
Neural Networks Between Integer and Rational Weights

Šı́ma, Jiřı́
2016

Dostupný z http://www.nusl.cz/ntk/nusl-261501

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 11.06.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-261501
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
The Czech Academy of Sciences

Neural Networks Between
Integer and Rational Weights

Jǐŕı Š́ıma

Technical report No. V-1237

October 2016

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: +420 266 053 030, fax: +420286 585 789,

e-mail: sima@cs.cas.cz

Institute of Computer Science
The Czech Academy of Sciences

Neural Networks Between
Integer and Rational Weights

Jǐŕı Š́ıma12

Technical report No. V-1237

October 2016

Abstract:

The analysis of the computational power of neural networks with the weight parameters between integer and

rational numbers is refined. We study an intermediate model of binary-state neural networks with integer

weights, corresponding to finite automata, which is extended with an extra analog unit with rational

weights, as already two additional analog units allow for Turing universality. We characterize the languages

that are accepted by this model in terms of so-called cut languages which are combined in a certain way

by usual string operations. We employ this characterization for proving that the languages accepted by

neural networks with an analog unit are context-sensitive and we present an explicit example of such non-

context-free languages. In addition, we formulate a sufficient condition when these networks accept only

regular languages in terms of quasi-periodicity of parameters derived from their weights.

Keywords:

Neural networks, analog unit, rational weights, cut languages, computational power

1Research was done with institutional support RVO:67985807 and partially supported by the grant of the Czech
Science Foundation No. P202/12/G061.

2Institute of Computer Science, The Czech Academy of Sciences, Pod Vodárenskou věž́ı 2, 182 07 Prague 8, Czech
Republic, E-mail: sima@cs.cas.cz.

Neural Networks Between Integer and
Rational Weights

Jiřı́ Šı́ma
Institute of Computer Science, The Czech Academy of Sciences,

P. O. Box 5, 18207 Prague 8, Czech Republic, Email: sima@cs.cas.cz

Abstract—The analysis of the computational power of neu-
ral networks with the weight parameters between integer and
rational numbers is refined. We study an intermediate model of
binary-state neural networks with integer weights, corresponding
to finite automata, which is extended with an extra analog unit
with rational weights, as already two additional analog units
allow for Turing universality. We characterize the languages that
are accepted by this model in terms of so-called cut languages
which are combined in a certain way by usual string operations.
We employ this characterization for proving that the languages
accepted by neural networks with an analog unit are context-
sensitive and we present an explicit example of such non-context-
free languages. In addition, we formulate a sufficient condition
when these networks accept only regular languages in terms of
quasi-periodicity of parameters derived from their weights.

I. INTRODUCTION

The computational power of neural networks with the
saturated-linear activation function1 depends on the descriptive
complexity of their weight parameters [6], [7]. Neural nets
with integer weights, corresponding to binary-state networks,
coincide with finite automata [8], [9], [10], [11], [12], [13].
Rational weights make the analog-state networks computation-
ally equivalent to Turing machines [10], [14], and thus (by a
real-time simulation [14]) polynomial-time computations of
such networks are characterized by the complexity class P.
Moreover, neural nets with arbitrary real weights can even
derive “super-Turing” computational capabilities [6], [15]. In
particular, their polynomial-time computations correspond to
the nonuniform complexity class P/poly while any input/output
mapping (including undecidable problems) can be computed
within exponential time. In addition, a proper hierarchy of
nonuniform complexity classes between P and P/poly has been
established for polynomial-time computations of neural nets
with increasing Kolmogorov complexity of real weights [16].

As can be seen, our understanding of the computational
power of neural networks is satisfactorily fine-grained when
changing from rational to arbitrary real weights. In contrast,
there is still a gap between integer and rational weights which
results in a jump from regular to recursively enumerable
languages in the Chomsky hierarchy. It appears that a neural
network that contains two analog-state units with rational
weights, can implement two stacks of pushdown automata,
a model equivalent to Turing machines [14]. A natural ques-
tion arises: what is the computational power of binary-state

1The results are valid for more general classes of activation functions [1],
[2], [3], [4] including the logistic function [5].

networks including one extra analog neuron with rational
weights? Such a model has been shown to be computationally
equivalent to so-called finite automata with a register (FAR)
whose domain is partitioned into a finite number of intervals,
each associated with a local state-transition function [17].

In this paper, we characterize the class of languages that are
accepted by binary-state neural networks with an extra analog
unit (NN1A) in terms of so-called cut languages [18] which
are combined in a certain way by usual operations such as
complementation, intersection, union, concatenation, Kleene
star, the largest prefix-closed subset, and a letter-to-letter
morphism. A cut language L<c contains the representations
of numbers in a rational base 1/a (where 0 < |a| < 1)
using rational digits from a finite set B [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], that are less than a given
threshold c. It has been proven [18] that a cut language L<c
is regular iff any such a representation of c is eventually quasi-
periodic, while L<c need not even be context-free if it is not
the case. Nevertheless, any cut language L<c with rational
threshold c is context-sensitive.

By the present characterization of neural networks with an
analog neuron we derive a sufficient condition when a NN1A
recognizes a regular language, in terms of quasi-periodicity of
some parameters depending on its weights. Furthermore, we
show examples of languages accepted by NN1A that are not
context-free while we prove that any language accepted by
NN1A is context-sensitive. These results refine the analysis of
the computational power of neural networks with the weight
parameters between integer and rational weights. Namely, the
computational power of binary-state networks having integer
weights can increase from regular languages to that between
context-free and context-sensitive languages, when an extra
analog unit with rational weights is added, while a condition
when this does not bring any additional power is formulated.

The paper is organized as follows. In Section II, we give
a brief review of basic definitions concerning the language
acceptors based on NN1A. In Section III, we recall the
definition of FAR which is known to be computationally
equivalent to NN1A. The main technical result is presented
in Section IV, which provides a characterization of languages
accepted by FAR in terms of cut languages. As a consequence
of this characterization we formulate a sufficient condition in
Section V when a language accepted by NN1A is regular.
Section VI shows a lower bound on the computational power
of NN1A by an explicit example of non-context-free languages

that are recognized by NN1A, while any language accepted
by NN1A proves to be context-sensitive, which represents a
corresponding upper bound. Finally, we summarize the results
and present some open problems in Section VII.

II. NEURAL LANGUAGE ACCEPTORS WITH
AN EXTRA ANALOG UNIT

In this section, we will specify a computational model
of a binary-state neural network with an extra analog unit
(shortly, NN1A), N , which will be used as a formal language
acceptor. As concerns the computational power, NN1A stands
between the binary-state neural networks with integer weights,
corresponding to finite automata, and the Turing-universal
analog-state networks with rational weights.

