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Abstract  
 
In this study we introduce and describe in details the hybrid-epistemic model for quantum 
mechanics. The main differences with respect to the standard model are following: (1) the 
measurement process is considered as an internal process inside quantum mechanics, i.e. it 
does not make a part of axioms and (2) the process of the observation of the state of the 
individual measuring system is introduced into axioms.  
The intrinsic measurement process is described in two variants (simplified and generalized). 
Our model contains hybrid, epistemic and hybrid-epistemic systems. Each hybrid system 
contains a unique orthogonal base composed from homogeneous (i.e. ontic) states.  
We show that in our model the measurement problem is consistently solvable. Our model 
represents the rational compromise between the Bohr’s view (the ontic model) and the 
Einstein’s view (the epistemic model). 
 
 
 
 
 
 
 
 
 
 
 



 
1. Introduction 

 
The basic open problem in quantum theory is the question what is the meaning of the 
quantum state. The solution of this problem is the key element to the solution of the 
measurement problem in quantum mechanics. 
 
Standard quantum mechanics can be considered as a list of rules how to calculate probabilities 
of observed events. The main argument for this assertion is the fact that quantum mechanics 
treats the measurement process formally as a process external to quantum mechanics.  
 
We do not use the concept of an interpretation of quantum mechanics since this concept is not 
exactly defined. We prefer the concept of a model of quantum mechanics since it means the 
theory whose empirical predictions agree with the empirical predictions of quantum 
mechanics (for example the Bohmian mechanics can be considered as a model of quantum 
mechanics). A model for quantum mechanics should give the clear meaning to the concept of 
a quantum state. 
 
The solution of the measurement problem requires, at the first place, the change of the role of 
the measurement process. The measurement process cannot be the external rule defining the 
quantum mechanics but it must be described as a one of possible processes inside quantum 
mechanics. 
 
Our aim is to define the hybrid-epistemic model of quantum mechanics and to show that in 
this model the measurement problem can be solved. Our hybrid-epistemic model is 
considered in the contrast to the well-known ontic and epistemic models.  
 
Let us consider a pure state described by the wave function ψ ∈ HS , where HS is the Hilbert 
space of the system S. The wave function ψ describes the ontic state if ψ is the complete 
description of the state of the individual system. Otherwise ψ describes the epistemic state 
which is considered as a state of the incomplete knowledge. In general, the incomplete 
knowledge means that ψ describes the state of an ensemble in which different elements may 
be in different individual states. 
 
This ontic – epistemic difference in the possible meaning of ψ is the starting point of our 
considerations. We start from the assumption that all  ψ’s  are epistemic, i.e. each  ψ  
describes the state of some ensemble. (There are arguments that this – purely epistemic – 
view is not correct. These arguments will be considered in detail below.) 
 
The opposite assumption that all  ψ’s  are ontic (the standard quantum mechanics) can be also 
considered as not correct - mainly since the measurement problem cannot be solved in this 
setting. 
 
Our approach is based on the assumption that some  ψ’s  are epistemic and some  ψ’s  are 
ontic and we shall call this model as the hybrid.model. 
 
The hybrid-epistemic model lies between the epistemic model and the ontic model and it 
contains some features from both models. 
 



In the hybrid-epistemic model all systems can be divided into two groups. The first group 
contains hybrid and hybrid-epistemic systems while the second group contains epistemic 
systems. Thus our model can be considered as a dualistic model in the sense of [12]. In 
dualistic models the main concept usually is the concept of the macroscopic system (as in the 
Copenhagen quantum mechanics). It is difficult to define what is a macroscopic system while 
our two groups mentioned above are consistently defined.  
 
The problem of the superposition principle (mentioned in [12]) is consistently solved in our 
model by the following two assertions 

 The superposition principle holds in our model 
 The non-trivial superposition of two homogeneous states is a state which is not 

homogeneous  
 
 
The main difference between the hybrid-epistemic model and the standard model of quantum 
mechanics lies in the following feature (we assume that the measuring system is a hybrid 
system while the measured system is an epistemic system). 
 
In the typical measurement situation where the measuring system M measures the measured 
system S, the measured system is in a non-homogeneous collective state while the measuring 
system is in the homogeneous state, i.e. it describes the individual state of the measuring 
instrument. (This corresponds to the simple measurement model – see sect. 4 below.) 
 
Thus the main feature (discovered in [1]) consists in the situation where the measuring system 
is in the individual state while the measured system is in the collective state. 
 
The assumption that the individual state of the measuring systems implies the individual state 
of the measured system is the main argument in the standard argumentation. We consider 
this argument as not correct. This is the main difference between the standard model and the 
hybrid-epistemic model: the measuring system is in our model in the homogeneous collective 
state while the measured system is in the non-homogeneous collective state). 
 
Our solution of the measurement problem is a result of a long study of the inner structure of 
quantum mechanics (see [8], [1], [6], [3]). The measurement problem of quantum mechanics 
is at least 22 years old (see [2]), probably 85 years old (see [10]).   
 
