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Šı́ma, Jiřı́
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Datum staženı́: 23.04.2024
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1 Cut Languages

We study so-called cut languages which contain the representations of numbers in
a rational base [1, 2, 5–7, 10, 12–15] that are less than a given threshold. Hereafter,
let a be a rational number such that 0 < |a| < 1, which is the inverse of a base
(radix) 1/a where |1/a| > 1, and let B ⊂ Q be a finite set of rational digits. We
say that L ⊆ Σ∗ is a cut language over a finite alphabet Σ if there is a mapping
b : Σ −→ B and a real threshold c such that

L = L<c =

{
x1 . . . xn ∈ Σ∗

∣∣∣∣∣
n−1∑
i=0

b(xn−i)a
i < c

}
. (1)

The cut languages can be used to refine the analysis of computational power
of neural network models [17, 23]. This analysis is satisfactorily fine-grained in
terms of Kolmogorov complexity when changing from rational to arbitrary real
weights [4, 18]. In contrast, there is still a gap between integer and rational
weights which results in a jump from regular to recursively enumerable languages
in the Chomsky hierarchy. In particular, neural nets with integer weights, cor-
responding to binary-state networks, coincide with finite automata [3, 8, 9, 11,
16, 20, 24]. On the other hand, a neural network that contains two analog-state
units with rational weights, can implement two stacks of pushdown automata,
a model equivalent to Turing machines [19]. A natural question arises: what is
the computational power of binary-state networks including one extra analog
unit with rational weights? Such a model is equivalent to finite automata with
a register [21], which accept languages that can be represented by some cut lan-
guages combined in a certain way by usual operations (e.g. intersection with
a regular language, concatenation, union); see [22] for the exact representation.

In this paper we prove a necessary and sufficient condition when a given cut
language is regular (Section 3). For this purpose, we introduce and characterize
an a-quasi-periodic number within B whose all its representations in basis 1/a
using the digits from B, are eventually quasi-periodic power series (Section 2).
The concept of a quasi-periodic power series appears to be interesting on its own,
allowing for different quasi-repetends even of unbounded length. In addition, we
present examples of cut languages that are not context-free and we show that any
cut language with a rational threshold is context-sensitive (Section 4). Finally,
we summarize the results and present some open problems (Section 5).

2 Quasi-Periodic Power Series

In this section, we introduce and analyze a notion of a-quasi-periodic numbers
within B which will be employed for characterizing the class of regular cut
languages in Section 3. We say that a power series

∑∞
k=0 bka

k with coefficients
bk ∈ B is eventually quasi-periodic with period sum P if there is an increasing
infinite sequence of its term indices 0 ≤ k1 < k2 < · · · such that for every i ≥ 1,∑mi−1

k=0 bki+k a
k

1− ami
= P (2)
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where mi = ki+1 − ki > 0 is the length of quasi-repetend bki , . . . , bki+1−1, while
k1 is the length of preperiodic part b0, . . . , bk1−1. For k1 = 0, we call such a
power series to be quasi-periodic. One can calculate the sum of any eventually
quasi-periodic power series as

∞∑
k=0

bka
k =

k1−1∑
k=0

bka
k + ak1P (3)

since
∑∞
k=k1

bka
k =

∑∞
i=1 a

ki
∑mi−1
k=0 bki+k a

k = P ·
∑∞
i=1 a

ki(1 − ami) =

P ·
∑∞
i=1(aki − aki+1) = ak1P is an absolutely convergent series. It follows that

the sum (3) does not change if any quasi-repetend is removed from associated
sequence (bk)∞k=0 or if it is inserted in between two other quasi-repetends, which
means that the quasi-repetends can be permuted arbitrarily.

Example 1. A quasi-periodic power series can be composed of quasi-repetends
having unbounded length. For example, for any rational period sum P 6= 0,
we define three rational digits as β1 = (1 − a2)P , β2 = a(1 − a)P , and β3 =
0, that is, B = {β1, β2, β3}. Then β1, β

n
2 , β3 where βn2 means β2 repeated n

times, creates a quasi-repetend of length n+ 2 for every integer n ≥ 0, because
(β1 +

∑n
k=1 β2a

k + β3a
n+1)/(1− an+2) = P whereas for any integer r such that

0 ≤ r < n, it holds (β1 +
∑r
k=1 β2a

k)/(1− ar+1) 6= P .

Furthermore, given a power series
∑∞
k=0 bka

k, we define its tail sequence
(dn)∞n=0 as dn =

∑∞
k=0 bn+k a

k for every n ≥ 0.

Lemma 2. A power series
∑∞
k=0 bka

k with bk ∈ B for all k ≥ 0, is eventually
quasi-periodic with period sum P iff its tail sequence (dn)∞n=0 contains a constant
infinite subsequence (dki)

∞
i=1 such that dki = P for every i ≥ 1.

