národní úložiště
šedé
literatury

## Cut Languages in Rational Bases

Šíma, Jirí
2016
Dostupný z http://www.nusl.cz/ntk/nusl-261502

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL).
Datum stažení: 23.04.2024
Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

## Institute of Computer Science The Czech Academy of Sciences

# Cut Languages in Rational Bases 

Jiří Šíma and Petr Savický

Technical report No. V-1236

October 2016

## Cut Languages in Rational Bases

Jiří Šíma and Petr Savický ${ }^{12}$<br>Technical report No. V-1236

October 2016


#### Abstract

: We introduce a so-called cut language which contains the representations of numbers in a rational base that are less than a given threshold. The cut languages can be used to refine the analysis of neural net models between integer and rational weights. We prove a necessary and sufficient condition when a cut language is regular, which is based on the concept of a quasi-periodic power series. We show that any cut language with a rational threshold is context-sensitive while examples of non-context-free cut languages are presented.


Keywords:
Cut language, rational base, quassi-periodic power series

[^0]
## 1 Cut Languages

We study so-called cut languages which contain the representations of numbers in a rational base $[1,2,5-7,10,12-15]$ that are less than a given threshold. Hereafter, let $a$ be a rational number such that $0<|a|<1$, which is the inverse of a base (radix) $1 / a$ where $|1 / a|>1$, and let $B \subset \mathbb{Q}$ be a finite set of rational digits. We say that $L \subseteq \Sigma^{*}$ is a cut language over a finite alphabet $\Sigma$ if there is a mapping $b: \Sigma \longrightarrow B$ and a real threshold $c$ such that

$$
\begin{equation*}
L=L_{<c}=\left\{x_{1} \ldots x_{n} \in \Sigma^{*} \mid \sum_{i=0}^{n-1} b\left(x_{n-i}\right) a^{i}<c\right\} . \tag{1}
\end{equation*}
$$

The cut languages can be used to refine the analysis of computational power of neural network models $[17,23]$. This analysis is satisfactorily fine-grained in terms of Kolmogorov complexity when changing from rational to arbitrary real weights $[4,18]$. In contrast, there is still a gap between integer and rational weights which results in a jump from regular to recursively enumerable languages in the Chomsky hierarchy. In particular, neural nets with integer weights, corresponding to binary-state networks, coincide with finite automata $[3,8,9,11$, $16,20,24]$. On the other hand, a neural network that contains two analog-state units with rational weights, can implement two stacks of pushdown automata, a model equivalent to Turing machines [19]. A natural question arises: what is the computational power of binary-state networks including one extra analog unit with rational weights? Such a model is equivalent to finite automata with a register [21], which accept languages that can be represented by some cut languages combined in a certain way by usual operations (e.g. intersection with a regular language, concatenation, union); see [22] for the exact representation.

In this paper we prove a necessary and sufficient condition when a given cut language is regular (Section 3). For this purpose, we introduce and characterize an $a$-quasi-periodic number within $B$ whose all its representations in basis $1 / a$ using the digits from $B$, are eventually quasi-periodic power series (Section 2). The concept of a quasi-periodic power series appears to be interesting on its own, allowing for different quasi-repetends even of unbounded length. In addition, we present examples of cut languages that are not context-free and we show that any cut language with a rational threshold is context-sensitive (Section 4). Finally, we summarize the results and present some open problems (Section 5).

## 2 Quasi-Periodic Power Series

In this section, we introduce and analyze a notion of $a$-quasi-periodic numbers within $B$ which will be employed for characterizing the class of regular cut languages in Section 3. We say that a power series $\sum_{k=0}^{\infty} b_{k} a^{k}$ with coefficients $b_{k} \in B$ is eventually quasi-periodic with period sum $P$ if there is an increasing infinite sequence of its term indices $0 \leq k_{1}<k_{2}<\cdots$ such that for every $i \geq 1$,

$$
\begin{equation*}
\frac{\sum_{k=0}^{m_{i}-1} b_{k_{i}+k} a^{k}}{1-a^{m_{i}}}=P \tag{2}
\end{equation*}
$$

where $m_{i}=k_{i+1}-k_{i}>0$ is the length of quasi-repetend $b_{k_{i}}, \ldots, b_{k_{i+1}-1}$, while $k_{1}$ is the length of preperiodic part $b_{0}, \ldots, b_{k_{1}-1}$. For $k_{1}=0$, we call such a power series to be quasi-periodic. One can calculate the sum of any eventually quasi-periodic power series as

$$
\begin{equation*}
\sum_{k=0}^{\infty} b_{k} a^{k}=\sum_{k=0}^{k_{1}-1} b_{k} a^{k}+a^{k_{1}} P \tag{3}
\end{equation*}
$$

since $\sum_{k=k_{1}}^{\infty} b_{k} a^{k}=\sum_{i=1}^{\infty} a^{k_{i}} \sum_{k=0}^{m_{i}-1} b_{k_{i}+k} a^{k}=P \cdot \sum_{i=1}^{\infty} a^{k_{i}}\left(1-a^{m_{i}}\right)=$ $P \cdot \sum_{i=1}^{\infty}\left(a^{k_{i}}-a^{k_{i+1}}\right)=a^{k_{1}} P$ is an absolutely convergent series. It follows that the sum (3) does not change if any quasi-repetend is removed from associated sequence $\left(b_{k}\right)_{k=0}^{\infty}$ or if it is inserted in between two other quasi-repetends, which means that the quasi-repetends can be permuted arbitrarily.

Example 1. A quasi-periodic power series can be composed of quasi-repetends having unbounded length. For example, for any rational period sum $P \neq 0$, we define three rational digits as $\beta_{1}=\left(1-a^{2}\right) P, \beta_{2}=a(1-a) P$, and $\beta_{3}=$ 0 , that is, $B=\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$. Then $\beta_{1}, \beta_{2}^{n}, \beta_{3}$ where $\beta_{2}^{n}$ means $\beta_{2}$ repeated $n$ times, creates a quasi-repetend of length $n+2$ for every integer $n \geq 0$, because $\left(\beta_{1}+\sum_{k=1}^{n} \beta_{2} a^{k}+\beta_{3} a^{n+1}\right) /\left(1-a^{n+2}\right)=P$ whereas for any integer $r$ such that $0 \leq r<n$, it holds $\left(\beta_{1}+\sum_{k=1}^{r} \beta_{2} a^{k}\right) /\left(1-a^{r+1}\right) \neq P$.

Furthermore, given a power series $\sum_{k=0}^{\infty} b_{k} a^{k}$, we define its tail sequence $\left(d_{n}\right)_{n=0}^{\infty}$ as $d_{n}=\sum_{k=0}^{\infty} b_{n+k} a^{k}$ for every $n \geq 0$.

Lemma 2. A power series $\sum_{k=0}^{\infty} b_{k} a^{k}$ with $b_{k} \in B$ for all $k \geq 0$, is eventually quasi-periodic with period sum $P$ iff its tail sequence $\left(d_{n}\right)_{n=0}^{\infty}$ contains a constant infinite subsequence $\left(d_{k_{i}}\right)_{i=1}^{\infty}$ such that $d_{k_{i}}=P$ for every $i \geq 1$.

Proof. Let $\sum_{k=0}^{\infty} b_{k} a^{k}$ be an eventually quasi-periodic power series with period sum P , which means there is an increasing infinite sequence of its term indices $0 \leq k_{1}<k_{2}<\cdots$ such that equation (2) holds for every $i \geq 1$. It follows that $a^{k_{i}} d_{k_{i}}=\sum_{k=k_{i}}^{\infty} b_{k} a^{k}=\sum_{j=i}^{\infty} a^{k_{j}} \sum_{k=0}^{m_{j}-1} b_{k_{j}+k} a^{k}=P \cdot \sum_{j=i}^{\infty} a^{k_{j}}\left(1-a^{m_{j}}\right)=$ $P \cdot \sum_{j=i}^{\infty}\left(a^{k_{j}}-a^{k_{j+1}}\right)=a^{k_{i}} P$, which implies $d_{k_{i}}=P$ for every $i \geq 1$.

