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Abstract:

In this article, we present a new method for estimation of Item Response Function and for detection of
uniform and non-uniform Differential Item Functioning (DIF) in dichotomous items based on Non-Linear
Regression (NLR). Proposed method extends Logistic Regression (LR) procedure by including pseudo-
guessing parameter. NLR technique is compared to LR procedure and Lord’s and Raju’s statistics for
three-parameter Item Response Theory (IRT) models in simulation study based on Graduate Management
Admission Test. NLR shows superiority in power at low rejection rate over IRT methods and outperforms
LR procedure in power for case of uniform DIF detection. Our research suggests that the newly proposed
non-IRT procedure is an attractive and user friendly approach to DIF detection.
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Introduction
Detection of DIF has been considered one of the most important topics in measurement. An item is
said to function differently when subjects from different groups but with the same level of knowledge
(or other latent trait) have different probabilities of answering the item correctly. In such a case, some
aspect of the item, unrelated to the tested knowledge, could be unfairly causing the difference, thus
DIF items are potentionaly unfair. Recently, the topic of item and test fairness has been recognized as
one of the three most important properties of any educational assessment in Standards for Educational
and Psychological Testing (AERA et al., 2014) and methods for DIF detection are still being studied
intensively (Kim et al., 2007; Kim and Oshima, 2013; Loken and Rulison, 2010; Magis et al., 2010a;
Magis, 2013; Magis et al., 2014).

Two often used DIF detection methods are logistic regression (LR) procedure (Swaminathan and
Rogers, 1990) and procedures based on IRT models (Lord, 1980; Raju, 1988, 1990). LR can be seen as
a bridging method between IRT and non-IRT methods (Camilli and Shepard, 1994). LR procedure
is a straightforward method which is easier to explain to audience and easier to apply in standard
statistical packages than IRT methods, nevertheless it does not account for possibility of guessing,
unlike methods based on three parameter (3PL) IRT model. The LR procedure has been extensively
discussed in literature by many authors, including Choi et al. (2011); French and Maller (2007); Hidalgo
and López-Pina (2004); Holland and Wainer (2012) and Zumbo et al. (1999).

In this work, we present general non-IRT approach to detect both uniform and non-uniform DIF
in dichotomous items with presence of guessing. We use an extension of LR model to estimate item
response function, which counts for the probability of guessing correct answer. To our best knowledge,
the possibility of extension of LR to account for guessing has yet not been explored in detection of
DIF and thus newly proposed method fills the logical gap in DIF detection methodology.

The paper proceeds as follows: Methodology for DIF detection with NLR, simulation study and
practical implementation within ... R software package are described in section . Results of simulation
study are presented in section in which proposed NLR procedure is compared to LR model and to
Lord’s and Raju’s procedures based on 3PL IRT model in simulations based on Graduate Management
Admission Test (GMAT) data set (Kingston et al., 1985). Discussion and conclusion is offered in
section .

Methodology
Non-Linear Regression for Description of Item Properties
To provide more proper analysis of item properties but stay within non-IRT framework, we propose an
extension of LR model by accounting for probability of guessing. We assume that correct answer may
be guessed with certain probability c without the necessary knowledge, and if it is not guessed, the
probability is modeled by LR model. Using logistic parameterization, the probability of correct answer
to an item i by j-th examinee is given by equation

P(Yij = 1|Xj) = ci + (1− ci)
eβ0i+β1iXj

1 + eβ0i+β1iXj
, (1)

where Yij is response of j-th examinee to an item i (1 for correct, 0 for incorrect) and Xj stands for
his/her observed knowledge (the standardized total test score). When considering zero probabily of
guessing (ci = 0) then (1) reduces into LR model. The interpretation of regression coefficients is the
same as for LR (Agresti and Kateri, 2003, Chapter 5).

Using IRT parameterization model (1) can be rewritten as

P(Yij = 1|Xj) = ci + (1− ci)
eai(Xj−bi)

1 + eai(Xj−bi) , (2)

where variables Yij and Xj are as above. Regression parameter ai is discrimination parameter of i-th
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item and bi is difficulty parameter of i-th item4. The interpretation of guessing parameter ci is the
same for both parameterizations, that is probability that correct answer of item i is guessed without
necessary knowledge. From now on we will call model given by equation (2) NLR model. NLR model
is proxy for 3PL IRT model (Lord et al., 1968) as it is by definition score-based method and thus
non-IRT.