Proof. Let
∑∞
k=0 bka

k be an eventually quasi-periodic power series with period
sum P, which means there is an increasing infinite sequence of its term indices
0 ≤ k1 < k2 < · · · such that equation (2) holds for every i ≥ 1. It follows that

aki dki =
∑∞
k=ki

bk a
k =

∑∞
j=i a

kj
∑mj−1
k=0 bkj+k a

k = P ·
∑∞
j=i a

kj (1 − amj ) =

P ·
∑∞
j=i(a

kj − akj+1) = akiP , which implies dki = P for every i ≥ 1.
Conversely, assume that (dn)∞n=0 contains a constant subsequence (dki)

∞
i=1

such that dki = P for every i ≥ 1. We have
∑mi−1
k=0 bki+k a

k = dki − amidki+1 =
(1− ami)P where mi = ki+1 − ki > 0 , which implies (2) for every i ≥ 1. ut

Theorem 3. A power series
∑∞
k=0 bka

k with bk ∈ B for all k ≥ 0, is eventually
quasi-periodic iff its tail sequence (dn)∞n=0 contains only finitely many values,
that is, D = {dn |n ≥ 0} is a finite set.

Proof. Assume that D is a finite set, which means there must be a real number
P ∈ D such that dki = P for infinitely many indices 0 ≤ k1 < k2 < · · · ,
that is, (dki)

∞
i=1 creates a constant infinite subsequence of tail sequence (dn)∞n=0 .

According to Lemma 2, this ensures that
∑∞
k=0 bka

k is eventually quasi-periodic.
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Conversely, let
∑∞
k=0 bka

k with bk ∈ B for all k ≥ 0, be an eventually quasi-
periodic power series with period sum P . Since a ∈ Q and B ⊂ Q is finite, P
is a rational number by (2) and there exists a natural number β > 0 such that
B′ = {β(b − (1 − a)P )/a | b ∈ B} ⊂ Z is a finite set of integers. According to
Lemma 2, the tail sequence (dn)∞n=0 of

∑∞
k=0 bka

k contains a constant infinite
subsequence (dki)

∞
i=1 such that dki = P for every i ≥ 1. Assume to the contrary

that D = {dn |n ≥ 0} is an infinite set.

We define a modified sequence (d′n)∞n=0 as d′n = β(dk1+n − P ) for any n ≥ 0,
which satisfies d′k′i

= 0 where k′i = ki−k1, for every i ≥ 1, and D′ = {d′n |n ≥ 0}
is an infinite set. Furthermore, for each n ≥ 0,

d′n
a
− d′n+1 =

β(dk1+n − P )

a
− β(dk1+n+1 − P ) = β

bk1+n − (1− a)P

a
∈ B′ (4)

is an integer by the definition of B′. In addition, denote 1/a = α/q ∈ Q where
natural number α > 0 and integer q 6= 0 are coprime.

Lemma 4. For every n ≥ 0, there exists an integer δ and a natural number
p ≥ 0 such that d′n = δ/qp.

Proof. We proceed by induction on n. The assertion is obvious for n = 0 when
d′0 = 0. Assume that d′n = δ/qp for some δ ∈ Z and p ≥ 0. Then d′n+1 = d′n/a−b′
for some integer b′ ∈ B′ ⊂ Z according to (4), which can be rewritten as d′n+1 =
(α/q) · (δ/qp)− b′ = (αδ − b′qp+1)/qp+1 = δ1/q

p+1 where δ1 = αδ − b′qp+1 ∈ Z,
completing the proof of Lemma 4. ut

Lemma 5. If d′n+1 ∈ Z, then d′n ∈ Z.

Proof. Let d′n+1 ∈ Z . By (4) there is b′ ∈ B′ ⊂ Z such that d′n/a = d′n+1+b′ ∈ Z.
According to Lemma 4, d′n = δ/qp for some δ ∈ Z and p ≥ 0, which gives
d′n/a = αδ/qp+1 ∈ Z. Since α and q are coprime, qp+1 must be a factor of δ,
which means δ = δ′qp+1 for some δ′ ∈ Z, and hence d′n = δ/qp = δ′q ∈ Z,
completing the proof of Lemma 5. ut

We will show for each n ≥ 0 that d′n ∈ Z. Let i ≥ 1 be the least index such that
k′i ≥ n for which we know d′k′i

= 0 ∈ Z. By applying Lemma 5 (k′i − n) times we

obtain d′k′i−1
, d′k′i−2

, . . . , d′n ∈ Z.

Thus, D′ ⊂ Z and since D′ is infinite, there exists an index m ≥ 0 such
that |d′m| ≥ (|a| ·M)/(1 − |a|) > 0 where M = maxb′∈B′ |b′| . Note that M > 0
since for M = 0, we would have B = {(1 − a)P} implying D = {P} which
contradicts that D is infinite. According to (4), |d′m+1| ≥ |d′m|/|a| −M which
implies |d′m+1| − |d′m| ≥ (1/|a| − 1)|d′m| −M ≥ 0 by the definition of m. Hence,
|d′m+1| ≥ |d′m| , and by induction we obtain |d′n| ≥ (|a| ·M)/(1 − |a|) > 0 for
every n ≥ m . On the other hand, we know that there is an index i such that
k′i ≥ m for which d′k′i

= 0, which is a contradiction completing the proof of

Theorem 3. ut
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We say that a real number c is a-quasi-periodic within B if any power series∑∞
k=0 bka

k = c with bk ∈ B for all k ≥ 0, is eventually quasi-periodic. Note
that c that cannot not be written as a respective power series at all, or can, in
addition, be expressed as a finite sum

∑h
k=0 bka

k = c whereas 0 /∈ B, is also
considered formally to be a-quasi-periodic. For example, the numbers from the
complement of the Cantor set are formally (1/3)-quasi-periodic within {0, 2}.

