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Abstract. In bioinformatics, regularized linear discriminant analysis is
commonly used as a tool for supervised classification problems tailor-
made for high-dimensional data with the number of variables exceeding
the number of observations. However, its various available versions are
too vulnerable to the presence of outlying measurements in the data.
In this paper, we exploit principles of robust statistics to propose new
versions of regularized linear discriminant analysis suitable for high-
dimensional data contaminated by (more or less) severe outliers. The
work exploits a regularized version of the minimum weighted covariance
determinant estimator, which is one of highly robust estimators of multi-
variate location and scatter. The performance of the novel classification
methods is illustrated on real data sets with a detailed analysis of data
from brain activity research.
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1 Introduction

In bioinformatics, a common data analysis task is to learn a classification rule
over high-dimensional data, i.e. data with the number of variables p exceeding
the number of observations n (n < p or even n � p) [8, 2]. Thus, supervised
classification methods (classifiers) represent important tools for the analysis of
data observed in K different samples (groups) as

X11, . . . , X1n1 , . . . , XK1, . . . , XKnK
, (1)

while we assume p > K ≥ 2 and denote n =
∑K
k=1 nk. Sensitivity of vari-

ous standard classification procedures to the presence of outlying measurements
(outliers) in such high-dimensional data has been repeatedly reported as a seri-
ous problem in data mining as well as multivariate statistics [9, 33].

The linear discriminant analysis (LDA) is well known to be too sensitive
to the presence of outlying values in the data because it exploits the classical
(non-robust) estimates in the form of means and empirical covariance matrix.
As an alternative, robust classification methods have been proposed which are
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resistant to the presence of outliers [4, 16, 35]. Highly robust methods are defined
as methods with a high breakdown point, which measures the sensitivity of
an estimator against noise or outliers in the data. Particularly, the finite-sample
definition of the breakdown point corresponds to the maximal percentage of
extremely severe outliers present in the data set, which still does not lead the
method to a collapse, i.e. the estimators of the means and of the common scatter
matrix are not shifted to infinity [6]. Nevertheless, robust classification methods
are computationally feasible only for n > p with a sufficiently small p.

In this paper, we propose new classification methods for high-dimensional
data exploiting principles of robust statistics in a unique combination with the
(Tikhonov) regularization. Section 2 recalls various existing approaches to reg-
ularized linear discriminant analysis for n � p. Section 3 recalls the minimum
weighted covariance determinant estimator, which is one of highly robust esti-
mators of multivariate location and scatter, and proposes its regularized ver-
sion. Section 4 proposes four new robust regularized classification methods for
high-dimensional data, exploiting the tools of Section 3. The following Section 5
illustrates the performance of the novel methods on several real data sets, while
the largest attention is paid to data from brain activity research. A discussion
follows in Section 6, where also the good comprehensibility of the newly proposed
procedures is brought to attention, and finally Section 7 concludes the paper.

2 Regularized Linear Discriminant Analysis

Various available versions of a regularized LDA can be characterized as modi-
fications of the standard LDA for the context of high-dimensional data. While
these methods have found their applications in bioinformatics (e.g. [10, 34, 23]),
they remain to be vulnerable to outliers because of the non-robustness of the
empirical covariance matrix as well as means of each group.

Regularized LDA assumes a common covariance matrix Σ for each group.
If n < p or even n � p, the pooled estimator of Σ denoted by S is singular.
Let us denote the mean of the observed values in the k-th group (k = 1, . . . ,K)
by X̄k. Perhaps the simplest and most habitually used version of regularized
LDA, which we denote by LDA∗ to avoid confusion, assigns a new observation
Z = (Z1, . . . , Zp)

T to group k, if l∗k > l∗j for every j 6= k, where the regularized
linear discriminant score for the k-th group (k = 1, . . . ,K) has the form

l∗k = X̄T
k (S∗)−1Z − 1

2
X̄T
k (S∗)−1X̄k + log πk. (2)

Here, πk is a prior probability of observing an observation from the k-th group,

S∗ = (1− λ)S + λT (3)

for λ ∈ (0, 1) denotes a regularized estimator of Σ and the target matrix T is
a given symmetric positive definite matrix of size p×p. Its most common choices
include the identity matrix Ip or a diagonal (non-identity) matrix T = s̄ Ip,
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where s̄ =
∑p
i=1 Sii/p. The regularized matrix (3) is guaranteed to be regular

and positive definite even for n � p. A suitable value of λ is usually found by
a cross validation.

Another important example of a regularized LDA is the shrunken centroid
regularized discriminant analysis (SCRDA) [10], which performs also a regu-
larization on the mean of each group, namely by shrinking each of the means
towards the pooled mean in the L1-norm.

Concerning the properties of regularized versions of LDA, it would be very
difficult to assess them rigorously. Instead, they were rather investigated only
by means of numerical simulations [34, 10]. Basically, regularized LDA methods
remain to be non-robust to the presence of severe outliers, although the regu-
larization leads to their local insensitivity (robustness) to small measurement
errors as advocated within the framework of robust optimization [1].

3 Robust Estimation of Multivariate Location and
Scatter

This section devoted to robust estimation of multivariate location and scatter
starts by recalling the highly robust minimum weighted covariance determinant
estimator in Section 3.1. We will use the regularized M-estimator of multivariate
data proposed in [3] to obtain a reliable initial estimator of the scatter matrix.
This allows to define a regularized version of the minimum weighted covariance
determinant estimator in Section 3.2. For the iterative computation of this scat-
ter matrix estimator, an initial estimate will be necessary and we recommend to
use Chen’s estimator [3] for this purpose.