Conversely, assume that $\left(d_{n}\right)_{n=0}^{\infty}$ contains a constant subsequence $\left(d_{k_{i}}\right)_{i=1}^{\infty}$ such that $d_{k_{i}}=P$ for every $i \geq 1$. We have $\sum_{k=0}^{m_{i}-1} b_{k_{i}+k} a^{k}=d_{k_{i}}-a^{m_{i}} d_{k_{i+1}}=$ $\left(1-a^{m_{i}}\right) P$ where $m_{i}=k_{i+1}-k_{i}>0$, which implies (2) for every $i \geq 1$.

Theorem 3. A power series $\sum_{k=0}^{\infty} b_{k} a^{k}$ with $b_{k} \in B$ for all $k \geq 0$, is eventually quasi-periodic iff its tail sequence $\left(d_{n}\right)_{n=0}^{\infty}$ contains only finitely many values, that is, $D=\left\{d_{n} \mid n \geq 0\right\}$ is a finite set.

Proof. Assume that $D$ is a finite set, which means there must be a real number $P \in D$ such that $d_{k_{i}}=P$ for infinitely many indices $0 \leq k_{1}<k_{2}<\cdots$, that is, $\left(d_{k_{i}}\right)_{i=1}^{\infty}$ creates a constant infinite subsequence of tail sequence $\left(d_{n}\right)_{n=0}^{\infty}$. According to Lemma 2, this ensures that $\sum_{k=0}^{\infty} b_{k} a^{k}$ is eventually quasi-periodic.

Conversely, let $\sum_{k=0}^{\infty} b_{k} a^{k}$ with $b_{k} \in B$ for all $k \geq 0$, be an eventually quasiperiodic power series with period sum $P$. Since $a \in \mathbb{Q}$ and $B \subset \mathbb{Q}$ is finite, $P$ is a rational number by (2) and there exists a natural number $\beta>0$ such that $B^{\prime}=\{\beta(b-(1-a) P) / a \mid b \in B\} \subset \mathbb{Z}$ is a finite set of integers. According to Lemma 2, the tail sequence $\left(d_{n}\right)_{n=0}^{\infty}$ of $\sum_{k=0}^{\infty} b_{k} a^{k}$ contains a constant infinite subsequence $\left(d_{k_{i}}\right)_{i=1}^{\infty}$ such that $d_{k_{i}}=P$ for every $i \geq 1$. Assume to the contrary that $D=\left\{d_{n} \mid n \geq 0\right\}$ is an infinite set.

We define a modified sequence $\left(d_{n}^{\prime}\right)_{n=0}^{\infty}$ as $d_{n}^{\prime}=\beta\left(d_{k_{1}+n}-P\right)$ for any $n \geq 0$, which satisfies $d_{k_{i}^{\prime}}^{\prime}=0$ where $k_{i}^{\prime}=k_{i}-k_{1}$, for every $i \geq 1$, and $D^{\prime}=\left\{d_{n}^{\prime} \mid n \geq 0\right\}$ is an infinite set. Furthermore, for each $n \geq 0$,

$$
\begin{equation*}
\frac{d_{n}^{\prime}}{a}-d_{n+1}^{\prime}=\frac{\beta\left(d_{k_{1}+n}-P\right)}{a}-\beta\left(d_{k_{1}+n+1}-P\right)=\beta \frac{b_{k_{1}+n}-(1-a) P}{a} \in B^{\prime} \tag{4}
\end{equation*}
$$

is an integer by the definition of $B^{\prime}$. In addition, denote $1 / a=\alpha / q \in \mathbb{Q}$ where natural number $\alpha>0$ and integer $q \neq 0$ are coprime.

Lemma 4. For every $n \geq 0$, there exists an integer $\delta$ and a natural number $p \geq 0$ such that $d_{n}^{\prime}=\delta / q^{p}$.

Proof. We proceed by induction on $n$. The assertion is obvious for $n=0$ when $d_{0}^{\prime}=0$. Assume that $d_{n}^{\prime}=\delta / q^{p}$ for some $\delta \in \mathbb{Z}$ and $p \geq 0$. Then $d_{n+1}^{\prime}=d_{n}^{\prime} / a-b^{\prime}$ for some integer $b^{\prime} \in B^{\prime} \subset \mathbb{Z}$ according to (4), which can be rewritten as $d_{n+1}^{\prime}=$ $(\alpha / q) \cdot\left(\delta / q^{p}\right)-b^{\prime}=\left(\alpha \delta-b^{\prime} q^{p+1}\right) / q^{p+1}=\delta_{1} / q^{p+1}$ where $\delta_{1}=\alpha \delta-b^{\prime} q^{p+1} \in \mathbb{Z}$, completing the proof of Lemma 4.

Lemma 5. If $d_{n+1}^{\prime} \in \mathbb{Z}$, then $d_{n}^{\prime} \in \mathbb{Z}$.
Proof. Let $d_{n+1}^{\prime} \in \mathbb{Z}$. By (4) there is $b^{\prime} \in B^{\prime} \subset \mathbb{Z}$ such that $d_{n}^{\prime} / a=d_{n+1}^{\prime}+b^{\prime} \in \mathbb{Z}$. According to Lemma $4, d_{n}^{\prime}=\delta / q^{p}$ for some $\delta \in \mathbb{Z}$ and $p \geq 0$, which gives $d_{n}^{\prime} / a=\alpha \delta / q^{p+1} \in \mathbb{Z}$. Since $\alpha$ and $q$ are coprime, $q^{p+1}$ must be a factor of $\delta$, which means $\delta=\delta^{\prime} q^{p+1}$ for some $\delta^{\prime} \in \mathbb{Z}$, and hence $d_{n}^{\prime}=\delta / q^{p}=\delta^{\prime} q \in \mathbb{Z}$, completing the proof of Lemma 5 .

We will show for each $n \geq 0$ that $d_{n}^{\prime} \in \mathbb{Z}$. Let $i \geq 1$ be the least index such that $k_{i}^{\prime} \geq n$ for which we know $d_{k_{i}^{\prime}}^{\prime}=0 \in \mathbb{Z}$. By applying Lemma $5\left(k_{i}^{\prime}-n\right)$ times we obtain $d_{k_{i}^{\prime}-1}^{\prime}, d_{k_{i}^{\prime}-2}^{\prime}, \ldots, d_{n}^{\prime} \in \mathbb{Z}$.

Thus, $D^{\prime} \subset \mathbb{Z}$ and since $D^{\prime}$ is infinite, there exists an index $m \geq 0$ such that $\left|d_{m}^{\prime}\right| \geq(|a| \cdot M) /(1-|a|)>0$ where $M=\max _{b^{\prime} \in B^{\prime}}\left|b^{\prime}\right|$. Note that $M>0$ since for $M=0$, we would have $B=\{(1-a) P\}$ implying $D=\{P\}$ which contradicts that $D$ is infinite. According to (4), $\left|d_{m+1}^{\prime}\right| \geq\left|d_{m}^{\prime}\right| /|a|-M$ which implies $\left|d_{m+1}^{\prime}\right|-\left|d_{m}^{\prime}\right| \geq(1 /|a|-1)\left|d_{m}^{\prime}\right|-M \geq 0$ by the definition of $m$. Hence, $\left|d_{m+1}^{\prime}\right| \geq\left|d_{m}^{\prime}\right|$, and by induction we obtain $\left|d_{n}^{\prime}\right| \geq(|a| \cdot M) /(1-|a|)>0$ for every $n \geq m$. On the other hand, we know that there is an index $i$ such that $k_{i}^{\prime} \geq m$ for which $d_{k_{i}^{\prime}}^{\prime}=0$, which is a contradiction completing the proof of Theorem 3.

