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Evaluating a Structural Model Forecast: Decomposition Approach
FrantiSek Brazdik, Zuzana Humplova, and FrantiSekfi<@

Abstract

When presenting the results of macroeconomic forecasting, forecasters often have to explain the
contribution of data revisions, conditioning information, and expert judgment updates to the fore-
cast update. We present a framework for decomposing the differences between two forecasts
generated by a linear structural model into the contributions of the elements of the information set
when anticipated and unanticipated conditioning is applied. The presented framework is based on
a set of supporting forecasts that simplify the decomposition of the forecast update. The features
of the framework are demonstrated by examining two forecast scenarios with the same initial
prediction period but different forecast assumptions. The full capabilities of the decomposition
framework are documented by an example forecast evaluation where the forecast from the Czech
National Bank’s Inflation Report 111/2012 is assessed with respect to the updated forecast from
Inflation Report 111/2013.

Abstrakt

Pri prezentaci vysledki makroekonomické progndzy musi progn@st&td vysetlovat gispavky

revizi dat, podmiujicich informaci nebo expertnich Uprav k aktualizaci prognézy. V této praci
predstavujeme obecny zplisob, kterym je mozné rozloZzit rozdily mérnevprognézami vytvo-
fenymi linearnim strukturalnim modelem déigpévkl prvkl inform&ni mnoziny prognoézy i
aplikaci podmihujicich informaci provedené \cekdvaném i ngzekavaném maodu. Prezentovany
systém rozkladu je zaloZen na souboru podptrnych prognéz, které rozklad aktualizace prognozy
zjednodusuiji. Vlastnosti tohoto systému demonstrujeme ukazkou rozkladu rozdilu dvou prognéz
se stejnym péate€nim obdobim predikce, avSak zaloZzenych na rozdilnyeldgokladech. PIné
moZnosti navrzeneho zpusobu rozkladu prezentujeme poniiddagu hodnoceni progndzy ze
Zpravy o inflaciCeské narodni banky 111/2012, ktera je vyhodnocena vzhledem k aktualizované
progndéze ze Zpravy o inflaci 111/2013.
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Nontechnical Summary

In the contemporary monetary policy framework, considerattellectual activity and computa-
tional power is devoted to forecasting the future trajeetoof economic variables. Macroeconomic
forecasts based on structural models with forward-lookmuglel-consistent expectations are used
extensively in the modern process of monetary policy desisiaking.

As a macroeconomic forecast should provide answers to maestigns, it is important to support
its presentation with a transparent quantification of itgidg forces. Thus, the forecast update anal-
ysis has to explain how the newly available data (releasgseisions) and assumptions about the
future development of the forecasted variables are reflantthe identification of structural shocks
and unobserved variables. Forecasters require an elatsdmination of the contributions of the
forecast update in order to interpret the new data and ingptioe quality of their outputs. Exam-
ining the contributions of new information improves foreas’ understanding of the underlying
shocks present in the economy.

We support our presentation of a forecast with an analydiseofesponses of the forecasted trajec-
tories to changes in subsets of newly collected informatioa regular basis. For this purpose, we
develop a framework that is used for the analysis of foreagpdates. A detailed description of the
framework forms the main part of this paper.

Forecast accuracy evaluation has been a part of the foregasbcess of the Czech National Bank
(CNB) since the Quarterly Projection Model was introduae@002 (Benes et al., 2003). The in-
troduction of the g3 model framework (Andrle et al., 2009R®08 and its further development
required more advanced evaluation techniques. This pasarides the up-to-date methodology
and its implementation into the CNB’s forecasting proceshadndle the tasks of forecast updat-
ing and forecast accuracy analysis. The presented frarkewaonore general and complex than
previous approaches and delivers more detail into the &stezvaluation.

This paper describes the CNB’s forecasting process in gestate-space form, which features
model-driven predictions based on a structural model apertyudgment applied in both antic-
ipated and unanticipated mode. We also present detailsnahth@ assumptions of, the solution
method based on likelihood maximization, which is used teestor the forecast trajectories. This
provides the rationale for the ordering of information satthe decomposition procedure, which
itself is based on the projection update elasticities.

We demonstrate the features of the framework by identifyimegdriving forces behind the differ-
ences between two alternative forecast scenarios. Aldoresasts are usually created periodically,
it is of interest to examine the driving forces behind theatpd and evaluate the performance of
the forecast over some period of time. We therefore prebentasults of a forecast evaluation ex-
ercise where the CNB'’s forecast released in Inflation Rejpid2012 is analyzed with knowledge
of the forecast released in Inflation Report 111/2013. Thialeation enables us to learn how well
our forecast performed in confrontation with the data andti#ssons may lead to improvements
in our future forecasts.

We believe that the presented forecast evaluation metbggatill help improve future CNB fore-
casts by identifying the main sources of forecast errorstantklling us more about the data and
model properties. The results provide forecasters withishior further refining the forecasting
framework.
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1. Introduction

The modern view on the transmission mechanism of monetdigypemphasizes that monetary
policy actions have significant effects on the economy thhoexpectations. As Svensson (2005)
summarizes, effective implementation of monetary poleyuires effective communication of the
central bank’s forecast. Hence, the role of central banknsonication is to explain and justify
the central bank’s decisions to the public, thereby purudigenfluencing their expectations about
future developments.

In the forward-looking monetary policy of Czech NationanBdCNB), the CNB’s monetary policy
decisions are supported by its own forecast. This raisey maestions about the construction of
the forecast and its consistency over time. Acceptanceefdtecast may be hampered by the
inclusion of conditioning information that can often be smiered opaque. This opacity is the
basis for the critique of forecast communication by Heilam§2002). Therefore, CNB supports
its communication by examining forecast updates and etiatyithe forecast every forecast round.
This has helped it document and support the inclusion of itonéhg information in its forecast
since the introduction of the structural model forecast.

In this paper, we present the general framework and its gssoms used for decomposing differ-
ences between two conditional forecasts based on a limeatwtal model. Though the framework
is based on the projection update elasticities, the noliekyn the presence of conditioning applied
in anticipated mode. We also demonstrate the use of thiseframk in the forecasting process.

The motivation for the development of a general decompmsitamework originated from the state
of the available tools, which handled similar problems gsntompatible approaches, thus limiting
their applicability. These tools were subject to many caising assumptions, so inconsistencies
between decomposition methodologies were present. Thdraavework delivers more flexibility
and consistency than the former ones that accompanied ¢évepsly used Quarterly Projection
Model (Benes et al., 2003) and the currently used g3 modeti(aret al., 2009). The list of
advances includes consistency of the model used in theifidation and prediction phase and the
possibility of applying conditioning information in anfjpated and unanticipated mode.

Regular examination of forecast updates and forecast acgatlows forecasters to learn about the
properties of the model, data revisions, and conditionirfigrmation. Moreover, the learning pro-
cess enhances forecasters’ notion of expert judgment. Asl@ia (2000) points out, the need for
explanation of the conditioning information used in forgtsahelps reduce forecasters’ overreaction
to random movements in the data. Also, to address the opaicgych conditioning, Heilemann
(2002) suggests that the prediction process should stdrtanhiumber of test runs to examine the
effects of assumptions and updates on the forecast. Hespmimthat these test runs help increase
the transparency of the forecasting process by demomgjridie role of the assumptions in the pre-
diction. Furthermore, the repetitious analysis of forécg@slates helps improve the narrative of the
forecast, which is important for delivering high-qualitrécast reports.