3.1 Minimum Weighted Covariance Determinant Estimator

The Minimum Covariance Determinant (MCD) and the Minimum Weighted Co-
variance Determinant (MWCD) estimators are highly robust affine-equivariant
estimators of multivariate location and scatter. Let us consider a single sample
of independent identically distributed p-variate random variables X1, . . . , Xn

(i.e. K = 1). The estimators are formulated for multivariate data coming from
a unimodal elliptically symmetric distribution with a location parameter µ ∈ Rp
and a scatter matrix Σ ∈ Rp×p (cf. [17]). The scatter matrix is a more general
concept compared to the covariance matrix, which must not necessarily exist.
Nevertheless, the two concepts are identical for Gaussian data. Standard estima-
tors of µ and Σ are highly vulnerable to the presence of outliers in the data. On
the other hand, the MCD and MWCD estimators, which will be now recalled,
are more suitable for severely contaminated data compared to classical estimates
and also compared to multivariate M-estimators [26, 36].

The MCD estimator [31] is computed as the classical mean and the empir-
ical covariance matrix taking into account however only the optimal subset of
h observations, which yields the minimum determinant of the empirical covari-
ance matrix over all such possible subsets of h observations. This corresponds
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to assigning weights equal to 1 or 0 to the observations, while the number of
ones is a fixed value equal to h which must be specified by the user prior to the
computations. Properties of the estimator were overviewed in [17].

The MWCD estimator [29] represents a generalization of MCD allowing to
consider non-negative (possibly continuous) weights w1, . . . , wn to be assigned
to the observations. The user specifies magnitudes of weights prior to computing
the estimator but the weights themselves are assigned to individual observations
only after a permutation, which is determined only during the computation of
the estimator. Such implicitly given weights are based on the idea to down-weight
outliers and to increase the influence of the majority of ”good data”.

Properties of the MWCD estimator were derived in [29] including the effi-
ciency, Fisher consistency or influence function. The method attains the maximal
breakdown point which is possible for an affine-equivariant estimator [25]; this
is true if the outliers obtain weights exactly equal to 0 and the data are assumed
in general position [30]. An approximative algorithm for computing the MWCD
estimator may be obtained as a generalization of the MCD algorithm [31]. The
advantage of the weighting scheme is its ability to reduce the local sensitiv-
ity compared to the MCD estimator; this is analogous to the experience with
implicitly weighted methods in robust regression [19].

3.2 Regularized MWCD Estimator

We consider again the data in one group as in Section 3.1. Because the MWCD
estimator cannot be computed for n < p, we define its regularized version which
is computationally feasible also for n� p.

Let us first recall the work of Chen et al. [3], who proposed a regularized M-
estimator of the scatter matrix of multivariate data based on a popular (Huber-
type [15]) M-estimator of [36]. However, M-estimators of parameters in the mul-
tivariate model do not possess a high breakdown point [37]. In addition, the
estimation does not yield any corresponding estimator of the mean.

Our proposal of a regularized MWCD estimator presented as Algorithm 1
exploits Chen’s regularized M-estimator as an initial estimator of the scatter
matrix. This depends on the value of a regularization parameter ρ ∈ (0, 1). If
there is no prior idea how to choose its suitable value, a reasonable recommen-
dation is to choose a very small ρ. Nevertheless, its suitable value may be easily
found by cross validation in specific tasks. This will be the case of classification
problems in Section 4. In step 2, choosing robust rather than standard initial
estimators is a common approach in a variety of iterative robust estimators [18].

4 Robust Classification

Four novel robust versions of regularized LDA will be proposed in this section,
together with algorithms for their efficient computation. The approach is suitable
for multivariate data coming from a unimodal elliptically symmetric distribution
as explained in Section 3.1.
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Algorithm 1 Regularized MWCD estimator.

Input: p-dimensional observations X1, . . . , Xn, weights w1, . . . , wn, positive definite
symmetric matrix T ∈ Rp×p.

Output: X̄MWCD, SMWCD.
1: for i = 1 to 10 000 do
2: Randomly select an initial set of n/2 observations. Compute Chen’s estimator,

which will be denoted by B (for the mean) and C (for the scatter matrix).
3: j := 1
4: Lij := +∞
5: repeat
6: Compute

d(i;B,C) =
[
(Xi −B)TC−1(Xi −B)

]1/2
, i = 1, . . . , n. (4)

Sort these values in ascending order and assign corresponding ranks to in-
dividual observations. This determines a permutation π(1), . . . , π(n) of the
indexes 1, 2, ..., n, which fulfills

d(π(1);B,C) ≤ · · · ≤ d(π(n);B,C). (5)

7: Assign the weights to each observation according to its rank evaluated in the
previous step. In this way, e.g. the observation Xπ(1) obtains the weight w1.

8: Compute the weighted mean and weighted empirical covariance matrix Sw
using these weights.

9: j := j + 1
10: C := (1− λ)Sw + λT
11: Lij := det(C)
12: until Lij ≥ Li,j−1

13: end for
14: Determine the set of weights w̃1, . . . , w̃n minimizing Lij over all considered i and j.
15: X̄MWCD :=

∑n
i=1 w̃iXi

16:

SMWCD :=

n∑
i=1

w̃i(Xi − X̄MWCD)(Xi − X̄MWCD)T (6)

4.1 MWCD-LDA∗

We will propose a novel classification method denoted as MWCD-LDA∗. We
assume data (1) in K groups, while all the groups have the common scatter
matrix Σ ∈ Rp×p. Our approach is based on estimating Σ as well as the means
of the groups by the regularized MWCD estimator of Section 3.2.

