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In this article, we present an extension of two-parameter Logistic Regression (LR) to detect

both uniform and non-uniform DIF in dichotomous items. Contrary to other non Item Response

Theory (non-IRT) methods, the newly proposed non-linear regression (NLR) procedure accounts

for guessing. As a non-IRT approach, NLR procedure can be seen as proxy of three-parameter

(3PL) IRT model for DIF detection which is a standard tool in study field. Hence NLR fills the

logical gap in DIF detection methodology and as such is important for educational purposes. The

advantages of the NLR procedure as well as comparison to other commonly used methods are

demonstrated in a simulation study based on Graduate Management Admission Test in which

we show pleasant properties of proposed approach including low convergence failure rate and in

most cases sufficient power and low rejection rate. Besides simulation study, also a real data

analysis is offered to demonstrate practical use of NLR method. The newly proposed NLR method

is accompanied by an R package and is implemented in an online Shiny application.

Keywords:

differential item functioning; non-linear regression; logistic regression; item response theory;

Mantel-Haenszel procedure
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Introduction

Detection of Differential Item Functioning (DIF) has been considered one of the most important

topics in measurement (AERA, APA, & NCME, 2014). An item is said to function differently

when subjects from different groups but with the same level of knowledge (or other latent

trait) have different probabilities of answering the item correctly. In such a case, some aspect

of the item, unrelated to the tested knowledge, could be unfairly causing the difference, thus

DIF items are potentially unfair. A variety of methods for DIF detection has been proposed

and they are still being studied intensively (Berger & Tutz, 2016; S.-H. Kim, Cohen, Alagoz,

& Kim, 2007; J. Kim & Oshima, 2013; Loken & Rulison, 2010; Magis & De Boeck, 2011;

Magis, 2013; Magis, Tuerlinckx, & De Boeck, 2014). Generally, DIF detection approaches can

be divided into Item Response Theory (IRT ) model based procedures and techniques based

on test score (here referenced as non-IRT ).

Procedures based on Mantel-Haenszel (MH ) test (Mantel & Haenszel, 1959; Holland,

1985; Holland & Thayer, 1988) and two-parameter logistic regression (LR) (Swaminathan &

Rogers, 1990) are some of the most widely used non-IRT methods in identifying DIF items.

Both MH and LR are straightforward methods which are easy to explain to audience, easy

to apply in standard statistical packages and also have been used in DIF detection for more

than two decades. Both procedures have been extensively discussed in literature by many

authors, including Choi, Gibbons, and Crane (2011); French and Maller (2007); Hidalgo and

López-Pina (2004); Holland and Wainer (2012); Penfield (2001) and Zumbo (1999). However,

neither of these methods accounts for possibility of guessing.

Alternatively, within IRT model framework, the three-parameter (3PL) IRT model ac-

counting for guessing (Birnbaum, 1968) is widely used for item calibration and also for DIF

detection. Two popular statistics for testing DIF within IRT models are Lord’s χ2-test which

compares item parameter estimates (Lord, 1980) and Raju’s statistics based on area between

item characteristic curves (Raju, 1988, 1990). However, the underlying non-linear mixed

effect model framework (Rijmen, Tuerlinckx, De Boeck, & Kuppens, 2003) and the concept of

latent variable may be a bit more complex to understand and harder to implement without
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specialized software. Moreover, 3PL IRT model is difficult to fit and large sample size (500

per group) is required (J. Kim & Oshima, 2013).

In this work, we present a new general non-IRT approach to detect DIF in dichotomous

items with presence of guessing. We use non-linear regression model - an extension of LR

model for DIF detection, which accounts for the probability of guessing the correct answer.

To our best knowledge, the possibility of extension of LR to account for guessing has yet not

been explored in detection of DIF and thus the proposed method fills the logical gap in DIF

detection methodology. As such, the non-IRT method proposed in this paper is important for

educational purposes and to increase the use of the DIF methodology.

To investigate properties of proposed technique, method is compared to MH, LR and

IRT model based approaches in simulation study based on items parameters from Graduate

Management Admission Test (GMAT) data set (Kingston, Leary, & Wightman, 1985) and

also in illustrative analysis of admission test to medical school (Vlčková, 2014).

The paper proceeds as follows: Methodology for DIF detection with NLR, simulation

study design and practical implementation within new difNLR R software package (Drabinová,

Martinková, & Zvára, 2016) are described in section Methodology. Results of simulation study

and real data set analysis are performed in section Results. Discussion and conclusion is

offered in the last section.

Methodology

Non-Linear Regression DIF Detection Procedure

To provide more precise analysis of item properties but stay within non-IRT framework, we

propose an extension of LR procedure by including the probability of guessing c. For simplicity

and to correspond with related IRT-based approaches (Raju, 1988, 1990), we assume that

probability of guessing is the same for both groups in one item, however, we allow guessing

parameter to vary across items, e.g. to account for the fact that in multiple-choice tests the

number of possible answers or attractiveness of distractors can differ across items. Using

logistic parameterization, the probability of correct answer to an item i by j-th examinee is
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given by equation

P(Yij = 1|Xj , Gj) = ci + (1− ci)
eβ0i+β1iXj+β2iGj+β3iXjGj

1 + eβ0i+β1iXj+β2iGj+β3iXjGj
, (1)

where Yij is response of j-th examinee to an item i (1 for correct, 0 for incorrect), Xj stands

for his/her observed knowledge (the standardized total test score) and variable Gj represents

his/her group membership (1 for reference group, 0 for focal group). For case without guessing

(i.e. ci = 0), the model is formally equivalent to model proposed by Swaminathan and Rogers

(1990). The interpretation of regression coefficients is the same as for LR (Agresti & Kateri,

2003, Chapter 5).