Non-Linear Regression DIF Detection Procedure
Usage of LR model for detection of DIF was introduced by Swaminathan and Rogers (1990) and is
one of the most widely used methods in uniform and non-uniform DIF detection. This procedure
became very popular in the study field mainly due to its easy interpretation and straightforward
estimation of parameters and performance of tests. Formally, the detection is based on introducing
group membership variable into LR model.

We extend the LR procedure by including pseudo-guessing parameter. We assume that probability
of guessing is the same for both groups. Using LR parameterization, the probability of correct answer
to an item is then given by equation

P(Yij = 1|Xj , Gj) = ci + (1− ci)
eβ0i+β1iXj+β2iGj+β3iXjGj

1 + eβ0i+β1iXj+β2iGj+β3iXjGj
, (3)

where variables Yij and Xj are as above and variable Gj represents group membership of j-th examinee
(1 for reference group, 0 for focal group). For case without guessing (ci = 0), the model is formally
equivalent to model proposed by Swaminathan and Rogers (1990) .

Using IRT parameterization, equation (3) can be rewritten as

P(Yij = 1|Xj , Gj) = ci + (1− ci)
e(ai+aDIFiGj)(Xj−(bi+bDIFiGj))

1 + e(ai+aDIFiGj)(Xj−(bi+bDIFiGj)) , (4)

where variables Yij , Xj and Gj and regression parameters ai, bi and ci are as above. Parameter aDIFi,
respectively bDIFi, represents the difference in discrimination, respectively in difficulty, of reference and
focal group.5 Henceforward we will call model given by (4) DIF NLR model.

In what follows, we stick with DIF NLR model. For logistic parameterization (3), parameter
estimation procedures and DIF detection methods would be analogous.

Estimation and DIF Detection

The parameter estimates of model are determined by non-linear least square estimation, that is by
minimization of the residual sums of squares (RSS) with respect to (ai, bi, aDIFi, bDIFi, ci):

RSS(ai, bi, aDIFi, bDIFi, ci) =
n∑
j=1

[
yij − ci + (1− ci)

e(ai+aDIFigj)(xj−(bi+bDIFigj))

1 + e(ai+aDIFigj)(xj−(bi+bDIFigj))

]2

,

where n is number of examinees, yij is response of j-th examinee to item i, xj is his/her standardized
total score and gj his/her group membership. Since the minimization in our case is nonlinear problem,
a numerical optimization methods need to be applied.

The NLR model (4) can be utilized to detect DIF in a simple way. If value of aDIFi is zero and value
of bDIFi differs from zero, this suggests presence of uniform DIF. If value of aDIFi differs from zero, this
suggests presence of non-uniform DIF. In short, possible DIF scenarios for item i are characterized by
the following null and alternative hypotheses:

DIF H0 : aDIFi = 0 & bDIFi = 0 H1 : aDIFi 6= 0 or bDIFi 6= 0
Uniform DIF H0 : bDIFi = 0 | aDIFi = 0 H1 : bDIFi 6= 0 | aDIFi = 0
Non-uniform DIF H0 : aDIFi = 0 H1 : aDIFi 6= 0
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(a) (b) (c)

Figure 1: Examples of fitting characteristic curves by NLR DIF procedure for three different items
with respect to DIF nature. Figure 1a represents item with no DIF, Figure 1b uniform DIF item and
Figure 1c non-uniform DIF item. Plotted points represent probability of correct answer for particular
values of standardized total score. Their size is defined by number of examinees with the same value of
standardized total score.

These scenarios can be presented by graphical representation of characteristic curves, see Figure 1.
To compare two nested NLR models, and thus test for DIF presence in item i, the F -test or

likelihood ratio test can be used with similar results (Dennis et al., 1981; Ritz and Streibig, 2008).
The F -test statistic measures the distance between model M0 and its submodel M1 as the difference
between RSS relative to RSS of model M0. The formula is the same as for linear models

F = (RSS0 − RSS1)/(df0 − df1)
RSS0/df0

,

however in non-linear models the F -distribution is held only approximately (Ritz and Streibig, 2008).
In simulation study and data analysis, we stick with F -test for simplicity. It should be noted that,
in contrast with IRT methods, tests for NLR DIF and LR procedures are performed separately for
each item. Thus Benjamini-Hochberg (BH) adjustment procedures for multiple testing is applied, as
suggested by Kim and Oshima (2013).

