the spectral characteristics of the process. The spectral density 
of the model can be interpreted as a distribution of the variance across frequencies and is thus a 
natural starting point for formulating a system prior in this case. 

The spectral density of y
t
, denoted Sy(w), can be computed as follows: 

 
Sy w =

σε2

2π 1+ϕ1
2+ϕ2

2+2ϕ1 ϕ2-1 cos w -2ϕ2cos(2w)
, 

(4)

where w	∈	[0,π) is the angular frequency. A brief inspection shows that the spectral density is a 
non-linear function of both auto-regressive parameters. The variance of the error term, σε2, 
determines the level of the spectrum but not its shape.10 Therefore, any prior exploiting a spectral 
restriction would result in a non-trivial joint prior distribution for the individual regression 
parameters. To introduce the system prior outlined above, we define the total variance of the 
process y

t
 as the integral of the spectrum (4) over the full frequency range and the business-cycle 

variance as the integral limited to the range of business-cycle frequencies (a,b). Specifying the 
business-to-total variance ratio as:  

 
	=	 Sy w dw

b

a
/ Sy w dw, (5)

results in a statistic that is univariate and has clear units and interpretation. The ratio (5) can only 
take values within the interval [0,1]. A change in the shock variance, σε2, shifts the spectrum up or 
down but never affects the ratio. As such, our system prior is completely uninformative about the 
coefficient σε2 and so does not update its marginal coefficient prior.11 In general, system priors are 
not equally informative about all coefficients. 

                                                           
10 Although for the AR(2) process the spectrum can be expressed in a closed form, nothing would change if the 
closed form was not available. 
11 Since the system priors do not modify the initial prior on the error-term variance, we leave it unspecified here. 
In practical applications, one can naturally use the traditional inverse gamma specification or any other 
distribution that would meet researchers’ needs. The choice of the prior distribution for the error-term variance 
has no impact on the results. 
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Now let us present two examples of implementing a system prior that reflects prior beliefs about 
the cyclical component of output. First, one may consider a condition that at least 60% of the 
variance of y

t
 originates from business-cycle frequencies. Second, prior beliefs about the ratio can 

be expressed using a functional form. Given the range of admissible values for r, Beta distribution 
is a feasible option. In our example we use r∼Be(15,5), which places a large portion of the 
probability mass of the variance of y

t
 as coming from business-cycle frequencies. Other hyper-

parameter settings are possible and the values used here are only illustrative.  

All the results below are based on simulation techniques with the conventional likelihood function 
omitted to learn only about the composite prior. Where it is required that a minimum of 60% of 
the variability comes from business-cycle frequencies, we employ rejection sampling with 
normally distributed marginal priors used as the proposal distribution. In the latter case with the 
Beta distribution, our results are based on sequential Monte Carlo sampling (SMC; see, for 
example Herbst and Schorfheide, 2014). This is an alternative to the traditional Metropolis-
Hasting random walk algorithm, which in our simple case might also perform well. For simple 
models the two algorithms should provide almost identical results, but sequential Monte Carlo 
sampling may be preferred if complex models (containing dozens of parameters) are estimated.12 

Fig. 1 shows the combinations of parameters that correspond to normally distributed marginal 
priors, ϕ1,	ϕ2∼N(0,2) in the upper-left panel and the combinations that conform to the stationarity 

restriction in the upper-right panel. The bottom panels illustrate the combinations consistent with 
the requirement for sufficient variance of y

t
 coming from business-cycle frequencies. The system 

prior used is fairly informative and leads to a non-normal joint distribution of parameters. The two 
computational ways of implementing system priors reflect similar prior beliefs and lead to similar 
results, as they should. System priors impose few restrictions on the actual technical design of the 
prior – all that matters is the meaningfulness of the prior to the analysts and their audience.13 

Knowing just the combinations and the full joint prior distribution of the individual parameters 
that satisfy the constraints is far from enough to evaluate the role of priors. The key knowledge is 
the understanding of how these priors translate into the behavior of the model in as many aspects 
as relevant. The analyst should investigate whether the chosen priors have any unintended 
consequences. For this purpose, the prior-predictive distribution of the model’s properties must be 
analyzed. In our case, the prior-implied distribution of the impulse-response function and the 
spectral characteristics are natural candidates for closer inspection. 

 

                                                           
12 The R code for the examples presented is available upon request.  
13 The computer-code implementation of system priors differs from standard Bayesian analysis in that the prior 
restrictions are not off-the-shelf functions and users are expected to specify their own. Once a clear interface is 
established and documented, users only pass their function or function object with clear inputs and outputs to the 
system.  



10   Michal Andrle and Miroslav Plašil    
 
Figure 1: Parameter Regions for Different Priors 

 

 
Note: Kernel estimates of the joint prior density. Upper left panel: normally distributed independent 

marginal priors for ϕ1 and	ϕ2; upper right: identical priors restricted to the stationarity region; 
bottom left: stationarity + at least 60% of the variability comes from business-cycle frequencies; 
bottom right: stationarity + the share of business-cycle frequencies given by Be(15,5). 