 
 
 

2. Ontic, epistemic and hybrid states and systems 
 
At the beginning we define clearly the state space. Let us consider the system S and its Hilbert 
space  HS . The state space of pure states is defined as a set of rays by  
 

PS = { [ψ] | ψ ∈ HS , | ψ | > 0 } ,    where  [ψ] = { aψ | a ∈ C , |a | > 0 } , | ψ | > 0 . 
 
We shall consider (for the simplicity) only systems with the finite dimensional Hilbert space 
and we shall suppose that all state spaces used below will have dimension greater or equal to 
two. 
 



We start from the assumption that all  ψ’s  are epistemic, i.e. that each  ψ  describes a possible 
state of some ensemble. We shall assume that for some systems some  ψ’s  may be ontic but 
we shall not make, at the moment, no hypotheses on the existence of them. Instead of the 
concept of an ontic state we shall use the concept of the homogeneous ensemble (see von 
Neumann [10]). 
 
Definition.  
Let E be an ensemble in the state ψ . We shall say that the state of the ensemble E is 
homogeneous, when all members of this ensemble are in the same individual state. In other 
words, ψ is homogeneous if and only if ψ can be considered as an individual state of any 
member from the ensemble E. 
 
One can immediately see that the concept of the individual state (i.e. the state of an individual 
system) is used only through the above definition of the homogeneous state. In the rest of the 
paper there is no other use of the concept of an individual state. 
 
This means that if the epistemic state  ψ  is homogeneous then it can be identified with some 
ontic state. Thus  ψ’s  are divided into two groups: non-homogeneous (or epistemic)  ψ’s  and 
homogeneous (or ontic)  ψ’s . We introduce the appropriate classification for systems. 
 
Definition.  

(i) The system  S  is called the epistemic system if  ψ  is epistemic and not 
homogeneous for any [ψ] ∈ PS . 

(ii) The system  S  is called the hybrid system if  there exists an orthogonal base [ψ1] , 
… , [ψn]  in the space  PS  such that the state  [ψ]  is homogeneous if and only if  
[ψ]  is a member of this orthogonal base. We shall denote this orthogonal base by  
hom (PS). 

(iii) The system  T  is called the hybrid-epistemic system if  there exists a 
decomposition of this system  T = M ⊕ S  into two parts where  M  is hybrid and  
S  is epistemic.  M  is called the hybrid component of  T  and  S  is called the 
epistemic component of  T .  

(iv) The system S is called an ontic system if  ψ  is homogeneous for each  [ψ] ∈ PS  , 
i.e. if hom (PS) = PS . 

 
We remark (for the completeness) that states  [ψ1] , … , [ψn]  from the space  PS  are 
orthogonal if and only if  ψ1 , … , ψn  are orthogonal in  HS  and  { [ψ1] , … , [ψn] }  is a base 
in  PS  if and only if  { ψ1 , … , ψn }  is a base in  HS .  
 
Note that the non-trivial superposition of two homogeneous states of a hybrid system is not a 
homogeneous state. This means that no superposition is possible inside hom (PS).  
 
The superposition principle holds, only the non-trivial superposition of two homogeneous 
states is not a homogeneous state. 
 
Definition. 
The model of quantum mechanics is a theory which is empirically equivalent to quantum 
mechanics, i.e. the theory which produces the same set of empirical predictions as quantum 
mechanics (this is for example the Bohmian mechanics). 
 
Definition. 



Let M be a model of quantum mechanics. 
(i) M is a hybrid-epistemic model if each system in M is either epistemic, hybrid 

or hybrid-epistemic and if there exists at least one hybrid system and at least 
one epistemic system in M. 

(ii) M is an epistemic model if each system in M is epistemic 
(iii) M is a hybrid model if each system in M is hybrid 
(iv) M is an ontic model if each system in M is ontic. 

 
We can see that ontic systems can exist only in the ontic model. Moreover, we can state that 

 The ontic model describes the standard (textbook) quantum mechanics.  
 The epistemic model corresponds to the so-called statistical interpretation of quantum 

mechanics (preferred by Einstein, for example).  
 The hybrid model corresponds to the modified quantum mechanics introduced and 

studied in [1], [3], [6].  
 The hybrid-epistemic model is the model introduced here.  
 There are also the Bohmian model, collapse models and many-world models of 

quantum mechanics which change the structure of quantum mechanics more seriously. 
	
For		| ψ | > 0 	we	shall	identify		[ψ]  with the1-dimensional subspace of  HS  defined as a 
union of  [ψ]  with  {0}  and then we denote by  P([ψ])  the orthogonal projection from HS  
onto  [ψ] . 
 
For the decomposition of  T  into two systems, T = M ⊕ S , we have  HT =  HM ⊗ HS . If  
[ψ] ∈ PM  is the state of  M  and  [ϕ] ∈ PS  is the state of  S  then the state of the system  M ⊕ 
S  will be  [ψ ⊗ ϕ]  (assuming that systems  M  and  S  are independent) since  [aψ ⊗ bϕ] = 
[(ab) ψ ⊗ ϕ] = ab [ψ ⊗ ϕ]  for each  a, b ∈	C		satisfying		|a|	,	|b|	>	0	.	 
 