We say that a real number $c$ is a-quasi-periodic within $B$ if any power series $\sum_{k=0}^{\infty} b_{k} a^{k}=c$ with $b_{k} \in B$ for all $k \geq 0$, is eventually quasi-periodic. Note that $c$ that cannot not be written as a respective power series at all, or can, in addition, be expressed as a finite sum $\sum_{k=0}^{h} b_{k} a^{k}=c$ whereas $0 \notin B$, is also considered formally to be $a$-quasi-periodic. For example, the numbers from the complement of the Cantor set are formally (1/3)-quasi-periodic within $\{0,2\}$.

Example 6. Example 1 can be extended to provide a nontrivial example of $a$ -quasi-periodic numbers. Let $a \in \mathbb{Q}$ meet $0<a<\frac{1}{2}$. We show that any positive rational number $c$ is $a$-quasi-periodic within $B$ where $B=\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$ is defined in Example 1 so that $P=c$. Obviously, $\beta_{1}>\beta_{2}>\beta_{3}=0$. Assume that $c=\sum_{k=0}^{\infty} b_{k} a^{k}$ for some sequence $\left(b_{k}\right)_{k=0}^{\infty}$ where $b_{k} \in B$ for all $k \geq 0$. Observe first that it must be $b_{0}=\beta_{1}$ since otherwise $c=\sum_{k=0}^{\infty} b_{k} a^{k} \leq$ $\beta_{2}+\sum_{k=1}^{\infty} \beta_{1} a^{k}=a(1-a) c+\left(1-a^{2}\right) c \cdot a /(1-a)=2 a c<c$ due to $a<\frac{1}{2}$. Moreover, for any $n \geq 0$ such that $b_{k}=\beta_{2}$ for every $k=1, \ldots, n$, it holds $b_{n+1} \neq \beta_{1}$ since otherwise $c=\sum_{k=0}^{\infty} b_{k} a^{k} \geq \beta_{1}+\sum_{k=1}^{n} \beta_{2} a^{k}+\beta_{1} a^{n+1}=\left(1-a^{2}\right) c$ $+a(1-a) c \cdot a\left(1-a^{n}\right) /(1-a)+\left(1-a^{2}\right) c \cdot a^{n+1}=c-a^{n+1}\left(a^{2}+a-1\right) c>c$ due to $a^{2}+a-1<0$ for $0<a<\frac{1}{2}$.

First consider the case when there is $r \geq 1$ such that $b_{k}=\beta_{2}$ for all $k \geq r$. Then $b_{0}, \ldots, b_{r-1}$ is a preperiodic part and $b_{k}=\beta_{2}$ for $k \geq r$ represents a repetend of length $m_{k}=1$, which proves $\sum_{k=0}^{\infty} b_{k} a^{k}$ to be eventually quasi-periodic. Further assume there is no such $r$, and thus $b_{k}=\beta_{2}$ for every $k=1, \ldots, n_{1}$ and $b_{n_{1}+1}=\beta_{3}$, for some $n_{1} \geq 0$. It follows that series $\sum_{k=0}^{\infty} b_{k} a^{k}=c$ starts with a quasi-repetend $\beta_{1}, \beta_{2}^{n_{1}}, \beta_{3}$ of length $n_{1}+2$ (cf. Example 1) which can be omitted as $\sum_{k=0}^{\infty} b_{n_{1}+2+k} a^{k}=\left(c-\sum_{k=0}^{n_{1}+1} b_{k} a^{k}\right) / a^{n_{1}+2}=c$ due to $\sum_{k=0}^{n_{1}+1} b_{k} a^{k}=c\left(1-a^{n_{1}+2}\right)$ by (2), and the argument can be repeated for its tail $\sum_{k=0}^{\infty} b_{n_{1}+2+k} a^{k}=c$ to reveal the next quasi-repetend $\beta_{1}, \beta_{2}^{n_{2}}, \beta_{3}$ for some $n_{2} \geq 0$ etc. Hence, $\sum_{k=0}^{\infty} b_{k} a^{k}$ is quasi-periodic, which completes the proof that $c$ is $a$-quasi-periodic within $B$.

Example 7. On the other hand, we present an example of an eventually quasiperiodic series $\sum_{k=0}^{\infty} b_{k} a^{k}=c$ with $b_{k} \in B$ for all $k \geq 0$, such that $c$ is not $a$-quasi-periodic within $B$. Let $a=\frac{2}{3}, B=\{0,1\}$, and define an eventually quasi-periodic series $\sum_{k=0}^{\infty} b_{k} a^{k}$ with a preperiodic part $b_{0}=b_{1}=0$ and a repetend $b_{2+3 k}=0, b_{3+3 k}=b_{4+3 k}=1$ for every $k \geq 0$, which sums to $c=$ $\left(\left(\frac{2}{3}\right)^{3}+\left(\frac{2}{3}\right)^{4}\right) \cdot \sum_{k=0}^{\infty}\left(\frac{2}{3}\right)^{3 k}=\frac{40}{57}$.

Furthermore, we employ a greedy approach to generate a series $\sum_{k=0}^{\infty} b_{k}^{\prime} a^{k}=$ $c$ with $b_{k}^{\prime} \in\{0,1\}$ for all $k \geq 0$, which is not eventually quasi-periodic. In particular, find minimal $k_{1} \geq 0$ such that $a^{k_{1}}<c$ which gives $b_{0}^{\prime}=\cdots=$ $b_{k_{1}-1}^{\prime}=0, b_{k_{1}}^{\prime}=1$, and remainder $c_{1}=c / a^{k_{1}}-1$. For $n>1$, let $b_{0}^{\prime}, \ldots, b_{k_{n-1}}^{\prime}$ be 0 s except for $b_{k_{1}}^{\prime}=b_{k_{2}}^{\prime}=\cdots=b_{k_{n-1}}^{\prime}=1$. Then find minimal $k_{n}>k_{n-1}$ such that $a^{k_{n}-k_{n-1}}<c_{n-1}$ which produces $b_{k_{n-1}+1}^{\prime}=\cdots=b_{k_{n}-1}^{\prime}=0, b_{k_{n}}^{\prime}=1$, and remainder $c_{n}=c_{n-1} / a^{k_{n}-k_{n-1}}-1$. It follows that $c_{n}=\sum_{k=0}^{\infty} b_{k_{n}+k}^{\prime} a^{k}-1=$ $\left(c-\sum_{i=1}^{n} a^{k_{i}}\right) / a^{k_{n}}$ for $n \geq 1$. By plugging $a=\frac{2}{3}$ and $c=\frac{40}{57}$ into this formula,
for which $k_{1}=1$ and $k_{2}=9$, we obtain

$$
\begin{equation*}
c_{n}=\frac{20}{19}\left(\frac{3}{2}\right)^{k_{n}-1}-\sum_{i=1}^{n}\left(\frac{3}{2}\right)^{k_{n}-k_{i}}=\frac{3^{k_{n}-1}-19 \cdot 2 \cdot \sum_{i=2}^{n} 2^{k_{i}-2} \cdot 3^{k_{n}-k_{i}}}{19 \cdot 2^{k_{n}-1}} \tag{5}
\end{equation*}
$$

which is an irreducible fraction since both 19 and 2 are not factors of $3^{k_{n}-1}$. Hence, for any natural $n_{1}, n_{2}$ such that $0<n_{1}<n_{2}$ we know $c_{n_{1}} \neq c_{n_{2}}$. It follows that the tail sequence $\left(d_{n}^{\prime}\right)_{n=0}^{\infty}$ of $\sum_{k=0}^{\infty} b_{k}^{\prime} a^{k}=c$ contains infinitely many different values $d_{k_{n}}^{\prime}=c_{n}+1$ for $n \geq 1$, which implies that $\sum_{k=0}^{\infty} b_{k}^{\prime} a^{k}$ is not an eventually quasi-periodic series, according to Theorem 3.

