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Abstract

A model is developed for predicting the outcome of breakup of a fluid particle (bubble or
drop), which is initially deformed (e.g. due to turbulence) and breaks into two daughter
particles. An initially dumbbell-shaped deformation of the particle is assumed. The
evolution of sizes of particle sub-parts is calculated using Rayleigh-Plesset equations,
which consider the inertia of surrounding fluid, capillary action and viscous effects. The
redistribution of internal fluid in the particle is calculated using Bernoulli equation. The
model computes the sizes of daughter particles after the breakup. By assuming various
initial conditions (various initial shapes and initial velocities of deformation), the size
distribution of daughter particles is obtained. These size distributions are qualitatively
compared with available experimental data and reasonable agreement is observed. Because
of strong assumptions, this model cannot be used directly for accurate prediction of size
distribution after a breakup. However, it provides an insight in the physics of the breakup,
especially on the effect of inner phase properties.
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1 Introduction

The multiphase gas-liquid and liquid-liquid systems are widely used in many industrial applications (e.g.
oil-water processing, boilers, bubble columns, stirred tank reactors, ejectors, air-lift reactors, etc.).
Breakup of dispersed particles (bubbles or drops) is one of the processes controlling the behaviour of
these multiphase systems and also the mass transfer between the phases.

As the detailed description of multiphase turbulent flows is quite complex, the computational methods
help to predict the dynamic behaviour. In the case of multiphase mixtures, the Population-Balance
Modelling is an increasingly popular approach. This method requires an information about the probability
of breakup of particles and about the size distribution of daughters generated by the breakup; models
predicting these features are reviewed in [1-3]. Most of these models predict the breakup frequency and
size distribution of daughters in dependence on the local rate of energy dissipation and particle size, but
surprisingly do not consider the flow of internal phase. In contrast, experiments suggest that the particle
breakup in turbulent flow significantly depends on the properties of the internal phase [4], and similar
behaviour has been observed also in our experimental investigation [5, 6].

A recent breakup model of Xing et al. [7] tried to explain the size distribution of daughter particles.
This model assumes the initial shape of particle in form of a dumbbell and uses Young-Laplace and
Bernoulli equations to describe the flow of inner phase in the particle (bubble/drop) and its redistribution
among the two emerging daughters. Their model is however somewhat dubious because the inertia of
outer phase is neglected. A more detailed analysis reveals that this approach can be justified only in the
case of bubbles or drops with very small neck, which seems to be irrelevant for real breakup.

The aim of this paper is therefore to develop an equivalent of Xing's et al. model, which correctly
computes the stresses due to inertia of surrounding liquid. This leads to a model, which considers initially
deformed bubble or drop. Assuming that the shape of particle evolves as a result of inertial, capillary and
viscous forces, the model estimates the outcome of binary breakup, especially the daughter sizes. This
model is then used to simulate the outcome of many breakups with different initial conditions. Size
distribution of daughters for breakup triggered by random events is thus obtained and it is compared with
our previous experimental findings [6].

2 Model development

The concept of the model is adopted from that of Xing at al. [7]. The dumbbell shape of the breaking
particle is assumed (Fig. 1). It consists of three parts: larger spherical particle with radius R, smaller
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spherical particle with radius R, and a cylindrical neck with radius Ry and length Ly. The evolution of size
of each part is described by Rayleigh-Plesset equations [8], which includes the inertia, capillary and
viscous effects of the external phase. Similarly, the evolution of neck diameter is described by a
cylindrical variant of Rayleigh-Plesset equation [9]. These three parts of the particle are hence described
by a system of three ordinary differential equations for radii R, and R, of spherical parts and neck radius
RN:
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here B and B are the first and second time derivative of the radii, respectively. The derivatives of the radii
in equations (1-3) need to match the volume-conservation constraint

V.or = const = 4/3mR3 + 4/3nR3 + R Ly (€}
here Ly is the length of the neck. After differentiating this equation, we get the constraint for first
derivatives [Ri! Rz, RN]

0 = 2R?R, + 2RZR, + LyRyRy 5)

Another differentiating gives a constraint for second derivatives [Ry, Rz, Ry]
0 = 2R2B, + 2RZR, + LyRyRy + 4R, R? + 4R,R% + LyR, (6)
Note that equation (6) cannot guarantee volume conservation because any linear time evolution of total

volume V,,, = ¢, + ¢yt satisfies the equation (6). However, it can still be used as a constraint for second
derivatives [Ry, R5, Ry] as long as the first derivative of volume conservation (5) is satisfied.

Figure 1: Dumbbell shape of the breaking fluid particle

The system of differential equations (1-3) with the constraints (5,6) contains additional unknowns [P, P,
Py) and parameters [Ly, R.., P, p, &, 0], which are estimated from additional assumptions of the model:
. The overall particle size before breakup is D = 5Smm (matching typical size of our experiments [6]).

Only binary breakups are assumed.

The initial volume of the neck is assumed to be 5% of the volume of the mother particle.

The length of the neck is kept unchanged, Ly = D/4.