Concerning the estimator of the scatter matrix of data (1), we must be aware
that Σ does not play the role of the covariance (nor scatter) matrix over all data
but rather to the scatter matrix common for each of the groups. Therefore, we
need to adapt Algorithm 1 to the situation with K groups. Algorithm 1 in step
8 considers the empirical weighted covariance matrix, which has to be replaced
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for the data in K groups by

S∗MWCD =
(
S∗ij
)p
i,j=1

, (7)

where

S∗ij =

K∑
k=1

nk∑
l=1

wkl
(
Xkli − X̄k

iw

) (
Xklj − X̄k

jw

)
. (8)

Here, the summation over l runs over all observations l = 1, . . . , n, which belong
to the k-th group,

Xkl = (Xkl1, . . . , Xklp)
T for k = 1, . . . ,K, l = 1, . . . , nk, (9)

the weights are denoted as w11, . . . , w1n1 , . . . , wK1, . . . , wKnK
and X̄k

iw denotes
the weighted mean of the k-th group with these weights. With this difference,
Algorithm 1 yields S∗MWCD as the estimator of Σ, which exploits the optimal
weights denoted as w̃1, . . . , w̃n.

The resulting weights will be now used also to define regularized MWCD-
means of each group, which have the form

X̄MWCD =

n∑
l=1

w̃lXl (10)

and
X̄k
MWCD =

∑
l∈group k

w̃lXl, k = 1, . . . ,K. (11)

Now we come back to the original classification problem. Formally, MWCD-
LDA∗ will assign a new observation Z = (Z1, . . . , Zp)

T to group k, if ˜̀
k > ˜̀

j for
every j 6= k, where

˜̀
k = (X̄k,MWCD)T (S∗MWCD)

−1
Z −

−1

2
(X̄k,MWCD)T (S∗MWCD)

−1
X̄k,MWCD + log πk. (12)

Equivalently, the classification rule can be also expressed exploiting a robust
regularized Mahalanobis distance. In this respect, an observation Z is assigned
to group k if

(X̄j,MWCD − Z)T (S∗MWCD)
−1

(X̄j,MWCD − Z) + log πj (13)

reaches its minimum over all j = 1, . . . ,K exactly for k.
As both (12) and the group assignment (13) are rather obscure from the

computational point of view, we recommend to avoid the expensive and nu-
merically unstable computation of the Mahalanobis distance by solving a set
of linear equations within Algorithm 2 for the task to classify an observation
Z = (Z1, . . . , Zp)

T .
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The approach of Algorithm 2 is based on the eigendecomposition of S∗MWCD.
Its inversion is replaced is replaced by (16), which is based on expressing

(X̄k,MWCD − Z)T (S∗MWCD)−1(X̄k,MWCD − Z)

= (X̄k,MWCD − Z)TQD−1QT (X̄k,MWCD − Z)

= ‖D−1/2QT (X̄k,MWCD
k − Z)‖2. (14)

While S∗MWCD depends on the parameter λ, its suitable value will be found by
a cross validation in the form of a grid search over all possible values of λ ∈ (0, 1).

Alternatively, the method can be computed using the Cholesky decompo-
sition. Besides, if a specific choice T = Ip is considered, the computation of
MWCD-LDA∗ can be performed by means of more efficient algorithms, which
exceed the scope of this paper.

Algorithm 2 MWCD-LDA∗ for a general T based on the eigendecomposition.

Input: Data (1), Z ∈ Rp, weights w1, . . . , wn, positive definite symmetric matrix
T ∈ Rp×p.

Output: Assignment of Z to one of the groups 1, . . . ,K.
1: for i = 1 to 100 do
2: λ := i/100
3: Compute S∗

MWCD and X̄k
MWCD for k = 1, . . . ,K by a modification of Algo-

rithm 1 using the given T and λ, replacing Sw by (7) with (8).
4: Compute the matrix

A =
(
X̄1,MWCD − Z, . . . , X̄K,MWCD − Z

)
(15)

of size p×K.
5: Compute the eigendecomposition S∗

MWCD = QDQT .
6: Compute B = D−1/2QTA.
7: Assign Z to group k, if

k = arg max
l=1,...,K

{
||Bl||2 + log πl

}
, (16)

where ||Bl||2 is the Euclidean norm of the l-th column of B.
8: end for
9: Determine the value of λ yielding the best classification performance and carry out

steps 3 to 7 with it to find the final classification decision.

4.2 L1-SCRRDA

Further, we propose to accompany regularizing the scatter matrix of Section 4.1
by regularizing the mean of each of the groups. The novel method represents
a robustification of the SCRDA of [10] and will be denoted as L1-SCRRDA,
which abbreviates a shrunken centroid robust regularized discriminant analysis
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with the means regularized in the L1-norm. We can also perceive the method to
be based on an L1-regularized robust Mahalanobis distance.

Let us consider the mean of the k-th group to be estimated by

X̄
(1)
k,MWCD = sgn(X̄k,MWCD)

(
|X̄k,MWCD| −∆

)
+

= sgn(X̄k,MWCD) max
{
|X̄k,MWCD| −∆, 0

}
, (17)

where ∆ ∈ Rp and (x)+ denotes the positive part of x ∈ Rp. In other words, the
MWCD-mean is shrunken towards zero in the L1-norm, which can be interpreted
as a regularized (biased) version of the MWCD-mean.