Let  S  be a hybrid system. Then to each state  [ψ] ∈	PS  there is an associated 1-dimensional 
subspace and there is a corresponding orthogonal projection  P([ψ])  in  HS .  
 
If  M ⊕ S  is a hybrid-epistemic system and  M  is its hybrid component and if  [ψ] ∈	PM		
then		there is a corresponding projection defined by  P([ψ]) ⊗	Id(HS)		where		Id(HS)		is	the	
identity	map	in	 HS	.	 
 
Let  T = M ⊕ S  and  W = U ⊕ V  be two hybrid-epistemic systems where  M  is the hybrid 
part of  T  and  U  is the hybrid part of  W .  Then we have the decomposition   

 
T ⊕	W	= (M ⊕	U)	⊕	(S	⊕	V)	.	

	
Here M ⊕	U	is	the	hybrid	part	of		T	⊕	W	and	S	⊕	V	is	the	epistemic	part	of	T	⊕W.	
Moreover	we	have		hom	(M	⊕	U)	=	hom	(M)	× hom	(U) . 
 
Now we can define the concept of the measuring system. 
 
Definition.  

(i) Every hybrid system is a simple measuring system 
(ii) Every hybrid-epistemic system is a general measuring system 

 
The role of measuring systems will be clarified later in this paper. 
 



 
 
 

3. Axioms for the hybrid-epistemic model of quantum mechanics 
 
We shall modify standard axioms for quantum mechanics with respect to our setting. There 
will be new axioms concerning the observation process. 
 
The solution of the measurement problem must contain two basic ingredients 

 The measurement process must be an internal process in quantum mechanics 
 Instead of the measurement concept the axiomatic description must contain the 

concept of an observation of the state of the individual measuring system. 
 
Axiom 1.  
To each system there corresponds (for the simplicity) the finite dimensional complex Hilbert 
space of states. It is assumed that any system is either an epistemic system, a hybrid system or 
a mixed system. This means that each system S can be written as sum of the hybrid system 
(the hybrid part of S) and the epistemic system (the epistemic part of S) and the hybrid part 
resp. the epistemic part can also be trivial. 
 
Axiom 2.   
Let  T = M ⊕ S  and  W = U ⊕ V  be two hybrid-epistemic systems together with their 
decompositions into hybrid and epistemic subsystems. Then  
 

HT⊕W	=	HT⊗HW	,			HM⊗U	=	HM⊗HU	,		HS⊕V	=	HS⊗HV			and	
	

HT⊕W	=	HM⊗U⊗HS⊕V	.	
	
This	Axiom	covers	also	the	situation	when	some	of	considered	systems	are	trivial.	 
 
Axiom 3.  
For each system S there exists the unitary group { Ut | t ∈	R	}	in	the	space	HS	such	that	the	
state	vector		ψ(t) of S evolves by the standard rule ψ(t) = Ut ψ(0) . This unitary group is 
generated by the Hamiltonian of the system S . 
 
After having mentioned the standard axioms we shall postulate the main axioms concerning 
the process of an observation. The idea is that the relation between the state of an ensemble 
(the epistemic state of the measured system) can be related to the state of the individual 
measuring system only if the ensemble is homogeneous. This is related to the fact that in the 
measurement process it is possible to observe only the state of the individual measuring 
system. Thus the state of the measuring system must be homogeneous i.e. from hom (M). 
 
There is an important fact that two (different) homogeneous states of the hybrid system are 
necessarily orthogonal.  
 
There is a well-known von Neumann’s infinite regress: M1 measures S, then M2 measures 
M1⊕S,	M3	measures	M2⊕(M1⊕S),	M4	measures	M3⊕(M2⊕(M1⊕S))	and	so	on	to	
infinity.		Observation	of	the	homogeneous	state	of	the	individual	state	of	the	individual	
measuring	system	stops	the	von	Neumann’s	infinite	regress.		
	



In	our	theory	it	is	not	true	that	all	systems	are	the	same:	there	are	epistemic	systems,	
there	are	hybrid	systems	and	there	are	hybrid-epistemic	systems.	Intuitively,	epistemic	
systems	are	the	measured	systems,	while	hybrid	systems	are	measuring	systems.	
	
There	is	another	feature	of	our	theory	which	consists	in	the	fact	that	there	are	no	axioms	
on	measurement	–	measurement	is	considered	as	a	process	inside	quantum	mechanics,	
like	other	processes	(this	is	described	in	following	sections).	But,	on	the	other	side,	there	
is	introduced	the	process	of	the	observation	of	the	individual	state	of	the	individual	
measurement	apparatus.	
 
Axiom 4. (Observability)  
Let  A = {t1, … ts} be a finite set of times, t1 <…< ts , and let M be the hybrid system. 