The network consists of s units (neurons), indexed as V =
{1, . . . , s}. All the units in N are assumed to be binary-state
perceptrons (i.e. threshold gates) except for the last sth neuron
which is an analog unit. The neurons are connected into a
directed graph representing an architecture of N , in which
each edge (i, j) leading from unit i to j is labeled with a
rational weight w(i, j) = wji ∈ Q which is assumed to be
an integer2 for j ∈ V \ {s}. The absence of a connection
within the architecture corresponds to a zero weight between
the respective neurons, and vice versa.

The computational dynamics of N determines for each
unit j ∈ V its state (output) y(t)

j at discrete time instants
t = 0, 1, 2, The states y(t)

j of the first s − 1 perceptrons
j ∈ V \{s} are binary values from {0, 1}, whereas the output
y

(t)
s from analog unit s is a rational number from the unit

interval I = [0, 1] ∩ Q. This establishes the network state
y(t) = (y

(t)
1 , . . . , y

(t)
s) ∈ {0, 1}s−1 × I at each discrete time

instant t ≥ 0.
At the beginning of a computation, the neural network N

is placed in an initial state y(0) which may also include an
external input, while, for simplicity, we assume y(0)

s = 0. At
discrete time instant t ≥ 0, an excitation of any neuron j ∈ V
is defined as

ξ
(t)
j =

s∑
i=0

wjiy
(t)
i , (1)

including a rational bias value wj0 ∈ Q (wj0 ∈ Z for j 6= s)
which can be viewed as the weight w(0, j) from a formal
constant unit input y(t)

0 ≡ 1. At the next instant t + 1, the
neurons j ∈ αt+1 from a selected subset αt+1 ⊆ V compute
their new outputs y(t+1)

j in parallel by applying an activation
function σj : R −→ R to ξ

(t)
j , whereas the remaining units

j /∈ αt+1 do not update their states, that is,

y
(t+1)
j =

{
σj

(
ξ

(t)
j

)
for j ∈ αt+1

y
(t)
j for j ∈ V \ αt+1 .

(2)

2Arbitrary real weights can always be replaced with integers in a binary-
state neuron while its function is preserved [11].

For perceptron units j ∈ V \ {s} with binary states yj ∈
{0, 1} the Heaviside activation function σj(ξ) = σH(ξ) is
used where

σH(ξ) =

{
1 for ξ ≥ 0
0 for ξ < 0 ,

(3)

while the analog-state unit s ∈ V employs the saturated-linear
function σs(ξ) = σL(ξ) where

σL(ξ) =

 1 for ξ ≥ 1
ξ for 0 < ξ < 1
0 for ξ ≤ 0 .

(4)

In this way, the new network state y(t+1) at time t + 1 is
determined.

Without loss of efficiency [29] we assume synchronous
computations for which the sets αt that defines the com-
putational dynamics of N according to (2), are predestined
deterministically. Usually, sets αt correspond to layers in the
architecture of N which are updated one by one (e.g., a
feedforward subnetwork). In particular, we use a systematic
periodic choice of αt so that αt+d = αt for any t ≥ 0
where an integer parameter d ≥ 1 represents the number
of updates within one macroscopic time step (e.g., d is the
number of layers). We assume that the analog unit s ∈ V
is updated exactly once in every macroscopic time step,
say s ∈ αdτ for every τ ≥ 1.

The computational power of neural networks has been
studied analogously to the traditional models of computations
so that the networks are exploited as acceptors of formal
languages L ⊆ Σ∗ over a finite alphabet Σ (e.g., the binary
alphabet Σ = {0, 1}). For the finite networks the following
input/output protocol has been used [8], [16], [9], [10], [2], [6],
[15], [14], [7], [13]. An input word (string) x = x1 . . . xn ∈
Σn of arbitrary length n ≥ 0 is sequentially presented to
the network, symbol after symbol, via so-called input neurons
X ⊂ V \ {s}.

In particular, each input symbol xτ ∈ Σ is encoded by
the states y

(d(τ−1)+k)
j of input neurons j ∈ X , which are

externally set (and clamped) for every k = 0 . . . , d − 1 at
microscopic time instants τ = 1, . . . , n, regardless of any
influence from the remaining neurons in the network. An
integer d ≥ 1 is the time overhead for processing a single
input symbol which coincides with the microscopic time step.
Then, a so-called output neuron out ∈ V \ {s} signals at
microscopic time instant n whether the input word belongs
to the underlying language L, that is,

y
(dn)
out =

{
1 for x ∈ L
0 for x /∈ L . (5)

Thus, a language L ⊆ Σ∗ is accepted (recognized) by NN1A
N , which is denoted by L = L(N), if for any input word
x ∈ Σ∗, x is accepted by N iff x ∈ L .

III. FINITE AUTOMATA WITH A REGISTER

The model of NN1A introduced in Section II has been
shown to be computationally equivalent to a formally sim-
pler (deterministic) finite automaton with a register (shortly,
FAR) [17] which is reminiscent of today’s already classical
definition of finite automaton with multiplication [30]. In the
following, we will thus use the FAR model for analyzing the
computational power of NN1A.

In particular, a FAR is formally a nine-tuple A = (Q,Σ,
{I1, . . . , Ip}, a, (∆1, . . . ,∆p), δ, q0, z0, F) where, as usual,
Q is a finite set of states including a start (initial) state
q0 ∈ Q and a subset F ⊆ Q of accept (final) states, and
Σ is a finite input alphabet. In addition, the automaton is
augmented with a register which stores a rational number
z ∈ I = [0, 1] ∩ Q. Domain I is partitioned into a finite
number of intervals I1, . . . , Ip, possibly of different types:
open, closed, half-closed, or degenerate (i.e. containing a
single point) bounded intervals with rational endpoints. Each
such an interval Ir is associated with a usual local state-
transition function δr : Q × Σ −→ Q which is employed
if the current register value z falls into this interval Ir.

Furthermore, we have a rational shift function ∆r : Q ×
Σ −→ Q for each interval Ir, r = 1, . . . , p. The register is
initialized to a start (initial) value z0 ∈ I, and during each state
transition, its value z ∈ I is updated to σL(az+ ∆r(q, x)) ∈ I
by applying a linear mapping with saturation (4) having a fixed
slope a ∈ Q called multiplier and an y-intercept ∆r(q, x) ∈ Q
given by the shift function ∆r for z ∈ Ir, which depends on
current state q ∈ Q and input symbol x ∈ Σ. In summary, for
current state q ∈ Q, register value z ∈ I, and input symbol
x ∈ Σ, the global state-transition function δ : Q× I× Σ −→
Q × I produces the new state and the new register value of
automaton A as follows:

δ(q, z, x) = (δr(q, x), σL(az + ∆r(q, x))) if z ∈ Ir . (6)

An input word x ∈ Σ∗ is accepted by A if automaton A,
starting at initial state q0 with start register value z0, reaches a
final state q ∈ F by a sequence of state transitions according
to (6), while reading the input x from left to right. A language
L ⊆ Σ∗ is accepted (recognized) by FAR A, which is denoted
by L = L(A), if for any input word x ∈ Σ∗, x is accepted by
A iff x ∈ L.