The cut-off distance of neck far field is assumed R.. = D.

The part R, is always bigger than the part R, resulting to the pressures in the particles Py < P, and flow

direction from the smaller particle to the bigger one; R;> 0 and R,< 0.

7. The pressure far enough from the particle is set to zero, P =0. As we don’t assume any phase
changes, the system does not depend on the absolute pressure and the parameter P.. can be omitted.

8. Pressure loss in the neck AP is calculated from the Bernoulli equation; the viscous pressure drop due
flow through the neck is estimated using the Hagen—Poiseuille equation. This leads to the relation
between the velocity in the neck Uy and the pressure loss in form

AP:Pz“P1=%PiUN|UN|+%€LM @)
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9. Pressure driving the neck contraction Py is assumed
z 4u;UNL
Py = min(Py, Pp) + 2L 8)

10. Velocity in the neck Uy used in equations (7-8) is determined from the conservation; increase of the
radius R, is caused by the fluid flow through the neck
. 2p
4mRIR, = -mREUy => Uy= —%ﬁ ©)
11.To compare the model results with available experimental data [6], water is assumed as the outer
phase and air bubbles and cyclohexane drops, respectively, as the inner phase. The physical-chemical
properties of used fluids are listed in Table 1.

Table 1: Physical-chemical properties of assumed fluids

Fluid property Water | Air | Cyclohexane
density, p [g/cm®] 0.998 | 0.001 0.779
viscosity, 4 [mPa.s] 1.00 0.02 1.02
surface tension, o [mN/m] 70.9 - 25.0
interfacial tension (with water), o [mN/m] - 70.9 49.0

2.1 Calculation procedure

The system described above is a system of ordinary differential equations (1-3) with unknowns [R), R,,
R, R,, Ry, Ryl (defining the state vector), the constraints (5,6) and algebraic equations (7-9) with
additional unknowns [Py, P,, Py, Uy). Equations contain also [Ly, R, Pe, p, 44, 0], which are parameters
of the system. The initial conditions are chosen to get various initial volume distribution between the parts
Ry and R, and various growing rates of the particles R;, R, (Table 2). The initial condition for the
shrinking of the neck Ry, comes from the total volume conservation after taking the first derivative (3).

Table 2: Initial conditions for differential equations (1-3)
Initial neck radius is calculated with respect to
: Ryp=0.92 mm
assumptions 3 and 4.

Initial radius of larger particle ranges in interval | R e (2.36 - 1.97 mm)
Initial radius of smaller particle is calculated

from Ryp and R)q assuming the total volume Ry e (1.18 - 1.93 mm)
conservation

Initial first derivative R,, ranges in interval Ryip€ (0 - 0.3 m/s)
Initial first derivative R,, ranges in interval Ryp = —Ryy

Initial first derivative Ry, is calculated from the

equation (5) Ryo = —2R{o/(LyRy)Ryg — 2R30/(LyRy)R20

When solving a time step, the state vector [Ry, Ry, Ry, R,, Ry, Ry] is known (from either previous time
step or initial condition). The second derivatives [y, R;, Ry] together with unknowns [P, P,, Py, Ul
have to be solved. As the system of equations (1-3, 7-9) is implicit for one variable, an iterative procedure
has to be used. The calculation procedure is as follows:

The pressure P, is guessed.

Up, P and Py are computed from equations (7-9).

Second derivatives [R;, R;, Ry] are computed from differential equations (1-3).

Right-hand side of equation (6) is evaluated.

The pressure P is then adjusted (and Uy, Py, Py, Ry, R, and Ry are recalculated correspondingly) in
the way that equation (6) is satisfied. For iterating appropriate value of P, regula falsi method (with
cubic spline interpolation) is used until uncertainty of P, is smaller than 10”c/D.

6. After finding P, the derivative of state vector [Ry, Ry, R,, R;, Ry, Ry] is known and it is passed to the

solver of differential equations. The solver then computes next time step (returns to point 1).

SR (R

The calculations are made in software Matlab R2016a using the solver ‘odelS5s’, which is a variable-
order solver (orders 1-3) suitable for stiff problems. The calculation stops when: i. the neck radius reaches
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the radius of the smaller particle Ry=R;, or ii. the neck is closed (practically, we set a threshold
Ry si0p = 10° m). In the former case, the evolution of particle deformation is regarded as no breakup. In the
latter case, final radii R; and R, are regarded as sizes of daughter particles after the breakup.

The validity of equations (4) and (5) is verified. There is a minor variation of total volume due to
numerical accuracy, but this variation is of order of 107V, (after many time steps), which is consistent
with the requested accuracy on P,. We expect the same order of residual errors also for the other
differential equations. Usage of more accurate solvers (e.g ‘ode45’) increases the accuracy of
computations by several orders of magnitude.