To allow later comparison of items parameters extimates with IRT-based approaches,

model (1) can be reparameterized as follows:

P(Yij = 1|Xj , Gj) = ci + (1− ci)
e(ai+aDIFiGj)(Xj−(bi+bDIFiGj))

1 + e(ai+aDIFiGj)(Xj−(bi+bDIFiGj)) . (2)

In this NLR model 2, the variables Yij , Xj and Gj are as above. Regression parameter ai is now

the discrimination parameter of the i-th item and bi is the difficulty parameter of the i-th item4.

Parameter aDIFi, respectively bDIFi, represents the difference in discrimination, respectively in

difficulty, of reference and focal group.5 The interpretation of guessing parameter ci is the

same for both parameterizations: it is probability that correct answer of item i is guessed

without necessary knowledge. NLR model is proxy for 3PL IRT model for DIF detection

(Raju, 1990) as it is by definition score-based method and thus non-IRT.

Extension of logistic regression model allowing lower asymptote to differ from zero is in

literature known as three-parameter logistic model (Glas & Falcón, 2003). However, to our

best knowledge, the application in DIF identification has not yet been studied.
4The relationship between regression coefficients of parameterization (1) and (2) is as follows: intercept β0i

is equal to −aibi and effect of total score β1i is equal to ai

5The effect of group membership β2i in parameterization (1) is equal to −aibDIFi − aDIFibi − aDIFibDIFi in

parameterization (2). The effect of interaction of total score and group membership β3i in parameterization (1)

is equal to aDIFi in parameterization (2).
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While models including guessing parameter c are often called 3PL (Glas & Falcón, 2003;

Raju, 1990), it should be noted that the definition of logistic model or generalized linear model

(Agresti & Kateri, 2003, Chapters 4 and 5) does not hold in models 1 and 2 and thus we will

henceforward call model given by equation (2) NLR model. In what follows, we stick with

NLR model to be able to compare parameter estimates to those obtained by IRT model. For

logistic parameterization (1), parameter estimation procedures and DIF detection methods

would be analogous.

Estimation and DIF Detection

The parameter estimates of model are determined by non-linear least square estimation, that is

by minimization of the residual sums of squares (RSS) with respect to (ai, bi, aDIFi, bDIFi, ci):

RSS(ai, bi, aDIFi, bDIFi, ci) =
n∑
j=1

[
yij − ci + (1− ci)

e(ai+aDIFigj)(xj−(bi+bDIFigj))

1 + e(ai+aDIFigj)(xj−(bi+bDIFigj))

]2

,

where n is number of examinees, yij is response of j-th examinee to item i, xj is his/her

standardized total score and gj his/her group membership. Since the minimization in our

case is nonlinear problem, a numerical optimization methods need to be applied.

The NLR model (2) can be utilized to detect DIF in a simple way. If value of aDIFi is zero

and value of bDIFi differs from zero, this suggests presence of uniform DIF. If value of aDIFi

differs from zero, this suggests presence of non-uniform DIF. In short, possible DIF scenarios

for item i are characterized by the following null and alternative hypotheses:

Any DIF H0 : aDIFi = 0 & bDIFi = 0 H1 : aDIFi 6= 0 or bDIFi 6= 0

Uniform DIF H0 : bDIFi = 0 | aDIFi = 0 H1 : bDIFi 6= 0 | aDIFi = 0

Non-uniform DIF H0 : aDIFi = 0 H1 : aDIFi 6= 0

To compare two nested NLR models (where one model is defined by alternative hypothesis
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H1 and its submodel by null hypothesis H0), and thus test for DIF presence in item i, the

F -test or likelihood ratio test can be used with similar results (Dennis, Gay, & Welsch, 1981;

Ritz & Streibig, 2008). In simulation study and data analysis, we stick with F -test for

simplicity.

The F -test statistic measures the distance between model M0 and its submodel M1 as the

difference between RSS relative to RSS of model M0. The formula is the same as for linear

models

F = (RSS0 − RSS1)/(df0 − df1)
RSS0/df0

,

however in non-linear models the F -distribution holds only approximately (Ritz & Streibig,

2008). As the test is performed for each item separately, Benjamini-Hochberg adjustment

procedure for multiple testing is applied (Benjamini & Hochberg, 1995), as suggested by

J. Kim and Oshima (2013).

Simulation Study

Simulation study is performed to investigate properties of newly proposed NLR procedure and

to make comparison to other commonly used DIF detection approaches including MH, LR,

Lord’s and Raju’s methods. The simulation study focuses on convergence behavior, power

rate (i.e. proportion of true positives) and rejection rate (i.e. proportion of false positives;

type I error).