The following theorem shows that FAR is computationally
equivalent to the NN1A introduced in Section II.

Theorem 1: [17, Theorems 1 and 2]3 Let L ⊆ Σ∗ be a
language over a finite alphabet Σ. There is a binary-state neural
network with an analog unit N that accepts L = L(N) iff there
exists a finite automaton with a register A such that L = L(A).
Theorem 1 has been proven by mutual simulations [17]. In
particular, given a neural network with an analog unit, N ,
the rational weights of N determine the parameters of a finite
automaton with a register, A, that simulates N so that L(N) =

3The underlying theorems have actually been proven for the binary alphabet
{0, 1} in [17] but their generalization to any finite alphabet is straightforward.

L(A). For example, the rational endpoints of I1, . . . , Ip are
taken from the set

C =

{
−
s−1∑
i=0

wji
wjs

yi

∣∣∣∣∣ j ∈ V \ (X ∪ {s}) s.t. wjs 6= 0 ,

y1, . . . , ys−1 ∈ {0, 1}

}
∪ {0, 1} , (7)

the multiplier is given as

a = wss , (8)

and the rational values of the shift functions are from the set
B =

⋃p
r=1 ∆r(Q× Σ) such that

B =

{
s−1∑
i=0

wsiyi

∣∣∣∣∣ y1, . . . , ys−1 ∈ {0, 1}

}
, (9)

while z0 = y
(0)
s = 0.

IV. THE CHARACTERIZATION OF FAR LANGUAGES

In this section we characterize the class of languages
accepted by FAR which we know by Theorem 1 to be
computationally equivalent to NN1A. In particular, we prove
in Theorem 2 that any language accepted by FAR can roughly
be written as a morphism applied to an intersection of a
regular language with an iteration of a core language. The core
language can be obtained as the largest prefix-closed subset of
a union of interval languages which can easily be defined in
terms of so-called cut languages (see Section V). In addition,
a partial converse to Theorem 2 is shown in Theorem 3 that a
language written in this form excluding the morphism can be
recognized by FAR. This characterization of FAR languages
is employed for analyzing the computational power of NN1A
in Sections V and VI. We first start with an auxiliary lemma.

Lemma 1: For any finite automaton with a register, A =
(Q,Σ, {I1, . . . , Ip}, a, (∆1, . . . ,∆p), δ, q0, z0, F), for any ini-
tial register value z′0 , and for any refinement {I ′1 . . . , I ′p′}
of partition {I1, . . . , Ip}, there exists an equivalent automa-
ton A′ = (Q′,Σ, {I ′1, . . . , I ′p′}, a, (∆′1, . . . ,∆′p), δ′, q′0, z′0, F ′)
such that L(A) = L(A′).

Proof: The set of states, Q′ = Q ∪ {q′0}, and possibly
the final states, F ′ = F ∪ {q′0 | q0 ∈ F}, are extended with
a new one-use start state q′0. For each r ∈ {1, . . . , p′}, the
local transition function and shift function are defined for any
q ∈ Q′ and x ∈ Σ as

δ′r(q, x) =

 δs(q, x) if q ∈ Q & I ′r ⊆ Is
δs(q0, x)

if q = q′0 , z
′
0 ∈ I ′r , & z0 ∈ Is

(10)

∆′r(q, x) =

 ∆s(q, x) if q ∈ Q & I ′r ⊆ Is
a(z0 − z′0) + ∆s(q0, x)

if q = q′0 , z
′
0 ∈ I ′r , & z0 ∈ Is .

(11)

Obviously, L(A) = L(A′).
Theorem 2: Any language L = L(A) that is accepted by a

finite automaton with a register, A = (Q,Σ, {I1, . . . , Ip}, a,
(∆1, . . . ,∆p), δ, q0, z0, F), where, without loss of generality

(Lemma 1), I1 = [0, 0], Ip = [1, 1], and z0 = 0, can be written
as

L = h ((L ∩R0)∗ · L ∩R) (12)

where
• h : Γ∗ −→ Σ∗ is a letter-to-letter morphism (i.e. h(Γ) ⊆

Σ) from a set of strings over a finite alphabet Γ which is
partitioned into Γ1, . . . ,Γp

• R ⊆ Γ∗ is a regular language
• R0 = Γ∗λ · Γσ where Γλ = Γ \ Γσ and Γσ = Γ1 ∪ Γp
• language L is defined as

L =

(
p⋃
r=1

Lr · Γr ∪ Γ ∪ {ε}

)Pref
(13)

where SPref denotes the largest prefix-closed subset
of S, ε is the empty string,

Lr =
{
y1 . . . yk ∈ Γ+

λ

∣∣∣∑k−1
i=0 b(yk−i)a

i ∈ I ′r
}
, (14)

I ′r =

 (−∞, 0] if r = 1
Ir if 1 < r < p
[1,∞) if r = p ,

(15)

for r = 1, . . . , p, and b : Γλ −→ Q is a mapping.
Proof: Let A = (Q,Σ, {I1, . . . , Ip}, a, (∆1, . . . ,∆p), δ,

q0, z0, F) be a finite automaton with a register satisfying
I1 = [0, 0], Ip = [1, 1], and z0 = 0. Consider a computa-
tion by A on input x1 . . . xn ∈ Σn which traverses states
q0 = q1, . . . , qn, qn+1 ∈ Q where qn+1 ∈ F iff x1 . . . xn ∈ L,
with corresponding register values 0 = z0 = z1, . . . , zn ∈ I,
respectively, such that zk ∈ Irk for k = 1, . . . , n. Observe that
r1 = 1 due to z1 ∈ I1.