The evaluation of forecast accuracy has been a focus otiattesince the early 1970s (e.g. Mincer
and Zarnowitz, 1969) as a vital component of the empiricakvad econometricians, and we agree
that, as in Todd (1990), forecast revisions should be aedlya help forecasters and forecast users
evaluate and justify the forecasting process. The maiasti@f literature on forecast accuracy and
forecast update evaluation puts great emphasis on thststaltproperties of forecasts based on the
evaluation of forecast errors. Some of the forecast evaluaixercises only require moments from
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the predictive distribution, quantiles, confidence in&syor the probability that the variables take
some value (e.g. Christoffel et al., 2010; Mincer and Zaritmvt969).

However, statistical moment-based forecast evaluatiantisapable of explaining the story behind
the differences in forecasts, of or delivering answers abwaiorigins of deviations from the ob-

served data as well as the future propagation of those dmvsat Moreover, we believe that the
complexity of conditioning (e.g. the use of anticipatecommhation) creates a difficulty for evalu-

ating forecast properties via traditional methods suchase described in Mincer and Zarnowitz
(1969). Therefore, as central bank forecasters, we congideevaluation of forecast performance
by forecast error statistics (e.g. West, 2006; Antal et28108) to be insulfficient.

Improving the understanding of forecast properties hasvated decomposition analysis since the
early days of forecasting with structural models, as dised$y Todd (1990). Todd (1990) presents
an algorithm based on partitioning of the forecast infoioraset. However, his procedure is set up
in a one-step-ahead framework that lacks the possibilimmpfementing expert judgment. Inspired
by his approach and the work by Andrle (2013), we develop @&ggmlecomposition framework
which allows us to analyze the contributions of informatseh elements to the prediction trajectory.
To our knowledge, there is no such publicly available and gemanalysis that can be performed
on a linear structural model with expert judgment appliedath anticipated and unanticipated
modes.

In the next section, the CNB’s forecasting process, whidiased on an advanced structural model,
is presented. This is followed in the third section by santbf the model prediction. In the fourth
section, the methodology for examining the forecast updatescribed, and in the fifth section, ap-
plications of this general framework (scenario analysis fanecast evaluation) are demonstrated.

2. Structural M odd Forecast

First, we introduce our notation and describe the foreoggirocess, which is based on the use of
a structural model in linear form. We present a CNB impleratanh of the forecasting process
represented in the general form of a structural model iestptice representation, as our goal is to
develop a framework with a minimal set of assumptions. Fartive describe the components and
phases of the forecast.

The terms “forecast” and “prediction” are generally coesetl to be synonyms. However, we
follow the definition of Mincer and Zarnowitz (1969), who use term “forecast” to describe the
set of predictions produced by the prediction method. Sediptions of variables are elements of
the forecast.

Our forecasting framework is built around a linear struatanodel expressed in the following state-
space form:

Y = CX+Dé& (1)
X = AX_1+Ba, (2

whereY; is an(ny x 1) vector of observed variables (observables/measurableggnotes ang x 1)
vector of transition (state) variables, afidande; are, respectivelyns x 1) and(ng x 1), vectors of
measurement and structural shocks.
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The shocks are independent and identically distributedaanvariables from the normal distribu-
tion with zero mean. Matrice&, B, C, andD are known matrices based on the structural model and
its parameters of sizey x ny, Ny X Ng, Ny x Ny,andr, x Ng. Further, the model given by the system
of Equations 1 and 2 will be augmented with additional equeito allow for implementation of
expert judgment.

To describe the phases of the forecasting exercise, wengthrthe definition of information sdt

in periodt. Information setl; includes the past and current values of the observableblesia It
may also include the future values for outlooks without aagistraint on their observability. For
the information sets we assume thab Iy, for t > k, so forecasters accumulate knowledge about
the past forecasts and data revisions.

As the information sets are updated by revisions and erdargaew observations, these informa-
tion set updates are the driving forces of the forecast @sdat

Figure 1: Forecast Phases

Forecast
‘ Identification ‘ Prediction ‘
I History range ‘ Future range ‘ tIime
1 T T

END

The construction of the CNB forecast at timidased on information sét has two phases: identi-
fication of the initial conditions and solution of the preiitic problem. Figure 1 shows the timing
of these two phases. In the forecasting process, péariscknown as the end of history (generally,
the end of the available dathwhile periodTenp is usually some distant period known as the end
of the prediction computation.

The first phase of the forecast is identification of the ihisi@te (cyclical position) based on the
history up to period’. The data from period (the start of the data used) up to the end of hisfory

are used in combination with expert judgment to identifyithigal state of the prediction. As the

technique based on the use of a structural model and the Iikadmaother is used for identification
of the initial state, identification is often referred to dsdtion and the history range as the filtration
range?

The results of the initial state identification enter thedicgon phase as the starting point. In the
prediction phase, expert judgment and outlooks are usedriditton the prediction. The future
range thus refers to the set of periods from 1 to the end of the prediction computatidayp. The
number of period3gnp — (T + 1) is also known as the prediction span, as in Mincer and Zarzowi
(1969).

Lusually only higher-frequency data (e.g. the exchange tat interest rate or the inflation rate) is already
available at the end of history. To balance the panel of dateer-frequency data enter in the form of a data
estimate and are subject to update when a new data releags.occ

2\We should point out here the mismatch between the namingeeion and the tool actually used. The Kalman
smoother is used to identify the initial conditions, but qadion of is often referred to as filtration.
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The identification of the prediction’s initial state shouwédlect the forecaster’s view on the current
position of the economy in the cycle. As this view tries totca@ many expert opinions, expert
judgment has to be applied in the process of initial statatitieation. This expert judgment is
referred to as the identification tunes and integrates mméion that is not captured by the model
mechanisms. The identification tunes impose constraintherestimation of state variables or
shock realizations to reflect expert opinions.

The expert judgment imposed in the identification phase emented by augmenting the state-
space representation with new time-varying restrictiomshe observable variablésThat is, the
measurement Equation 1 of the model is augmented by a vdadttardgification tunesfth, (N x 1),

and the restrictions imposed between observed variabtegravbserved states are described by the
matricesy 7, (N x ny) for each period € (1,...,T):

[YtthT] B [F?ﬁﬁ] i [Athth 3)

Xt AX;_1+ Bg. (4)

The presented extension exposes unobserved elementssibtbespace system to forecasters, so
expert judgment can be applied as the observation of thablati As the identification tunes are
imposed in the period of interest, the expert judgment sesiebserved only in these periods, while
the rest of the corresponding additional measurementsseagemissing values. The implementation
of expert judgment in the identification phase is based oruieeof a filter that is able to handle
missing observations. See, for example, Harvey (1989) fanendetails on the implementation of
such a filter.