The dichotomously scored data are generated with a 3PL IRT model as follows: examinees’

knowledge is assumed to follow the standard normal distribution. All parameters are set to

be the same for both reference and focal group unless the item is a DIF item, in which case

the difficulty or discrimination parameter of the focal group is manipulated (see below). To

reflect realistic values of items parameters and to be in line with previous simulation studies

(Swaminathan & Rogers, 1990; Narayanan & Swaminathan, 1996; Jodoin & Gierl, 2001; Güler

& Penfield, 2009; J. Kim & Oshima, 2013), simulation study is based on item parameters
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according to 20-item data set from the 1985 problem solving of the GMAT (Kingston et al.,

1985, p. 47). Probabilities of correct answers are calculated based on true values of items

and examinees parameters and dichotomous responses are then generated from Bernoulli

distribution with these calculated probabilities.

Out of 20 items, one, or three first items are manipulated to be uniform, or non-uniform

DIF items. The thresholds for DIF effect size of DIF items, represented by area between

characteristic curves, are determined by values 0.4 (low), 0.6 (moderate) and 0.8 (large)

following Swaminathan and Rogers (1990) and Narayanan and Swaminathan (1996). When

one DIF item is considered, the large size of DIF is chosen. Mixture of DIF sizes is considered

for larger proportion of DIF items. The parameters of remaining (19 or 17) items are selected

from the problem solving 1985 of the GMAT as reported in Kingston et al. (1985), see Table

2. For all DIF items guessing parameter c is set to 0.2. When uniform DIF is considered, the

discrimination parameters for focal and reference group are kept the same and fixed at value

1. The differences in difficulty between reference and focal group are set to 0.5 (low), 0.75

(moderate) and 1 (large). When simulating non-uniform DIF, the difficulty parameters for

both groups are kept the same and fixed at value 0 and the discrimination parameters are

chosen according to Narayanan and Swaminathan (1996, p. 264), see Table 1. To evaluate

rejection rates of procedures also simulations without DIF items are considered.

The above described scenarios are investigated on various levels of the total sample size.

Larger sizes of samples are determined to yield satisfactory convergence levels especially for

IRT models. Specifically, three levels of sample size are considered: 1,000 (500 per group),

2,000 (1,000 per group), and 5,000 (2,500 per group).

Due to numerical estimation procedures in NLR and IRT-based methods, convergence

issues can be observed. It should be noted that large proportions of convergence failures

can have significant impact on power and rejection rates. For items that fail to converge

no results are obtained and no conclusion about DIF detection can be drawn. To make

simulations comparable for all procedures, runs with convergence issue are excluded and

the proportion of these events is scored. Convergence failure rate is calculated as ratio of

items with convergence issues and total number of generated items (that is total number of
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generated data sets times number of items). Rejection and power rate analyses are based only

on 1,000 simulation iterations without convergence issues. All tests are performed at α = 0.05

significance level. As suggested by (J. Kim & Oshima, 2013), Benjamini-Hochberg multiple

comparison correction is applied to all methods.

Real Data Analysis

To demonstrate practical use of the newly proposed NLR method and how it compares with

commonly used DIF detection approaches including MH, LR, Lord’s and Raju’s procedures,

we offer an illustrative analysis of medical school admission test (AT ).

Original AT data set (Vlčková, 2014) consists of responses of 1,407 students (484 males

and 923 females) to 80 items. All items have 4 possible answers and in some items there is

more than one correct choice. For these items all correct answers and no incorrect answers

must have been marked for the item to be recognized as correct. Previous study detected 6

items to be favoring males and 4 favoring females (Vlčková, 2014).

In this study we examine a subset of AT data set including one item (item 49) shown in

the past to display DIF and 19 randomly selected items which were not previously detected

as DIF (items 1, 2, 7, 9, 10, 17, 24, 25, 27, 28, 38, 41, 45, 47, 61, 64, 68, 75, 76). Item

49 is related to childhood disease, concretely what disease can be caused by deficiency of

vitamin D in childhood. Possible answers were A. rickets (correct), B. scurvy, C. dwarfism and

D. intellectual disability. An explanation of better performance of females, can be that women

tend to be more experienced in looking after children and to know more about childhood

diseases. While the item was detected to function differently for males and females, the item

was not considered to be unfair, because the knowledge needed for correct answer is related

to underlying latent concept being tested.

Practical Implementation

For all analyses, software R, Version 3.22 is used (R Core Team, 2015). The NLR procedure is

implemented in new function difNLR within R package difNLR (Drabinová et al., 2016) which

uses nls function from stats package for non-linear least squares estimation with constraints
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on guessing parameter (Dennis et al., 1981; Ritz & Streibig, 2008). To specify suitable initial

values, we consider approach based on linear approximation. Mean values of standardized

total score of first and third tertiles are spaced by line p̃(x) = kx + q, where x stands for

standardized total score. Guessing parameter c stands for asymptotic minimum p(−∞) but

taking into account linear approximation p̃, this value would be −∞.6 Initial value of guessing

parameter is set as p̃(−4) considering this value to be sufficient. Only non-negative values are

taken into consideration and negative values are set to zero. Guessing parameter influences

difficulty and discrimination parameters. For cases with zero probability of guessing, difficulty

parameter b is defined as p(b) = 1
2 . When considering positive guessing c ∈ (0, 1), condition

p(b) = 1+c
2 holds instead. Hence initial value of b based on linear approximation p̃ is set

to b =
1+c

2 −q
k . With zero probability of guessing, discrimination parameter a is defined as

p′(b) = a
4 , the slope in inflection point b divided by 4. With positive guessing c ∈ (0, 1),

formula p′(b) = a(1−c)
4 is applied. Therefore, by using linear approximation, initial estimation

of a is set to a = 4k
1−c . To test for DIF presence, F -test is used.