We will encode this computation by using a string
y1 . . . yn ∈ Γ∗ over finite alphabet Γ = Γ′∪Γ′′ which consists
of basic letters

Γ′ =

p⋃
r=1

Γ′r where Γ′r = Q× Σ× {r} (16)

for r = 1, . . . , p , and so-called contextual symbols

Γ′′ = (Γ′ \ Γσ)× Γσ where Γσ = Γ′1 ∪ Γ′p . (17)

In particular, the underlying string is composed of

yk =

(q1, x1, r1) = (q0, x1, 1) ∈ Γ′ if k = 1
(qk, xk, rk) ∈ Γ′

if rk−1 6∈ {1, p} or rk ∈ {1, p}
((qk, xk, rk), (qk−1, xk−1, rk−1)) ∈ Γ′′

if rk−1 ∈ {1, p} & rk 6∈ {1, p}

(18)

for k = 1, . . . , p. Note that actual register value zk ∈ I
is replaced by corresponding index rk ∈ {1, . . . , p} of the
interval Irk to which zk belongs. In addition, we define
Γλ = Γ \ Γσ and partition Γ into

Γr =

{
Γ′r if r ∈ {1, p}
Γ′r ∪ (Γ′r × Γσ) if r ∈ {2, . . . , p− 1} (19)

for r = 1, . . . , p .

Let 1 = k1 < k2 < · · · < ks ≤ n be all the indices such that
ykj ∈ Γσ , which implies rkj ∈ {1, p} and zkj ∈ {0, 1}, for
j = 1, . . . , s, and formally denote k0 = 0 and ks+1 = n+ 1.
Thus, for each j ∈ {1, . . . , s} such that kj + 1 < kj+1, and
for every k = kj , . . . , kj+1 − 2, we know yk+1 ∈ Γλ which
ensures

0 < zk+1 = azk + ∆rk(qk, xk) < 1 , (20)

implying

zk+1 =

k−kj∑
i=0

∆rk−i
(qk−i, xk−i) a

i + ak−kj+1zkj . (21)

In addition, formula (21) for k = kj+1 − 1 reads

kj+1−kj−1∑
i=0

∆rkj+1−i−1
(qkj+1−i−1, xkj+1−i−1) ai

+ akj+1−kjzkj

{
≤ 0 if ykj+1 ∈ Γ1

≥ 1 if ykj+1
∈ Γp

(22)

for every j = 1, . . . , s− 1.
Moreover, define mapping b : Γλ −→ Q for any y ∈ Γλ as

b(y) =

∆r(q, x) if y = (q, x, r) ∈ Γ′

a∆1(q′, x′) + ∆r(q, x)
if y = ((q, x, r), (q′, x′, 1)) ∈ Γ′′

a2 + a∆p(q
′, x′) + ∆r(q, x)

if y = ((q, x, r), (q′, x′, p)) ∈ Γ′′

(23)

where r 6∈ {1, p}. For each j ∈ {1, . . . , s} such that
kj + 1 < kj+1, and for every k = kj + 1, . . . , kj+1 − 1,
we know ykj+1 . . . yk ∈ Γ+

λ where ykj+1 ∈ Γ′′ while
ykj+2 . . . yk ∈ Γ′ ∗. According to (14), ykj+1 . . . yk ∈ Lr iff∑k−kj−1
i=0 b(yk−i)a

i ∈ I ′r , which can be rewritten as

k−kj−2∑
i=0

b(qk−i, xk−i, rk−i)a
i

+ b((qkj+1, xkj+1, rkj+1), (qkj , xkj , rkj))ak−kj−1

=

k−kj∑
i=0

∆rk−i
(qk−i, xk−i) a

i + ak−kj+1zkj ∈ I ′r (24)

by definition (23). For every k = kj+1, . . . , kj+1−2, formula
in (24) coincides with (21), that is, ykj+1 . . . yk ∈ Lr iff
zk+1 ∈ I ′r iff zk+1 ∈ Ir due to (20), iff rk+1 = r iff
yk+1 ∈ Γr. Similarly, for k = kj+1 − 1 < n, condition
(24) agrees with (22), that is, ykj+1 . . . ykj+1−1 ∈ Lr iff
ykj+1 ∈ Γr. Hence, substring ykj+1 . . . ykj+1 ∈ L ∩ R0 =
(
⋃p
r=1 Lr · Γr ∪ Γ ∪ {ε})Pref ∩ Γ∗λ · Γσ , for every j =

1, . . . , s−1, since any of its prefix ykj+1 . . . yk ∈ Lrk+1
⊆ Γ∗λ

(for kj + 1 ≤ k < kj+1) is followed by yk+1 ∈ Γrk+1
,

including ykj+1
∈ Γσ for k = kj+1 − 1. Analogously,

yks+1 . . . yn ∈ L . In addition, for any j ∈ {0, . . . , s − 1}
such that kj + 1 = kj+1, also ykj+1 ∈ Γσ ⊆ L ∩ R0. It
follows that any computation by A is encoded by y1 . . . yn =
(
∏s−1
j=0 ykj+1 . . . ykj+1

) · yks+1 . . . yn ∈ (L ∩R0)∗ · L .
The role of language R ⊆ Γ∗ in (12) is to restrict

strings y1 . . . yn ∈ L∗ only to those encoding valid accepting

computations of A, mainly with respect to its local transition
functions δr : Q × Σ −→ Q for r = 1, . . . , p, and to
the consistency of symbols from Γσ and Γ′′. In particular,
these strings (if nonempty) must start with an initial letter
y1 = (q1, x1, r1) ∈ Γ′ such that q1 = q0 is the start state of
A and r1 = 1 since z0 = 0 ∈ I1. Any subsequent letter
yk ∈ Γ, for 2 ≤ k ≤ n, has to be either basic symbol
yk = (qk, xk, rk) ∈ Γ′ if rk−1 6∈ {1, p} or rk ∈ {1, p}, or con-
textual symbol yk = ((qk, xk, rk), (qk−1, xk−1, rk−1)) ∈ Γ′′

which comes after letter yk−1 = (qk−1, xk−1, rk−1) ∈ Γσ ,
if rk−1 ∈ {1, p} and rk 6∈ {1, p}. Each symbol yk, for
1 ≤ k < n, must be followed by (qk+1, xk+1, rk+1) ∈ Γ′ or
((qk+1, xk+1, rk+1)(qk, xk, rk)) ∈ Γ′′ such that δrk(qk, xk) =
qk+1 , and yn terminates the string so that δrn(qn, xn) ∈ F is
a final state of A. In addition, ε ∈ R if q0 ∈ F . Furthermore,
for any j ∈ {1, . . . , s − 1} such that kj + 1 = kj+1, which
ensures ykj = (qkj , xkj , rkj) ∈ Γσ and ykj+1 = ykj+1

=
(qkj+1

, xkj+1
, rkj+1

) ∈ Γσ with rkj , rkj+1
∈ {1, p}, the valid

computation must satisfy

rkj+1
=

{
1 if azkj + ∆rkj

(qkj , xkj) ≤ 0

0 if azkj + ∆rkj
(qkj , xkj) ≥ 1

(25)

where zkj = 0 if rkj = 1, whereas zkj = 1 if rkj = p. Ob-
viously, language R can be recognized by a finite automaton
and hence it is regular.