Uncertainty about expert judgment can also be presentisgsafrom shocks, (Nya x Nya) with a
covariance matrmt|T, (nya x nya). Inour implementation of the forecasting process, we foaug o
on expert judgment in the form of hard tunes (hard conditighas introduced by Waggoner and
Zha (1999) and described by Benes et al. (2010). Therefagegssume no uncertainty about the
filter judgment, s v = 0.4 In our forecasting framework, we use matridgsto impose the
one-to-one judgment—variable relation, implying thats the identity matrix in this simple case.

The identification tunes implementation, given by Equa8ois flexible enough to implement con-
ditioning on the value of a state variable (the elementg pfor on the value of a single structural
shock (an element of). This flexibility originates from the equivalence implieg the linearity
of the restrictions in the measurement block given by Egunadi. Due to the nature of the Kalman
smoother, the identification tunes are implemented in tha ff unanticipated shocks. The initial
state for the prediction phase is estimated by applyingtituetsiral model given by the system of
Equations 3—4 using the Kalman smoother on the data up togeri

In the second phase of the forecasting exercise, predittgectories are computed. In this phase,
the initial state from the identification phase is used tostartt a prediction over the future range
(T+1,...,Tenp). The prediction trajectories are a function of the initiatstand are conditioned on
the assumption regarding the trajectories of exogenoushlas (outlooks) and the expert judgment
available in the information sét.

3The detailed implementation of expert judgment in the CN&@iwictural model environment is described by
Andrle et al. (2009) and examples are presented by Briina(@104.3).

4The introduction of expert judgment is based on Doran (198®gre the augmented system of measurement
equations constrains the estimated state variables, sexpert judgment on state variables is delivered.
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In general, these outlooks and expert judgment applied thefuture range are called prediction
tunes. Forecasters’ assumptions about the predictios tuniginate from the information skt and
can be revised together with any future updates of the irdition se®

In the prediction phase, there are two modes for applyindiptien tunes over the future range.
From the model agent point of view, prediction tunes can lpdieghin unanticipated or anticipated
mode. Prediction tunes applied in anticipated mode oveutiaee rangeT +1,..., Tenp) allow the
behavior of model agents to be affected as from peTiadl, as model agents are forward looking
and anticipate these shocks as from the first predictioro@gerin contrast, prediction tunes ap-
plied in unanticipated mode affect model agents’ behavidy rom the period in which they were
applied. To implement prediction tunes in both modes, theestpace system is augmented with
the linear restrictions and shockganticipated at tim&. In our implementation of the forecasting
process, we stress the fact that prediction tunes appliadtinipated mode do not change over the
future range, so no expectation shocks are present. The@bsé expectation shocks originates
from our need for transparency when the resulting predidtias to be interpreted and presented.

Augmenting the state space of the basic model given by Eapsti—2 with the sequence of con-
straints and shocks creates the following general formeptiediction problem:

Yt = CX+Dé ©))
Xt = AX_1+Bé&+B& (6)
Zytxk = Ryt + Atk (7)
Zyt% = Ry +MyrHyT) (8)

where vectors and matrices with bars refer to expert judgaggplied in anticipated mode.

In this general augmented systefpr (nr x n) andZ‘T (nr x ny) are fixed matrices that, together
with the vectors of constan®r (nr x 1) andRyy (nr x 1), define the restrictions on the variables
imposed by implementing the outlooks and expert judgmemnpéoiodst € (T +1,..., Tenp)- The
linear constraints imposed by matricgsr andZt|T usually have a straightforward structure, as the
usual restriction binds one shock and one variable.

As in the application of identification tunes, predictiomés can be applied with some uncertainty
in the most general case. This uncertainty originates fioempresence of shocks, (n, x 1) and
HyT, (g x 1) with a covariance structure described by matribgs (ny x ny) anth‘T (Ng X ng).
Such mode of tune application allows for some flexibility avéhting from the tunes applied. How-
ever, for the sake of clear forecast interpretation, in gpliaation we assume no uncertainty about
prediction tunes, bty =0 anth|THt|T = 0. Implementing prediction tunes without any un-
certainty is known as hard tunes conditioning, as defineddneB et al. (2010).

5The CNB's forecast is conditioned on the trajectories ferfiilowing variables: the foreign demand, inflation,
and interest rate paths; the inflation target trajectomy ptiitlook for administered prices; the government spending
prediction; and the near-term forecast for inflation andetkehange rate for the first quarter of the prediction. The
prediction is created under the assumption of endogenoungtay policy responses derived from the monetary
policy rule of the model. As monetary policy operates vidisgta trajectory for the nominal interest rate in a
regime of inflation targeting, many may regard this foreeasinconditional. However, our forecast is conditioned
on the outlooks and expert judgment. The uncertainty ab@ibttlooks included in the information detand
expert judgment are described by creating alternativessiescenarios. More information on the role of scenarios
in the forecasting process can be found in Briiha et al. (R013
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When solving the prediction problem, prediction tunes #ratdescribed by the constraints given
by Equations 7 and 8 are reflected in the predictions of ucigatied structural shoclkes and antic-
ipated structural shockgt fort € (T +1,..., Tenp). The prediction phase problem, described by
Equations 5-8 for € (T +1,..., Tenp) With the initial state given by the result of the identificati
phase, can be viewed as the constrained optimization prodlénding the likelihood-maximizing
paths for the state variables. The process of solving trecést problem conditioned by the con-
straints given by Equations 7-8 is described in the follggaction.

In the CNB’s implementation of the conditional forecast, map one variable to one structural
shock in the given period of time. As pointed out by Andrle kt(2009), the expert choice of
the variable-shock pair is a crucial decision in the forénggrocess and is known as the forecast
plan. The use of one-to-one (injective) mapping origin&t@s the interpretation approach used for
writing the inflation report, as it allows us to suppress nmigueness problems and provides more
details in the explanation of the forecast. In our view, floisn of conditioning implementation
also increases the consistency of the CNB forecast withxperts’ view on future developments
in the economy and with the behavior of economic agents ngatkigir decisions with regard to
anticipated developments.

The structure of the forecast problem given by EquationsdleBvs for a very broad structure of
conditioning. Also, as in the initial state identificatiaexpert judgment applied via the series of
structural shocks; and¥; is equivalent to conditioning applied to the variables agged via the
linear restrictions.

The two-phase forecasting exercise given by the identidiceand prediction problem allows us
to define the forecast as a structure of time series. Thedestgmoduced at tim& conditional
on the information sely is a structure of time seriegF(lt) = {7Y,T Y1 ETX TET £}, where
TY is a matrix of observed variables including their predietior = (Y1,...,Yr,Y141,...,YEND),
1YY is a matrix of identification tunegY” = (Y13|T,...,YTJ|T), and Xt is a matrix of unobserved
state variables X = (Xy,...,X7,X741,...,Xenp). To avoid loss of information when assessing
the forecast trajectories’ forecast structure, the faseadso includes shocks, s& is a matrix
of measurement shocks = (&1,...,&1,&141,---,€END), TE IS @ matrix of unanticipated struc-

tural shocksre = (€1,...,€1,€741,...,€END), @ndT€ is a matrix of anticipated structural shocks
TE=(£741,..-,EEND)-

In the forecastF(IT), the values for the time series for periods (1,...,T) originate from the
initial state identification as defined by Equations 3 and d the values fot € (T +1,..., TEnD)
form the solution to the prediction problem given by Equasi® and 8. A prediction trajectory is
therefore algnp x 1 vectortx(It) from forecastrF(I7). An element of the prediction trajectory
Txn(l7) Is the prediction stated at periddfor periodh, he (1,..., Tenp) and based on information
setly.