The LR procedure is implemented by function glm from stats package (R Core Team,

2015). To detect DIF, likelihood ratio test is performed (Agresti & Kateri, 2003). R package

difR (Magis, Béland, Tuerlinckx, & De Boeck, 2010) is used to perform MH test by function

difMH and IRT-based DIF detection methods as follows: the 3PL model for all data is fitted

with function itemParEst and guessing parameters are estimated. Then 3PL models for both

groups are fitted with fixed estimated guessing parameter. Estimated coefficients are then

rescaled and Lord’s and Raju’s statistics are calculated with functions difLord and difRaju.

P-values are then calculated based on χ2 distribution with 2 degrees of freedom for Lord’s

statistic and based on standard normal distribution for Raju’s statistic. For all methods

Benjamini-Hochberg multiple comparison correction is applied (Benjamini & Hochberg, 1995;

J. Kim & Oshima, 2013).
6Considering only positive values of parameter k.
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Results

Simulation Study

Convergence Issues

Due to numerical estimation procedures in NLR and IRT-based methods, convergence issues

occur. The number of generated data sets is decreasing with increasing sample size in all

scenarios. The average number of generated data sets for sample size of 1,000 is 1,391 (range

1,327 - 1,460), for sample size of 2,000 it is 1,064 (1,045 - 1,095) and for sample size of 5,000

it is 1,027 (1,017 - 1,033).

Lord’s and Raju’s procedures result in a large proportion of convergence problematic items

(see Table 3), however with increasing number of examinees, proportion of convergence failures

declines rapidly. Similar tendency can be observed in NLR procedure, however proportion

of convergence failure items is less than 1% (0.08 - 0.68%) for all scenarios in contrast with

Lord’s and Raju’s methods where proportions reach up over 10% (0 - 10.35%).

Rejection Rates

For almost all scenarios rejection rates (type I error, i.e. false positives) of the newly proposed

NLR and also for MH and LR procedures maintain below the 5% nominal level. The nominal

value is exceeded only when 3 uniform DIF items and sample size 5,000 are considered (see

Part C of Table 3).

High rejection rates exceeding nominal level of 5% are apparent in IRT-based procedures

in all studied scenarios with small sample sizes (1,000). Nevertheless with higher sample size,

the rejection rates of Raju’s method are below nominal value even in scenarios where it is not

the case for non-IRT methods. Rejection rate of Lord’s procedure is mildly exceeded also for

sample size of 2,000 in case of no DIF (see Part A of Table 3) and in case of three uniform

DIF items (see Part C of Table 3). In the case of three uniform DIF items and sample size of

5,000, similarly to non-IRT methods, the rejection rate of Lord’s procedure is also exceeded.

The situation is similar in the case where no DIF item is present in data set. The nominal

value of 5% is exceeded by IRT-based methods in case of sample size 1,000 and in case of
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sample size 2,000 it is exceeded only by Lord’s procedure (see Part A of Table 3).

Power Rates

When uniform DIF is considered, NLR, LR and HM procedures yield satisfactory high power

rate (over 80%) in almost all scenarios. Although the power analysis shows superiority of

MH procedure, the differences between non-IRT methods are negligible, especially for smaller

proportion of DIF items. While IRT-based procedures yield lower power in all uniform DIF

scenarios, they gain satisfactory power on low rejection rate for sample size of 5,000 (see Parts

B and C of Table 3).

For non-uniform DIF and sample size 1,000 no method achieves satisfactory power rates

regardless of DIF items proportion (Parts D and E of Table 3). However, with increasing

sample size power rates increase rapidly. LR procedure outperforms other methods in terms

of power at low rejection rate in almost all scenarios with power rates ranging from 36.13% to

100%. When one non-uniform DIF item is considered, NLR procedure outmatches IRT-based

methods. For larger proportion of DIF items, the power rates of NLR method and IRT

procedures are comparable.

Real Data Analysis

As expected, item 49 is detected as DIF by almost all procedures (see Table 4). Only Lord’s

statistic does not show significant presence of DIF (χ2-value = 11.130, p-value 0.077), even

though this non-significant finding is not convincing. Confirming results from previous study

(Vlčková, 2014), females performed better on this item than males as shown by LR, NLR and

3PL IRT model (see Figure 1).

The non-zero probability of guessing is apparent in both NLR and 3PL IRT models

(see Table 5) suggesting that LR model may not have to be sufficient in this case. The

estimated parameters are similar for both NLR and IRT models for most non-DIF items,

larger differences can be observed in items 1 and 25.
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Discussion and Conclusion

In this work we suggest using NLR procedure for DIF detection as a natural generalization of

LR (Swaminathan & Rogers, 1990) by allowing nonzero probability for guessing c. In real

data analysis, we demonstrate practical use of the newly proposed method and in a simulation

study, we show its pleasant properties including low rate of convergence failures and in most

cases sufficient power and low rejection rate. Thus as the only non-IRT method that accounts

for guessing, NLR not only fills logical gap in DIF detection methodology but it also seems to

be an useful alternative to other methods.