Finally, the letter-to-letter morphism h : Γ∗ −→ Σ∗

is defined as h(y) = x for y = (q, x, r) ∈ Γ′ or for
y = ((q, x, r), (q′, x′, r′)) ∈ Γ′′, which extracts the input
strings accepted by A. This completes the proof that L can be
written as (12).

Since it is unclear whether the languages accepted by FAR
are closed under morphism, the implication in Theorem 2 can
only be partially reversed:

Theorem 3: Assume the notation as in Theorem 2. Any
language L ⊆ Γ∗ that can be written as

L = (L ∩R0)
∗ · L ∩R (26)

can be recognized by a finite automaton with a register, A,
that is, L = L(A).

Proof: Let L ⊆ Γ∗ be a language that can be written
as (26). We will construct a finite automaton with a register,
A, such that L = L(A). First we show how to construct an
automaton A1 = (Q,Γ, {I1, . . . , Ip}, a, (∆1, . . . ,∆p), δ, q0,
z0, F) that accepts language (L ∩ R0)∗ · L over alphabet Γ
partitioned into Γ1, . . . ,Γp , which is specified by a partition
[0, 0] = I1, . . . , Ip = [1, 1] of I, multiplier a, and mapping
b : Γλ −→ Q. Define Q = {q0, q1, q2}, F = {q0, q1}, and
z0 = 0. For each r ∈ {1, . . . , p}, we introduce the local
transition function δr : Q× Γ −→ Q as

δr(q0, y) =

{
q0 if y ∈ Γσ
q1 if y ∈ Γλ ,

(27)

δr(q1, y) =

 q0 if y ∈ Γr & r ∈ {1, p}
q1 if y ∈ Γr & 1 < r < p
q2 otherwise ,

(28)

δr(q2, y) = q2 , (29)

for any y ∈ Γ, and the shift function ∆r : Q× Γ −→ Q as

∆r(q, y) =

 b(y) if y ∈ Γλ
0 if y ∈ Γ1

−a if y ∈ Γp ,
(30)

for any q ∈ Q and y ∈ Γ.
Let y1 . . . yn ∈ Γ∗ be an input string to A1. Denote by k1 <

k2 < · · · < ks all the indices such that ykj ∈ Γσ , and formally
define k0 = 0 and ks+1 = n. String y1 . . . yn can be split into∏s
j=0 ykj+1 . . . ykj+1

= (
∏s−1
j=0 ykj+1 . . . ykj+1

) · yks+1 . . . yn
where the tail yks+1 . . . yn reduces to the empty string when
ks = n. Thus, input y1 . . . yn ∈ Γ∗ is in (L ∩ R0)∗ · L iff
for each j ∈ {0, . . . , s} such that kj + 1 < kj+1, substring
ykj+1 · · · ykj+1

∈ Γ+
λ · Γσ , for j < s , or yks+1 . . . yn ∈ Γ+

λ ,
for j = s , belongs to L, since ykj+1

∈ Γσ ⊆ L for j ∈
{0, . . . , s} such that kj + 1 = kj+1, and ε ∈ L for ks = n.
Moreover, ykj+1 · · · ykj+1

∈ L = (
⋃p
r=1 Lr ·Γr ∪Γ∪{ε})Pref

for kj + 1 < kj+1 iff ykj+1 · · · yk ∈ Lr and yk+1 ∈ Γr for
every k = kj + 1, . . . , kj+1 − 1, that is,

k−kj−1∑
i=0

b(yk−i)a
i ∈ I ′r & yk+1 ∈ Γr , (31)

according to (14).
Consider automaton A1 finds in state q0 with register value

zkj = 0 (e.g. at the beginning of computation when j = 0).
If kj + 1 = kj+1, then an input symbol ykj+1

∈ Γσ keeps
A1 in state q0 , due to (27), with register value zkj+1 = 0 as
azkj +∆1(q0, ykj+1) ≤ 0 , according to (30). If kj+1 < kj+1,
then ykj+1 ∈ Γλ moves A1 to state q1, by (27), which is shown
below to check condition (31) for k = kj + 1, . . . , kj+1 − 1 ,
while reading the next input symbols ykj+2 . . . ykj+1

∈ Γ∗λ·Γσ .
In particular, assume that the register values satisfy

0 < az` + ∆r(q, y`+1) < 1 (32)

for every ` = kj , . . . , k− 2 (k > kj + 1), r ∈ {1, . . . , p}, and
q ∈ Q, where the shifts ∆r(q, y`+1) = b(y`+1) depend only
on input symbols y`+1 ∈ Γλ , according to (30). If inequality
(32) still holds for ` = k−1, then zk =

∑k−kj−1
i=0 b(yk−i)a

i ∈
Ir = I ′r for some r ∈ {2, . . . , p − 1}. According to (28),
only yk+1 ∈ Γr for this r keeps A1 in state q1, preserving
(32), while A1 gets stuck in reject state q2 for yk+1 /∈ Γr ,
which agrees with condition (31). Similarly, if inequality (32)
is broken for ` = k − 1, then

∑k−kj−1
i=0 b(yk−i)a

i ∈ I ′r for
some r ∈ {1, p} (i.e. zk ∈ {0, 1}), which requires yk+1 ∈
Γr ⊆ Γσ (i.e. k + 1 = kj+1) in order to move A1 to state
q0, according to (28), while A1 ends up in reject state q2 for
yk+1 /∈ Γr, which is consistent with condition (31). Moreover,

zkj+1
= azkj+1−1 + ∆r(q1, ykj+1

) = 0 (33)

for both zkj+1−1 = 0, ykj+1 ∈ Γ1 and zkj+1−1 = 1,
ykj+1

∈ Γp, according to (30), which ensures the zero register
value in state q0.

It follows that A1 accepts input y1 . . . yn iff it is from
(L ∩ R0)∗ · L , that is, L(A1) = (L ∩ R0)∗ · L . The proof
of Theorem 3 is completed by the following lemma.

Lemma 2: The languages that are accepted by finite au-
tomata with a register are closed under intersection with a
regular language.

Proof: Let A1 = (Q,Γ, {I1, . . . , Ip}, a, (∆1, . . . ,∆p), δ,
q0, z0, F) be a finite automaton with a register, and A′ =
(Q′,Γ, δ′, q′0, F

′) be an ordinary deterministic finite automa-
ton. We define a finite automaton with a register, A =
(Q2,Γ, {I1, . . . , Ip}, a, (∆1, . . . ,∆p), γ, (q0, q

′
0), z0, F × F ′),

having Q2 = Q × Q′ and local transition functions γr :
Q2 × Γ −→ Q2 for r = 1, . . . , p such that γr((q, q′), y) =
(δr(q, y), δ′(q′, y)) for any q ∈ Q, q′ ∈ Q′, and y ∈ Γ.
Obviously, L(A) = L(A1) ∩ L(A′).