Simulation Study
We compare the proposed NLR method with Lord’s and Raju’s statistics (Lord, 1980; Raju, 1988, 1990)
in terms of power and I. type error rate. In order to illustrate possible benefit by including guessing
parameter, also detection procedure based on LR (Swaminathan and Rogers, 1990) is considered into
simulation study.

The probabilities of correct answers are calculated based on 3PL IRT model. Examinees’ knowledge
is assumed to follow the standard normal distribution. All parameters are set to be the same for both
reference and focal group unless the item is a DIF item, in which case the difficulty or discrimination
parameter of the focal group is manipulated (see below). To reflect realistic values of parameters
and to be in line with previous simulation studies (Swaminathan and Rogers, 1990; Narayanan and
Swaminathan, 1996; Jodoin and Gierl, 2001; Güler and Penfield, 2009; Kim and Oshima, 2013),
simulation study is based on parameters according to dataset from the 1985 problem solving of the
GMAT (Kingston et al., 1985, p. 47). Responses of examinees are generated from Bernoulli distribution
with calculated probabilities, which come from the true values of item and person parameters.

4The relationship between regression coefficients of parameterization (1) and (2) is as follows. Intercept β0i is equal
to −aibi and effect of total score β1i is equal to ai

5The effect of group membership β2i in parameterization (3) is equal to −aibDIFi − aDIFibi − aDIFibDIFi in parame-
terization (4). The effect of interaction of total score and group membership β3i is equal to aDIFi.
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In total, the simulated test consists of 20 items. The thresholds for DIF effect size of DIF items,
represented by area between characteristic curves, are determined by values 0.4 (low), 0.6 (moderate)
and 0.8 (large) following Swaminathan and Rogers (1990) and Narayanan and Swaminathan (1996). For
all DIF items guessing parameter c is set to 0.2. When uniform DIF is considered, the discrimination
parameters for focal and reference group are kept the same and fixed at value 1. The differences in
difficulty between reference and focal group are set to 0.5 (low), 0.75 (moderate) and 1 (large). When
simulating nonuniform DIF, the difficulty parameters for both groups are kept the same and fixed at
value 0 and the discrimination parameters are chosen according to Narayanan and Swaminathan (1996,
p. 264), see Table 1. One, or three items are considered as uniform, or non-uniform DIF. When one
DIF item is considered, the large size of DIF is chosen. Mixture of DIF sizes are considered for larger
proportion of DIF items. The parameters of remaining (19 or 17) items are selected from the problem
solving 1985 of the GMAT as reported in Kingston et al. (1985), see Table 2.

Table 1: Item Parameters Used to Generate DIF Items

DIF Type Item DIF Effect
Size

Reference Group Focal Group
a b c a b c

Uniform 1 0.8 1 0 0.2 1 1 0.2

Uniform
1 0.4 1 0 0.2 1 0.50 0.2
2 0.6 1 0 0.2 1 0.75 0.2
3 0.8 1 0 0.2 1 1 0.2

Non-uniform 1 0.8 0.56 0 0.2 1.79 0 0.2

Non-uniform
1 0.4 0.90 0 0.2 2.01 0 0.2
2 0.6 0.70 0 0.2 1.97 0 0.2
3 0.8 0.56 0 0.2 1.79 0 0.2

Table 2: Item Parameters Used to Generate Non DIF Items Based on GMAT data.

Item
Parameters

Item
Parameters

a b c a b c

2 4 0.29 −2.95 0.07 12 14 0.52 −1.96 0.07
3 5 0.41 −2.93 0.07 13 15 1.02 1.28 0.22
4 6 0.94 −1.21 0.33 14 16 0.65 0.49 0.16
5 7 0.88 −0.24 0.18 15 17 0.82 0.61 0.07
6 8 0.42 −1.15 0.07 16 18 1.04 2.11 0.37
7 9 0.74 0.60 0.36 17 19 0.95 0.81 0.09
8 10 0.35 −0.35 0.07 18 20 1.01 0.81 0.19
9 11 0.44 −0.30 0.07 19 0.98 1.67 0.28
10 12 0.55 −1.06 0.07 20 0.92 0.42 0.09
11 13 0.82 1.02 0.36

The above described scenarios are investigated on various levels of the total sample size. Larger
sizes of samples are determined to yield satisfactory convergence levels especially for IRT models.
Specifically, three levels of sample size are considered: 1,000 (500 per group), 2,000 (1,000 per group),
and 5,000 (2,500 per group).