Obvious advantage of the newly proposed NLR method over IRT-model-based approaches

is pleasant behavior even in small sample sizes (1,000). Despite our assumption that sample

size of 500 in each group would be sufficient for item calibration (J. Kim & Oshima, 2013),

IRT methods show large proportion of convergence failures (see Table 3). In practical

implementation this may mean that with NLR procedure less time and effort is needed to fit

models and to test for DIF than with IRT-based methods. Also, for low sample sizes (1,000)

rejection rate (Type I error) exceeds 5% nominal value for IRT methods (see Table 3) and

the power rate maintains on low level. Poor control of rejection rates for IRT methods when

considering multiple DIF items is consistent with the finding of Wang and Yeh (2003). As

expected, strong and consistent increasing trend in power rates with increasing sample size is

obvious in all DIF detection procedures and all studied scenarios; except for MH method in

non-uniform DIF detection (see further). For sample size of 5,000 power of all other procedures

is almost 100%. With increasing sample size, the differences between methods decreases and

IRT-based methods become easy to fit. IRT-based approaches then bring more precise model

and added value in terms of estimates of latent trait while NLR and LR are only proxies to

3PL and 2PL IRT models.

Looking closer at non-IRT approaches, although MH test yields excellent results in uniform

DIF detection, its poor performance for non-uniform DIF detection (i.e. power rate close to

zero) makes it a limited tool in a study field, which is in line with findings by Swaminathan

and Rogers (1990). For these reasons it seems that the newly proposed NLR method, together
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with LR procedure, can be seen as useful alternatives to IRT methods, especially in small

sample sizes (1,000), where NLR and LR procedures outperform other methods in terms of

power.

Moreover, in uniform DIF detection, NLR method achieves slightly better results than LR

approach. This may suggest that NLR method profits from more precise model by introducing

guessing parameter c into LR procedure. In non-uniform DIF detection the LR procedure is

superior to other methods, but achieved power rates remain on low level. One explanation

may be, that we consider only non-uniform DIF items with the same difficulty parameter for

both groups. Moreover for all methods, Benjamini-Hochberg multiple comparison correction

is applied. Negative effect of using such procedures can be decrease of power, as noted by

J. Kim and Oshima (2013), which may be the case in non-uniform DIF detection in small

sample sizes.

Our NLR procedure fills a logical gap in DIF detection methodology. While in IRT-based

DIF detection methods the third parameter is often taken into account, LR accounts only

for two parameters. NLR extends LR procedure in this way and to our best knowledge it is

the only non-IRT method for DIF detection with the third, guessing parameter. The main

difference between 3PL IRT-based methods and NLR approach is that in IRT-based procedures,

the knowledge of examinees is modeled as unobserved latent variable with standard normal

distribution; in contrast with NLR model where knowledge is represented by standardized

total score of the test (Rao & Sinharay, 2006). Although NLR method can be viewed as less

precise, it is easier to implement and interpret and also smaller sample size is required than

for IRT model calibration. Thus NLR may be important not only for educational purposes

but also can be seen as handy tool in identification of DIF items.

The common way of applying 3PL IRT model in DIF detection, when considering the

same probability of guessing for both groups, is to fit the model on all data and estimate

the common guessing parameter. Fixed estimate of guessing parameter is then applied into

two separate models for focal and reference group (Magis, Béland, et al., 2010). Further, the

estimated parameters are rescaled (Candell & Drasgow, 1988; Lautenschiager & Park, 1988)

and then Lord’s and Raju’s statistics are calculated. It should be noted that this approach
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can lead to biased standard errors. Simultaneous estimation of parameters for both groups

including guessing parameter is offered e.g. in R package mirt (Chalmers, 2012), however

fitting without convergence issues in small sample sizes seems to be nearly impossible. Our

procedures uses the simultaneous parameter estimation and as non-IRT approach does not

encounter as many convergence issues.

We believe that also the currently proposed NLR procedure may benefit from further

improvements. Better specification of initial values could lead to smaller proportion of

convergence issues. Also other estimating procedures can be implemented to provide more

accurate estimates, such as weighted non-linear least squares or Bayesian based methods. NLR

model can be extended by considering different guessing parameters for focal and reference

group. Another generalization may be to allow upper asymptote to be smaller than one and

thus introduce an non-IRT alternative to four-parameter IRT model (Barton & Lord, 1981).

Similarly to IRT models (Reckase, 1985; Reckase & McKinley, 1991; Oshima, Raju, & Flowers,

1997), also NLR and NLR models can be extended by considering multidimensional tests.

Besides, more than two groups can be taken into account (Magis, Raiche, Beland, & Gerard,

2010). NLR DIF detection method can be also refined by implementing iterative purification

similarly as for LR (Zumbo, 1999) or IRT-based methods (Candell & Drasgow, 1988; Wang &

Yeh, 2003).

The current simulation study is limited to the investigated conditions as test length, nature

and proportion of DIF items and especially sample size. It should be noted that only equal

group size is considered, which is not a necessarily realistic condition. Another restriction is

that we consider only average difficulty items in non-uniform DIF design, where difficulty is

the same for both groups.