Example 6. Example 1 can be extended to provide a nontrivial example of a-
quasi-periodic numbers. Let a ∈ Q meet 0 < a < 1

2 . We show that any pos-
itive rational number c is a-quasi-periodic within B where B = {β1, β2, β3}
is defined in Example 1 so that P = c. Obviously, β1 > β2 > β3 = 0. As-
sume that c =

∑∞
k=0 bka

k for some sequence (bk)∞k=0 where bk ∈ B for all
k ≥ 0. Observe first that it must be b0 = β1 since otherwise c =

∑∞
k=0 bka

k ≤
β2 +

∑∞
k=1 β1a

k = a(1 − a)c + (1 − a2)c · a/(1 − a) = 2ac < c due to a < 1
2 .

Moreover, for any n ≥ 0 such that bk = β2 for every k = 1, . . . , n, it holds
bn+1 6= β1 since otherwise c =

∑∞
k=0 bka

k ≥ β1+
∑n
k=1 β2a

k+β1a
n+1 = (1−a2)c

+a(1− a)c · a(1− an)/(1− a) + (1− a2)c · an+1 = c− an+1(a2 + a− 1)c > c due
to a2 + a− 1 < 0 for 0 < a < 1

2 .

First consider the case when there is r ≥ 1 such that bk = β2 for all
k ≥ r. Then b0, . . . , br−1 is a preperiodic part and bk = β2 for k ≥ r repre-
sents a repetend of length mk = 1, which proves

∑∞
k=0 bka

k to be eventually
quasi-periodic. Further assume there is no such r, and thus bk = β2 for ev-
ery k = 1, . . . , n1 and bn1+1 = β3, for some n1 ≥ 0. It follows that series∑∞
k=0 bka

k = c starts with a quasi-repetend β1, β
n1
2 , β3 of length n1+2 (cf. Exam-

ple 1) which can be omitted as
∑∞
k=0 bn1+2+ka

k = (c−
∑n1+1
k=0 bka

k)/an1+2 = c

due to
∑n1+1
k=0 bka

k = c(1 − an1+2) by (2), and the argument can be repeated
for its tail

∑∞
k=0 bn1+2+ka

k = c to reveal the next quasi-repetend β1, β
n2
2 , β3 for

some n2 ≥ 0 etc. Hence,
∑∞
k=0 bka

k is quasi-periodic, which completes the proof
that c is a-quasi-periodic within B.

Example 7. On the other hand, we present an example of an eventually quasi-
periodic series

∑∞
k=0 bka

k = c with bk ∈ B for all k ≥ 0, such that c is not
a-quasi-periodic within B. Let a = 2

3 , B = {0, 1}, and define an eventually
quasi-periodic series

∑∞
k=0 bka

k with a preperiodic part b0 = b1 = 0 and a
repetend b2+3k = 0, b3+3k = b4+3k = 1 for every k ≥ 0, which sums to c =
(( 2

3 )3 + ( 2
3 )4) ·

∑∞
k=0( 2

3 )3k = 40
57 .

Furthermore, we employ a greedy approach to generate a series
∑∞
k=0 b

′
ka
k =

c with b′k ∈ {0, 1} for all k ≥ 0, which is not eventually quasi-periodic. In
particular, find minimal k1 ≥ 0 such that ak1 < c which gives b′0 = · · · =
b′k1−1 = 0, b′k1 = 1, and remainder c1 = c/ak1 − 1. For n > 1, let b′0, . . . , b

′
kn−1

be

0s except for b′k1 = b′k2 = · · · = b′kn−1
= 1. Then find minimal kn > kn−1 such

that akn−kn−1 < cn−1 which produces b′kn−1+1 = · · · = b′kn−1 = 0, b′kn = 1, and

remainder cn = cn−1/a
kn−kn−1 − 1. It follows that cn =

∑∞
k=0 b

′
kn+k

ak − 1 =

(c −
∑n
i=1 a

ki)/akn for n ≥ 1. By plugging a = 2
3 and c = 40

57 into this formula,
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for which k1 = 1 and k2 = 9, we obtain

cn =
20

19

(
3

2

)kn−1
−

n∑
i=1

(
3

2

)kn−ki
=

3kn−1 − 19 · 2 ·
∑n
i=2 2ki−2 · 3kn−ki

19 · 2kn−1
(5)

which is an irreducible fraction since both 19 and 2 are not factors of 3kn−1.
Hence, for any natural n1, n2 such that 0 < n1 < n2 we know cn1 6= cn2 . It
follows that the tail sequence (d′n)∞n=0 of

∑∞
k=0 b

′
ka
k = c contains infinitely many

different values d′kn = cn + 1 for n ≥ 1, which implies that
∑∞
k=0 b

′
ka
k is not an

eventually quasi-periodic series, according to Theorem 3.