(i) The states  [ψ(t1)] , … , [ψ(ts)]  of the individual hybrid system M at times t1 <…< 
ts  can be observed. Each individual state belongs to the hom (M), i.e. it is a 
homogeneous state. 

(ii) Let T = M ⊕ S  be the hybrid-epistemic system where M is its hybrid subsystem. 
Then states [ψ(t1)] , … , [ψ(ts)] of the hybrid subsystem M at times t1 < … < ts can 
be observed and these states belong to hom (M). 

 
The observability is postulated only for hybrid (or hybrid-epistemic) systems. In general, up 
to now, there may not exist any hybrid systems (i.e. that only epistemic systems exist). We 
have to suppose that there are some hybrid systems. 
 
Axiom 5.  
For each n = 2, 3, … there exists at least one hybrid-epistemic system with the dimension of 
its hybrid part equal to n.  
 
Let us now consider the situation where we have the hybrid-epistemic system T = M ⊕ S  
where M is its hybrid subsystem. Let { [ψ1] , … , [ψn] } be the set hom (PM) – i.e. the ontic 
(homogeneous) base of HM. To each [ψi] there corresponds the projection P([ψi]) in the space 
HM , i = 1, … , n and then the projection  

 
P([ψi]) ⊗	Id(HS) 

 
in the space HT = HM⊗HS,	where	Id(HS)	denotes	the	identity	map	in	the	space	HS. 
 
Let the system T = M ⊕ S  is in the state Ψ. Let us assume that we have observed the individual 
system M and we found it in the state  [ψi] . 
 
Axiom 6. (Born’s rule)  
Assume that the hybrid-epistemic system  T = M ⊕ S  is in the state  [Ψ] ∈	PT	. 
The probability to find the individual subsystem  M  in the state  [ψi]  is equal to  
 

prob ([ψi]) = || (P([ψi]) ⊗	Id(HS))	(Ψ) ||2 . 
 
Axiom 7. (the up-dating rule)  
During the observation of the state of the individual system M the new information on the 
state of T is obtained and this requires to up-date the original state [Ψ] to a new state 
 

[Ψ’] = (prob ([ψi]))
-1/2 [(P([ψi]) ⊗	Id(HS))	(Ψ)]  ,   



 
assuming that the individual subsystem  M  is observed to be in the state  [ψi] . 
 
This rule is in the standard quantum mechanics considered as a collapse (i.e. the sudden 
unpredictable change) of the state of the individual system. In our model this rule is 
considered as a change of the ensemble (and, as a consequence, the change of the state of an 
ensemble) based on the acquiring a new information.  
 
The state  [Ψ]  is the state of an ensemble of systems T’s. In this ensemble the individual states of  
M  may vary. But after the observation of the individual state  [ψi]  we know that the state  [Ψ]  
must change in such a way that the state of the subsystem  M  will be  [ψi] . 
 
 
 
 

4. The simplified model of the measurement process 
 
Now we shall describe the internal model of the measurement process. This model is 
analogical to the well-known von Neumann’s model [10]. We shall consider the hybrid-
epistemic system  T = M ⊕ S  where  M  is its hybrid subsystem. Intuitively,  S  is the 
measured system and  M  is the measuring system.  
 
We shall assume that spaces  HM  and  HS  have the same dimension equal to n ≥ 2.  
 
The measurement process starts with the specification of the orthogonal base in the space  HS. 
Let  ϕ0, … , ϕn-1  be the fixed (freely chosen) orthogonal base of the space  HS . This base is 
the parametrization of the measurement process (in the standard language the measurement is 
parametrized by the observable A such that  ϕ0, … , ϕn-1  is the set of eigenvectors of  A ). 
 
Let  {[ψ0] , … , [ψn-1]}  be the set  hom (PM)  – i.e. the homogeneous base of  HM .  
 
We shall define the unitary map  U  in the space  HM ⊗	HS		by	the	prescription	
	

U	(ψi ⊗	ϕj ) = ψi⊕j ⊗	ϕj ,    where  i, j = 0, … , n-1 
 
and where  i⊕j	=	i+j		if		i+j	≤ n-1  ,  i⊕j	=	i+j-n		if		i+j	≥  n1) . 
 
Clearly, the map  U  is the standard “entangling” map since it transforms  ψ0 ⊗	ϕj  onto  ψj ⊗	
ϕj .  
 
If the measuring system  M  is in the state  [ψ0]  and the measured system  S  is in the state  Φ 
= ∑ bj ϕj  then the initial state  Ψ = ψ0 ⊗	Φ  is transformed by  U  into the state   
 

Ψ‘ = ∑ bj ψj ⊗ ϕj          since    U (ψ0 ⊗ ϕj ) = ψj ⊗ ϕj . 
 
The internal measurement process is realized in two steps: 

(i) The initial state  Ψ = ψ0 ⊗	Φ  of the system  T = M ⊕ S  is transformed to the state  
Ψ’  

                                                 
1) It is clear that the map  U  depends also on the order of sets  {ϕ0, … , ϕn-1}  and  {[ψ0] , … , [ψn-1]} . we shall 
not study this dependence in more detail. 