Theorem 8. A real number $c$ is a-quasi-periodic within $B$ iff the tail sequences of all the power series satisfying $\sum_{k=0}^{\infty} b_{k} a^{k}=c$ with $b_{k} \in B$ for all $k \geq 0$, contain altogether only finitely many values, that is, $\mathcal{D}=\left\{\sum_{k=0}^{\infty} b_{n+k} a^{k} \mid n \geq 0\right.$; for any $\sum_{k=0}^{\infty} b_{k} a^{k}=c, b_{k} \in B$ for all $\left.k \geq 0\right\}$ is a finite set.

Proof. Let $\mathcal{D}$ be a finite set. Then the tail sequence of any power series $\sum_{k=0}^{\infty} b_{k} a^{k}$ $=c$ with $b_{k} \in B$ for all $k \geq 0$, contains only finitely many values, which implies that any $\sum_{k=0}^{\infty} b_{k} a^{k}=c$ is eventually quasi-periodic according to Theorem 3. Hence, $c$ is $a$-quasi-periodic within $B$.

Conversely, assume that $c$ is $a$-quasi-periodic within $B$, which means any power series $\sum_{k=0}^{\infty} b_{k} a^{k}=c$ with $b_{k} \in B$ for all $k \geq 0$, is eventually quasiperiodic. For each such a series, denote by $\operatorname{pre}\left(\sum_{k=0}^{\infty} b_{k} a^{k}\right)=k_{1}$ the length of its shortest preperiodic part that meets (3). We define a directed rooted tree $T=$ $(V, E)$ with vertex set $V=\left\{b_{0} \cdots b_{k-1} \in B^{*} \mid 0 \leq k \leq \operatorname{pre}\left(\sum_{k=0}^{\infty} b_{k} a^{k}\right)\right.$, for any $\left.\sum_{k=0}^{\infty} b_{k} a^{k}=c\right\}$, including an empty string as a root, and a set of directed edges

$$
\begin{equation*}
E=\left\{\left(b_{0} \cdots b_{k-1}, b_{0} \cdots b_{k-1} b_{k}\right) \mid b_{0} \cdots b_{k-1}, b_{0} \cdots b_{k-1} b_{k} \in V\right\} \tag{6}
\end{equation*}
$$

Clearly, $T$ covers all the directed paths that start at the root and lead to $b_{0} \cdots b_{k_{1}-1} \in V$ corresponding to a preperiodic part of some eventually quasiperiodic series $\sum_{k=0}^{\infty} b_{k} a^{k}=c$. Thus, the outdegree of $T$ is bounded by $|B|$. Suppose that $T$ is infinite. According to König's lemma, there exists an infinite directed path corresponding to a series $\sum_{k=0}^{\infty} b_{k} a^{k}=c$ whose shortest preperiodic part is infinite, which contradicts that $\sum_{k=0}^{\infty} b_{k} a^{k}$ is eventually quasiperiodic. It follows that there are only finitely many possible preperiodic parts over all the power series $\sum_{k=0}^{\infty} b_{k} a^{k}=c$.

Thus, for the proof that $\mathcal{D}$ is finite, it suffices to show that for any preperiodic part $b_{0}, \ldots, b_{k_{1}-1} \in B$ of length $k_{1}=\operatorname{pre}\left(\sum_{k=0}^{\infty} b_{k} a^{k}\right)$, which starts a series $\sum_{k=0}^{\infty} b_{k} a^{k}=c$ with period sum $P$, the tail sequences of all quasi-periodic series $\sum_{k=0}^{\infty} b_{k_{1}+k} a^{k}=P$ contain altogether only finitely many values. On the contrary, suppose that these tail sequences include infinitely many values. According to (3), any such a value can be expressed as

$$
\begin{equation*}
\sum_{k=0}^{m_{i}-j-1} b_{k_{i}+j+k} a^{k}+a^{m_{i}} P \tag{7}
\end{equation*}
$$

for $j \in\left\{0, \ldots, m_{i}-1\right\}$, by using a quasi-repetend $b_{k_{i}}, \ldots, b_{k_{i+1}-1}$ of length $m_{i}=$ $k_{i+1}-k_{i}$, taken from some series $\sum_{k=0}^{\infty} b_{k_{1}+k} a^{k}=P$. Thus, we can construct a new series $\sum_{k=0}^{\infty} b_{k_{1}+k}^{*} a^{k}=P$ that is composed of infinitely many quasirepetends from the respective series so that each such quasi-repetend introduces a different value (7) in the tail sequence. It follows that series $\sum_{k=0}^{\infty} b_{k_{1}+k}^{*} a^{k}$ is quasi-periodic and its tail sequence contains infinitely many values, which contradicts Theorem 3. This completes the argument that $\mathcal{D}$ is finite.

## 3 Regular Cut Languages

In this section we formulate a necessary and sufficient condition for a cut language $L_{<c}$ to be regular (Theorem 11), which is based on $a$-quasi-periodic thresholds $c$ within $B$. The following Lemma 9 provides a technical characterization of the regular cut languages, which is proven by Myhill-Nerode theorem, while subsequent Lemma 10 separates the cases when threshold $c$ is represented by a finite sum or when $c$ has no representation in base $1 / a$ using the digits from $B$.

Lemma 9. Let $\Sigma$ be a finite alphabet, $b: \Sigma \longrightarrow B$ be a mapping, and $c$ be a real number. Then the cut language $L_{<c}=\left\{x_{1} \cdots x_{n} \in \Sigma^{*} \mid \sum_{i=0}^{n-1} b\left(x_{n-i}\right) a^{i}<c\right\}$ is regular iff the set

$$
\begin{equation*}
C=\left\{c\left(b_{0}, \ldots, b_{\kappa-1}\right) \mid I_{\kappa} \leq c-\sum_{k=0}^{\kappa-1} b_{k} a^{k} \leq S_{\kappa} ; b_{0}, \ldots, b_{\kappa-1} \in B ; \kappa \geq 0\right\} \tag{8}
\end{equation*}
$$

is finite, where

$$
\begin{gather*}
I_{\kappa}=\inf _{\substack{b_{\kappa}, \ldots, b_{h-1} \in B \\
h \geq \kappa}} \sum_{k=\kappa}^{h-1} b_{k} a^{k}, \quad S_{\kappa}=\sup _{\substack{b_{\kappa}, \ldots, b_{h-1} \in B \\
h \geq \kappa}} \sum_{k=\kappa}^{h-1} b_{k} a^{k},  \tag{9}\\
c\left(b_{0}, \ldots, b_{\kappa-1}\right)=\left\{\begin{array}{l}
\inf C\left(b_{0}, \ldots, b_{\kappa-1}\right) \quad \text { if } a^{\kappa}>0 \\
\sup C\left(b_{0}, \ldots, b_{\kappa-1}\right)
\end{array} \text { if } a^{\kappa}<0,\right.  \tag{10}\\
C\left(b_{0}, \ldots, b_{\kappa-1}\right)=\left\{\sum_{k=0}^{h-\kappa-1} b_{\kappa+k} a^{k} \mid \sum_{k=0}^{h-1} b_{k} a^{k} \geq c ; b_{\kappa}, \ldots, b_{h-1} \in B ; h \geq \kappa\right\} . \tag{11}
\end{gather*}
$$