The method L1-SCRRDA exploits the matrix S∗MWCD as in Section 4.1. It

assigns an observation Z = (Z1, . . . , Zp)
T to group k, if `

(1)
k > `

(1)
j for every

j 6= k, where

`
(1)
k = (X̄

(1)
k,MWCD)T (S∗MWCD)−1Z −

− 1

2
(X̄

(1)
k,MWCD)T (S∗MWCD)−1X̄

(1)
k,MWCD + log πk. (18)

Within the classification method, suitable values of both regularization param-
eters λ and ∆ can be found by cross validation as in Algorithm 2, which can be
adapted to the context of L1-SCRRDA.

Remark 1. L1-SCRRDA distinguished between two groups of variables as fol-

lows, using the notation X̄jk,MWCD and X̄
(1)
jk,MWCD to evaluate the j-th coor-

dinate of X̄k,MWCD and X̄
(1)
k,MWCD, respectively.

1. Major (more relevant) variables fulfilling |X̄jk,MWCD| > ∆ for at least one k.

Their values of X̄
(1)
jk,MWCD for these k are obtained by shrinking X̄jk,MWCD

towards zero by the amount of exactly ∆.

2. Minor (less relevant) variables fulfilling |X̄(1)
jk,MWCD| ≤ ∆ for each k. Their

values of X̄
(1)
jk,MWCD are equal to 0.

Remark 2. L1-regularization is generally understood to introduce sparseness and
reduce the dimensionality. However, the universality of this property is rather
a ”golden legend” and holds e.g. in linear regression (lasso estimator) but not
for (any) regularized LDA, although there have been misleading statements on
variable selection and sparseness also in this context (cf. [34, 10]). In the light
of Remark 1, we stress that L1-SCRRDA remains to depend also on the major
variables, because X̄k,MWCD−Z is the same for all k, but the variable influences
the linear discriminant score through the scatter matrix. Also the computational
complexity of L1-SCRRDA is not reduced compared to a method regularizing
in the L2-norm instead, which will be proposed in the next subsection.

4.3 L2-SCRRDA

An alternative regularized robust version of LDA denoted as L2-SCRRDA is
proposed, which combines the scatter matrix estimation of Section 4.1 with
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shrinking the means towards the pooled mean (across groups) in the L2-norm.
Thus, we denote this version of robust SCRDA as L2-SCRRDA.

The pooled scatter matrix (across groups) is estimated again by S∗MWCD.
The classical mean of the k-th group is replaced by the MWCD-mean shrunken
towards the overall MWCD-mean across groups X̄MWCD, i.e. we consider

X̄
(2)
k,MWCD = δX̄k,MWCD + (1− δ)X̄MWCD (19)

for k = 1, . . . ,K and a fixed δ ∈ (0, 1).

The method L2-SCRRDA assigns an observation Z to group k, if `
(2)
k > `

(2)
j

for every j 6= k, where

`
(2)
k = (X̄

(2)
k,MWCD)T (S∗MWCD)−1Z −

− 1

2
(X̄

(2)
k,MWCD)T (S∗MWCD)−1X̄

(2)
k,MWCD + log πk. (20)

Suitable values of parameters λ and δ can be found again by cross validation.
The method may be preferable to L1-SCRRDA if the data contain a large number
of variables with a small effect on the classification, but without any clearly
dominant small subset of variables. The shrinkage in (19) performed in the L2-
norm is analogous to shrinking estimates of parameters in ridge regression.

Algorithm 3 M-LDA∗ based on the Cholesky decomposition.

Input: Data (1), Z ∈ Rp.
Output: Assignment of Z to one of the groups 1, . . . ,K.
1: Compute Huber’s estimators X̄1

M , . . . , X̄
K
M .

2: Compute the matrix

A =
(
X̄1
M − Z, . . . , X̄K

M − Z
)

(21)

of size p×K.
3: for i = 1 to 100 do
4: ρ := i/100
5: Compute S∗

M,ρ (Section 4.4).
6: Compute the Cholesky decomposition S∗

M,ρ = L∗L
T
∗ , where L∗ is a (regular)

lower triangular matrix.
7: Compute B = L−T

∗ A.
8: Assign Z to group k, if

k = arg max
l=1,...,K

{
||Bl||2 + log πl

}
, (22)

where ||Bl||2 is the Euclidean norm of the l-th column of B.
9: end for

10: Determine the value of ρ yielding the best classification performance and carry out
steps 4 to 8 with them to find the final classification decision.
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4.4 M-LDA∗

We can also define a version of robust LDA based on M-estimation. Assuming
again the data (1) as denoted in Section 1, the M-estimator of the mean of the k-
th group denoted as X̄k

M for k = 1, . . . ,K will be considered. As in Section 4.1,
the Chen’s regularized estimator is considered as the estimate of the scatter
matrix Σ common for each of the groups. This matrix S∗M will be rather denoted
as S∗M,ρ to stress its dependence on the regularization parameter ρ ∈ (0, 1).

The robust regularized LDA based on M-estimation, which we denote as
M-LDA∗, may be performed by Algorithm 3, which is formulated for an ob-
servation Z ∈ Rp exploiting the Cholesky decomposition of the scatter matrix.
Algorithm 3 can be also adapted to be suitable for previously mentioned classi-
fiers (MWCD-LDA∗, L1-SCRRDA and L2-SCRRDA) in a straightforward way.

5 Examples

5.1 Methods in the Computations

To illustrate the performance of the novel robust regularized versions of LDA,
we analyze several different real data sets with n < p. Each of the examples
learns a classification rule to two groups (K = 2).