Theorem 8. A real number c is a-quasi-periodic within B iff the tail sequences
of all the power series satisfying

∑∞
k=0 bka

k = c with bk ∈ B for all k ≥ 0,
contain altogether only finitely many values, that is, D = {

∑∞
k=0 bn+ka

k |n ≥ 0 ;
for any

∑∞
k=0 bka

k = c, bk ∈ B for all k ≥ 0} is a finite set.

Proof. LetD be a finite set. Then the tail sequence of any power series
∑∞
k=0 bka

k

= c with bk ∈ B for all k ≥ 0, contains only finitely many values, which implies
that any

∑∞
k=0 bka

k = c is eventually quasi-periodic according to Theorem 3.
Hence, c is a-quasi-periodic within B.

Conversely, assume that c is a-quasi-periodic within B, which means any
power series

∑∞
k=0 bka

k = c with bk ∈ B for all k ≥ 0, is eventually quasi-
periodic. For each such a series, denote by pre(

∑∞
k=0 bka

k) = k1 the length of its
shortest preperiodic part that meets (3). We define a directed rooted tree T =
(V,E) with vertex set V = {b0 · · · bk−1 ∈ B∗ | 0 ≤ k ≤ pre(

∑∞
k=0 bka

k) , for any∑∞
k=0 bka

k = c}, including an empty string as a root, and a set of directed edges

E = {(b0 · · · bk−1, b0 · · · bk−1bk) | b0 · · · bk−1, b0 · · · bk−1bk ∈ V } . (6)

Clearly, T covers all the directed paths that start at the root and lead to
b0 · · · bk1−1 ∈ V corresponding to a preperiodic part of some eventually quasi-
periodic series

∑∞
k=0 bka

k = c. Thus, the outdegree of T is bounded by |B|.
Suppose that T is infinite. According to König’s lemma, there exists an infinite
directed path corresponding to a series

∑∞
k=0 bka

k = c whose shortest prepe-
riodic part is infinite, which contradicts that

∑∞
k=0 bka

k is eventually quasi-
periodic. It follows that there are only finitely many possible preperiodic parts
over all the power series

∑∞
k=0 bka

k = c.
Thus, for the proof that D is finite, it suffices to show that for any preperiodic

part b0, . . . , bk1−1 ∈ B of length k1 = pre(
∑∞
k=0 bka

k) , which starts a series∑∞
k=0 bka

k = c with period sum P , the tail sequences of all quasi-periodic series∑∞
k=0 bk1+ka

k = P contain altogether only finitely many values. On the contrary,
suppose that these tail sequences include infinitely many values. According to
(3), any such a value can be expressed as

mi−j−1∑
k=0

bki+j+k a
k + amiP (7)
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for j ∈ {0, . . . ,mi−1}, by using a quasi-repetend bki , . . . , bki+1−1 of length mi =
ki+1 − ki , taken from some series

∑∞
k=0 bk1+ka

k = P . Thus, we can construct
a new series

∑∞
k=0 b

∗
k1+k

ak = P that is composed of infinitely many quasi-
repetends from the respective series so that each such quasi-repetend introduces
a different value (7) in the tail sequence. It follows that series

∑∞
k=0 b

∗
k1+k

ak

is quasi-periodic and its tail sequence contains infinitely many values, which
contradicts Theorem 3. This completes the argument that D is finite. ut

3 Regular Cut Languages

In this section we formulate a necessary and sufficient condition for a cut lan-
guage L<c to be regular (Theorem 11), which is based on a-quasi-periodic thresh-
olds c within B. The following Lemma 9 provides a technical characterization
of the regular cut languages, which is proven by Myhill-Nerode theorem, while
subsequent Lemma 10 separates the cases when threshold c is represented by a
finite sum or when c has no representation in base 1/a using the digits from B.

Lemma 9. Let Σ be a finite alphabet, b : Σ −→ B be a mapping, and c be a real
number. Then the cut language L<c = {x1 · · ·xn ∈ Σ∗ |

∑n−1
i=0 b(xn−i)a

i < c} is
regular iff the set

C =

{
c(b0, . . . , bκ−1)

∣∣∣∣∣ Iκ ≤ c−
κ−1∑
k=0

bka
k ≤ Sκ ; b0, . . . , bκ−1 ∈ B ; κ ≥ 0

}
(8)

is finite, where

Iκ = inf
bκ,...,bh−1∈B

h≥κ

h−1∑
k=κ

bka
k , Sκ = sup

bκ,...,bh−1∈B
h≥κ

h−1∑
k=κ

bka
k , (9)

c(b0, . . . , bκ−1) =

{
inf C(b0, . . . , bκ−1) if aκ > 0
supC(b0, . . . , bκ−1) if aκ < 0 ,

(10)

C(b0, . . . , bκ−1) =

{
h−κ−1∑
k=0

bκ+ka
k

∣∣∣∣∣
h−1∑
k=0

bka
k ≥ c ; bκ, . . . , bh−1 ∈ B ; h ≥ κ

}
.