(ii) One finds what is the homogeneous state of the individual measuring system  M  
and this implies the up-dating of the state  Ψ’ .  Ψ’  is up-dated to the state  Ψ’’   
which is obtained using the Axiom 7. We obtain (assuming that we have observed 
that the individual measuring system  S  is in the state  [ψk]  for some k ) 
 

Ψ’’ = (prob ([ψk]))
-1/2 (P([ψk]) ⊗	Id(HS))	(Ψ’) = (prob ([ψk]))

-1/2 bk ψk ⊗ ϕk  
 

The probability that the state  [ψk]  will be obtained is given by Axiom 6  
 

prob ([ψk]) = || (P([ψk]) ⊗	Id(HS))	(Ψ’) ||2  =  |bk|
2 . 

 
The final result of the measurement process will be the state Ψ’’ = [ψk ⊗ ϕk] of the composed 
system which can be decomposed into the state  [ψk]  of  M  and the state  [ϕk]  of  S . This 
happens with the probability  prob ([ψk]) .   

 
 
 
 

5. The general model of the measurement process 
 
The typical simplified measurement is the case of a spin system where  n = 2  . This means 
that the measured system’s state space and also the measuring system’s space are two-
dimensional. But in reality the measuring system is usually the macroscopic system with a 
large number of degrees of freedom. In this section we describe a model for such macroscopic 
measuring systems. 
 
We shall assume that the measuring system can be decomposed into two parts  M ⊕	N		
where		M		is	its	hybrid	part	and		N		is	its	epistemic	part.	The	measured	system	will	be	
denoted		S	.	The	complete	system	under	consideration	is		M	⊕	N	⊕	S		-	M		is	its	hybrid	
part	and		N	⊕	S		is	its	epistemic	part.		.	We	shall	assume	that	the	dimension	of		M		and		S		
are	same	and		equal	to		n ≥ 2 .	 
 
Now we shall construct the “entangling” map  U . We assume that there are maps  Vij ,  i, j = 
0, .. , n-1 in the space  HN . Maps  Vij  are assumed to be unitary, otherwise they are arbitrary. 
We choose an arbitrary orthogonal base { e1 , … , el } , l = dim(HN)  in the space  HS . We 
assume that there is the ontic base  ψ0 , … , ψn-1  in the space  HM  and a given orthogonal 
base  ϕ0, … , ϕn-1  in the space  HS .  The set   
 

{ ψi ⊗ em ⊗	ϕj | i, j = 0, … , n-1 ,  m = 1, … l } 
 
is the orthogonal base in the space  HM ⊗	HN	⊗	HS	.	The	map		U		is	defined	by	
	

U	(ψi ⊗ em ⊗	ϕj )  =   ψi⊕j ⊗ Vij (em) ⊗	ϕj   where i, j = 0, … , n-1 ,  m = 1, … l . 
 
It can be simply proved that this map is unitary. It is clear that ||	U	(ψi ⊗ em ⊗	ϕj ) || = 1. Let 
us consider two orthogonal vectors ψi ⊗ em ⊗	ϕj and  ψi’ ⊗ em’ ⊗	ϕj’., if  j and j’ are 
different then images of these vectors under  U  are orthogonal and we can assume that j = j’. 
If i and i’ are different then i⊕j	and	i’⊕j	are	different	and	this	implies	that	images	under	
U	will	be	orthogonal.	We	can	suppose	that	also	i	=	i’	and	then	the	statement	is	proved	
since	Vij	is	unitary. 



 
The initial state of the system  N	⊕	S		will	be		Φ = ∑ bmj em ⊗	ϕj  and the initial state of the 
system  M  is supposed to be  ψ0 . Thus the initial state of the full system will be  Ψ = ψ0 ⊗	Φ 
= ∑ bmj ψ0 ⊗	em ⊗	ϕj . We obtain  
 

Ψ‘ =  U ( Ψ ) =  ∑ bmj ψj ⊗ V0j (em) ⊗ ϕj  . 
 
The up-dating map (projection + renormalization) will be (assuming that the state  [ψk]  of  M  
was observed) 
 

Ψ’’ =  (prob ([ψk]))
-1/2  (P([ψk]) ⊗	Id(HN)	⊗	Id(HS))	(Ψ’)    

 
and in the explicit form 

 
Ψ’’ = (prob ([ψk]))

-1/2 ∑ bmk ψk ⊗ V0k(em) ⊗	ϕk 
 
where 
 

prob ([ψk]) = || (P([ψk]) ⊗	Id(HN)	⊗	Id(HS))	(Ψ’) ||2 . 
 
This model of the measurement process can accommodate the idea of the macroscopic 
measurement apparatus. 
 
 
 
 

6. The analysis of the measurement problem 
 
The standard definition of the measurement problem is provided by Maudlin ([2], p. 7) by the 
consideration of the following three statements: 
 
(M1) The wave-function of a system is a complete description of the state, i.e. the wave-
function specifies (directly or indirectly) all of the physical properties of a system. 
 