We performed the computations in R software. Each classification task for
each of the data sets is analyzed by means of a 5-fold cross validation. Within
such approach, the data set is randomly divided into 5 subsamples of (approx-
imately) equal sizes. Among all possible partitions, we select randomly 100 of
them and compute the average Youden’s index I as a classification performance
measure over them. The averaged values are presented in Table 1. We recall
Youden’s index to be defined as

I = sensitivity + specificity− 1, (23)

i.e. it fulfils I ∈ [−1, 1].
Standard classifiers used in the examples include also the lasso-regularized

logistic regression denoted as lasso-LR or a support vector machine (SVM) with
a radial basis function kernel. Concerning the choice of parameters of individual
classifiers, all regularized versions of LDA use T = Ip. For standard methods,
default settings of parameters were used whenever appropriate. Concerning the
choice of the implicit weights, the MWCD-LDA∗ and L2-SCRRDA use linearly
decreasing weights in the following form. Starting with the simple choice

wi = 1− i− 1

n
, i = 1, . . . , n, (24)

we standardize them to
∑n
i=1 wi = 1 to obtain the final formula for the weights

w̃i =
2 (n− i+ 1)

n(n+ 1)
, i = 1, . . . , n, (25)
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which are very small for outliers reducing considerably their influence.
To investigate the effect of dimensionality reduction, we also use the princi-

pal component analysis (PCA) and a robust Minimum Redundancy Maximum
Relevance (MRMR) of [22]. The latter is a robust supervised variable selection
method selecting a small set of a fixed (given) number of the most relevant
variables while penalizing for redundancy [27].

Table 1. Youden’s index (23) as a classification performance measure computed for
a 5-fold cross validation study on various real data sets of Section 5. Particularly, data
from Section 5.3 are considered not only raw but also after a contamination by normally
distributed outliers N(0, σ2) for different values of σ.

Section 5.3
Contam. for σ = Section

Raw 0.1 0.2 0.3 5.5 5.6 5.7

n 168 48 42 32
p 4005 38 614 518 15

Regularized versions of LDA

PAM 0.88 0.81 0.75 0.68 0.85 0.86 0.51
LDA∗ 1.00 0.95 0.94 0.77 1.00 0.89 0.71

SCRDA 1.00 1.00 1.00 0.99 1.00 0.91 0.80
MWCD-LDA∗ 1.00 1.00 1.00 1.00 1.00 0.91 0.79
L2-SCRRDA 1.00 1.00 1.00 1.00 1.00 0.92 0.80

Other classification methods

SVM 1.00 0.99 0.98 0.96 1.00 0.92 0.85
Classification tree 0.96 0.95 0.91 0.92 0.94 0.84 0.11

Lasso-LR 0.99 1.00 0.97 0.94 0.97 0.87 0.82

Number of principal components 10 10 10 20 4

PCA =⇒ LDA 1.00 0.94 0.93 0.88 0.15 0.70 0.59
PCA =⇒ LDA∗ 1.00 0.95 0.94 0.89 0.51 0.62 0.59

PCA =⇒ SCRDA 1.00 0.95 0.94 0.89 0.62 0.72 0.59

Number of selected genes 10 10 10 20 4

MRMR =⇒ LDA 1.00 0.94 0.93 0.89 0.90 0.88 0.72
MRMR =⇒ LDA∗ 1.00 0.96 0.93 0.89 0.96 0.88 0.76

MRMR =⇒ SCRDA 1.00 0.96 0.93 0.89 1.00 0.90 0.76

5.2 Description of the Brain Activity Study

We participate on a neuroscience research investigating the spontaneous activ-
ity of various parts of the brain by means of neuroimaging methods, motivated
by a distant aim to investigate modifications of the resting-state brain net-
works in schizophrenic patients. Specific functions of individual parts of the
brain have been already rigorously described [7], but spontaneous brain activity
and especially connections between pairs of brain parts in the resting state (i.e.
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resting-state brain networks) are acknowledged as a hot topic in current neu-
roscience [14]. We will now describe the whole study leading to acquiring the
original real data set of brain scans by functional magnetic resonance imaging
(fMRI), while the performance of various classification methods will be compared
in the following sections on several different classification tasks.

Our data are measured on n = 24 healthy probands (i.e. without a mani-
fested psychiatric disease) participating in the study, who were examined under
7 different situations. One of them can be characterized as a resting state, i.e. rest
without any stimulus. Besides, the probands were observing each of 6 different
movies while measuring the brain activity in the same way. For the sake of the
fMRI imaging, the brain is divided to 90 regions and we are interested only in
values of correlation coefficients between a pair of brain regions.

The most widely spread method for measuring the (functional) connectivity
between a pair of brain regions is the correlation (i.e. Pearson’s correlation co-
efficient) of activity time series derived from these regions by e.g. simple spatial
averaging across all the voxels in the brain regions [14]. In this spirit, we con-
sider p = 90 ∗ 89/2 = 4005 variables containing values of correlation coefficients
for each of the 24 probands. The basic task is to classify the resting state from
(any) movie, i.e. all movies together are considered to be one class. In general,
fMRI measurements are commonly contaminated by measurement errors as well
as outliers [38]. It is also true with our data, which makes the newly proposed
robust methods appealing for their analysis.

We consider the classification task to separate between the resting state and
(any) movie for healthy individuals in Section 5.3, while a more specific task
to classify between the resting state and one particular movie is investigated in
Section 5.4.

5.3 Brain Activity: Resting State vs. Movie

Let us now consider the task to learn a classification rule over the training data
from Section 5.2 to distinguish between the resting state and a movie. Consid-
ering thus all six movies together to belong to one class, this is a classification
task to K = 2 groups with p = 4005 variables. The resting state group contains
24 observations while the group of movies consists of 6 ∗ 24 = 144 observations.