(11)

Proof. Let C = {c1, . . . , cp} in (8) be a finite set such that c1 < c2 < · · · <
cp. We introduce an equivalence relation ∼ on Σ∗ as follows. For any x, y ∈
Σ∗ of length nx = |x| and ny = |y|, respectively, we define x ∼ y iff both

zx =
∑nx−1
i=0 b(xnx−i)a

i and zy =
∑ny−1
i=0 b(ynx−i)a

i belong either to one of the
p + 1 open intervals (−∞, c1), (c1, c2), . . . , (cp−1, cp), (cp,∞), or to one of the p
singletons {c1}, {c2}, . . . , {cp} . Obviously, we have 2p+ 1 equivalence classes. In
order to prove that language L<c is regular we employ Myhill-Nerode theorem
by showing that for any x, y ∈ Σ∗, if x ∼ y, then for every w ∈ Σ∗, xw ∈ L<c
iff yw ∈ L<c . Thus, consider x, y ∈ Σ∗ such that x ∼ y, and on the contrary,
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suppose there is w ∈ Σ∗ of length κ = |w| with zw =
∑κ−1
i=0 b(wκ−i)a

i, such that
xw ∈ L<c and yw /∈ L<c. This means zw+Iκ ≤ zw+aκzx < c ≤ zw+aκzy ≤ zw+
Sκ by (9), implying Iκ < c−zw ≤ Sκ which ensures cj = c(b(wκ), . . . , b(w1)) ∈ C
for some j ∈ {1, . . . , p}, according to (8). It follows from (10) and (11) that
zw + aκzx < c ≤ zw + aκcj ≤ zw + aκzy which gives aκzx < aκcj ≤ aκzy
contradicting x ∼ y.

Conversely, let L<c be a regular languages. According to Myhill-Nerode the-
orem, there is an equivalence relation ∼ on Σ∗ with a finite number p of equiv-
alence classes such that for any x, y ∈ Σ∗, if x ∼ y, then for every w ∈ Σ∗,
xw ∈ L<c iff yw ∈ L<c . Assume to the contrary that C in (8) is infinite.
Choose c0, c1, . . . , c2p+2 ∈ C so that c0 < c1 < · · · < c2p+2, and for each
j ∈ {0, . . . , 2p+ 2}, let cj = c(bj0, . . . , bj,κj−1) for some bj0, . . . , bj,κj−1 ∈ B
and κj ≥ 0, according to (8). Definition (10) and (11) ensures that for each
odd j ∈ {1, 3, . . . , 2p + 1}, there exists hj ≥ κj and bj,κj , . . . , bj,hj−1 ∈ B such

that c′j =
∑hj−κj−1
k=0 bjκj+ka

k is sufficiently close to cj so that cj−1 < c′j <
cj+1 . Since there are only p equivalence classes, there must be two odd indices
jx, jy ∈ {1, 3, . . . , 2p + 1}, say jx < jy, determining x, y ∈ Σ∗ of length nx =
|x| = hjx − κjx and ny = |y| = hjy − κjy , respectively, by b(xnx−i) = bjx,κjx+i
for i = 0, . . . , nx − 1 and b(yny−i) = bjy,κjy+i for i = 0, . . . , ny − 1, such that

x ∼ y. Thus, c′jx =
∑nx−1
i=0 b(xnx−i)a

i and c′jy =
∑ny−1
i=0 b(yny−i)a

i. For aκ > 0,

choose w ∈ Σ∗ of length κ = |w| = κjx+1 so that cjx+1 = c(b(wκ), . . . , b(w1)),

and denote zw =
∑κ−1
i=0 b(wκ−i)a

i. We know c′jx < cjx+1 < c′jy . It follows that

zw + aκc′jx < c ≤ zw + aκcjx+1 < zw + aκc′jy since zw + aκc′jx ≥ c would contra-

dict that cjx+1 is the infimum according to (10) and (11). Hence, xw ∈ L<c and
yw /∈ L<c, which gives the contradiction. Similarly for aκ < 0, choose w ∈ Σ∗ so
that cjy−1 = c(b(wκ), . . . , b(w1)), which gives zw + aκc′jy < c ≤ zw + aκcjy−1 <

zw + aκc′jx , leading to the contradiction xw /∈ L<c and yw ∈ L<c . ut

Lemma 10. Assume the notation as in Lemma 9. Then the two subsets of C,
C1 = {c(b0, . . . , bκ−1) ∈ C |

∑κ−1
k=0 bka

k + aκc(b0, . . . , bκ−1) > c} and C2 =

{c(b0, . . . , bκ−1) ∈ C | (∃ bκ, . . . , bh−1 ∈ B , h ≥ κ)
∑h−1
k=0 bka

k = c & (∀ b ∈ B)
c(b0, . . . , bh−1, b) ∈ C1} are finite.