Due to the estimation procedures in NLR and 3PL IRT models, convergence issues can be observed.
In such cases, estimation is carried out without problematic items and no results for these items are
obtained. All tests are performed on α = 0.05 significance level. Based on items without convergence
issues, type I error rate and power of procedure are calculated. 1,000 iterations are considered.
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Practical Implementation
For all analyses, software R, Version 3.22 is used. The LR procedure is implemented by function glm
from stats package. To detect DIF, likelihood ratio test was performed (Agresti and Kateri, 2003) and
BH multiple comparison correction was applied (Benjamini and Hochberg, 1995; Kim and Oshima,
2013). R package difR (Magis et al., 2010a) is used to perform IRT analysis including fitting 3PL IRT
model with function itemParEst, Lord’s test with function difLord and Raju’s test with function difRaju.
The NLR procedure is implemented in new function ... within ... R package which uses nls function
from stats package with constraints on guessing parameter (Dennis et al., 1981; Ritz and Streibig,
2008). To test for DIF presence, F -test is used.

To detect global minimum by nonlinear least-square estimation, it is necessary to specify suitable
initial values. We consider approach based on linear approximation. Mean values of standardized
total score of first and third tertiles are spaced by line p̃(x) = kx+ q, where x stands for standardized
total score. Guessing parameter c stands for asymptotic minimum p(−∞) but taking into account
linear approximation p̃, this value would be −∞.6 Initial value of guessing parameter is set as p̃(−4)
considering this value to be sufficient. Only non-negative values are taken into consideration and
negative values are set to zero. Guessing parameter influences difficulty and discrimination parameters.
For cases with zero probability of guessing, difficulty parameter b is defined as p(b) = 1

2 . When
considering positive guessing c ∈ (0, 1), condition p(b) = 1+c

2 holds instead. Hence initial value of b
based on linear approximation p̃ is set to b =

1+c
2 −q
k . With zero probability of guessing, discrimination

parameter a is defined as p′(b) = a
4 , the slope in inflex point b divided by 4. With positive guessing

c ∈ (0, 1), formula p′(b) = a(1−c)
4 is applied. Therefore, by using linear approximation, initial estimation

of a is set to a = 4k
1−c .

Results
Convergence Issues
Due to numerical estimation procedures in NLR DIF and IRT based methods, convergence issues
can be noticed. It should be noted that large proportions of convergence failures can have significant
impact on power and rejection rates. For convergence problematic items no results are obtained and
no conclusion about DIF detection can be drawn. Thus rejection and power rate analysis is based only
on converged items. Especially, when there is a large proportion of these items, the results should be
interpreted with caution.

Lord’s and Raju’s procedures perform large proportion of convergence problematic items (see Table
3), however with increasing number of examinees, proportion of convergence failures declines rapidly.
Similar tendency can be observed in NLR procedure, however proportion of convergence failure items
is less than 1% (0.07 - 0.54%) for all scenarios in contrast with Lord’s and Raju’s methods where
proportions reach up over 10% (0 - 12.29%).

Rejection Rates
For almost all scenarios rejection rates of NLR DIF and LR procedures maintain below the 5% nominal
level. Empirical Type I error rates range from 0.56% to 11.66% for NLR DIF and from 0.45% to 9.74%
for LR method. The nominal value is exceeded only when 3 uniform DIF items and sample size 5.000
are considered (see Part B of Table 3).

High rejection rates of Lord’s and Raju’s procedures are apparent in all studied scenarios and they
exceed the nominal level of 0.05. The minimal rejection rates were 7.7% for Lord’s procedure and
8.3% for Raju’s procedure (Table 3). Considerable rates occur primarily for smaller sample size, where
proportions of convergence issues are large.

6Considering only positive values of parameter k.
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Power Rates
The power analysis shows superiority of proposed NLR procedure through all sample sizes when
uniform DIF is considered (Parts A and B of Table 3). Except the case of three uniform DIF items
and sample size 1,000, NLR performs very high power rates (83.07% - 100%).

For non-uniform DIF and sample size 1,000 no method achieves satisfactory power rates regardless
of DIF items proportion (Parts C and D of Table 3). However with increasing sample size power rates
increase. LR procedure outperforms other methods in terms of power at low reject rate in all scenarios
with power rate ranging from 37.97% to 100%.

With sample size 5,000 all procedures are able to detect presence of DIF almost certainly regardless
of the nature or proportion of DIF items, however, only rejection rates of NLR and LR based methods
remain below nominal value of 5% even in cases when other procedures do not.
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Table 3: Rejection rates (RR), power rates (PR) and proportion of convergence failures (CF) for NLR, LR, LORD and
RAJU procedures.