Proof. Let $C=\left\{c_{1}, \ldots, c_{p}\right\}$ in (8) be a finite set such that $c_{1}<c_{2}<\cdots<$ $c_{p}$. We introduce an equivalence relation $\sim$ on $\Sigma^{*}$ as follows. For any $x, y \in$ $\Sigma^{*}$ of length $n_{x}=|x|$ and $n_{y}=|y|$, respectively, we define $x \sim y$ iff both $z_{x}=\sum_{i=0}^{n_{x}-1} b\left(x_{n_{x}-i}\right) a^{i}$ and $z_{y}=\sum_{i=0}^{n_{y}-1} b\left(y_{n_{x}-i}\right) a^{i}$ belong either to one of the $p+1$ open intervals $\left(-\infty, c_{1}\right),\left(c_{1}, c_{2}\right), \ldots,\left(c_{p-1}, c_{p}\right),\left(c_{p}, \infty\right)$, or to one of the $p$ singletons $\left\{c_{1}\right\},\left\{c_{2}\right\}, \ldots,\left\{c_{p}\right\}$. Obviously, we have $2 p+1$ equivalence classes. In order to prove that language $L_{<c}$ is regular we employ Myhill-Nerode theorem by showing that for any $x, y \in \Sigma^{*}$, if $x \sim y$, then for every $w \in \Sigma^{*}, x w \in L_{<c}$ iff $y w \in L_{<c}$. Thus, consider $x, y \in \Sigma^{*}$ such that $x \sim y$, and on the contrary,
suppose there is $w \in \Sigma^{*}$ of length $\kappa=|w|$ with $z_{w}=\sum_{i=0}^{\kappa-1} b\left(w_{\kappa-i}\right) a^{i}$, such that $x w \in L_{<c}$ and $y w \notin L_{<c}$. This means $z_{w}+I_{\kappa} \leq z_{w}+a^{\kappa} z_{x}<c \leq z_{w}+a^{\kappa} z_{y} \leq z_{w}+$ $S_{\kappa}$ by (9), implying $I_{\kappa}<c-z_{w} \leq S_{\kappa}$ which ensures $c_{j}=c\left(b\left(w_{\kappa}\right), \ldots, b\left(w_{1}\right)\right) \in C$ for some $j \in\{1, \ldots, p\}$, according to (8). It follows from (10) and (11) that $z_{w}+a^{\kappa} z_{x}<c \leq z_{w}+a^{\kappa} c_{j} \leq z_{w}+a^{\kappa} z_{y}$ which gives $a^{\kappa} z_{x}<a^{\kappa} c_{j} \leq a^{\kappa} z_{y}$ contradicting $x \sim y$.

Conversely, let $L_{<c}$ be a regular languages. According to Myhill-Nerode theorem, there is an equivalence relation $\sim$ on $\Sigma^{*}$ with a finite number $p$ of equivalence classes such that for any $x, y \in \Sigma^{*}$, if $x \sim y$, then for every $w \in \Sigma^{*}$, $x w \in L_{<c}$ iff $y w \in L_{<c}$. Assume to the contrary that $C$ in (8) is infinite. Choose $c_{0}, c_{1}, \ldots, c_{2 p+2} \in C$ so that $c_{0}<c_{1}<\cdots<c_{2 p+2}$, and for each $j \in\{0, \ldots, 2 p+2\}$, let $c_{j}=c\left(b_{j 0}, \ldots, b_{j, \kappa_{j}-1}\right)$ for some $b_{j 0}, \ldots, b_{j, \kappa_{j}-1} \in B$ and $\kappa_{j} \geq 0$, according to (8). Definition (10) and (11) ensures that for each odd $j \in\{1,3, \ldots, 2 p+1\}$, there exists $h_{j} \geq \kappa_{j}$ and $b_{j, \kappa_{j}}, \ldots, b_{j, h_{j}-1} \in B$ such that $c_{j}^{\prime}=\sum_{k=0}^{h_{j}-\kappa_{j}-1} b_{j \kappa_{j}+k} a^{k}$ is sufficiently close to $c_{j}$ so that $c_{j-1}<c_{j}^{\prime}<$ $c_{j+1}$. Since there are only $p$ equivalence classes, there must be two odd indices $j_{x}, j_{y} \in\{1,3, \ldots, 2 p+1\}$, say $j_{x}<j_{y}$, determining $x, y \in \Sigma^{*}$ of length $n_{x}=$ $|x|=h_{j_{x}}-\kappa_{j_{x}}$ and $n_{y}=|y|=h_{j_{y}}-\kappa_{j_{y}}$, respectively, by $b\left(x_{n_{x}-i}\right)=b_{j_{x}, \kappa_{j_{x}}+i}$ for $i=0, \ldots, n_{x}-1$ and $b\left(y_{n_{y}-i}\right)=b_{j_{y}, \kappa_{j_{y}}+i}$ for $i=0, \ldots, n_{y}-1$, such that $x \sim y$. Thus, $c_{j_{x}}^{\prime}=\sum_{i=0}^{n_{x}-1} b\left(x_{n_{x}-i}\right) a^{i}$ and $c_{j_{y}}^{\prime}=\sum_{i=0}^{n_{y}-1} b\left(y_{n_{y}-i}\right) a^{i}$. For $a^{\kappa}>0$, choose $w \in \Sigma^{*}$ of length $\kappa=|w|=\kappa_{j_{x}+1}$ so that $c_{j_{x}+1}=c\left(b\left(w_{\kappa}\right), \ldots, b\left(w_{1}\right)\right)$, and denote $z_{w}=\sum_{i=0}^{\kappa-1} b\left(w_{\kappa-i}\right) a^{i}$. We know $c_{j_{x}}^{\prime}<c_{j_{x}+1}<c_{j_{y}}^{\prime}$. It follows that $z_{w}+a^{\kappa} c_{j_{x}}^{\prime}<c \leq z_{w}+a^{\kappa} c_{j_{x}+1}<z_{w}+a^{\kappa} c_{j_{y}}^{\prime}$ since $z_{w}+a^{\kappa} c_{j_{x}}^{\prime} \geq c$ would contradict that $c_{j_{x}+1}$ is the infimum according to (10) and (11). Hence, $x w \in L_{<c}$ and $y w \notin L_{<c}$, which gives the contradiction. Similarly for $a^{\kappa}<0$, choose $w \in \Sigma^{*}$ so that $c_{j_{y}-1}=c\left(b\left(w_{\kappa}\right), \ldots, b\left(w_{1}\right)\right)$, which gives $z_{w}+a^{\kappa} c_{j_{y}}^{\prime}<c \leq z_{w}+a^{\kappa} c_{j_{y}-1}<$ $z_{w}+a^{\kappa} c_{j_{x}}^{\prime}$, leading to the contradiction $x w \notin L_{<c}$ and $y w \in L_{<c}$.

Lemma 10. Assume the notation as in Lemma 9. Then the two subsets of $C$, $C_{1}=\left\{c\left(b_{0}, \ldots, b_{\kappa-1}\right) \in C \mid \sum_{k=0}^{\kappa-1} b_{k} a^{k}+a^{\kappa} c\left(b_{0}, \ldots, b_{\kappa-1}\right)>c\right\}$ and $C_{2}=$ $\left\{c\left(b_{0}, \ldots, b_{\kappa-1}\right) \in C \mid\left(\exists b_{\kappa}, \ldots, b_{h-1} \in B, h \geq \kappa\right) \sum_{k=0}^{h-1} b_{k} a^{k}=c \&(\forall b \in B)\right.$ $\left.c\left(b_{0}, \ldots, b_{h-1}, b\right) \in C_{1}\right\}$ are finite.

Proof. We define a directed rooted tree $T=(V, E)$ with vertex set $V=\left\{b_{0} \cdots\right.$ $\left.b_{k-1} \in B^{*} \mid\left(\exists b_{k}, \ldots, b_{\kappa-1} \in B\right) c\left(b_{0}, \ldots, b_{k-1}, b_{k} \ldots, b_{\kappa-1}\right) \in C_{1}\right\}$, including an empty string as a root, and a set of directed edges (6). Clearly, $T$ covers all the directed paths starting at the root and leading to $b_{0} \ldots b_{\kappa-1} \in$ $V$ such that $c\left(b_{0}, \ldots, b_{\kappa-1}\right) \in C_{1}$. This also guarantees that $T$ includes all $b_{0} \ldots b_{\kappa-1} \in V$ such that $c\left(b_{0}, \ldots, b_{\kappa-1}\right) \in C_{2}$, by the definition of $C_{2}$. For each vertex $b_{0} \cdots b_{k-1} \in V$ we define a closed interval $I\left(b_{0}, \ldots, b_{k-1}\right)=\left[\sum_{i=0}^{k-1} b_{i} a^{i}+\right.$ $\left.I_{k}, \sum_{i=0}^{k-1} b_{i} a^{i}+S_{k}\right]$ by using (9). Obviously, $I\left(b_{0}, \ldots, b_{k-1}, b_{k}\right) \subset I\left(b_{0}, \ldots, b_{k-1}\right)$ for any edge $\left(b_{0} \cdots b_{k-1}, b_{0} \cdots b_{k-1} b_{k}\right) \in E$. Hence, $c \in I\left(b_{0}, \ldots, b_{k-1}\right)$ for every vertex $b_{0} \cdots b_{k-1} \in V$ since $b_{0} \cdots b_{k-1} \cdots b_{\kappa-1} \in V$ such that $c\left(b_{0}, \ldots, b_{\kappa-1}\right) \in C_{1}$ satisfies $c \in I\left(b_{0}, \ldots, b_{\kappa-1}\right) \subset I\left(b_{0}, \ldots, b_{k-1}\right)$ according to (8).