Proof. We define a directed rooted tree T = (V,E) with vertex set V = {b0 · · ·
bk−1 ∈ B∗ | (∃ bk, . . . , bκ−1 ∈ B) c(b0, . . . , bk−1, bk . . . , bκ−1) ∈ C1}, including
an empty string as a root, and a set of directed edges (6). Clearly, T cov-
ers all the directed paths starting at the root and leading to b0 . . . bκ−1 ∈
V such that c(b0, . . . , bκ−1) ∈ C1. This also guarantees that T includes all
b0 . . . bκ−1 ∈ V such that c(b0, . . . , bκ−1) ∈ C2, by the definition of C2. For each

vertex b0 · · · bk−1 ∈ V we define a closed interval I(b0, . . . , bk−1) = [
∑k−1
i=0 bia

i +

Ik ,
∑k−1
i=0 bia

i+Sk] by using (9). Obviously, I(b0, . . . , bk−1, bk) ⊂ I(b0, . . . , bk−1)
for any edge (b0 · · · bk−1, b0 · · · bk−1bk) ∈ E. Hence, c ∈ I(b0, . . . , bk−1) for every
vertex b0 · · · bk−1 ∈ V since b0 · · · bk−1 · · · bκ−1 ∈ V such that c(b0, . . . , bκ−1) ∈ C1

satisfies c ∈ I(b0, . . . , bκ−1) ⊂ I(b0, . . . , bk−1) according to (8).
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On the contrary, suppose that tree T whose outdegree is bounded by |B|,
is infinite. According to König’s lemma, there exists an infinite directed path
corresponding to an infinite sequence (b∗k)∞k=0 with b∗k ∈ B for all k ≥ 0, which
contains infinitely many vertices b∗0 · · · b∗κ−1 ∈ V such that c(b∗0, . . . , b

∗
κ−1) ∈ C1.

On the other hand, interval I(b∗0, . . . , b
∗
k−1) is a nonempty compact set sat-

isfying c ∈ I(b∗0, . . . , b
∗
k−1) ⊃ I(b∗0, . . . , b

∗
k) for every k ≥ 1, which yields c ∈⋂

k≥0 I(b∗0, . . . , b
∗
k−1) 6= ∅ by Cantor’s intersection theorem. Hence,

∑∞
k=0 b

∗
ka
k =

c which implies
∑κ−1
k=0 b

∗
ka
k + aκc(b∗0, . . . , b

∗
κ−1) = c for any b∗0 · · · b∗κ−1 ∈ V such

that c(b∗0, . . . , b
∗
κ−1) ∈ C1, according to (10) and (11), which contradicts the def-

inition of C1. It follows that T is finite which implies that C1, C2 are finite. ut

Theorem 11. A cut language L<c is regular iff c is a-quasi-periodic within B.

Proof. According to Lemma 9, language L<c is regular iff set C is finite which
is equivalent to the condition that C \ (C1 ∪ C2) is finite, by Lemma 10. It
follows from (8)–(11) that for any b0, . . . , bκ−1 ∈ B and κ ≥ 0, c(b0, . . . , bκ−1) ∈
C \(C1∪C2) iff there exists sequence (bk)∞k=κ with bk ∈ B for all k ≥ 0, such that∑κ−1
k=0 bka

k + aκc(b0, . . . , bκ−1) = c (c(b0, . . . , bκ−1) /∈ C1) and
∑∞
k=0 bka

k = c
(c(b0, . . . , bκ−1) /∈ C2), which yields c(b0, . . . , bκ−1) =

∑∞
k=0 bκ+ka

k . It follows
that C \ (C1 ∪ C2) = D by the definition of D, which is finite iff c is a-quasi-
periodic within B, according to Theorem 8. ut

4 Non-Context-Free Cut Languages

The following Theorem 13 shows that the cut languages with a threshold whose
greedy representation (in base 1/a using the digits from B) is not eventually
quasi-periodic, are not context-free, which is proven by the pumping lemma. For
this purpose, we present examples of rational numbers with no eventually quasi-
periodic representations in Example 12. On the other hand, the cut languages
with rational thresholds are shown to be context-sensitive in Theorem 14.

Example 12. We generalize Example 7 to provide instances of rational numbers c
such that any power series

∑∞
k=0 b

′
ka
k = c with b′k ∈ B for all k ≥ 0, is not

eventually quasi-periodic. Let B = {0, 1} and a = α1/α2, c = γ1/γ2 ∈ Q be
irreducible fractions where α1, γ1 ∈ Z and α2, γ2 ∈ N, such that α1γ2 and α2γ1
are coprime. Denote by 0 < k1 < k2 < · · · all the indices of a (not necessarily
greedy) representation of c =

∑∞
k=0 b

′
ka
k such that b′ki = 1 for i ≥ 1. Then

formula (5) can be rewritten as

cn =
γ1α

kn
2 − γ2α1

∑n
i=1 α

ki−1
1 αkn−ki2

γ2α
kn
1

(12)

which is still an irreducible fraction.

Theorem 13. Let B = {0, 1} and assume that the greedy representation of
threshold c =

∑∞
k=0 b

′
ka
k with b′k ∈ B for all k ≥ 0, is not eventually quasi-

periodic (see Example 12 for instances of such c ∈ Q). Then the cut language
L<c is not context-free.