 

 
Fig. 2 depicts the spectral densities and impulse-response functions for parameters in regions 
complying with the requirement of stationarity and sufficient variance coming from business-
cycle frequencies. It is apparent that the stationarity condition itself does not restrict the process in 
an economically meaningful way, while the system priors do. Our system prior is not diffuse, it is 
fairly informative. However, it is also very transparent, simple to implement, and easy for others 
to agree or disagree with, should they wish to do so. 

We could have specified other meaningful priors, for example directly in terms of the impulse-
response function of the model. The scope of system priors is wide. System priors are a flexible 
tool which easily extends to any other type of econometric and statistical model, including state-
space models (Andrle and Benes, 2013) and Bayesian VARs (Andrle and Plašil, 2017). Recall 
also that non-Bayesian analysis can embrace the penalized loss-function approach to inference as 
well. 
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Figure 2: Model Properties for Admissible Regions 

 
Note: The business-cycle frequencies are denoted by the shaded region. 

5. Conclusion 

Building on Andrle and Benes (2013), we provided a more detailed discussion of system priors 
and an illustrative example, placing an emphasis on the elements and mechanics of the application 
of system priors. System priors take on board views about the high-level features of models, not 
necessarily just individual coefficients. As such, they provide a more refined way of incorporating 
prior information on complex functions of parameters, such as impulse-response or frequency-
response functions, in many types of empirical models. 

The specification and implementation of system priors was illustrated using a second-order 
autoregressive process, which, despite its simplicity, can display non-trivial dynamics. Gaussian 
independent priors on the autoregressive coefficients do not restrain the model dynamics in a 
meaningful way when it comes to the cyclical properties of the process. The polar re-
parameterization suggested in the literature is a specific modification offering only a modest 
improvement. However, we illustrated that imposing a restriction that a large part of the model’s 
dynamics comes from business-cycle frequencies allows the parameters to be estimated only in a 
region with plausible cyclical dynamics of the impulse-response function. Other economically 
relevant priors could have been chosen due to the generality of system priors.  
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We believe that system priors are a useful approach to eliciting priors – possibly hierarchical – 
about model characteristics as long as these are computable functions of the underlying 
coefficients. System priors allow researchers to work with informative and economically 
meaningful priors in econometric and structural economic models, be it state-space models, 
Bayesian vector auto-regressions, or others. Importantly, system priors are easy to incorporate 
into existing Bayesian toolkits with little computational overhead. 
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Appendix A: Pseudo Code for the Posterior Kernel 

The following is a simplified pseudo-code for implementing the computations to evaluate formula 
(2) in the main body of the text, restated here for convenience: 

p(θ|Y;	Μ) ∝ L(Y|θ;	Μ)		 	 	 p
s
(h θ ;	M)		  	p

m
θ 	  

The function evaluating all three components of p(θ|Y;	Μ) takes as inputs the vector of 
coefficients, θ, to evaluate the criterion function for the model (either already solved for θ or to be 
solved for θ) and the observed data required for evaluation of the log-likelihood and possibly also 
for evaluation of the system priors. 

A crucial input is the user-defined function, logsprior_user_fun, which can evaluate the 
system priors for a given coefficient vector, θ. The function handle, or function object,14 needs to 
follow a pre-specified application programming interface (API) to be used with a general toolbox.  

The evaluation of the function can be efficient if one solves the model with a new vector of 
coefficients only once or evaluates all three components in parallel.  

The switches allow one to switch between Bayesian estimation with system priors, Bayesian 
estimation without system priors, maximum likelihood estimation with no explicit priors, and 
investigation of the compound prior by switching off the likelihood component. Although the 
“do_xx” switches are not shown explicitly as inputs, they are included in the function (or function 
object). 

 

[crit]  = function(theta, Model, Data, logsprior_user_fun, … ) 

BEGIN 

 /* Evaluate the marginal priors: 	p
m
(θ)]. */ 

 IF (do_mprior == TRUE) 

  Log_mprior = evalMarginalPriors(theta, hyperParameters); 

 ELSE 

  Log_mprior = 0; 

 END 

 /* Evaluate the SYSTEM priors:  p
s
(h θ ;M)*/ 

 IF (do_sprior == TRUE) 

  Log_sprior = call(@logsprior_user_fun(theta, Model, Data); 

 ELSE 

  Log_sprior = 0;  

                                                           
14 For an explanation of function objects in multiple programming languages, see 
https://en.wikipedia.org/wiki/Function_object. A function object is an object that can be called like a function, 
yet can do more, such as “remember” a lot of data or its previous state. 
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 END 

 /* Evaluate the likelihood or other criterion function: L(Y|θ;Μ)	*/ 

 IF (do_loglik == TRUE) 

  Log_lik  = evalLoglikelihood(theta, Data, Model); 

 ELSE 

  Log_lik  = 0; 

 END 

 /* Assemble and return the posterior value */ 

 crit = Log_lik + Log_sprior + Log_mprior 

END  
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