Forecast F(IT) cannot be viewed as a mechanistic one, as it is conditiongddgment and out-
looks imposed by forecasters. This judgment is based onrexsvs regarding recent develop-
ments and on knowledge of the model properfies.

6 Expert judgment as seen by Svensson (2005) consists ofiafan, knowledge, and views outside the scope of
a particular model. Svensson (2005) argues that judgmadpastments are a necessary and essential ingredient
of modern monetary policy.
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Since the forecasting exercise has two phases, there argroups of expert judgment: filter and
prediction tunes. As there are differences in the methodd usthe identification and prediction
phases, there are also differences in expert judgment mgritation.

3. Solving the Prediction Problem

The method for solving the prediction problem allows for mgof unanticipated and anticipated
shocks and is based on the seminal works by Blanchard and {&i&0) and Klein (2000). The
introduction of conditioning into the forecast follows teeeam originated by Doan et al. (1983),
while the solution method largely builds on the methodolagyeloped by Waggoner and Zha
(1999). Implementation details on the introduction of eiptted prediction tunes can be found in
Leeper and Zha (2003) and Schmitt-Grohe and Uribe (2608).

The point forecasts based on the linear model conditiondgherexpert judgment applied in an-
ticipated and unanticipated mode, given by Equations 5 amale8constructed by two runs of the
general solution procedure. In the first run, judgment incgrdated mode is implemented via the
general solution method. In the second round, the gendrgl@omethod is used to include unan-
ticipated judgment while conditioning on the paths fromfihg round.

The general solution method has four steps. First, the maalation is constructed by forward
expansion, so that the effect of future shocks is retainedo&d, the expert judgment is translated
to linear constraints on shocks and initial conditions fer tonstructed model solution. In the third
step, the likelihood maximization problem is solved to a#dte the values of shocks and initial
conditions consistent with the judgment. Finally, the oral system is simulated to obtain paths
for the variables.

Originating from the notation by Blanchard and Kahn (19806¢ model given by Equations 5-6
can be cast in the general form:

AE[Xe11]lt] +BX +C& =0, 9)

whereX; is a vector that includes measurement and state varialesan augmented vector of
structural and measurement shocks, anB, andC are matrices that are functions of the model
structural parameters. For> T, forward iteration of the model given by Equation 9 delivers a
general solution conditional on expectations of futurecklsa@iven by:

X =FX_1+Go& + ¥ GKE[&klt]- (10)
K1

The mean and covariance matrix of the initial conditignoriginates from the application of the
Kalman smoother in the first stage of the forecasting progsiss) the available information. In our
forecasting process, it is assumed that the distributihotks is normal with zero mean and co-
variance matriceQ; = COV(&]|lT) for t > T. Using forward expansion and substitutions, it follows

7 Our implementation is based on the IRIS toolbox. IRIS is a,fapen-source toolbox for macroeconomic mod-
eling and forecasting in Matlab, developed by Jaromir BeiRES integrates core modeling functions (such as a
flexible model file language, simulation, and estimationthvei wide range of supporting features (such as time
series analysis, data management, and reporting) in aniesedly command-oriented environment. The toolbox

and its documentation are availablératp: \\www. iris-toolbox. com.
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that each value ok is a linear function o7, structural shocks, and expectations thereof. In our
forecasting process, the forecast conditioning is addéarin of a sequence of linear constraints:

Zyr % =Ry, (11)

whereztn and ﬁt” are matrices defining the constraints for T. This allows us to transform the
problem of finding the likelihood-maximizing paths for thariables of the model given by Equa-
tions 5—-6 subject to the constraints given by Equations ite8the problem of finding likelihood-

maximizing values foXt and the sequence of shocks subject to the constraint given by the
sequence of Equation 11. Solving f& and the sequence of shocksand constraints can be
converted into a likelihood-maximization problem by stackthese sequences into vectors.

Generally, the solution depends on the infinite sum of comakd expectations. We usk-pnp

as the cut-off point, as beyond this point our forecast dasscontain any conditioning infor-
mation, so the shocks beyond this point are considered tcel® (the mean of their distribu-
tion). The simplifying assumption taken to compute our ¢ast trajectory is stated as follows:

E[ETEND—H(“T] = E[ETEND+k|IT+1] == E[ETEND+|(|ITEND] =0fork> 1.

An interesting fact about the likelihood-maximizing sadutt is that for the shocks there will be no
change in the conditional expectations, and this will mdieat equal to the realizations &af, so
El&l|lT] = El&|lt11] =--- = E[&|li_1] = & fort > T. Also, as we assume shocks from the normal
distribution, the solution to the likelihood-maximizatiproblem coincides with the mean of the
distribution of the stacked vector conditional on the lineanstraint.

Finally, after the optimal solution to forecasting probl&robtained, the system is simulated by
plugging it into Equation 12 for periodst € (T +1,..., TenD) :

- ~ Teno _
X' =FX" 1+ Go& + Z Gyéx - (12)
k=Tr1

So, performing two runs of the general solution procedulenal us to create forecastF(IT),
while we also keep the trajectories of the forecast that doéclude expert judgment applied in
unanticipated mod@.

4. Forecast Update Decomposition

As presented above, every forecast is driven by the eleroétits information set, e.g. the observed
data, the filter, and the prediction tunes. As the informmasiet used for conditioning a forecast is
updated over time, forecasters respond by updating thedsteo reflect new information. Thus,
several prediction trajectories for the same variable @aéable over the period of time considered.

The dissemination of the updated forecast raises questlums the contributions of new elements
of the information set to the changes in the forecast trajexg. In order to find answers, forecasters
would like to identify which elements of the information sintributed to the particular forecast
updates, as mentioned by Andrle et al. (2009) (see Sect®)rafd by Todd (1990). Moreover, a

81n our implementation, the final forecasF (I1) and the forecast without unanticipated judgment are stasea
set of trajectories of the variables and shocks as a seringblex numbers.



Evaluating a Structural Model Forecast: Decomposition Aggzh 11

forecast is often judged not only on its accuracy, but alsbam intuitively it explains its updates.
Therefore, the purpose of the forecast update decompositito provide additional insights into
the forecast and the properties of the forecasting procebslao to improve understanding of the
structural model used.

Early versions of our decomposition tools were implement&th the introduction of the Quar-
terly Projection Model (Benes et al., 2003) into the foréicgsframework of the CNB. The most
noticeable limitation of these tools originated from sagia evaluation of the elements of the in-
formation set, leading to results that were conditionall@drdering. Another drawback stemmed
from the QPM framework, which did not allow for mixing of catidning in anticipated and unan-
ticipated mode. Since the current forecasting frameworidf#e et al., 2009; Briiha et al., 2013) is
much more advanced than the previous one, we are motivateddte a more general decomposi-
tion framework that meets our needs.