9

Proof. Consider a cut language L<c over alphabet Σ = B = {0, 1}, where
b : Σ −→ B is the identity mapping. Let sequence (b′k)∞k=0 corresponding to
power series

∑∞
k=0 b

′
ka
k = c with b′k ∈ B for all k ≥ 0, be generated by the

greedy algorithm (see Example 7), which is assumed to be not eventually quasi-
periodic. On the contrary, suppose that L<c is a context-free language, and hence
the same holds for its reversal

L = LR<c =

{
b0 . . . bn−1 ∈ {0, 1}∗

∣∣∣∣∣
n−1∑
i=0

bia
i < c

}
. (13)

The greedy algorithm ensures that for any other (bk)∞k=0 6= (b′k)∞k=0 such that
c =

∑∞
k=0 bka

k with bk ∈ {0, 1} for all k ≥ 0, there exists an index n ≥ 0 such
that bi = b′i for every i = 0, . . . , n − 1, and bn < b′n, which means (b′k)∞k=0 is
the greatest such sequence with respect to the lexicographic order �. We will
apply the pumping lemma to context-free language L, which guarantees there
is an integer p ≥ 1 such that every word b0 . . . bn−1 ∈ L of length n ≥ p, can
be written as uvwxy with substrings u, v, w, x, y ∈ {0, 1}∗ satisfying |vwx| ≤ p,
|vx| ≥ 1, and uviwxiy ∈ L for all i ≥ 0.

Thus, consider a prefix βn = b′0 . . . b
′
n−1 ∈ {0, 1}∗ of the sequence (b′k)∞k=0, for

any length n = |βn| ≥ p. It follows from (13) that βn ∈ L since
∑n−1
i=0 b

′
ia
i < c =∑∞

i=0 b
′
ia
i due to

∑∞
i=n b

′
ia
i > 0 as b′i = 1 for some i ≥ n, by the non-periodicity

of (b′k)∞k=0 . Hence, βn ∈ L can be written as uvwxy with the respective substrings
from the pumping lemma. Thus, we have uwy = uv0wx0y ∈ L , implying uwy ≺
uvwxy = βn = b′0 . . . b

′
n−1 ≺ (b′k)∞k=0 in the strict lexicographic order due to

|uwy| < |βn| because of |vx| ≥ 1, which reduces to

w ≺ vwx . (14)

Furthermore, for every i ≥ 1, we have uviwxiy ∈ L , which implies that ei-
ther uviwxiy ≺ βn in the lexicographic order or βn ∈ Pref(uviwxiy) where
Pref(s) = {s1 ∈ {0, 1}∗ | (∃ s2 ∈ {0, 1}∗) s = s1s2} denotes the set of pre-
fixes of a string s ∈ {0, 1}∗. Suppose first that there exists j ≥ 2 such that
uvjwxjy ≺ βn = uvwxy which reduces to vj−1wxj−1 ≺ w. By applying inequal-
ity (14), we further obtain vj−2wxj−2 ≺ w, which, repeated (j − 1) times, leads
to vwx ≺ w, contradicting (14).

It follows that βn = uvwxy ∈ Pref(uviwxiy) for all i ≥ 1. If |v| ≥ 1, then
there exists j ≥ 1 such that |uvj−1| < |βn| ≤ |uvj | and βn ∈ Pref(uvj), which
means βn = uvjv1 = uv1(v2v1)j where v = v1v2 for some v1, v2 ∈ {0, 1}∗. Thus,
we can write βn = µν when denoting µ = uv1ν

j−1 and ν = v2v1, which satisfies
1 ≤ |ν| = |v| ≤ |vwx| ≤ p. In addition, βnν

iσi = uvj+i+1wxj+i+1y ∈ L where
σi = v2wx

j+i+1y, for every i ≥ 0. The same holds for |v| = 0, when |x| ≥ 1 due
to |vx| ≥ 1, which ensures that there is j ≥ 1 such that |uwxj−1| < |βn| ≤ |uwxj |
and βn ∈ Pref(uwxj). Thus, we can again write βn = uwxjx1 = uwx1(x2x1)j =
µν where x = x1x2 for some x1, x2 ∈ {0, 1}∗, and µ = uwx1ν

j−1 and ν = x2x1,
satisfying 1 ≤ |ν| = |x| ≤ |vwx| ≤ p. Moreover, βnν

iσi = uvj+i+1wxj+i+1y ∈ L
where σi = x2y, for every i ≥ 0.
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Since (b′k)∞k=0 is not periodic, there exists ` ≥ 0 and ν′ ∈ Pref(ν) such that
b′0 . . . b