(M2) The wave-function always evolves in accord with a linear dynamical equation, i.e. the 
linearity of quantum mechanics. 
 
(M3) Measurements of, e.g., the spin of an electron always (or at least usually) have 
determinate outcomes, i.e., at the end of the measurement the measuring device is 
either in a state which indicates spin up (and not down) or spin down (and not up). 
 
Any two of these propositions are consistent with one another, but the conjunction of 
all three of them is inconsistent. This can be easily illustrated by means of Schrödinger’s 
cat paradox (see also Esfeld [11]). 
 
In this paper we shall consider (M2) as true, i.e. we shall not consider the non-linear collapse 
theories. 
 
We shall consider an individual measurement act as an observation of the individual state of 
the measuring system. (The result of this observation naturally requires the up-dating of the 



state of the measuring and measured systems.) In fact, only in the case of an ensemble in the 
homogeneous state there exists a relation between the state of an ensemble and the individual 
state of an individual system which is a member of this ensemble. 
 
All this implies that we consider the assumption (M3) as valid. Thus our assumptions are that 
(M2) and (M3) are both valid. 
 
Thus the assumption (M1) cannot be valid. But there are many ways in which this assumption 
can be invalid. Nevertheless there exists a certain way (the hybrid-epistemic model proposed 
here) which is consistent also with other natural requirements. 
 
It is clear that the standard (textbook) model of quantum mechanics can be identified with the 
ontic model in which each pure state is homogeneous (and each system is ontic) and thus 
(M1) is true. Thus the standard model cannot solve the measurement problem and this is one 
of the principal disadvantages of this model. The ontic model is the extreme case from our 
point of view. 
 
The second extreme possibility is the epistemic model, where there are no homogeneous 
states at all. (It is well-known that Einstein was the first to propose the idea that the wave 
function has only the statistical meaning – i.e. that ψ always describes only the state of an 
ensemble.) The principal disadvantage of this epistemic model is that it does not satisfy (M3) 
– there are no individual states of the individual measuring system in the epistemic model. 
 
Tim Maudlin calls this model the ensemble interpretation and he says (in [2, p.10]): 
“According to that interpretation, the wave-function is not intended to describe individual 
systems but only collections of systems … ”. We have called this model the epistemic model.  
 
Maudlin rejects this model by the following argument: “And since we are interested in 
individual cats and detectors and electrons, since it is a plain physical fact that some 
individual cats are alive and some dead, some individual detectors point to ‘UP’ and some to 
‘DOWN’, a complete physics, which is able at least to describe and represent these physical 
facts, must have more to it than ensemble wave-functions. If the wave-function does not 
completely describe the physical states of individual cats we should seek a new physics which 
does”. 
 
In our hybrid-epistemic model cats and detectors are described as hybrid systems so that they 
have individual states (i.e. states of individual systems). In this case observed states are 
homogeneous, i.e. describe individual systems. (In fact, cats and detectors can be, in general,  
described by hybrid-epistemic systems – see the section 5 – but it does not change the 
presented argument.) On the other hand electrons should be described by epistemic systems 
but this does not create problems since we do not want describe states of individual electrons 
(Maudlin incorrectly requires this but it is the consequence of his hidden adherence to the 
ontic model). 
 
The third possibility, which is already (almost) consistent is the hybrid model. The hybrid 
model assumes that every system is hybrid - i.e. that for each system there is defined an 
(exactly one) orthogonal base of homogeneous states in his Hilbert space. This assumption is 
consistent with the axioms of quantum mechanics and it was the starting point of our first 



papers in this direction (see the concept of the modified quantum mechanics in [1] and then in 
[3], [6], [8]) 2).  
 
There is a disadvantage of this model (but this disadvantage does not create a direct 
inconsistency) consisting in the fact that its assumption is, in some sense, unnatural. For 
example this assumes that for the standard 2-dimensional spin system there should exist a 
(“preferred”) orthogonal base in the system’s Hilbert space and this contradicts to the idea of 
the isotropy of the physical space. The hybrid model means that for each system there is a 
“preferred” base of its individual states. In the case of the spin system this seems to be 
unnatural. It is also clear that in this case one must to suppose that only for some systems 
individual states can be observed (see [3]). 
 
The forth possibility is our hybrid-epistemic model. This model assumes that there are some 
hybrid systems, some epistemic systems and some hybrid-epistemic systems. (The possibility 
of hybrid-epistemic systems is the consequence of the fact that we can always create the 
composed systems.)  
 
The hybrid-epistemic model is able to solve the measurement problem: 

 The assumption (M1) is not valid so that the conclusion of the inconsistency of (M1) - 
(M3) – i.e. the measurement problem, is not relevant. 

 In the hybrid-epistemic model all experimental predictions are equal to the 
experimental predictions of the standard quantum mechanics. This statement follows 
from the axioms of the hybrid-epistemic model and it was proved in all details in ([1]). 