V. NN1A AND REGULAR CUT LANGUAGES

In this section, we prove a sufficient condition when
a NN1A recognizes a regular language. For this purpose, we
exploit the characterization of FAR languages presented in
Section IV. We first recall the notion of cut languages and
their relation to quasi-periodic numbers [18].

A so-called cut language contains the representations of
numbers in a rational base that are less than a given threshold.
Hereafter, let a be a rational number such that 0 < |a| < 1,
which is the inverse of a base (radix) 1/a where |1/a| > 1,
and let B ⊂ Q be a finite set of rational digits. We say that
L ⊆ Γ∗ is a cut language over a finite alphabet Γ if there is
a mapping b : Γ −→ B and a real threshold c such that

L = L<c =

{
y1 . . . yk ∈ Γ∗

∣∣∣∣∣
k−1∑
i=0

b(yk−i)a
i < c

}
. (34)

A cut language L>c with the greater-than symbol is defined
analogously.

Furthermore, we say that a power series
∑∞
k=0 bka

k with
coefficients bk ∈ B is eventually quasi-periodic with period
sum P if there is an increasing infinite sequence of its term
indices 0 ≤ k1 < k2 < k3 < · · · such that for every i ≥ 1,∑mi−1

k=0 bki+k a
k

1− ami
= P (35)

where mi = ki+1 − ki > 0 is the length of quasi-repetend
bki , . . . , bki+1−1, while k1 is the length of preperiodic part
b0, . . . , bk1−1. One can calculate the sum of any eventually
quasi-periodic power series as

∞∑
k=0

bka
k =

k1−1∑
k=0

bka
k + ak1P (36)

which does not change if any quasi-repetend is removed from
associated sequence (bk)∞k=1 or if it is inserted in between two
other quasi-repetends. This means that the quasi-repetends can
be permuted arbitrarily.

We say that a real number c is a-quasi-periodic within B
if any power series

∑∞
k=0 bka

k = c with bk ∈ B for all
k ≥ 0, is eventually quasi-periodic. Note that a number is also
considered formally to be a-quasi-periodic when it cannot be
written as a respective power series at all. For example, the

numbers from the complement of the Cantor set are formally
(1/3)-quasi-periodic within {0, 2}.

Example 1: We present a non-trivial example of a num-
ber c that is a-quasi-periodic within B = {β1, β2, β3} where
0 < a < 1

2 , β1 = (1 − a2)c, β2 = a(1 − a)c, and β3 = 0 .
One can show [18, Examples 1 and 6] that β1, β

n
2 , β3 where

βn2 means β2 repeated n times, is a quasi-repetend of length
n+ 2 for every integer n ≥ 0, satisfying (35) for P = c, and
that any power series

∑∞
k=0 bka

k = c with bk ∈ B for all
k ≥ 0, is eventually quasi-periodic.

The class of regular cut languages is completely character-
ized by the following theorem.

Theorem 4: [18, Theorem 11] A cut language L<c over
alphabet Γ with mapping b : Γ −→ B and threshold c ∈ R, is
regular iff c is a-quasi-periodic within B.

Now, we formulate a sufficient condition when a NN1A
accepts only a regular language.

Theorem 5: Let N be a neural network with an analog unit
and assume the feedback weight of analog neuron s satisfies
0 < |wss| < 1. Define C ⊂ Q, a ∈ Q, and B ⊂ Q according
to (7), (8), and (9), respectively, where the weights of N are
employed. If every c ∈ C is a-quasi-periodic within B′ =
B ∪ {0, 1}, then the language L = L(N) accepted by N is
regular.

Proof: 4 We know from Theorem 1 that there is a
finite automaton with a register, A = (Q,Σ, {I1, . . . , Ip}, a,
(∆1, . . . ,∆p), δ, q0, z0, F) with multiplier (8), such that L =
L(A) and the rational endpoints of I1, . . . , Ip are from C
while B =

⋃p
r=1 ∆r(Q × Σ). According to Theorem 2,

language L accepted by A can be written as (12) where each
language Lr over alphabet Γλ, for 1 < r < p, associated
with interval I ′r = Ir by (14), can be expressed as an
intersection of two cut languages (34) or their complements,
for example, Lr = L>cr ∩ L>cr+1 for half-closed interval
I ′r = Ir = (cr, cr+1]. In addition, L1 = L>0 \ {ε} and
Lp = L<1 as 0, 1 ∈ C.

Note that mapping b : Γλ −→ Q , defined by (23), in
fact, assigns to the first letter ykj+1

∈ Γλ of input substring
h(ykj+1 . . . ykj+1) ∈ Σ∗ the contents of register after two
transitions of automaton A which starts with register value
z ∈ {0, 1} and reads two input symbols h(ykjykj+1) where
ykj ∈ Γσ . Thus, the image b′(Γ) = B′ = B ∪ {0, 1} of
an extended mapping b′ : Γ −→ B′ used in (34) includes
the initial register values 0, 1 in addition to the shift function
values ∆r(q, x) for q ∈ Q, x ∈ Σ, and r ∈ {1, . . . , p},
according to (23).

Since all the endpoints of intervals I1, . . . , Ip are assumed to
be a-quasi-periodic within B′, it follows from Theorem 4 that
Lr is a regular language for every r = 1, . . . , p, because regu-
lar languages are closed under complementation, intersection,

4A direct construction of an ordinary finite automaton that simulates a
NN1A satisfying the assumption of Theorem 5 was presented already in [17,
Theorem 3]. However, the construction was based on a stronger definition
of quasi-periodicity assuming a bounded length of quasi-repetends (cf. Ex-
ample 1). Moreover, the characterization of FAR languages in Theorem 2
simplifies the proof of Theorem 5 substantially.

and difference. Furthermore, regular languages are known to
be closed under concatenation, union, Kleene star, and string
homomorphism. In addition, if S is regular, then its largest
prefix-closed subset SPref is also regular as a corresponding
finite automaton A1 recognizing S = L(A1) can be reduced to
A2 such that SPref = L(A2), by eliminating all the non-final
states in A1. Thus, it follows from Theorem 2 that language
L is regular.

VI. THE COMPUTATIONAL POWER OF NN1A

In this section we present a lower and upper bound on
the computational power of NN1A. In particular, we show
in Theorem 7 that they are languages accepted by NN1A
which are not context-free while Theorem 9 proves any NN1A
language to be context-sensitive.