′
r−1 = βr = βnν

`ν′ = µν`+1ν′ and ν′0 ∈ Pref(ν) where 0 ≤ |ν′| < m =
|ν| ≤ p and r = n+ `m+ |ν′|, while βr0 ≺ βr+1 = βr1 . It follows that b′r−m = 0
due to βr−m+1 = µν`ν′0 , which implies

dr−m =
dn−m −

∑r−n−1
k=0 b′n−m+k a

k

ar−n
< 1 (15)

where (dn)∞n=0 is the tail sequence of (b′k)∞k=0 that was generated by the greedy
approach. On the other hand, the greedy algorithm ensures

dr =
dn −

∑r−n−1
k=0 b′n+k a

k

ar−n
> 1 (16)

because of b′r = 1. We have b′n−m . . . b
′
r−m−1 = ν`ν′ = b′n . . . b

′
r−1 which yields∑r−n−1

k=0 b′n−m+k a
k =

∑r−n−1
k=0 b′n+k a

k, and hence,

dn−m < dn (17)

according to (15) and (16).
The preceding analysis is valid for prefix βn of arbitrary length n ≥ p. Thus,

suppose that βn ∈ Pref(uviwxiy) with strings u, v, w, x, y specific to each βn,
holds for every n ≥ p and for all i ≥ 1. Denote by Np the set of natural numbers
greater or equal p and define a mapping π : Np −→ N0 as π(n) = n −mn for
every n ≥ p, where mn = |ν| is the length of the string ν specific to βn, which
satisfies 1 ≤ mn ≤ p. We introduce an infinite directed forest T = (V,E) where
V = π(Np) and E = {(π(n), n) |n ∈ V }, which has the outdegree bounded by
p due to n− π(n) ≤ p. Observe that T is a disjoint union of at most p directed
trees with the roots from {0, . . . , p − 1} having zero indegree, and thus one of
these trees must be infinite containing an infinite path according to König’s
lemma. Hence, there is an infinite subsequence (dkn)∞n=0 such that kn = π(kn+1)
for all n ≥ 1, which is increasing according to (17) and upper bounded by∑∞
k=0 a

k = 1/(1− a). It follows that dkn converges to some P when n tends to
infinity, which implies

Pn =

∑mn−1
i=0 b′kn−1+i

ai

1− amn
=
dkn−1 − amndkn

1− amn
n → ∞−→ P . (18)

Nevertheless, the set {Pn |n ≥ 1} is finite due to mn ≤ p, which means Pn = P
for all sufficiently large n. Hence, (b′k)∞k=0 is eventually quasi-periodic which is a
contradiction, completing the proof that L<c is not a context-free language. ut

Theorem 14. Every cut language L<c with threshold c ∈ Q is context-sensitive.

Proof. A corresponding (deterministic) linear bounded automaton M that ac-
cepts a given cut language L<c = L(M), evaluates (and stores) the sum sn =∑n−1
i=0 b(xn−i)a

i step by step when reading an input word x1 . . . xn ∈ Σ∗ from left
to right. In particular, M starts with s0 = 0 which updates to si = asi−1 + b(xi)
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every time after M reads the next input symbol xi ∈ Σ, for i = 1, . . . , n. As
the numbers a, b(x1), . . . , b(xn), c ∈ Q can be represented within constant space,
M needs only linear space in terms of input length n, for computing sn and
testing whether sn < c. ut

5 Conclusion

In this paper we have introduced the cut languages in rational bases and clas-
sified them within the Chomsky hierarchy, among others, by using the quasi-
periodic power series. A natural direction for future research is to generalize the
results to arbitrary real bases. For example, an open problem behind Theorem 3
can be formulated elementarily as follows. Let a be a real number such that
0 < |a| < 1, and (dn)∞n=0 be a sequence of real numbers, containing a constant
infinite subsequence (cf. Lemma 2), such that B = {dn−adn+1 |n ≥ 0} is finite.
Is D = {dn |n ≥ 0} a finite set?
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4. Balcázar, J.L., Gavaldà, R., Siegelmann, H.T.: Computational power of neural net-
works: A characterization in terms of Kolmogorov complexity. IEEE Transactions
on Information Theory 43(4), 1175–1183 (1997)

5. Chunarom, D., Laohakosol, V.: Expansions of real numbers in non-integer bases.
Journal of the Korean Mathematical Society 47(4), 861–877 (2010)

6. Glendinning, P., Sidorov, N.: Unique representations of real numbers in non-integer
bases. Mathematical Research Letters 8(4), 535–543 (2001)

7. Hare, K.G.: Beta-expansions of Pisot and Salem numbers. In: Proceedings of the
Waterloo Workshop in Computer Algebra 2006: Latest Advances in Symbolic Al-
gorithms. pp. 67–84. World Scientific (2007)

8. Horne, B.G., Hush, D.R.: Bounds on the complexity of recurrent neural network
implementations of finite state machines. Neural Networks 9(2), 243–252 (1996)

9. Indyk, P.: Optimal simulation of automata by neural nets. In: Proceedings of the
STACS 1995 Twelfth Annual Symposium on Theoretical Aspects of Computer
Science. LNCS, vol. 900, pp. 337–348 (1995)

10. Komornik, V., Loreti, P.: Subexpansions, superexpansions and uniqueness proper-
ties in non-integer bases. Periodica Mathematica Hungarica 44(2), 197–218 (2002)

11. Minsky, M.: Computations: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs (1967)

12. Parry, W.: On the β-expansions of real numbers. Acta Mathematica Hungarica
11(3), 401–416 (1960)



12
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23. Š́ıma, J., Orponen, P.: General-purpose computation with neural networks: A sur-
vey of complexity theoretic results. Neural Computation 15(12), 2727–2778 (2003)
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