The current decomposition procedure decomposes the &irapdate into components identified
with the direct and indirect effects of the updates of infation set elements. The goal is to analyze
the difference between the prediction trajectories of tea/forecast, (I, ) and the Old forecast
TOF(ITO)’ Whel'eTo <TN-

Figure 2: Time Conventions

Forecast - Old

Identification ‘ Prediction

Forecast - New
Identification ‘ Prediction

Decomposition
History range Transition range Future range

time

1 T T T

o N END

Figure 2 shows the timing of the two forecasts under analysach of the forecasts has its own
identification and prediction phase. Figure 2 defines thgearof interest in the forecast update
decomposition. Rangflp+1,...,Ty) denotes the transition range, which corresponds to the in-
tersection of the prediction of the Old forecgsF(l1,) and the identification of the New forecast
wF(l7y)- The history rang€l,...,To) denotes the intersection of the two forecasts’ initialestat
identification phases. The future randg +1,..., Tenp) is the intersection of the prediction phases
of the two forecasts analyzed.

The forecast update decomposition identifies the contdbatof the updates of the elements of the
information set to the difference between the New foreggstly, ) and the Old forecast, F(It,).

If To < Ty, then atime shiftis present between the forecasts and tdecpiom from the Old forecast
ToF (I7,) has to be compared with the identification of the New foreggsti, ). The decomposition
of the forecast update is based on the partitioning of thermétion set update frory, to Iy,
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into disjoint subsets while keeping in mind the differenedéizeen the identification and prediction
methodology.

To examine the contributions of the information set elemene use a complex but still general
procedure based on partitioning the information set intesets. This partitioning procedure ex-
ploits properties of the forecasting process and dividesstamination process into several steps.
These steps are based on supporting forecasts used tdydbatcontributions of the information
set elements to the forecast update. The creation of thegmiding forecasts exploits the linear-
ity of the model, as it implies that the construction of a pecadn is additive with respect to the
information set elements. The additivity property allovesta express the differences between the
New and Old forecasts as the sum of the differences betweeNédtv forecast and the supporting
forecast, and the supporting forecast and the Old forecast.

Generally, decomposition is a non-linear problem, as shbwiodd (1990). However, Andrle
(2013) shows that in the case of a linear model, independamatly distributed shocks, and the
use of a multivariate linear filter (such as the Kalman fiterdother), decomposition is a linear
problem and can be solved numerically by an iterative potiest sequentially analyzes the forecast
elements. Therefore, under the assumption of a linearspatee model, a linear multivariate filter,
and the same model parametrization for both forecastsptieedst decomposition analysis is also
a linear problem.

The role of the supporting forecast in the decompositiorhefforecast update between the New
forecast trajectory,, xy(I7,) and the Old forecast trajectory,x,(I1,) is based on the following
scheme:

() —To Xh(110) = (X () =T Xh(15)) + (1% (15) =15 X (170)) (13)

whereTx,(15) is the forecast trajectory from the supporting foregé&tl S) based on the informa-
tion setlS with the end of history in period. In this simplified decomposition scheme, we have
IT, € IS C I, andT is eitherTy or To depending on the construction iof

In the forecast update examination process, the decongogitocedure has to cope with the in-

clusion of expert judgment in anticipated mode, revisia@rg] the change from the identification

to the prediction phase. Hence, the decomposition proedtas to exploit a rich structure of sup-

porting forecasts to extract the effects of the informatiehelements on the prediction trajectories
considered. Taking into account the simple step descrilgdegoiation 13, the decomposition has

the following complex form:

W) —To X (1e) = () =T Xa (1) + (X0 (1) —1, X0 (192)) +
+ (%N (1%2) X0 (1)) + (X0 (1) —1, %, (13)) +
+ (T X130 =7 X (1)) + (1 (1%) 1o X0 (1)), (14)

where supporting forecasﬁqxh(lsl),...,TK xp(1<) are used to extract specific groups of infor-
mation. Asly, 2 I, supporting information sets™ are constructed so that, © 1S for all

i = {1,...,K}. In the scheme given by Equation 14, each term in brackets sihow a subset
of the information set (forecast component) would have gedrthe forecast trajectory.

Partitioning the update of the information set frof to |1, into subsets is the core of the decom-
position analysis, and the supporting information $&ts = {1,...,K} are the building blocks of
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the algorithm. The supporting information sé¥sare used to partition the update of the informa-
tion set from the time perspective with respect to the phaéése forecasting process. As $ét
includes aggregates of variables, it can be partitionetiéninto the disjoint setis®i, j = {1,...,J}
with respect to the variables. So, the informationiSétallows us to examine the effect of the time
subset of a specific variablg over the periods covered by the aggregate informatiohset

This aggregate set usually covers multiple periods, tbee¢fi can be partitioned further so that
the information subsefil identifies the effect of a specific variable in time period

For the sake of clarity of the decomposition algorithm, wplai the construction of the supporting
information set$S i = {1,..., K}, because the search for the effect of a particular variatdejiven
time period is dependent on this set. For the reader’s coened, we describe the crucial sets in
steps. Partitioning the supporting information E&tinto the disjoint elements™i' then involves a
very straightforward cycle through all periods and varatihcluded in the aggregate.

1. Removing new unanticipated judgment on future range: New forecast (with expert
judgment both anticipated and unanticipated) < New forecast without unantici-
pated expert judgment on future range The decomposition algorithm starts with the
forecasty, F(I,) and moves toward replication afF(l1,) by altering the information
sets used to create the forecasts. The last component anldeel forecast is expert judg-
ment on the future range applied in unanticipated mode, sditkt supporting informa-
tion setl is constructed fromy, by removing this expert judgment from the prediction
phase. The first supporting forecast based|®nis constructed with its identification
phase ending in periody and without expert judgment applied in unanticipated mode,
so T, F(I%) = {1, Y, Y1 &1y X(13) 1 (1)1, €}, where 1, &(19) = (ey,...,e7,) and
TNX(ISl) is the matrix of state variables that is the solution to thentdication and predic-
tion phase of the forecast. The differences in the forecagdtoriesy, (I, ) —Ty X (11)
describe the effect of the expert judgment in unanticipaiede applied over the future range.

2. Removing new anticipated judgment on future range: New forecast without unantici-
pated expert judgment on future range <= New forecast without expert judgment on
futurerange The second supporting information $&is constructed frorh™ by the removal
of the expert judgment applied in anticipated mode over tiharé range, s6™ D 1. In this
step of the decomposition algorithm,e(15) =, £(1%2) and 1, £(1%2) = 0 is used to create
the following supporting forecast F(1%) = {1.,Y 5, Y7, &1 X(1%2) 1, €(12), 1, E(192) },
where, X(1%2) is the corresponding matrix of state variables. The diffees in the tra-
jectories of the forecastgF(l %) and F(l S1) identify the effects of expert judgment applied
in anticipated mode over the future ran@g +1,..., TEnD)-