Despite its limitations, this study demonstrates pleasant properties of the newly proposed

NLR procedure. Sufficient power rate and low rejection rate even in small sample sizes

predetermines NLR to be an attractive and user friendly alternative to other procedures

used in DIF detection. As only non-IRT approach, NLR allows for incorporation of guessing

parameter into the model while it keeps the simplicity of LR procedure.
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Figure 1: Estimated characteristic curves for females (black) and males (gray) of item 49 by
LR (left), NLR (middle) and by 3PL IRT model (right). Plotted points represent proportion
of correct answers for particular values of standardized total score. Their size is defined by
number of examinees with the same value of standardized total score.

Table 1: Item Parameters Used to Generate DIF Items

DIF Type Item DIF Effect
Size

Reference Group Focal Group

a b c a b c

Uniform 1 0.8 1 0 0.2 1 1 0.2

Uniform
1 0.4 1 0 0.2 1 0.50 0.2
2 0.6 1 0 0.2 1 0.75 0.2
3 0.8 1 0 0.2 1 1 0.2

Non-uniform 1 0.8 0.56 0 0.2 1.79 0 0.2

Non-uniform
1 0.4 0.90 0 0.2 2.01 0 0.2
2 0.6 0.70 0 0.2 1.97 0 0.2
3 0.8 0.56 0 0.2 1.79 0 0.2
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Table 2: Item Parameters Used to Generate Non DIF Items Based on GMAT data.

Item
Parameters

Item
Parameters

a b c a b c

2 4 0.29 −2.95 0.07 12 14 0.52 −1.96 0.07
3 5 0.41 −2.93 0.07 13 15 1.02 1.28 0.22
4 6 0.94 −1.21 0.33 14 16 0.65 0.49 0.16
5 7 0.88 −0.24 0.18 15 17 0.82 0.61 0.07
6 8 0.42 −1.15 0.07 16 18 1.04 2.11 0.37
7 9 0.74 0.60 0.36 17 19 0.95 0.81 0.09
8 10 0.35 −0.35 0.07 18 20 1.01 0.81 0.19
9 11 0.44 −0.30 0.07 19 0.98 1.67 0.28
10 12 0.55 −1.06 0.07 20 0.92 0.42 0.09
11 13 0.82 1.02 0.36 21 0.65 1.68 0.02
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Table 3: Rejection rates (RR), power rates (PR) and proportion of convergence failures (CF) for Mantel-Haenszel (MH), Logistic
Regression (LR), Non-linear Regression (NLR), Lord’s (LORD) and Raju’s (RAJU) procedures.

Sample size = 1,000 Sample size = 2,000 Sample size = 5,000

RR PR CF RR PR CF RR PR CF

A. None DIF Item
MH 0.195 0.000 0.175 0.000 0.280 0.000
LR 0.235 0.000 0.230 0.000 0.330 0.000
NLR 0.380 0.518 0.325 0.163 0.450 0.097
LORD 10.925∗ 5.768 5.095∗ 0.507 2.035 0.224
RAJU 9.315∗ 5.913 4.525 0.507 1.505 0.224

B. One Uniform DIF Item
MH 0.658 97.100◦ 0.000 0.884 100.000◦ 0.000 1.516 100.000◦ 0.000
LR 0.642 96.000 0.000 0.868 100.000◦ 0.000 1.221 100.000◦ 0.000
NLR 0.821 96.500 0.682 1.079 100.000◦ 0.198 1.542 100.000◦ 0.107
LORD 9.995∗ 77.100 10.346 4.111 99.800 0.803 2.721 100.000◦ 0.019
RAJU 8.826∗ 61.400 10.209 3.626 92.700 0.803 2.184 100.000◦ 0.019

C. Three Uniform DIF Items
MH 1.759 63.800◦ 0.000 4.235 86.067◦ 0.000 14.365∗ 99.267 0.000
LR 1.529 58.500 0.000 3.147 82.400 0.000 9.741∗ 98.633 0.000
NLR 1.953 60.133 0.562 3.988 83.133 0.199 11.618∗ 98.600 0.084
LORD 11.029∗ 47.500 8.294 5.229∗ 75.700 0.971 7.606∗ 97.200 0.000
RAJU 9.171∗ 37.767 8.294 3.994 65.900 0.971 4.400 94.867◦ 0.000

D. One Non-Uniform DIF Item
MH 0.242 0.400 0.000 0.226 0.200 0.000 0.316 0.200 0.000
LR 0.468 46.400◦ 0.000 0.579 88.500◦ 0.000 0.700 100.000◦ 0.000
NLR 0.600 36.700 0.619 0.721 81.500 0.239 0.800 100.000◦ 0.126
LORD 10.626∗ 35.000 10.273 3.584 72.500 0.704 1.968 100.000◦ 0.393
RAJU 9.353∗ 14.200 10.133 2.837 45.200 0.704 1.621 100.000◦ 0.393

E. Three Non-Uniform DIF Items
MH 0.182 0.133 0.000 0.200 0.167 0.000 0.265 0.300 0.000
LR 0.694 36.633◦ 0.000 1.382 78.233◦ 0.000 3.006 99.367 0.000
NLR 0.782 28.200 0.561 1.665 69.167 0.384 3.400 98.367 0.165
LORD 9.771∗ 35.800 5.690 3.918 77.833 0.589 2.218 99.767 0.000
RAJU 8.688∗ 17.333 5.539 3.653 68.433 0.589 2.471 99.900◦ 0.000

An asterisk ∗ indicates that the rejection rate exceeds nominal value of 5% and thus corresponding power is meaningless.
A circle ◦ indicates the highest power at rejection rate lower than nominal value of 5%.
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Table 4: AT real data set analysis results. Calculated statistics of Mantel-Haenszel (MH), Logistic Regression (LR), Non-linear Regression
(NLR), Lord’s (LORD) and Raju’s (RAJU) DIF detection procedures. The p-values were adjusted by Benjamini-Hochberg multiple
comparison correction.