On the contrary, suppose that tree $T$ whose outdegree is bounded by $|B|$, is infinite. According to König's lemma, there exists an infinite directed path corresponding to an infinite sequence $\left(b_{k}^{*}\right)_{k=0}^{\infty}$ with $b_{k}^{*} \in B$ for all $k \geq 0$, which contains infinitely many vertices $b_{0}^{*} \ldots b_{\kappa-1}^{*} \in V$ such that $c\left(b_{0}^{*}, \ldots, b_{\kappa-1}^{*}\right) \in C_{1}$. On the other hand, interval $I\left(b_{0}^{*}, \ldots, b_{k-1}^{*}\right)$ is a nonempty compact set satisfying $c \in I\left(b_{0}^{*}, \ldots, b_{k-1}^{*}\right) \supset I\left(b_{0}^{*}, \ldots, b_{k}^{*}\right)$ for every $k \geq 1$, which yields $c \in$ $\bigcap_{k \geq 0} I\left(b_{0}^{*}, \ldots, b_{k-1}^{*}\right) \neq \emptyset$ by Cantor's intersection theorem. Hence, $\sum_{k=0}^{\infty} b_{k}^{*} a^{k}=$ $c$ which implies $\sum_{k=0}^{\kappa-1} b_{k}^{*} a^{k}+a^{\kappa} c\left(b_{0}^{*}, \ldots, b_{\kappa-1}^{*}\right)=c$ for any $b_{0}^{*} \cdots b_{\kappa-1}^{*} \in V$ such that $c\left(b_{0}^{*}, \ldots, b_{\kappa-1}^{*}\right) \in C_{1}$, according to (10) and (11), which contradicts the definition of $C_{1}$. It follows that $T$ is finite which implies that $C_{1}, C_{2}$ are finite.

Theorem 11. A cut language $L_{<c}$ is regular iff $c$ is $a$-quasi-periodic within $B$.
Proof. According to Lemma 9, language $L_{<c}$ is regular iff set $C$ is finite which is equivalent to the condition that $C \backslash\left(C_{1} \cup C_{2}\right)$ is finite, by Lemma 10. It follows from (8)-(11) that for any $b_{0}, \ldots, b_{\kappa-1} \in B$ and $\kappa \geq 0, c\left(b_{0}, \ldots, b_{\kappa-1}\right) \in$ $C \backslash\left(C_{1} \cup C_{2}\right)$ iff there exists sequence $\left(b_{k}\right)_{k=\kappa}^{\infty}$ with $b_{k} \in B$ for all $k \geq 0$, such that $\sum_{k=0}^{\kappa-1} b_{k} a^{k}+a^{\kappa} c\left(b_{0}, \ldots, b_{\kappa-1}\right)=c\left(c\left(b_{0}, \ldots, b_{\kappa-1}\right) \notin C_{1}\right)$ and $\sum_{k=0}^{\infty} b_{k} a^{k}=c$ $\left(c\left(b_{0}, \ldots, b_{\kappa-1}\right) \notin C_{2}\right)$, which yields $c\left(b_{0}, \ldots, b_{\kappa-1}\right)=\sum_{k=0}^{\infty} b_{\kappa+k} a^{k}$. It follows that $C \backslash\left(C_{1} \cup C_{2}\right)=\mathcal{D}$ by the definition of $\mathcal{D}$, which is finite iff $c$ is $a$-quasiperiodic within $B$, according to Theorem 8 .

## 4 Non-Context-Free Cut Languages

The following Theorem 13 shows that the cut languages with a threshold whose greedy representation (in base $1 / a$ using the digits from $B$ ) is not eventually quasi-periodic, are not context-free, which is proven by the pumping lemma. For this purpose, we present examples of rational numbers with no eventually quasiperiodic representations in Example 12. On the other hand, the cut languages with rational thresholds are shown to be context-sensitive in Theorem 14.

Example 12. We generalize Example 7 to provide instances of rational numbers $c$ such that any power series $\sum_{k=0}^{\infty} b_{k}^{\prime} a^{k}=c$ with $b_{k}^{\prime} \in B$ for all $k \geq 0$, is not eventually quasi-periodic. Let $B=\{0,1\}$ and $a=\alpha_{1} / \alpha_{2}, c=\gamma_{1} / \gamma_{2} \in \mathbb{Q}$ be irreducible fractions where $\alpha_{1}, \gamma_{1} \in \mathbb{Z}$ and $\alpha_{2}, \gamma_{2} \in \mathbb{N}$, such that $\alpha_{1} \gamma_{2}$ and $\alpha_{2} \gamma_{1}$ are coprime. Denote by $0<k_{1}<k_{2}<\cdots$ all the indices of a (not necessarily greedy) representation of $c=\sum_{k=0}^{\infty} b_{k}^{\prime} a^{k}$ such that $b_{k_{i}}^{\prime}=1$ for $i \geq 1$. Then formula (5) can be rewritten as

$$
\begin{equation*}
c_{n}=\frac{\gamma_{1} \alpha_{2}^{k_{n}}-\gamma_{2} \alpha_{1} \sum_{i=1}^{n} \alpha_{1}^{k_{i}-1} \alpha_{2}^{k_{n}-k_{i}}}{\gamma_{2} \alpha_{1}^{k_{n}}} \tag{12}
\end{equation*}
$$

which is still an irreducible fraction.
Theorem 13. Let $B=\{0,1\}$ and assume that the greedy representation of threshold $c=\sum_{k=0}^{\infty} b_{k}^{\prime} a^{k}$ with $b_{k}^{\prime} \in B$ for all $k \geq 0$, is not eventually quasiperiodic (see Example 12 for instances of such $c \in \mathbb{Q}$ ). Then the cut language $L_{<c}$ is not context-free.

Proof. Consider a cut language $L_{<c}$ over alphabet $\Sigma=B=\{0,1\}$, where $b: \Sigma \longrightarrow B$ is the identity mapping. Let sequence $\left(b_{k}^{\prime}\right)_{k=0}^{\infty}$ corresponding to power series $\sum_{k=0}^{\infty} b_{k}^{\prime} a^{k}=c$ with $b_{k}^{\prime} \in B$ for all $k \geq 0$, be generated by the greedy algorithm (see Example 7), which is assumed to be not eventually quasiperiodic. On the contrary, suppose that $L_{<c}$ is a context-free language, and hence the same holds for its reversal

$$
\begin{equation*}
L=L_{<c}^{R}=\left\{b_{0} \ldots b_{n-1} \in\{0,1\}^{*} \mid \sum_{i=0}^{n-1} b_{i} a^{i}<c\right\} . \tag{13}
\end{equation*}
$$

The greedy algorithm ensures that for any other $\left(b_{k}\right)_{k=0}^{\infty} \neq\left(b_{k}^{\prime}\right)_{k=0}^{\infty}$ such that $c=\sum_{k=0}^{\infty} b_{k} a^{k}$ with $b_{k} \in\{0,1\}$ for all $k \geq 0$, there exists an index $n \geq 0$ such that $b_{i}=b_{i}^{\prime}$ for every $i=0, \ldots, n-1$, and $b_{n}<b_{n}^{\prime}$, which means $\left(b_{k}^{\prime}\right)_{k=0}^{\infty}$ is the greatest such sequence with respect to the lexicographic order $\preceq$. We will apply the pumping lemma to context-free language $L$, which guarantees there is an integer $p \geq 1$ such that every word $b_{0} \ldots b_{n-1} \in L$ of length $n \geq p$, can be written as $u v w x y$ with substrings $u, v, w, x, y \in\{0,1\}^{*}$ satisfying $|v w x| \leq p$, $|v x| \geq 1$, and $u v^{i} w x^{i} y \in L$ for all $i \geq 0$.