Several classification methods yield the best result (I = 1.00) as shown in
Table 1. This is true for standard (non-robust) methods as well as for MWCD-
LDA∗ or L2-SCRRDA. While the standard LDA is computationally infeasible,
SCRDA as one of its available regularized version turns out to perform reli-
ably. There seems no advantage of the robust regularized LDA over non-robust
versions, which may be explained by the fact that the raw data are not contam-
inated by a remarkable percentage of severe outliers. Only PAM turns out to be
heavily influenced by them, although it was originally presented as a denoised
version of diagonalized LDA [34]. The classification rule of L1-SCRRDA distin-
guishes between 81 major variables and the remaining minor variables in this
example. An SVM formally gives a perfect classification result, while our critical
evaluation of SVM will be presented in Section 6.1.



13

Additionally, we investigated the effect of dimensionality reduction on the
classification performance. There seems no remarkable small group of genes re-
sponsible for a large portion of variability of the data and the first few prin-
cipal components seem rather arbitrary. L2-SCRRDA has a good classification
ability if applied on principal components. Thus, the classification results after
reducing the dimensionality bring other arguments in favor of the regularization
approaches used in this paper.

We additionally performed an artificial contamination of the original data in
order to investigate the performance of the novel robust classification methods.
Each single measurement for each proband was contaminated by noise, which
was generated as proband-independent following normal distribution N(0, σ2) for
various values of σ. The noise was added to all measurements and classification
rules are learned over this contaminated data set. We consider the noise with
σ = 0.1 to be slight and with σ = 0.3 to be moderate, revealing already the
advantage of robust methods compared to non-robust ones. Such contamination
was repeated 100-times and the classification performance of various methods
was evaluated for each case and finally averaged.

The results of the classification performance of various methods on data ar-
tificially contaminated by noise, as presented again in Table 1, show an evidence
of a reasonable robustness of SCRDA as well the novel methods. The larger
value of σ, the more influential outliers are present in the contaminated data
set. Indeed, the reduction of the classification performance of the standard data
mining methods is not caused by the noise itself, but rather by severe outliers.
The robustness of SCRDA to (small) measurement errors has not however been
systematically investigated [21] and we think that its ability to outperform the
SVM has not been documented sufficiently in the literature. Still, the robustness
of the new methods MWCD-LDA∗ and L2-SCRRDA is even able to outperform
the relatively robust SCRDA.

The MRMR variable selection allows to find a small set of variables with
an ability to diagnose schizophrenic patients based only on the fMRI measure-
ments of the brain in the resting state, which is an interesting result from the
point of view of neuroscience research. Let us inspect the effect of dimensionality
reduction performed by other approaches. If the variables are arranged accord-
ing to values of the statistic of the two-sample t-test, the best performance with
the Youden’s index I = 1.00 can be obtained only if at least 21 variables are
selected. If PAM is used to arrange the variable according to their contribution
to separating the two groups, then at least 36 variables are need in order to
reach I = 1.00.

5.4 Brain Activity: A Closer Look on Individual Movies

In addition, we solve more particular tasks to learn the classification rule al-
lowing to distinguish between the resting state and only one given movie over
the training data from Section 5.2. Such six tasks to classify between the rest-
ing state and the i-th movie (i = 1, . . . , 6) always deal with p = 4005 variables
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Table 2. Example of Section 5.4. Youden’s index (23) as a classification performance
measure computed for a 5-fold cross validation study. PCA is used with a fixed number
of 10 principal components. The number of major variables within L1-SCRRDA is also
shown (see Remark 1 in Section 4.2).

Resting state vs. movie
Classification method #1 #2 #3 #4 #5 #6

SVM 1.00 1.00 1.00 1.00 1.00 1.00
L2-SCRRDA 1.00 1.00 1.00 1.00 1.00 1.00

L1-SCRRDA 1.00 1.00 1.00 1.00 1.00 1.00
Number of major variables 3 7 2 3 1 1

PCA =⇒ LDA 1.00 1.00 1.00 1.00 1.00 1.00

and 24 observations for each of the two groups. A wide variety of classification
procedures is able to reach I = 1.00 as shown in Table 2 for selected methods.
By a robust variable selection method of [22], we additionally verified that small
sets of variables can be found allowing to solve the classification tasks easily.

Finally, we considered other classification tasks with the aim to separate
individuals pairs of movies, i.e. classifying between movie #1 and movie #2,
between movie #1 and movie #3 etc. The results for each of these 15 tasks
again show that I = 1.00 can be attained easily, even using a small number of
variables. Particularly, we used again the robust variable selection of [22]. The
minimal number of variables needed to obtain the I = 1.00 result turns out to
be greater or equal to 2 and always less or equal to 30. Such small numbers can
be explained by a small number of observations in each of the groups.

5.5 Cardiovascular Genetic Study

We illustrate the performance of the novel classifiers on data acquired within the
cardiovascular genetic study of the Center of Biomedical Informatics in Prague.
The data set was described and analyzed by standard methods in [20]. The
aim of the study was to identify a small set of genes associated with excess
genetic risk for the incidence of a cardiovascular disease among p = 38 590 gene
transcripts. The gene expressions were measured on n = 48 individuals, namely
on 24 patients having a cerebrovascular stroke and 24 control persons.

Some methods reach the classification performance I = 1.00, which is true
for some standard methods including SVM and LDA∗ and also for the novel
methods MWCD-LDA∗ and L2-SCRRDA. This can be explained by the very
large p, compared to other data sets of this paper.