Sample size = 1,000 Sample size = 2,000 Sample size = 5,000
RR PR CF RR PR CF RR PR CF

A. One Uniform DIF Item
NLR 0.79 97.40◦ 0.45 1.07 100.00◦ 0.23 1.54 100.00◦ 0.07
LR 0.65 96.90 0.00 0.87 100.00◦ 0.00 1.23 100.00◦ 0.00
LORD 15.71* 95.10 12.29 10.08* 100.00 0.85 9.60* 100.00 0.11
RAJU 14.32* 90.99 12.29 9.91* 99.70 0.85 9.28* 100.00 0.11

B. Three Uniform DIF Items
NLR 1.92 59.46◦ 0.56 3.98 83.07◦ 0.20 11.66* 98.63 0.10
LR 1.56 58.27 0.00 3.17 82.37 0.00 9.74* 98.60 0.00
LORD 17.78* 70.07 10.24 11.27* 87.98 0.92 16.49* 98.80 0.00
RAJU 16.14* 67.95 10.24 10.21* 86.24 0.92 13.31* 98.40 0.00

C. One Non-Uniform DIF Item
NLR 0.56 36.84 0.53 0.73 81.90 0.21 0.83 100.00◦ 0.14
LR 0.45 47.00◦ 0.00 0.57 88.90◦ 0.00 0.73 100.00◦ 0.00
LORD 15.78* 68.12 12.03 9.18* 95.87 0.76 7.70* 100.00 0.30
RAJU 14.61* 62.59 12.03 8.96* 96.07 0.76 8.38* 100.00 0.30

D. Three Non-Uniform DIF Items
NLR 0.78 28.76 0.54 1.77 69.73 0.24 3.43 98.23 0.08
LR 0.74 37.97◦ 0.00 1.44 78.57◦ 0.00 2.96 99.37◦ 0.00
LORD 15.78* 64.72 10.78 9.03* 92.30 0.84 7.37* 99.97 0.10
RAJU 15.19* 61.07 10.78 9.47* 93.88 0.84 8.34* 99.97 0.10

NLR = non-linear regression, LR = logistic regression, LORD = Lord’s statistics, RAJU = Raju’s statistics.
An asterisk indicates that the rejection rate exceeds nominal value of 5% and thus corresponding power is meaningless.
A circle indicates the highest power at rejection rate lower than nominal value of 5%.
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Discussion and Conclusion
In this work we suggest using NLR procedure for DIF detection which is natural generalization of
LR (Swaminathan and Rogers, 1990) by allowing nonzero probability for guessing c. In a simulation
study, we compare newly proposed NLR DIF detection method to LR procedure and Lord’s and Raju’s
methods based on 3PL IRT models.

Results of our simulation study (Table 3) show that NLR keeps pleasant properties of LR, especially
low rates of convergence issues. Despite our assumption that sample size of 1,000 each group would
provide a sufficient sample size for item calibration (Kim and Oshima, 2013), IRT methods show large
proportion of convergence failures (see Table 3). Note that high number of convergence issues can
distort rejection and power rates. 7 In practical implementation this may mean that less time and
effort is needed to fit NLR DIF procedure and test for DIF than with IRT models.

NLR and LR procedures’ rejection rates (Type I error), calculated from converged simulation runs,
maintain below 5% nominal value for almost all scenarios, in contrast with both IRT methods (see
Table 3). Poor control of rejection rates for IRT methods when considering multiple DIF items is
consistent with the finding of Wang and Yeh (2003). However inability of Type I error control in
scenarios with low proportion of DIF items is surprising. One explanation can be large proportion
of convergence issues. When considering all convergence failures to be not DIF detected (results not
shown), rejection rates for 3PL IRT methods decrease, but they maintain over nominal value of 5%
for IRT methods. 8 This may indicate that IRT methods are less robust than LR and NLR DIF
procedures considering more variable items’ parameters such as are present in GMAT (Table 2).

Analysis of power shows that in uniform DIF detection the newly proposed NLR DIF procedure
is superior to all other methods in terms of power at low rejection rate (parts A and B of Table 3).
This may suggest that NLR DIF detection method profits from more precise model, comparing to
LR procedure. A comparison of power rate in non-uniform DIF detection indicates superiority of
LR procedure at low I Type error rate. One explanation may be, that we consider only non-uniform
DIF items with the same difficulty parameter for both groups. As expected, strong and consistent
increasing trend in power rates with increasing sample size is obvious in all DIF detection procedures
and all studied scenarios. For sample size of 5,000 power of all procedures is almost 100%.