3 Results and discussion

The outcome from each calculation is the time evolution of radii [R;, R,, Ry], pressures [Py, P, Py] and
velocity in the neck Uy. This evolution could finish either by particle breakup into two daughter particles
(for typical example, see Fig. 2) or by diminishing of the smaller particle until it empties without breakup
(Fig. 3). The difference between these two cases is in the initial particle deformation; both initial
velocities for the shown examples are Ry = Ryo = 0.
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Figure 2: Evolution of radii and pressures in individual parts of the particle and evolution of the velocity
in the neck resulting to the breakup. Bubble-water systerm, initial conditions R;q = 2.09 mm, Ry = 1.78
mm, Ry = Ry = 0, final sizes after the breakup R, = 2.36 mm, R, = 1.34 mm
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Figure 3: Evolution of radii and pressures in individual parts of the particle and evolution of the velocity
in the neck resulting to the diminishing of the smaller spherical part (no breakup).
Bubble-water system, initial conditions R, =2.17 mm, Ry = 1.66 mm, R, = Rm =0,

The capillarity causes the flow of internal phase from the smaller part R, to the bigger one because of
. higher capillary pressure. The velocity in the neck increases (negative sign of Uy means the flow from
right side to the left one) and Ry, R, decreases. The effect of capillarity is counteracted by the inertia of
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surrounding liquid and by the pressure drop in the neck. When the pressure drop in the neck starts to
dominate over surrounding inertia, the velocity in the neck decreases until the neck either closes (breakup,
Fig. 2) or merges with the part R, (no breakup, Fig. 3). As the pressures [P;, P,, Py] are function of the
velocity in the neck, the drop of the pressures at the end of time evolution is also related to the prevailing
effects and to the decrease of the velocity in the neck. Both cases displayed in Figures 2 and 3 were
observed also experimentally [6], where the strong particle deformation could result either in the breakup
or non-breakup.

The goal, for which the present model is developed, is to obtain the size distribution of daughter
particles. It is assumed that in a turbulent flow, the bubble or drop is perturbed by random events.
Therefore, various initial conditions (Table 2) are used and the evolution of bubble shape is calculated.
By summarizing the outcome for all initial conditions, the size distribution of daughter particles is
obtained (Figure 4). It is expressed in terms of the probability-density function (p.d.f.) of occurrence of
daughter with given volume fraction of the mother.
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Figure 4: Computed size distribution of daughter particles: a) air bubbles in water (95 breakups, 190 data
leading to p.d.f.), b) cyclohexane drops in water (118 breakups, 236 data leading to p.d.f.)
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Figure 5: Experimental size distribution of daughter particles [6]. Data for binary breakups of particles
with size in range D € (4.5 - 5.5 mm): a) air bubbles in water (52 valid breakups),
b) cyclohexane drops in water (30 valid breakups)

Even though the used range of initial conditions is quite restrictive and the amount of data leading to
p.d.f. is limited, a strong qualitative difference is observed comparing the daughter size distributions for
bubble and drop breakup (Figures 4a, 4b). The air bubbles with low density and viscosity of the inner
phase mostly break into one large and one small bubble (the two characteristic peaks in Fig. 4a). On the
other hand, the daughter size distribution for drop breakup is more uniform, leading more frequently to
two daughters with comparable size. This is linked to the redistribution of the inner phase during the
breakup: in the case of bubbles, the gas moves easily from one part to another, and two daughters of
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uneven size are produced. Oppositely in the case of liquid drop, the flow of inner fluid through the neck is
opposed by higher resistance due to high density and viscosity. Less fluid is bence redistributed between
drop parts before the neck is closed.

Similar bubble and drop size distributions were obtained also experimentally [6] (Figures 5a, 5b). This
suggests that the inertia and viscous effects of both inner and outer phases are important during the
breakup and needs to be taken into account in its modelling. The redistribution of the internal phase in the
particle seems to be a crucial for the size distribution of the daughter particles. Note that this dependence
is ignored in most models for daughter size distribution (e.g. in the most frequently used model of Luo
and Svendsen, [10]).

Conclusions

A model simulating the binary breakup of the fluid particle due to its initial deformation (e.g. by a
turbulent flow) has been developed. It assumes the inertial, viscous and capillary effects in both inner and
outer phases. The outcome of the model is the size distribution of daughter particles triggered by random
events, which lead to various initial deformations of the particle and the various initial speeds of
deformation. Comparing the breakup of bubbles and droplets, a significant qualitative difference in
daughter size distribution is obtained. This points out that the properties of inner phase need to be taken
onto account when modelling the breakup.

Note that the present model is a strong oversimplification of reality. For example, majority of breakup
is not binary (as considered here) but leads to multiple daughters; initial shapes are more complicated
than the assumed dumbbell shape; particles have more degrees of freedom than only three considered
here; initial conditions (shape and deformation speed) were just uniformly distributed over some interval,
without further justification of this interval by some real experimental statistics. Still, we believe that this
oversimplified model proves that the redistribution of the inner fluid is an important phenomenon, which
controls the size distribution of daughter particles.

To our knowledge, the redistribution and properties of inner fluid is disregarded in most models for
daughter size distribution. We believe that any physically correct model for size distribution of daughters
should take this phenomenon into account.
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