Example 2: We first present an example of numbers c that
are not a-quasi-periodic within B. Let B = {0, 1} and assume
that a = α1/α2 ∈ Q , c = γ1/γ2 ∈ Q are irreducible fractions
where α1, α2, γ1, γ2 ∈ N and c < 1, such that α1γ2 and
α2γ1 are coprime. Suppose that c =

∑∞
k=0 bka

k with bk ∈ B
for all k ≥ 0 , and denote by 0 < k1 < k2 < · · · all the
indices such that bki = 1 for i ≥ 1. We call

∑∞
k=0 bka

k = c
a greedy representation of c (in base 1/a using the digits
from B) if sequence (ki)

∞
i=1 is generated by the following

greedy procedure. In particular, find minimal k1 > 0 (c < 1)
such that ak1 < c which gives b0 = · · · = bk1−1 = 0,
bk1 = 1, and remainder c1 = c/ak1 − 1. For n > 1, let
b0, . . . , bkn−1 be 0s except for bk1 = bk2 = · · · = bkn−1 = 1.
Then find minimal kn > kn−1 such that akn−kn−1 < cn−1

which produces bkn−1+1 = · · · = bkn−1 = 0, bkn = 1, and
remainder cn = cn−1/a

kn−kn−1 − 1. Any (not necessarily
greedy) representation satisfies

cn =

∞∑
k=0

bkn+ka
k − 1 =

c−
∑n
i=1 a

ki

akn
(37)

for n ≥ 1. By plugging a = α1/α2, c = γ1/γ2 into (37), we
obtain

cn =
γ1α

kn
2 − γ2α1

∑n
i=1 α

ki−1
1 αkn−ki2

γ2α
kn
1

(38)

which is an irreducible fraction since both γ2 and α1 are not
factors of γ1α2. Hence, for any natural n1, n2 such that 0 <
n1 < n2 we know cn1

6= cn2
, which implies that

∑∞
k=0 bka

k

is not an eventually quasi-periodic series [18, Theorem 3].
Furthermore, Theorem 6 states that there are non-context-

free cut languages while Lemma 3 proves that the cut lan-
guages can in fact be recognized by FAR.

Theorem 6: [18, Theorem 13] Let B = {0, 1}, Γ = B is an
alphabet, and b : Γ −→ B is the identity mapping. Assume
that the greedy representation of threshold c =

∑∞
k=0 bka

k

with bk ∈ B for all k ≥ 0, is not eventually quasi-periodic.
Then the cut language L<c over Γ is not context-free.

Lemma 3: Let Γ be a finite alphabet, b : Γ −→ B is a
mapping, and c ∈ Q. In addition, assume

µ = inf
y1,...,yk∈Γ

k≥0

k−1∑
i=0

b(yk−i)a
i ≥ 0 . (39)

Then language L = L<c · Γ where L<c is a cut language over
alphabet Γ, can be recognized by a finite automaton with a
register.

Proof: Denote

ν = sup
y1,...,yk∈Γ

k≥0

k−1∑
i=0

b(yk−i)a
i (40)

which is finite due to |a| < 1. Further assume 0 ≤ µ < c ≤ ν
since otherwise L<c = ∅ or L<c = Γ∗ which can trivially be
recognized by FAR.

We introduce a finite automaton with a register, A =
(Q,Γ, {I1, I2}, a, (∆1,∆2), δ, q1, z0, F), that recognizes lan-
guage L(A) = L<c · Γ. In particular, Q = {q1, q2}, I1 =
[0, c/ν), I2 = [c/ν, 1], z0 = 0, and F = {q1}. Moreover,
we define δr : Q × Σ −→ Q , and ∆r : Q × Σ −→ Q, for
r ∈ {1, 2}, so that

δr(q, y) = qr (41)

∆r(q, y) =
b(y)

ν
, (42)

for any q ∈ Q and y ∈ Γ.
It follows from (42) that automaton A, after reading an input

string y1 . . . yn ∈ Γn, stores zn =
∑n−1
i=0 b(yn−i)a

i/ν in its
register, which satisfies 0 ≤ zk ≤ 1 for every k = 0, . . . , n.
Thus, y1 . . . yn ∈ L<c iff zn ∈ I1 iff A moves to final state
q1 ∈ F via δ1 defined by (41), while reading an extra input
symbol γ ∈ Γ, that is, y1 . . . ynγ ∈ L(A). Hence, A accepts
L<c · Γ.

The preceding results are summarized in the following
theorem:

Theorem 7: There is a language accepted by a neural
network with an analog unit, which is not context-free.

Proof: Example 2 ensures that any power series∑∞
k=0 bka

k = c = 5/7 < 1 with bk ∈ B = {0, 1} for all
k ≥ 0, is not (2/3)-quasi-periodic, since the greatest common
divisor of 2 · 7 and 3 · 5 is 1. According to Theorem 6, the
cut language L<c over alphabet Γ = {0, 1} is not context-
free. It follows that the same holds for L = L<c · Γ since
L<c = {y ∈ Γ∗ |y0 ∈ L} and the context-free languages are
closed under GSM (generalized sequential machine) mapping.
On the other hand, L can be recognized by FAR according to
Lemma 3, because (39) follows from a > 0 and b(y) = y ≥ 0
for y ∈ Γ = {0, 1}. Hence, Theorem 1 guarantees that the
non-context-free language L can be recognized by NN1A.

On the other hand, Theorem 9 provides an upper bound on
the computational power of NN1A which follows from the
fact that the cut languages are context-sensitive for rational
thresholds.

Theorem 8: [18, Theorem 14] Every cut language L<c with
threshold c ∈ Q is context-sensitive.

Theorem 9: Any language accepted by a neural network
with an analog unit is context-sensitive.

Proof: The argument is analogous to the proof of The-
orem 5. In particular, Theorem 1 is employed to transform
a given NN1A, N , to a computationally equivalent FAR, A,
so that L = L(N) = L(A), while Theorem 2 reduces L to
(12). Since context-sensitive languages are closed under com-
plementation, intersection, and difference, Theorem 8 ensures
that Lr used in (12) is a context-sensitive language5 for every
r = 1, . . . , p.

Furthermore, context-sensitive languages are known to be
closed under concatenation, union, Kleene star, and ε-free
homomorphism. In addition, if S is context-sensitive, then its
largest prefix-closed subset SPref is also context-sensitive as
a nondeterministic linear bounded automaton (LBA) MPref

that recognizes SPref = L(MPref) runs successively LBA
M for S = L(M) on every prefix of an input which can be
stored within linear space, and SPref accepts if all these runs
of M are accepting computations. Thus, it follows from (12)
and (13) that language L is context-sensitive.