MH LR NLR LORD RAJU

αMH p-value Deviation p-value F-value p-value χ2-value p-value Z-score p-value

Item 49 12.446 0.008∗ −14.760 0.012∗ 11.135 0.000∗ 11.130 0.077 −3.201 0.027∗
Item 27 0.916 0.484 −1.213 0.727 0.385 0.756 0.398 0.893 −0.383 0.738
Item 41 0.132 0.843 −0.637 0.808 0.424 0.756 0.421 0.893 0.616 0.672
Item 7 1.540 0.429 −1.902 0.607 0.995 0.616 1.960 0.843 −1.193 0.493
Item 38 1.775 0.420 −2.146 0.607 1.895 0.502 1.940 0.843 −1.349 0.493
Item 28 0.387 0.673 −0.696 0.808 0.256 0.815 0.328 0.893 0.493 0.691
Item 9 2.620 0.420 −3.408 0.606 2.087 0.502 3.027 0.734 −1.402 0.493
Item 47 1.251 0.439 −4.323 0.576 3.254 0.279 3.146 0.734 −1.348 0.493
Item 75 0.026 0.951 −0.065 0.968 0.423 0.756 0.428 0.893 −0.680 0.672
Item 17 2.229 0.420 −2.795 0.607 1.555 0.529 1.237 0.893 −1.100 0.493
Item 76 2.192 0.420 −5.383 0.469 2.040 0.502 0.375 0.893 0.550 0.685
Item 10 0.004 0.951 −0.315 0.899 0.111 0.895 0.051 0.975 0.219 0.827
Item 64 0.006 0.951 −2.229 0.607 0.880 0.638 1.154 0.893 −1.039 0.498
Item 45 1.795 0.420 −2.566 0.607 0.690 0.716 3.290 0.734 −1.557 0.493
Item 24 1.397 0.431 −1.810 0.607 1.637 0.529 1.729 0.843 −1.164 0.493
Item 1 1.042 0.473 −1.710 0.607 1.094 0.610 0.770 0.893 0.705 0.672
Item 68 5.087 0.241 −5.307 0.469 3.179 0.279 4.948 0.734 −1.959 0.493
Item 61 1.727 0.420 −3.620 0.606 0.595 0.736 3.298 0.734 1.229 0.493
Item 25 1.863 0.420 −1.932 0.607 1.216 0.593 1.869 0.843 1.140 0.493
Item 2 0.379 0.673 −0.933 0.784 1.262 0.593 0.561 0.893 −0.658 0.672
An asterisk ∗ indicates that p-value is smaller than nominal value of 0.05 and thus item is detected as DIF.
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Table 5: AT real data set items’ parameters NLR procedure and 3PL IRT model for males (index M) and females (index F). Parameter a
represents discrimination, b difficulty and c guessing. Estimates are provided with standard errors (s.e.) in brackets.

NLR IRT

aM (s.e.) aF (s.e.) bM (s.e.) bF (s.e.) c (s.e.) aM (s.e.) aF (s.e.) bM (s.e.) bF (s.e.) c (s.e.)