Thus, consider a prefix $\beta_{n}=b_{0}^{\prime} \ldots b_{n-1}^{\prime} \in\{0,1\}^{*}$ of the sequence $\left(b_{k}^{\prime}\right)_{k=0}^{\infty}$, for any length $n=\left|\beta_{n}\right| \geq p$. It follows from (13) that $\beta_{n} \in L$ since $\sum_{i=0}^{n-1} b_{i}^{\prime} a^{i}<c=$ $\sum_{i=0}^{\infty} b_{i}^{\prime} a^{i}$ due to $\sum_{i=n}^{\infty} b_{i}^{\prime} a^{i}>0$ as $b_{i}^{\prime}=1$ for some $i \geq n$, by the non-periodicity of $\left(b_{k}^{\prime}\right)_{k=0}^{\infty}$. Hence, $\beta_{n} \in L$ can be written as uvwxy with the respective substrings from the pumping lemma. Thus, we have $u w y=u v^{0} w x^{0} y \in L$, implying $u w y \prec$ $u v w x y=\beta_{n}=b_{0}^{\prime} \ldots b_{n-1}^{\prime} \prec\left(b_{k}^{\prime}\right)_{k=0}^{\infty}$ in the strict lexicographic order due to $|u w y|<\left|\beta_{n}\right|$ because of $|v x| \geq 1$, which reduces to

$$
\begin{equation*}
w \prec v w x . \tag{14}
\end{equation*}
$$

Furthermore, for every $i \geq 1$, we have $u v^{i} w x^{i} y \in L$, which implies that either $u v^{i} w x^{i} y \prec \beta_{n}$ in the lexicographic order or $\beta_{n} \in \operatorname{Pref}\left(u v^{i} w x^{i} y\right)$ where $\operatorname{Pref}(s)=\left\{s_{1} \in\{0,1\}^{*} \mid\left(\exists s_{2} \in\{0,1\}^{*}\right) s=s_{1} s_{2}\right\}$ denotes the set of prefixes of a string $s \in\{0,1\}^{*}$. Suppose first that there exists $j \geq 2$ such that $u v^{j} w x^{j} y \prec \beta_{n}=u v w x y$ which reduces to $v^{j-1} w x^{j-1} \prec w$. By applying inequality (14), we further obtain $v^{j-2} w x^{j-2} \prec w$, which, repeated $(j-1)$ times, leads to $v w x \prec w$, contradicting (14).

It follows that $\beta_{n}=u v w x y \in \operatorname{Pref}\left(u v^{i} w x^{i} y\right)$ for all $i \geq 1$. If $|v| \geq 1$, then there exists $j \geq 1$ such that $\left|u v^{j-1}\right|<\left|\beta_{n}\right| \leq\left|u v^{j}\right|$ and $\beta_{n} \in \operatorname{Pref}\left(u v^{j}\right)$, which means $\beta_{n}=u v^{j} v_{1}=u v_{1}\left(v_{2} v_{1}\right)^{j}$ where $v=v_{1} v_{2}$ for some $v_{1}, v_{2} \in\{0,1\}^{*}$. Thus, we can write $\beta_{n}=\mu \nu$ when denoting $\mu=u v_{1} \nu^{j-1}$ and $\nu=v_{2} v_{1}$, which satisfies $1 \leq|\nu|=|v| \leq|v w x| \leq p$. In addition, $\beta_{n} \nu^{i} \sigma_{i}=u v^{j+i+1} w x^{j+i+1} y \in L$ where $\sigma_{i}=v_{2} w x^{j+i+1} y$, for every $i \geq 0$. The same holds for $|v|=0$, when $|x| \geq 1$ due to $|v x| \geq 1$, which ensures that there is $j \geq 1$ such that $\left|u w x^{j-1}\right|<\left|\beta_{n}\right| \leq\left|u w x^{j}\right|$ and $\beta_{n} \in \operatorname{Pref}\left(u w x^{j}\right)$. Thus, we can again write $\beta_{n}=u w x^{j} x_{1}=u w x_{1}\left(x_{2} x_{1}\right)^{j}=$ $\mu \nu$ where $x=x_{1} x_{2}$ for some $x_{1}, x_{2} \in\{0,1\}^{*}$, and $\mu=u w x_{1} \nu^{j-1}$ and $\nu=x_{2} x_{1}$, satisfying $1 \leq|\nu|=|x| \leq|v w x| \leq p$. Moreover, $\beta_{n} \nu^{i} \sigma_{i}=u v^{j+i+1} w x^{j+i+1} y \in L$ where $\sigma_{i}=x_{2} y$, for every $i \geq 0$.

Since $\left(b_{k}^{\prime}\right)_{k=0}^{\infty}$ is not periodic, there exists $\ell \geq 0$ and $\nu^{\prime} \in \operatorname{Pref}(\nu)$ such that $b_{0}^{\prime} \ldots b_{r-1}^{\prime}=\beta_{r}=\beta_{n} \nu^{\ell} \nu^{\prime}=\mu \nu^{\ell+1} \nu^{\prime}$ and $\nu^{\prime} 0 \in \operatorname{Pref}(\nu)$ where $0 \leq\left|\nu^{\prime}\right|<m=$ $|\nu| \leq p$ and $r=n+\ell m+\left|\nu^{\prime}\right|$, while $\beta_{r} 0 \prec \beta_{r+1}=\beta_{r} 1$. It follows that $b_{r-m}^{\prime}=0$ due to $\beta_{r-m+1}=\mu \nu^{\ell} \nu^{\prime} 0$, which implies

$$
\begin{equation*}
d_{r-m}=\frac{d_{n-m}-\sum_{k=0}^{r-n-1} b_{n-m+k}^{\prime} a^{k}}{a^{r-n}}<1 \tag{15}
\end{equation*}
$$

where $\left(d_{n}\right)_{n=0}^{\infty}$ is the tail sequence of $\left(b_{k}^{\prime}\right)_{k=0}^{\infty}$ that was generated by the greedy approach. On the other hand, the greedy algorithm ensures

$$
\begin{equation*}
d_{r}=\frac{d_{n}-\sum_{k=0}^{r-n-1} b_{n+k}^{\prime} a^{k}}{a^{r-n}}>1 \tag{16}
\end{equation*}
$$

because of $b_{r}^{\prime}=1$. We have $b_{n-m}^{\prime} \ldots b_{r-m-1}^{\prime}=\nu^{\ell} \nu^{\prime}=b_{n}^{\prime} \ldots b_{r-1}^{\prime}$ which yields $\sum_{k=0}^{r-n-1} b_{n-m+k}^{\prime} a^{k}=\sum_{k=0}^{r-n-1} b_{n+k}^{\prime} a^{k}$, and hence,