The dimensionality reduction by means of PCA has drastic consequences,
which can be explained by its unsupervised nature ignoring the grouping struc-
ture of the data. Indeed, it is the MRMR variable selection which confirms this
opinion. MRMR shows that there is a small number of variables responsible for
the separation between the two groups and is able to yield much improved re-
sults, namely with only 10 most relevant genes allowing to separate both groups
with I = 1.00.
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5.6 Metabolomic Profiles Data

We analyze a publicly available benchmarking data set of prostate cancer meta-
bolomic data [32] of p = 518 metabolites measured over two groups of patients,
who are either those with a benign prostate cancer (16 patients) or with other
cancer types (26 patients).

A detailed analysis of the data reveals that they are not contaminated by
severe outliers. Still, MWCD-LDA∗ and L2-SCRRDA are able to slightly out-
perform other regularized versions of LDA. Their result are comparable to the
SVM classifier while other classifiers yield inferior results. The MRMR variable
selection performs better compared to the unsupervised dimensionality reduc-
tion by means of PCA, while there is no small group of variables responsible for
a large portion of variability of the data and the first few principal components
seem rather arbitrary for the classification task.

5.7 Keystroke Dynamics Data

The last data set contains data from a biometric authentication study by means
of keystroke dynamics, which was described and analyzed in [22]. Our aim is
to illustrate the performance of the novel classifiers also on this data set with
a small number of variables. A set of probands was asked to type the same short
sequence (password) consisting of 8 characters repeatedly. The particular task
now is to classify to 2 groups, i.e. to distinguish between two probands exploiting
p = 15 variables (keystroke durations and latencies in milliseconds) available for
each of them.

As Table 1 indicates, the best results are obtained with L2-SCRRDA, while
other robust regularized LDA versions together with SCRDA remain slightly
inferior. Again, the SVM classifier is based on a large number of support vectors
(≥ 90 % of observations). Dimensionality reduction leads to a loss of information
compared to methods using all variables. Our detailed analysis of the data reveals
the percentage of severe outliers to be about 10 %. Indeed, if we additionally
performed a manual outlier detection and then ignored the outliers from the
data set, MWCD-LDA∗ and L2-SCRRDA still retain their performance which
was not affected by the outliers. On the other hand, the performance of SVM
and non-robust versions of LDA is suddenly improved.

6 Discussion

6.1 Advantages of robust regularized classification

Regularized LDA has been advocated for its computational and statistical bene-
fits, which may be revealed not only for n < p but also for n > p with a relatively
small n [13]. Regularization is generally believed to ensures a robustness [34, 12],
although this does not hold as a universal principle. In the context of regularized
LDA, only a robustness with respect to small (local) changes of the measured
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data is ensured as it has been observed empirically [1]. Nevertheless, regularized
LDA is not robust to more severe noise or outliers, as revealed in our examples.

Appealing properties of regularized LDA have lead us to the idea of join-
ing principles of suitable Tikhonov-type regularization with statistical robust-
ness. Advantages of the newly proposed MWCD-LDA∗, L1-SCRRDA and L2-
SCRRDA include:

– High robustness to outliers thanks to a high breakdown point of MWCD (as
a consequence of using the implicit weights similarly to the context of linear
regression [19]);

– No assumption on the distribution of the outliers;
– Availability of efficient algorithms based on numerical linear algebra;
– No need for a prior dimensionality reduction;
– Comprehensibility.

While an SVM classifier yields the best classification performance in some of
the examples, especially those with a relatively smaller p, we perceive also its
drawbacks and try to summarize them.

– It depends on too many support vectors for n < p (more than 90 % of the
observations play the role of support vectors in the examples);

– The necessity to optimize its parameters over a sufficiently large number of
observations;

– A tendency to overfitting for n < p [11];
– Internal structure not supposed to be understood (black box);
– Non-robustness to outliers.

6.2 Comprehensibility

Comprehensibility represents an important requirement in a wide variety of clas-
sification tasks in bioinformatics. Therefore, the discussion of comprehensibility
of the newly proposed methods deserves to be presented as a separate subsection.

We consider the classical LDA itself to be comprehensible in the sense that
it is based on the Mahalanobis distance of a given (new) measurement from
each of the groups of data. The contribution of an individual observation to the
final classification rule is only through the sufficient statistics, i.e. means of the
corresponding groups and scatter matrix.

The classification rules of MWCD-LDA∗, L1-SCRRDA, L2-SCRRDA and
M-LDA∗ can be interpreted as based on a deformed (regularized) Mahalanobis
distance between a new observation Z and the mean of each group. Let us dis-
cuss the particular situation of MWCD-LDA∗ and consider the singular value
decomposition (SVD) of S∗MWCD in the form S∗MWCD = QΛQT . The afore-
mentioned deformed Mahalanobis distance can be interpreted as the Euclidean
distance applied on Λ−1/2QTZ. More specifically, if we assume Z to come from
one of the groups with the covariance matrix Σ, we obtain in a straightforward
way

varΛ−1/2QTZ = Λ−1/2QT · varZ ·QΛ−1/2 =

= Λ−1/2QT ·QΛQTQΛ−1/2 = Ip. (26)
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The deformed Mahalanobis distance of L1-SCRRDA and L2-SCRRDA takes
additionally into account a regularization of the means.

Regularizing the means can be theoretically justified as exploiting Stein’s sta-
tistical estimation [13, 28], extending Stein’s shrinkage estimator originally pro-
posed for the mean of multivariate normal data. The regularization of the means
within L1-SCRRDA and L2-SCRRDA replaces (unbiased) arithmetic means by
their (biased) shrunken counterparts, allowing to reduce their mean square error
if the regularization parameters are sufficiently small.