Item 49 2.62(0.73) 1.61(0.30) −0.34(0.14) −0.95(0.20) 0.54(0.05) 3.78(1.47) 2.11(0.48) 0.22(0.13) −0.39(0.13) 0.69(0.05)
Item 27 1.52(0.24) 1.51(0.19) 1.30(0.10) 1.21(0.08) 0.04(0.03) 1.35(0.23) 1.33(0.17) 1.38(0.18) 1.29(0.12) 0.05(0.03)
Item 41 2.38(0.35) 2.40(0.27) 0.65(0.07) 0.58(0.05) 0.10(0.02) 2.97(0.67) 3.30(0.55) 0.66(0.08) 0.61(0.06) 0.13(0.02)
Item 7 1.28(0.19) 1.21(0.17) 0.24(0.14) 0.38(0.14) 0.00(0.06) 1.14(0.16) 1.02(0.11) 0.23(0.10) 0.42(0.09) 0.00(0.00)
Item 38 1.60(0.25) 1.78(0.25) −0.50(0.15) −0.64(0.13) 0.11(0.08) 2.17(0.42) 2.02(0.26) −0.20(0.10) −0.37(0.08) 0.27(0.08)
Item 28 1.88(0.35) 1.98(0.28) 1.72(0.11) 1.63(0.07) 0.08(0.02) 1.76(0.45) 1.90(0.35) 1.82(0.23) 1.68(0.14) 0.09(0.02)
Item 9 1.31(0.23) 1.38(0.21) −0.79(0.27) −0.96(0.26) 0.00(0.15) 1.10(0.17) 0.97(0.11) −0.87(0.14) −1.19(0.13) 0.00(0.01)
Item 47 3.12(0.96) 1.26(0.22) −1.56(0.23) −1.93(0.46) 0.36(0.19) 1.80(0.53) 1.28(0.29) −1.28(0.27) −1.15(0.23) 0.67(0.21)
Item 75 1.69(0.31) 1.51(0.22) 0.21(0.12) 0.14(0.12) 0.18(0.05) 2.14(0.48) 1.81(0.26) 0.46(0.10) 0.44(0.08) 0.29(0.05)
Item 17 1.63(0.27) 1.62(0.21) 1.28(0.10) 1.10(0.08) 0.08(0.03) 1.71(0.33) 1.56(0.21) 1.27(0.15) 1.17(0.11) 0.09(0.03)
Item 76 1.22(0.20) 1.61(0.24) −0.05(0.16) 0.07(0.12) 0.13(0.06) 2.55(0.70) 2.88(0.52) 0.44(0.10) 0.50(0.07) 0.33(0.04)
Item 10 1.57(0.27) 1.69(0.26) −1.36(0.27) −1.34(0.25) 0.00(0.19) 1.18(0.20) 1.24(0.15) −1.63(0.22) −1.58(0.14) 0.00(0.05)
Item 64 1.25(0.30) 0.95(0.20) 0.66(0.20) 0.77(0.23) 0.20(0.07) 1.75(0.44) 1.32(0.27) 1.08(0.16) 1.31(0.17) 0.35(0.05)
Item 45 1.32(0.23) 1.21(0.19) −0.80(0.26) −0.72(0.28) 0.00(0.14) 1.66(0.28) 1.32(0.16) −0.41(0.11) −0.28(0.09) 0.22(0.11)
Item 24 1.21(0.18) 1.25(0.17) 0.47(0.13) 0.64(0.12) 0.00(0.05) 1.16(0.16) 1.08(0.11) 0.47(0.11) 0.66(0.09) 0.00(0.00)
Item 1 0.70(0.19) 0.82(0.22) −0.99(0.89) −0.68(0.79) 0.09(0.27) 1.59(0.54) 1.94(0.45) 0.74(0.17) 0.87(0.12) 0.54(0.04)
Item 68 1.18(0.22) 1.11(0.20) −0.94(0.32) −0.68(0.35) 0.00(0.17) 0.98(0.16) 0.86(0.10) −1.05(0.17) −0.82(0.11) 0.00(0.01)
Item 61 1.19(0.22) 1.37(0.23) −1.15(0.37) −1.17(0.33) 0.00(0.20) 0.99(0.18) 1.32(0.17) −0.90(0.19) −0.91(0.11) 0.20(0.23)
Item 25 1.03(0.21) 1.01(0.20) −0.46(0.34) −0.26(0.35) 0.08(0.14) 1.07(0.23) 1.23(0.19) 0.23(0.15) 0.45(0.11) 0.33(0.08)
Item 2 2.45(0.48) 1.99(0.28) 1.41(0.09) 1.32(0.07) 0.13(0.02) 2.75(0.90) 2.26(0.41) 1.39(0.14) 1.35(0.10) 0.16(0.02)
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Appendix

Selected R code

# standardized total score

s co r e <− c ( s c a l e ( apply ( data , 1 , sum ) ) )

# starting values are provided by startNLR() function from difNLR package

s t a r t i n g_va lues <− startNLR ( data , group )

# functions of item characteristic curves

### with DIF

fun_d i f <− der iv3 ( ~ c + (1 − c ) / (1 + exp(−(a + aDif ∗ group ) ∗

( s co r e − (b + bDif ∗ group ) ) ) ) ,

namevec = c ( " a " , "b " , " c " , " aDif " , " bDif " ) ,

f unc t i on . arg = func t i on ( score , group ,

a , b , c , aDif , bDif ){})

### with no DIF

fun_nod i f <− der iv3 ( ~ c + (1 − c ) / (1 + exp(−a ∗ ( s co r e − b ) ) ) ,

namevec = c ( " a " , "b " , " c " ) ,

f unc t i on . arg = func t i on ( score , group , a , b , c ){})

# fitting two models for characteristic curve of item 1

f i t_d i f <− n l s ( data [ , 1 ] ~ fun_d i f ( score , group , a , b , c , aDif , bDif ) ,

a lgor i thm = " port " ,

s t a r t = s t a r t i n g_va lue s [ 1 , ] ,

lower = c(− In f , −In f , 0 , −In f , −I n f ) ,

upper = c ( Inf , In f , 1 , In f , I n f ) )

f i t_nod i f <− n l s ( data [ , 1 ] ~ fun_nod i f ( score , group , a , b , c ) ,

a lgor i thm = " port " ,

s t a r t = s t a r t i n g_va lue s [ 1 , 1 : 3 ] ,
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lower = c(− In f , −In f , 0 ) ,

upper = c ( Inf , In f , 1 ) )

# F-test of submodel

### F-statistic and p-value calculation

F_value <− ( ( f i t_nod i f $m$deviance ( ) − f i t_d i f $m$deviance ( ) ) / 2) /

( f i t_d i f $m$deviance ( ) / ( nrow ( data ) − 5) )

p_value <− 1 − pf (F_value , 2 , nrow ( data ) − 5)
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