For NLR and LR methods, BH multiple comparison correction is applied. Negative effect of using
such procedures can be decrease of power, as noted by Kim and Oshima (2013). That can be an
explanation of unsatisfactory low power rates in non-uniform DIF detection for NLR and LR methods
in small sample sizes. Even though IRT procedures achieve very good power rates, their rejection rates
exceed nominal value of 5% over all sample size levels. Previous simulation studies suggested that IRT
based methods do not benefit from multiple comparison correction (Kim and Oshima, 2013). To be on
the safe side, simulations with BH corrections were also conducted, however in agreement with Kim
and Oshima (2013) did not yield any benefit (results not shown).

Our NLR procedure fills a logical gap in DIF detection methodology. While in IRT models three
parameters are often taken into account, LR accounts only for two parameters. NLR extends LR
procedure in this way and to our best knowledge it is the only non-IRT method for DIF detection
with guessing parameter. The main difference between 3PL IRT and NLR DIF models is that in IRT
knowledge of examinees is modeled as sample from standard normal distribution in contrast with NLR
model where knowledge is represented by standardized total score of the test (Rao and Sinharay, 2006).
Although NLR DIF method can be viewed as less precise, it is easier to implement and interpret and
thus NLR may be important for educational purposes.

Important feature of our approach is that group membership is considered as independent variable
7Analysis of convergence issues shows that some items tend to diverge more often than others. Especially, items with

low difficulty (items 2 and 3 in Table 2), items with large difficulty and large probability of guessing (items 16 and 19 in
Table 2) and items with low discrimination (item 8 in Table 2) show larger proportion of convergence issues in both
methods. Unlike non-DIF items, DIF items tend to converge more often for all scenarios, which is predictable when
considering selected parameters (Table 1).

8We also notice that some of non-DIF items tend to be detected as DIF more often than others. Especially items
with average values of parameters are falsely detected as DIF by IRT methods, suggesting hypersensitivity in such items.
On the other hand, convergence problematic items, once they converge, are more likely to be detected correctly as
non-DIF. These two phenomenons may cause large rejection rates in IRT methods and also their decreasing tendency
with increasing sample size (see Table 3).
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and hence model is fitted for both groups, reference and focal, simultaneously. The common way of
applying 3PL IRT model in DIF detection, when considering the same probability of guessing for
both groups, is to fit model on all data and estimate guessing parameter. Fixed estimate of guessing
parameter is then applied into two separate models for focal and reference group (Magis et al., 2010a).
Estimated parameters are rescaled (Candell and Drasgow, 1988; Lautenschiager and Park, 1988) and
then Lord’s and Raju’s statistics are calculated. However this approach can lead to underestimation of
standard errors. Possible improvement for IRT methods thus may be taking approach similar to ours
and fitting models for both groups together.

We believe that also the currently proposed NLR procedure may benefit from further improvements.
Better specification of initial values can lead to smaller proportion of convergence issues. Also another
estimating procedures can be implemented to provide more accurate estimates, such as weighted
non-linear least squares or Bayesian based methods. NLR model can be extended by considering
different guessing parameter for focal and reference group. Another generalization may be to allow
upper asymptote to be smaller than one and thus introduce an alternative to four-parameter IRT
models (Barton and Lord, 1981). Similarly to IRT models (Reckase, 1985; Reckase and McKinley, 1991;
Oshima et al., 1997), also NLR and NLR DIF models can be extended by considering multidimensional
latent trait. More than two groups can be taken into account (Magis et al., 2010b). NLR DIF detection
method can be refined by implementing iterative purification similarly as for LR (Zumbo et al., 1999)
or IRT methods (Candell and Drasgow, 1988; Wang and Yeh, 2003).

The current simulation study is limited to the investigated conditions as test length, nature and
proportion of DIF items and especially sample size. It should be noted that only large sample sizes are
considered with equal group size, which is not necessarily realistic condition. Another restriction is
that we consider only average difficulty items in non-uniform DIF design, where difficulty is the same
for both groups. Despite its limitations, this study demonstrates that NLR appears to be an attractive
and user friendly alternative to other procedures used in DIF detection. NLR allows for incorporation
of probability of guessing into the model while it keeps the simplicity of LR model.
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