VII. CONCLUSION

In this paper we have characterized the class of languages
that are accepted by binary-state neural networks with an extra
analog unit, which is an intermediate computational model
between neural networks with integer weights, corresponding
to finite automata, and that with rational weights which are
Turing universal. By using this characterization we have shown
that the computational power of such networks is between
context-free and context-sensitive languages. In addition, we
have formulated a sufficient condition when these networks
accept only regular languages in terms of quasi-periodicity
of their weight parameters. The question of whether this
condition is also necessary remains open. Another challenge
for further research is to generalize the result to other domains
of the feedback weight wss associated with analog unit s such
as wss ∈ R or |wss| > 1.

ACKNOWLEDGMENT

Research was done with institutional support RVO:
67985807 and partially supported by the grant of the Czech
Science Foundation No. P202/12/G061.

REFERENCES

[1] P. Koiran, “A family of universal recurrent networks,” Theoretical
Computer Science, vol. 168, no. 2, pp. 473–480, 1996.

[2] H. T. Siegelmann, “Recurrent neural networks and finite automata,”
Journal of Computational Intelligence, vol. 12, no. 4, pp. 567–574, 1996.

[3] J. Šı́ma, “Analog stable simulation of discrete neural networks,” Neural
Network World, vol. 7, no. 6, pp. 679–686, 1997.

[4] M. Šorel and J. Šı́ma, “Robust RBF finite automata,” Neurocomputing,
vol. 62, pp. 93–110, 2004.

[5] J. Kilian and H. T. Siegelmann, “The dynamic universality of sigmoidal
neural networks,” Information and Computation, vol. 128, no. 1, pp.
48–56, 1996.

5Theorem 8 assumes formally that 0 < |a| < 1 which, in general, need
not be met for a = wss from (8). Nevertheless, the proof of this theorem in
[18, Theorem 14] is valid for any a ∈ Q.

[6] H. T. Siegelmann, Neural Networks and Analog Computation: Beyond
the Turing Limit. Boston: Birkhäuser, 1999.

[7] J. Šı́ma and P. Orponen, “General-purpose computation with neural net-
works: A survey of complexity theoretic results,” Neural Computation,
vol. 15, no. 12, pp. 2727–2778, 2003.

[8] N. Alon, A. K. Dewdney, and T. J. Ott, “Efficient simulation of finite
automata by neural nets,” Journal of the ACM, vol. 38, no. 2, pp. 495–
514, 1991.

[9] B. G. Horne and D. R. Hush, “Bounds on the complexity of recur-
rent neural network implementations of finite state machines,” Neural
Networks, vol. 9, no. 2, pp. 243–252, 1996.

[10] P. Indyk, “Optimal simulation of automata by neural nets,” in Pro-
ceedings of the STACS 1995 Twelfth Annual Symposium on Theoretical
Aspects of Computer Science, ser. LNCS, vol. 900, 1995, pp. 337–348.

[11] M. Minsky, Computations: Finite and Infinite Machines. Englewood
Cliffs: Prentice-Hall, 1967.

[12] J. Šı́ma, “Energy complexity of recurrent neural networks,” Neural
Computation, vol. 26, no. 5, pp. 953–973, 2014.

[13] J. Šı́ma and J. Wiedermann, “Theory of neuromata,” Journal of the ACM,
vol. 45, no. 1, pp. 155–178, 1998.

[14] H. T. Siegelmann and E. D. Sontag, “On the computational power of
neural nets,” Journal of Computer System Science, vol. 50, no. 1, pp.
132–150, 1995.

[15] ——, “Analog computation via neural networks,” Theoretical Computer
Science, vol. 131, no. 2, pp. 331–360, 1994.

[16] J. L. Balcázar, R. Gavaldà, and H. T. Siegelmann, “Computational
power of neural networks: A characterization in terms of Kolmogorov
complexity,” IEEE Transactions on Information Theory, vol. 43, no. 4,
pp. 1175–1183, 1997.

[17] J. Šı́ma, “The power of extra analog neuron,” in Proceedings of the
TPNC 2014 Third International Conference on Theory and Practice of
Natural Computing, ser. LNCS, vol. 8890, 2014, pp. 243–254.

[18] J. Šı́ma and P. Savický, “Cut languages in rational bases,” Institute of
Computer Science, The Czech Academy of Sciences, Technical Report
V-1236, 2016.

[19] B. Adamczewski, C. Frougny, A. Siegel, and W. Steiner, “Rational
numbers with purely periodic β-expansion.” Bulletin of The London
Mathematical Society, vol. 42, no. 3, pp. 538–552, 2010.

[20] J.-P. Allouche, M. Clarke, and N. Sidorov, “Periodic unique beta-
expansions: The Sharkovskiı̆ ordering,” Ergodic Theory and Dynamical
Systems, vol. 29, no. 4, pp. 1055–1074, 2009.

[21] D. Chunarom and V. Laohakosol, “Expansions of real numbers in non-
integer bases,” Journal of the Korean Mathematical Society, vol. 47,
no. 4, pp. 861–877, 2010.

[22] P. Glendinning and N. Sidorov, “Unique representations of real numbers
in non-integer bases,” Mathematical Research Letters, vol. 8, no. 4, pp.
535–543, 2001.

[23] K. G. Hare, “Beta-expansions of Pisot and Salem numbers,” in Pro-
ceedings of the Waterloo Workshop in Computer Algebra 2006: Latest
Advances in Symbolic Algorithms. World Scientific, 2007, pp. 67–84.

[24] V. Komornik and P. Loreti, “Subexpansions, superexpansions and
uniqueness properties in non-integer bases,” Periodica Mathematica
Hungarica, vol. 44, no. 2, pp. 197–218, 2002.

[25] W. Parry, “On the β-expansions of real numbers,” Acta Mathematica
Hungarica, vol. 11, no. 3, pp. 401–416, 1960.

[26] A. Rényi, “Representations for real numbers and their ergodic proper-
ties,” Acta Mathematica Academiae Scientiarum Hungaricae, vol. 8, no.
3-4, pp. 477–493, 1957.

[27] K. Schmidt, “On periodic expansions of Pisot numbers and Salem
numbers,” Bulletin of the London Mathematical Society, vol. 12, no. 4,
pp. 269–278, 1980.

[28] N. Sidorov, “Expansions in non-integer bases: Lower, middle and top
orders,” Journal of Number Theory, vol. 129, no. 4, pp. 741–754, 2009.

[29] P. Orponen, “Computing with truly asynchronous threshold logic net-
works,” Theoretical Computer Science, vol. 174, no. 1-2, pp. 123–136,
1997.

[30] O. H. Ibarra, S. Sahni, and C. E. Kim, “Finite automata with multi-
plication,” Theoretical Computer Science, vol. 2, no. 3, pp. 271–294,
1976.