3. Removing new judgment on transition range. New forecast without expert judg-
ment on future range < New forecast without expert judgment on future and
transition range After removing the expert judgment applied in the predictghase of
the New forecast, the decomposition algorithm shifts itsuk to the transition range.
The goal is to identify the effects of the expert judgment legobwith respect to the
newly released data. Hence, the expert judgment of the Newecdst, F(I1,) applied
in the identification phase over the periofigy +1,..., Ty} is removed from the informa-
tion setl2 and the subsequent se®, such thatl® D I, is constructed. By creating
the supporting forecast, F(1%) = {1.,Y,1, Y (1)1, £ (1)1, X (1) 7, £(1%),0}, where
TNe(ISS) = (TnE1,---Ty €T) IS the matrix of shocks identified in the forecast constricte
in period Ty, we are able to identify the effect of the transition rangeegkjpudgment on



14 FrantiSek Brazdik, Zuzana Humplova, and FrantiSek Kagfiv

the identified initial state used in the prediction phase.m@arison of the trajectories of
the forecasterF(l%) and TNIF(ISZ) allows us to identify the propagation of expert judg-
menty € = (1y&To+1, - - - Ty ETy) 10 the prediction, thus the contributions to the update ef th
forecast trajectories over the future range are also ifiledti

4. Removing new judgment on history range: New forecast without expert judgment on
future and transition range < New forecast without expert judgment The fourth sup-
porting information set completes the removal of the expetgment applied in the New
forecasty, F(I,). The setl is constructed fromi™ by omitting the remaining expert judg-
ment applied in the identification phase over the peridds ., To}, sol = D 1%, |dentification
of the effect of the expert judgment from the information Isgtis finalized by creating the
supporting forecast, F(1%) = {1,)Y, 0,1, & (I%),1,, X(I%),1,, €(1%),0}, where, £(1%) = 0,
so there is no expert judgment applied. The fore@@l@(lsﬂ) is an expert judgment-free (un-
conditional) version of the New forecagtF (I, ), but the information set™ still includes the
new data (revisions and releases) collected after the @édtésty F(l1,) was constructed.

5. Removing newly released data and time shift: New forecast without expert judgment
<= New forecast without expert judgment and newly released data In the construction
of the fifth supporting forecast, we exploit the consisteoicthe model applied for the identi-
fication and prediction phase to alter the end of the histerjopl. The information sefs is
constructed front™ by removing the observations used in the identification twetransition
range, so the observed data set becof¥sl>) = (1,1, ..., Y1o)- The setiS, IS5 C 15,
does not contain all the data observed at tifgeas the data for perioddp+1,..., Ty} are
replaced with missing values. The model consistency owefdhecast phases, along with
the properties of the Kalman filter and its ability to handlessmg values, implies equiva-
lence between the forecagF (1) = {3, Y (I%),0,1,, (1)1, X(15),0,0} and the forecast
1. F(1%) = {1,Y(15%),0.7, (1)1, X (1%),0,0}. This equivalence allows us to replicate the
forecast trajectorieg xy(ls,) with the forecast trajectorieg x,(ls;). So, the following steps
of the decomposition algorithm are based on the forecaskstiag end of historyig.

6. Replacing new revisions with old data on history range: New forecast without expert
judgment and newly released data < Old forecast without expert judgment After the
last element of the end of the identification phase of thectseis shifted from periody
to periodTp, the last component of the information $g} consists of revisions of the obser-
vations over the history rang@, ..., Tg). So, the sixth aggregate supporting information set
156 is constructed from by reverting from the observations collectedi{j to the obser-
vations from the information sét,, wheret, Y (1%) = (1, Yy, ..,1, Y1) @nd!™ 2 1. Using
the supporting forecagt (1 S6) ={1Y,01, & (I SB),TN X(I%G),(D, 0} and its forecast trajectories
unravels the effects of the data revisions.

7. Adding old judgment on history range: Old forecast without expert judgment <= Old
forecast without expert judgment on transition and future range The following support-
ing simulations focus on reconstruction of the Old foregg8{(I1,). As I contains the data
for the identification phasea® is constructed by adding the expert judgment over the his-
tory range used in the construction of the Old forecast; @ 1. The supporting forecast
1o F(1%) = {15Y 75 Y710 E(15),1, X(157),0,0} is used to identify the effects of the expert
judgment for the initial state identification (the effectttie forecast trajectories over the his-
tory range) and its propagation to the prediction phasedtteet on the forecast trajectories
over the transition and future range).

8. Adding old anticipated judgment on transition and future range: Old forecast without
expert judgment on transition and futurerange < Old forecast without unanticipated
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expert judgment on transition and futurerange The forecast based on $€t replicates the
identification phase results gfF(I,). I8 is augmented by adding expert judgment in antici-
pated mode, s® O 157, The supporting forecagfF(1%8) = {1, Y 15 Y 7,15 & 70 X (1), 0,1, €}
and the forecast trajectory differenc%yh(lsw —To xn(18) identify the contributions of the
expert judgment applied in anticipated mode when constigithe Old forecast, F(I,).

9. Adding old unanticipated judgment on transition and futurerange: Old forecast without
unanticipated expert judgment on transition and futurerange <= Old forecast (with ex-
pert judgment both anticipated and unanticipated) The decomposition algorithm is com-
pleted by adding the expert judgment applied in unantiegpabode in the prediction phase.
So, the sety, is obtained in this step and the forecgsF (I1,) is replicated. The supporting
forecastr F(I8) is compared against the forecasF(I1,) = {15 Y 1o Y10 & 1o XoTo €70 €}
to identify the contributions of expert judgment in unaiated mode.

As mentioned above, each of the aggregate supporting iaiomsetd S| i = {1,...,K} can be
further partitioned to reflect the structure of expert judgntn This detailed partitioning can provide
more details on the period-by-period effect of the foreesstent under scrutiny.

5. Decomposition Analysis

First, we demonstrate the features of the decompositioneweork by decomposing the difference
between two forecast trajectories into the contributiohsew information as the simplest case.
Further, we use the CNB'’s forecasts presented in InflatiopoRdll/2012 and Inflation Report
[11/2013 to demonstrate the use of the framework in the cexphse of forecast evaluation.

5.1 Alternative Forecast Scenarios

We begin with a comparison of a forecast scenario that usesdhof conditioning information
TF(IT 1) (Scenario 1) and a forecast scenario without any applicatfaconditioning information
TF(lT2) inthe prediction (Scenario 2).

In our example, Scenario 1 is represented by the baselinasoef the CNB’s forecast released in
Inflation Report I11/2013. Scenario 1 is created by condiiiy on the outlooks for nominal govern-
ment consumption, administered prices, the external enmient outlook (inflation, the short-term
interest rate, demand), and the one-quarter-ahead outbo@omestic inflation and the exchange
rate. In the forecasting process, the external environmetibok is implemented in anticipated
mode.

Scenario 2 is a fictional forecast created with the same nmdtion set, but it does not use any
conditioning information over the future range. The roletlois comparison in the forecasting
process is to identify the driving forces of the predictitorg delivered by the assumptions applied.

Figure 3 shows the trajectories of the variables of intef@sScenario 1 and Scenario 2. In the
graphs, the white area represents the history range (up settond quarter of 2013) and the shaded
background indicates the future range (from the third guaot 2013), while the bars indicate the
differences between the trajectories considered. The gatia state is used in both scenarios, so
there is no difference observable over the history range.
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Figure 3: Scenario Comparison — Data
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In general, we consider two alternative forecast scenatligsr 1) andtF(It2). There is no time
shift between these two forecasts; however, O It ,. In our example, the extra information in-
cluded inlt 1 describes the expert opinion on the trajectories of someeo¥variables.