$$
\begin{equation*}
d_{n-m}<d_{n} \tag{17}
\end{equation*}
$$

according to (15) and (16).
The preceding analysis is valid for prefix $\beta_{n}$ of arbitrary length $n \geq p$. Thus, suppose that $\beta_{n} \in \operatorname{Pref}\left(u v^{i} w x^{i} y\right)$ with strings $u, v, w, x, y$ specific to each $\beta_{n}$, holds for every $n \geq p$ and for all $i \geq 1$. Denote by $\mathbb{N}_{p}$ the set of natural numbers greater or equal $p$ and define a mapping $\pi: \mathbb{N}_{p} \longrightarrow \mathbb{N}_{0}$ as $\pi(n)=n-m_{n}$ for every $n \geq p$, where $m_{n}=|\nu|$ is the length of the string $\nu$ specific to $\beta_{n}$, which satisfies $1 \leq m_{n} \leq p$. We introduce an infinite directed forest $T=(V, E)$ where $V=\pi\left(\mathbb{N}_{p}\right)$ and $E=\{(\pi(n), n) \mid n \in V\}$, which has the outdegree bounded by $p$ due to $n-\pi(n) \leq p$. Observe that $T$ is a disjoint union of at most $p$ directed trees with the roots from $\{0, \ldots, p-1\}$ having zero indegree, and thus one of these trees must be infinite containing an infinite path according to König's lemma. Hence, there is an infinite subsequence $\left(d_{k_{n}}\right)_{n=0}^{\infty}$ such that $k_{n}=\pi\left(k_{n+1}\right)$ for all $n \geq 1$, which is increasing according to (17) and upper bounded by $\sum_{k=0}^{\infty} a^{k}=1 /(1-a)$. It follows that $d_{k_{n}}$ converges to some $P$ when $n$ tends to infinity, which implies

$$
\begin{equation*}
P_{n}=\frac{\sum_{i=0}^{m_{n}-1} b_{k_{n-1}+i}^{\prime} a^{i}}{1-a^{m_{n}}}=\frac{d_{k_{n-1}}-a^{m_{n}} d_{k_{n}}}{1-a^{m_{n}}} \xrightarrow{n \rightarrow \infty} P . \tag{18}
\end{equation*}
$$

Nevertheless, the set $\left\{P_{n} \mid n \geq 1\right\}$ is finite due to $m_{n} \leq p$, which means $P_{n}=P$ for all sufficiently large $n$. Hence, $\left(b_{k}^{\prime}\right)_{k=0}^{\infty}$ is eventually quasi-periodic which is a contradiction, completing the proof that $L_{<c}$ is not a context-free language.

Theorem 14. Every cut language $L_{<c}$ with threshold $c \in \mathbb{Q}$ is context-sensitive.
Proof. A corresponding (deterministic) linear bounded automaton $M$ that accepts a given cut language $L_{<c}=L(M)$, evaluates (and stores) the sum $s_{n}=$ $\sum_{i=0}^{n-1} b\left(x_{n-i}\right) a^{i}$ step by step when reading an input word $x_{1} \ldots x_{n} \in \Sigma^{*}$ from left to right. In particular, $M$ starts with $s_{0}=0$ which updates to $s_{i}=a s_{i-1}+b\left(x_{i}\right)$
every time after $M$ reads the next input symbol $x_{i} \in \Sigma$, for $i=1, \ldots, n$. As the numbers $a, b\left(x_{1}\right), \ldots, b\left(x_{n}\right), c \in \mathbb{Q}$ can be represented within constant space, $M$ needs only linear space in terms of input length $n$, for computing $s_{n}$ and testing whether $s_{n}<c$.

## 5 Conclusion

In this paper we have introduced the cut languages in rational bases and classified them within the Chomsky hierarchy, among others, by using the quasiperiodic power series. A natural direction for future research is to generalize the results to arbitrary real bases. For example, an open problem behind Theorem 3 can be formulated elementarily as follows. Let $a$ be a real number such that $0<|a|<1$, and $\left(d_{n}\right)_{n=0}^{\infty}$ be a sequence of real numbers, containing a constant infinite subsequence (cf. Lemma 2), such that $B=\left\{d_{n}-a d_{n+1} \mid n \geq 0\right\}$ is finite. Is $D=\left\{d_{n} \mid n \geq 0\right\}$ a finite set?

## References

1. Adamczewski, B., Frougny, C., Siegel, A., Steiner, W.: Rational numbers with purely periodic $\beta$-expansion. Bulletin of The London Mathematical Society 42(3), 538-552 (2010)
2. Allouche, J.P., Clarke, M., Sidorov, N.: Periodic unique beta-expansions: The Sharkovskiŭ ordering. Ergodic Theory and Dynamical Systems 29(4), 1055-1074 (2009)
3. Alon, N., Dewdney, A.K., Ott, T.J.: Efficient simulation of finite automata by neural nets. Journal of the ACM 38(2), 495-514 (1991)
4. Balcázar, J.L., Gavaldà, R., Siegelmann, H.T.: Computational power of neural networks: A characterization in terms of Kolmogorov complexity. IEEE Transactions on Information Theory 43(4), 1175-1183 (1997)
5. Chunarom, D., Laohakosol, V.: Expansions of real numbers in non-integer bases. Journal of the Korean Mathematical Society 47(4), 861-877 (2010)
6. Glendinning, P., Sidorov, N.: Unique representations of real numbers in non-integer bases. Mathematical Research Letters 8(4), 535-543 (2001)
7. Hare, K.G.: Beta-expansions of Pisot and Salem numbers. In: Proceedings of the Waterloo Workshop in Computer Algebra 2006: Latest Advances in Symbolic Algorithms. pp. 67-84. World Scientific (2007)
8. Horne, B.G., Hush, D.R.: Bounds on the complexity of recurrent neural network implementations of finite state machines. Neural Networks 9(2), 243-252 (1996)
9. Indyk, P.: Optimal simulation of automata by neural nets. In: Proceedings of the STACS 1995 Twelfth Annual Symposium on Theoretical Aspects of Computer Science. LNCS, vol. 900, pp. 337-348 (1995)
10. Komornik, V., Loreti, P.: Subexpansions, superexpansions and uniqueness properties in non-integer bases. Periodica Mathematica Hungarica 44(2), 197-218 (2002)
11. Minsky, M.: Computations: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)
12. Parry, W.: On the $\beta$-expansions of real numbers. Acta Mathematica Hungarica 11(3), 401-416 (1960)
13. Rényi, A.: Representations for real numbers and their ergodic properties. Acta Mathematica Academiae Scientiarum Hungaricae 8(3-4), 477-493 (1957)
14. Schmidt, K.: On periodic expansions of Pisot numbers and Salem numbers. Bulletin of the London Mathematical Society 12(4), 269-278 (1980)
15. Sidorov, N.: Expansions in non-integer bases: Lower, middle and top orders. Journal of Number Theory 129(4), 741-754 (2009)
16. Siegelmann, H.T.: Recurrent neural networks and finite automata. Journal of Computational Intelligence 12(4), 567-574 (1996)
17. Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing Limit. Birkhäuser, Boston (1999)
18. Siegelmann, H.T., Sontag, E.D.: Analog computation via neural networks. Theoretical Computer Science 131(2), 331-360 (1994)
19. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. Journal of Computer System Science 50(1), 132-150 (1995)
20. Šíma, J.: Energy complexity of recurrent neural networks. Neural Computation 26(5), 953-973 (2014)
21. Šíma, J.: The power of extra analog neuron. In: Proceedings of the TPNC 2014 Third International Conference on the Theory and Practice of Natural Computing. LNCS, vol. 8890, pp. 243-254 (2014)
22. Šíma, J.: Neural networks between integer and rational weights. Technical report V-1237, Institute of Computer Science, The Czech Academy of Sciences, Prague (2016)
23. Síma, J., Orponen, P.: General-purpose computation with neural networks: A survey of complexity theoretic results. Neural Computation 15(12), 2727-2778 (2003)
24. Síma, J., Wiedermann, J.: Theory of neuromata. Journal of the ACM 45(1), 155178 (1998)

[^0]:    ${ }^{1}$ Research was done wi institutional support RVO:67985807 and partially supported by the grant of the Czech Science Foundation No. P202/12/G061.
    ${ }^{2}$ Institute of Computer Science, The Czech Academy of Sciences, Pod Vodárenskou věží 2, 182 07, Prague 8, Czech Republic, E-mail:sima@cs.cas.cz.