Also the implicit weights assigned to individual observations in methods of
Sections 4.1 to 4.3 allow a clear interpretation. Less reliable observations (poten-
tial outliers) obtain small or negligible weights. Such permutation of the weights
is used which minimizes the determinant of a weighted empirical covariance ma-
trix. The weights are used to compute the weighted mean and weighted empiri-
cal covariance matrix. In the numerical examples, we have verified that outlying
measurements obtain small weights, which ensures the robustness of the method.

6.3 Limitations

Let us mention also the limitations of the newly proposed classification methods.

– Suitability of all the novel methods for data following an elliptically sym-
metric unimodal multivariate distribution.

– All the novel methods require an intensive computation.
– The implicit weights in methods of Sections 4.1 to 4.3 are assigned to indi-

vidual observations (rather than perhaps to individual variables).
– The variability not substantially different across variables is unexpressedly

assumed for all regularized LDA methods. Still, the novel methods seem to
yield reliable results on the data sets of Section 5, although this implicit
assumption of homogeneous variances of all variables is violated in them.

– L1-SCRRDA and L2-SCRRDA are more computationally demanding com-
pared to MWCD-LDA∗, but yield comparable results, i.e. there seems no
major added value of regularizing the means in contrary to the experience
of e.g. [10].

Finally, we need to recall that the regularization itself may be a too radical
modification of the original problem of rank n, which is replaced by a problem
of rank p, which may be much larger. Such increase of the dimensionality of the
scatter matrix may cause the new problem to be very distant from the original
problem even if an extremely small λ is used and if the regularized problem was
solved in an arbitrary-precision arithmetic [24, 5].

7 Conclusions and Future Work

The analysis of high-dimensional data with the number of variables p largely
exceeding the number of observations n becomes an important task in numerous
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tasks of bioinformatics. While numerous available algorithms for the regularized
LDA are popular for the analysis of high-dimensional data [21], regularized LDA
turns out to be vulnerable to the presence of outliers, because it is based on the
same maximum likelihood estimation principle as the standard LDA. It is the
maximum likelihood estimation which causes the high sensitivity of the standard
as well as of various regularized versions of LDA to outliers.

In this paper, we combine robustness to the presence of outliers with regu-
larized estimation of the scatter matrix of the multivariate data in a unique way.
As a result, four new robust classification methods for high-dimensional obser-
vations are proposed in Section 4. Three of the methods are based on implicit
weighting of individual observations, while M-LDA∗ is based on M-estimation. In
addition, newly proposed methods L1-SCRRDA and L2-SCRRDA replace also
the sample mean of each group by a regularized (shrunken) robust estimator.

We analyzed several real data sets fulfilling n < p in Section 5. These data sets
coming from various problems of (bioinformatics) research can be characterized
as high-dimensional in sense of n < p or even n� p.

Particularly, we pay the largest attention to the analysis of an original brain
activity data set from a neuroscience research study investigating connections
among brain parts during a resting state. Results of various classification meth-
ods show distinct differences between the resting and non-resting state. At the
same time, different movies shown to the set of 24 probands turn out to activate
different connections between pairs of brain parts.

To investigate the performance of individual methods on data contaminated
by noise, we also introduced an artificial contamination to the brain activity data.
Indeed, robustness to moderate or severe outliers is an important requirement in
the analysis of high-dimensional data, especially if the number of observations
is small. The results reveal a regularized LDA in a standard form to be sensitive
to outliers. SCRDA turns out to be moderately robust, which is an effect of the
regularizing also the means, which yields denoised versions of standard means.
The novel methods turn out to be even more robust also against severely outlying
measurements. It is an artificial contamination of the data which reveals the
robustness of the novel methods as their strength and the whole study with
artificial contamination reveals the advantage of robust methods compared to
non-robust ones. However, regularizing the means applied on the robust methods
does not bring any major additional benefit compared to MWCD-LDA∗, while
it requires a high increase in computational complexity.

Open problems concerning the newly proposed methods as well as more gen-
eral ideas for a future research in the area of robust analysis of high-dimensional
data contain the following tasks.

– Formulating more efficient algorithms tailor-made for important specific
choices of the target matrix T as alternatives to Algorithms 2 or 3.

– Comparing various approaches to regularizing the means (i.e. for various
norms or various shrinkage targets) in a large simulation study.

– Comparing the performance and robustness of the new methods with ap-
proaches based on a robust PCA.



19

– Investigating the non-robustness of other standard regularized classification
methods (e.g. of PAM).

– Extending the combination of regularization and robustness to other meth-
ods based on the Mahalanobis distance, such as classification trees, entropy
estimators, k-means clustering, or dimensionality reduction.

– Combining regularization and robustness to other methods, including neural
networks or SVM or even linear regression (e.g. robust lasso estimator).

– Developing other multivariate methods based on the regularized MWCD
estimators, e.g. robust PAM or robust regularized PCA.

From the point of view of the neuroscience research, future investigations are
planned to search for a small set of variables allowing to distinguish schizophrenic
patients from control individuals based only on the fMRI measurements of the
brain measured in the resting state.
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18. Jurečková, J. and Portnoy, S. (1987). Asymptotics for one-step M-estimators in
regression with application to combining efficiency and high breakdown point. Com-
munications in Statistics Theory and Methods, 16:2187–2199.

19. Kalina, J. (2012). Implicitly weighted methods in robust image analysis. Journal
of Mathematical Imaging and Vision, 44:449–462.
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