Figure 4: Scenario Comparison
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The two alternative forecast scenarios, with a predictgangrom periodr + 1 to Tenp, can easily

be compared and their differences analyzed, as these gxehave the same range for initial state
identification and for prediction. The scheme for evaluatid the two scenarios is presented in
Figure 4. The simplicity of this case originates from thet that there is no overlap between the
identification and prediction part and the decompositiarbfgm breaks down into a simple task
also known as alternative scenario decomposition, as e Andrle et al. (2009). This process
is heavily used during the standard CNB forecasting prodaego improved understanding of the
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driving forces of the forecast trajectories. The core ofdgkercise involves computing the model’s
elasticities to changes in the model variables. Thesei@téest are evaluated for each time period
in the future range. The overall response of a predictigedtary is then computed as the sum of
the responses to the conditioning information groups.

Figure 5: Scenario Comparison — Contributions
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Figure 5 shows the results of applying the decompositiorraggh for the alternative scenario
analysis. As there is no difference in the identificationgghanly the future range (from the third
quarter of 2013) is shown. The differences (Scenario 1-&8t@f) between the trajectories shown
in Figure 3 are decomposed into the contributions of theclseelements, while the solid line
shows the difference. A brief assessment of the contribhatieveals that the major driving force of
the forecast is the outlook for the external environment.

5.2 Forecast Evaluation

The extensive capabilities of our evaluation framework@dearly demonstrated when the frame-
work is applied to decompose the difference between twaésts which were created in different
periods of time.

In the production of the new forecagfF(ly,, ), its stability in comparison to the previous forecast
ToF (I), whereTy = To+ 1, is of high importance. Although this type of assessment imxample

of general decomposition, the current comparison conagrgmainly on the impact on the future
range. This assessment is known as forecast update analysis

However, our framework can be also applied to examine theakgtredicted data variation. To
demonstrate its use, details of our methodology are pravidiethe Inflation Forecast Evaluation
exercise€? This exercise is conducted on a quarterly basis and we aesied in identifying the

9The Inflation Forecast Evaluation is a regular exerciseithatpart of the forecasting process. It takes the form
of a report and provides an assessment of the old forecastect 6 quarters ago, and its deviation from the latest
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sources of the medium-term differences between the New dddo@casts, with a focus on the
transition range, as it includes the latest data release=sterheless, the decomposition is also
provided on the history and future ranges.

The goal of the Inflation Forecast Evaluation is to identifg tcontributions of newly acquired
elements of the information séf, to the update of the forecast trajectories. Knowledge of the
propagation of information helps us improve the quality wife forecasts, as we learn about the
sensitivity of the forecast to its assumptions. We focusenriflation prediction due to the inflation-
targeting nature of the CNB’s monetary policy. The resuftshe evaluation also enhance the
transparency and consistency of the forecasting processame as a measure of monetary policy
performance.

Figure 2 shows the general timing scheme for two forecaststed at different points of time: New
(W Fmy) = {1 Yom Y1 &y Xom €1, €)) @and Ol F(I1,) = {1, Y 110 Y716 & 110 X0 €10 ED)-
Here, the New forecast data is available up to pefigand the New forecast prediction starts in
period Ty + 1. Similarly, the Old forecast data is available up to periggdand the Old forecast
prediction starts in perio@p + 1.

The information set of the New forecasi, enriches the Old forecast information s$¢i by the
release of new data for the periods fr@g+ 1 to Ty and by data revisions up to peridg. Also,
the expert judgment (the identification and prediction tuaed the outlooks) for the prediction can
be updated, reflecting either observed data revisions @rexkgormation updates.

Figure 6: Forecast Evaluation — Trajectories
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The trajectories from the forecasts analyzed are presemtBdyjure 6. In our example, the Old
forecast (the blue line) is represented by the forecasaselkin the third quarter of 2012 (Inflation

data vintage. The focus is on assessing the accuracy ofribesfst. The Inflation Forecast Evaluation also features
an analysis of the monetary policy decisions made over theg&—Ty.
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Report 111/2012) and uses the data up to the second quar201i (To). The New forecast (the
red line) shows the trajectories from the forecast releasdte third quarter of 2013 (Inflation
Report 111/2013). The New forecast uses the data up to therskquarter of 2013T{). The
Inflation Forecast Evaluation takes placdjp+ 1, after the data for 4 quarters have been collected.
The graphs show the history range (the dark shaded area)pgrital T, the transition range (the
light shaded area)lp + 1, Ty), and the future range from peridg + 1.

The task of the forecast update analysis is to explain the abkhe forecast elements and their
contributions to the New—Old forecast difference. Thiktesscomplicated, as the difference in
the initial prediction periods has to be considered. Thiamsethat the results of the identification
phase of the New forecast have to be compared with the piadighase of the Old forecast. The
complication arises especially from the presence of ptiedi¢unes that are applied in anticipated
mode and the forward-looking nature of the model used. Atpbint, we exploit our knowledge of

the elements of the forecakt.

In the former specification of the decomposition methodglagarting from the period of use of
the Quarterly Projection Model (QPM) framework (Benes et2003) and also covering the use of
the current g3 model, the forecast evaluation was condumtedeans of a “what if” analysis. In
this analysis, forecasters recreated the Old forecast) tissnactually collected data in the forecast-
ing process for the identification phase and as the conditganformation in the prediction phase.
The analysis consisted of two stages. In the first stage,dteeupdate over the history range and
the actual data observations over the transition rangeeimdle of outlooks were used to create a
fictional forecast, labeled the “hypothetical forecastwip-to-date knowledge.” Then, the differ-
ences between the fictional forecast and the Old forecagt @emined to assess the contributions
of the various information groups to the shift in trajectsti These contributions were analyzed by
sequential inclusion of the new data, so the contributioasevmot independent of the choice of the
order for information inclusion. This created a very strdingtation for the interpretation of the
results. Very good knowledge of the model responses wassageto understand the results of the
analysis. This requirement, and the dependence on theirgdafrthe information, limited us in
delivering an evaluation of the forecast to a wider audience

In the second stage of the evaluation in the former framewtbr analysis was focused on the
deviations between the New forecagif(It,) and the fictional forecast,F(Iy,). This stage was
focused on missing structural shocks that were omittedaintie formed wrong expectations about
while preparing the Old forecagtF(I1,). The drawback of the old framework was that the missing
structural shocks could not have been identified becausecohsistences between the New and
the fictional forecasts in their assumptions. Consequettitty presentation of this step was very
demanding and suffered heavily from the problem of subjedtiterpretation, as recent economic
developments had to be related to the model variables, weiphired a deep knowledge of both
the economy and the structure of the model.

The improved version of the Inflation Forecast Evaluatiavvjates the analysis in one stage and is
fully model based. The principal value added of the sugglgstecedure is that the decomposition is
reduced to a technical computation which is independentrectsters’ views. Moreover, missing

structural shocks can be identified, which can help in intmpg the results.