 In the hybrid-epistemic model the measurement problem can be solved by describing 
the measurement process as an internal process in quantum mechanics (see preceding 
sections 4 and 5). 

 
Thus we can assert that the proposed hybrid-epistemic model solves the measurement 
problem and that this model is empirically equivalent to the standard quantum mechanics 
 
At the moment (see [11], [12]) there are following possible solutions to the measurement 
problem 3) 

 Dualism as in orthodox Copenhagen quantum mechanics 
 The non-linear collapse models  
 The Bohmian mechanics 
 The many world theories 
 The hybrid model for quantum mechanics (see [3]) 4) 
 The hybrid-epistemic model for quantum mechanics presented here 5) 

 
Let us consider these models from the point of view how they are far from the standard 
quantum mechanics.  

 The Copenhagen quantum mechanics has many well-known internal problems 
 It is clear that the Collapse model containing the non-linear evolution goes properly 

against the basic principle of linearity of quantum mechanics. 

                                                 
2) The true origin of the modified quantum mechanics lies in the non-standard probability theory (see [8]). 
3) We do not consider the many-world interpretation as a possible solution to the measurement problem since 
there is no consistent definition of the probability in this model 
4) The hybrid model is the special case of the hybrid-epistemic model  
5) The  hybrid-epistemic model allows the existence of properly quantum systems like a spin 



 The Bohmian mechanics introduces additional variables (positions of particles) and in 
this way it is rather far from the spirit of quantum mechanics. Bohmian mechanics, if 
expressed in variables (ψ, x) where ψ denotes the wave function of the system and  x  
denotes positions of particles, is not, in fact linear, since the superposition of such 
states cannot be done. 

 The many world models have own problems with the interpretation of the probability 
 The hybrid model (see [3]) is consistent and empirically equivalent to the standard 

quantum mechanics, but it suffers (at least) from problems with isotropy of the 
physical space. Nevertheless this model is a special case of the hybrid-epistemic 
model. 

 The hybrid-epistemic model is rather close (in fact, maximally closed) to the epistemic 
model (which alone is not admissible) but there is a part of this model which solves 
problems of the epistemic model (the existence of hybrid-epistemic systems). 
Principle of superposition is valid in the hybrid-epistemic model but the non-trivial 
superposition of two homogeneous states is not more homogeneous. Moreover this 
model is a reasonable compromise between the standard Bohr’s attitude (the ontic 
model) and the Einstein’s idea (the epistemic model). 
 

As the result of this discussion we can state that the proposed hybrid-epistemic model offers 
the solution to the measurement problem which is closest to the standard quantum mechanics. 
 
Our model has a feature which is very closed to the well-known Bohr’s view: Bohr always 
required that in quantum mechanics there is a need of classical measuring apparatuses and  
that quantum objects can be seen only through their interactions with the classical 
apparatuses. The classical apparatus was seen a priori as a macroscopic object.  
 
In our hybrid-epistemic model there is an analogy: systems are divided into hybrid (or hybrid-
epistemic) systems and epistemic systems, where former play the role of measuring systems 
and letter play the role of measured systems. The hybrid (or hybrid-epistemic) systems have 
the necessary properties to be considered as measuring systems while they need not have any 
property of being macroscopic systems. Bohr’s idea was often criticized that the definition of 
the “macroscopic” object is impossible. But our model is immune to this type of criticism 
since the concept of a macroscopic object is not used in our model. In this way we have 
solved the problem of the definition of the concept of “macroscopic system” – one has to use 
the concept of hybrid (or hybrid-epistemic) system instead of the concept of the 
“macroscopic” system. These systems are well-defined in our hybrid-epistemic model so that 
our model does not suffer from the criticism based on the non-definiteness of the concept of 
the “macroscopic” system. 
 
Let us consider the differences between the hybrid model and the hybrid-epistemic model in 
more details. In a sense, the hybrid model is the special case of the hybrid-epistemic model (in 
fact, there is no axiom requiring the existence of some epistemic systems in our model).  
 
But the possibility of the existence of epistemic systems implies some important facts: 

 Epistemic systems are, in some sense, purely quantum systems, which have no 
classical analogs (like the spin systems). 

 Individual states of epistemic systems have no sense – they do not exist in the model.  
 States of epistemic systems can be analyzed in the measurement processes (see above) 

but the measurement processes require the existence of hybrid (or hybrid-epistemic) 
systems. 



 Thus the states of epistemic systems can be seen only through the interaction with the 
hybrid (or hybrid-epistemic) systems 

 The isotropic spin system must be either epistemic or ontic 6). This implies that in the 
hybrid-epistemic model the isotropic spin system must be epistemic.  

 This also implies that in the hybrid model of quantum mechanics there are no isotropic 
spin systems. This is a considerable disadvantage of the hybrid model. 

 
Thus our keys to knowledge of the reality of quantum systems are: 

 The existence of hybrid (or hybrid-epistemic) systems 
 The possibility of interactions between epistemic systems and hybrid (hybrid-

epistemic) systems.  
 
The unique information obtainable from the quantum world is by observing the hybrid-
epistemic systems (as measuring apparatuses where the individual state of an individual 
measuring system can be observed) in the interaction with the measured epistemic systems. 
 
In each case, the hybrid-epistemic model is an important generalization of the hybrid model 
(the model originally proposed as a modified the quantum mechanics – see [6]) and it is more 
realistic and closer to the standard quantum mechanics. 
 
We would like to remark that our hybrid-epistemic model allows the existence of systems 
which have no homogeneous states, i.e. no individual states – all states are collective states. 
These systems (epistemic systems in our terminology) are “purely” epistemic – there are no 
individual states of them. This means that the concept of the state of an individual system is 
not applicable to them. In this sense the epistemic systems are pure quantum systems without 
any classical analog (the example is the spin). The state of the individual epistemic system 
cannot be observed.  
 
In a certain sense the concept of the hybrid-epistemic system is a two-level compromise. The 
first compromise is the concept of the hybrid system which is the compromise between the 
ontic system and the epistemic system. And then the second compromise is constructed: the 
hybrid-epistemic system is the composition of the hybrid system and the epistemic system. In 
this sense our concept of a system could be described as (ontic-epistemic)-epistemic.  
 
In each case our concept of a quantum state can be seen as a compromise between Bohr’s 
(ontic) and Einstein’s (epistemic) views.  
 
 
 
 

7. Conclusions 
 
In this paper we have constructed the hybrid-epistemic model of quantum mechanics (we 
have given its axiomatic formulation). We have shown that the empirical predictions of this 
model are identical to the empirical predictions of the standard quantum mechanics. We have 
shown that in this model it is possible to solve the measurement problem of quantum 
mechanics. 

                                                 
6) If there exists a state which is ontic then using the transitivity of the orthogonal group of the physical space we 
obtain that many states must be ontic, so that too many systems must be ontic. 



 
Our solution of the measurement problem is based on the careful and detailed analysis of the 
concept of a quantum state. 
 
In the contrast to the ontic and epistemic models where the meaning of the wave function is 
either ontic or epistemic, in our model some wave functions are ontic and other wave 
functions are epistemic (this is the spirit of the concept of the hybrid system). The hybrid 
system is such a system which has a unique orthogonal base composed of ontic states and all 
other states are epistemic. 
 
Then we consider also systems composed from the hybrid and epistemic parts. In our model 
we consider hybrid, epistemic and hybrid-epistemic systems and there are no ontic systems, 
so that the assumption (M1) is not satisfied.  
 
We postulate that the individual state of the hybrid system (in the given time) can be observed 
(Axiom 4 above). The hybrid (or hybrid-epistemic) systems are our window into the quantum 
world – this is what can be seen (and what only can be seen and known). 
 
But using this instrument we are able to measure the state of the epistemic system as well. But 
the result of such measurement will give only the collective state of an ensemble of systems. 
To associate the concept of the state with the individual epistemic system is not possible since 
the epistemic system has no individual states (no homogeneous states). The concept of the 
state of an individual epistemic system is a non-sense (in our hybrid-epistemic model of 
quantum mechanics).  
 
It is shown that in the hybrid-epistemic model of quantum mechanics it is possible to solve 
the measurement problem of quantum mechanics. The solution is presented in two sections of 
this paper (the simple measurement model and the general measurement model). The solution 
of the measurement problem is based on two necessary ingredients 

 The measurement process must be the internal process in the theory 
 The observation process must be introduced into the axioms of the model. 

 
We have shown that there are (at the moment) four possible ways how to solve the 
measurement problem in quantum mechanics: the non-linear Collapse model, the Bohmian 
mechanics, the hybrid model and the hybrid-epistemic model. We think that the hybrid-
epistemic model described here is the most realistic model and that this model is closest 
model to the spirit of quantum mechanics.  
 
Our model contains moreover the original Bohr’s idea that (proper) quantum systems are not 
directly accessible and that they are accessible only through the measurement process. In fact, 
epistemic systems have no individual states (so that the individual state of an epistemic 
system cannot be observed) and their collective states are accessible only in the measurement 
process involving some hybrid (or hybrid-epistemic) system as a measuring apparatus. 
 
In the hybrid-epistemic model of quantum mechanics systems are not all of the same type. We 
have three types of systems: hybrid ones, epistemic ones and hybrid-epistemic ones (in fact, 
measured systems are usually epistemic, while measuring systems are usually hybrid-
epistemic). The hybrid systems (and more generally hybrid-epistemic systems) have some 
classical features – they have individual states (as, for example, the “pointer states” of 



measuring systems). The epistemic systems have no classical features, they are properly 
quantum. And the hybrid-epistemic systems are compositions of these two. 
 
The ideas of the presented approach to the measurement problem are direct consequences of 
the approach to the quantum mechanics presented in [1] which is based on the ideas of the 
non-standard probability theory presented in [8]. 
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