Contrary to the computation itself, interpretation rensaiargely a subjective matter. Since the
decomposition provides the impact of every single obseoreeixogenized (either a shock or an

10That is, as forecast creators, we have knowledge about theepart identification tunes in the Old forecast.
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outlook) variable in every period of time on all the modelsteariables, it ends up providing hun-
dreds of contributions to the New—Old forecast differenaenefor a small model. Hence, in order
to analyze and interpret the results effectively, we havaggregate the individual contributions
into a reasonable number of groups. The grouping depenasply on the purpose of the analysis
and can vary substantially for different exercises. Altjlothere are no restrictions on grouping,
there are some natural ways suggested by the decompositioedure, such as grouping by type of
forecast element (e.g. keeping observations and tunesasepar time perspective (e.g. separating
shocks that occurred in the history, transition, or futamge). Other ways of grouping may follow
economic interpretation (e.g. groups of foreign variajleal economy variables, monetary policy
variables, technology variables, prices). In practice pnexlefined several standard sets of groups
for every decomposition exercise, as this seemed most ppat® and helpful for that particular
analysis, and kept them unchanged over time. This starmial helps us limit subjectivity in
interpretation and enhances the consistency of the asalysr time.

The capabilities of the new framework allow us, but do notursgjus, to keep the form of the
Inflation Forecast Evaluation and present its results ingarts. Due mainly to storytelling consis-
tency with the old version, we continue to interpret the ltssn this way, keeping two views of the
variation of the forecasted trajectories, although the matation is different from the previously
used approach. Firstly, the forecast update view is usedrevive explain the New—Old forecast
difference with the updates in the assumptions that wer@segh to create the forecasts. Secondly,
the Inflation Forecast Evaluation offers a detailed analgéithe model dynamics through the dif-
ferences in the remaining shocks identified by the modelk $&cond view is helpful in identifying
structural shocks that the forecasters could not haveipated when the forecast was created.

5.3 Forecast Evaluation: Variables View

In the first part of the forecast evaluation, the effect of elmthanges, data revisions, and updates of
outlooks contributing to the difference between the Nevedast and the Old forecast is analyzed.
The variables which form the conditioning information foetforecast can be distributed into sev-
eral subgroups mostly according to the source of the unideriyata. The usual subgroup under
consideration is the foreign environment outlook, repmése by the trajectories of foreign demand,
the interest rate, and inflation. The outlooks for domesditables such as administered prices and
government consumption form other subgroups. Figure 7 dstrates the results of identification
of the contributions to the variations between the trajeesoof the New forecasf (I, ) and the
Old forecastr F(ly,) as shown in Figure 6.

The presented decomposition framework does not allow fanghs in the model between the New
and Old forecasts. In practice, when a model change is prastre evaluation, the initial step of
the evaluation is to switch to the new model. The Old foresasdcreated with the updated version
of the model and for the rest of the analysis this forecasteslas a replacement for the Old forecast.
This delivers linearity of contributions to our analysisnlelss there is a substantial change in the
model parameters, it usually makes only a small or zero ttion to the difference between the
New and Old forecasts. In addition, this contribution ceveossible numerical imprecisiofs As

we assumed no model change in our example for the purposeis gresentation, the contribution
of the model change is zero.

1 The standard procedure within our forecasting processastand the weights of the inflation components in the
prediction computation to include the last observed valtlds model parameter update usually has a negligible
effect on the predicted trajectories.
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Figure 7: Forecast Evaluation — Contributions
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The presentation of the decomposition usually follows timéng of the forecast elements. The data
revisions affect both considered forecasts over the historge. Therefore, the contribution of data
revisions to the New-OlId forecast difference originatingdata revisions over the history range
usually follows the model change contribution. Data rensiaffect the identification of the initial
state of the forecasts and usually show a hump-shaped splue to the presence of rigidities
in the variables. The plots in Figure 7 show two patterns t¢iverhistory range depending on the
nature of collection of the variable. For variables suchhasetxchange rate change and the policy
rate there are no revisions present, as these are precisauned by market readings.

The presented results show that the revisions imply lowféation growth and a lower policy rate.
Contrary to this, wage growth was revised upwards. Our kadggé of the data and the ability
to break down the revisions group into a single variable rdoution reveal that the low inflation
and policy easing are a response to the downward revisiogarfanic activity over the history
range. These downward revisions also lead to depreciatithe @urrency, as shown by the positive
contribution to the exchange rate change over the initiabds of the transition range.

The contribution of data released over the transition raegdso analyzed. The motivation for
the inclusion of this group is to analyze the precision ofdbhdooks used in the forecast and their
influence on the forecast trajectories.

As mentioned in the description of the forecasting processforecast is conditioned on the tra-
jectories of several outlooks. These outlooks can be ggbtoutlooks for foreign (Foreign Envi-
ronment Outlook group) and domestic variables (Govern@entsumption, Administered Prices).
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The plots in Figure 7 show that the use of actually observéalidatead of outlooks compensate for
the effect of revisions over the transition range, as theetdareign inflation and economic activity

will slow down domestic economic activity. The compositiminthe release groups is mirrored in

the outlook groups. The outlook groups represent the upafdtes variables used for conditioning

the forecast over the future range.

The forecast judgment group shows the contribution of wgslaf the prediction tunes in both
forecasts over the future range. The contribution of thisigreflects the updates of the forecasters’
views on recent developments in the economy.

The forecast error group, as shown in the plots in Figure Versathe contributions of domestic ob-
servable variables. These variables are used in the idtiiin stage of the New forecagt(l+;,)
and the shocks identified are compared with the shocks ichpli¢he prediction from the Old fore-
casty, F(l1,). The contributions of this group reflect the misalignmeriaen the forecast and the
observed data. In the interpretation of the forecast ewatributions, we usually break down the
group into the individual contributions of the variables floe purposes of detailed analysis of their
propagation over the transition range.

Although the presented groups are standard aggregatioihe ofariables we use in the Inflation
Forecast Evaluation, our tool enables us to identify therdmutions of each forecast element. As
mentioned earlier, identification can even be done on a gdnyeperiod basis. This ability allows

us to focus on the precise details and their propagationtbediorecasts considered.

5.4 Forecast Evaluation: Structural Shocks View

As stated in the description of the forecasting processditioning on variables is equivalent to
conditioning on structural shocks. Our general framewsrkased on this equivalence, therefore
the differences between forecasg{&(I1,) and,F(It,) can also be interpreted as differences in
structural shocks. The role of the second view of the Inflaorecast Evaluation is to provide a
detailed examination and help interpret the contributibtihe forecast error.

In our standard forecast evaluation process, shocks aagated into six groups: Monetary Policy
Misalignment, Exchange Rate (a shock to uncovered intea¢stparity), Market Prices (shocks
to pricing markups and prices), Wage, Productivity (shaitks increase productivity and affect
supply), and Demand. The Information Set Update group saver effects of the information set
update, which was analyzed in the first step of the forecadtiation.

In the evaluation, we consider the contributions of shooksetan indication of missing information
from the ex-post view rather than forecasters’ mistakescHipally, in the case of monetary policy,
the presence of non-zero monetary policy shocks indicate$obse or too tight policy from the
ex-post view. The preference for using the interpretateomassing information is supported by the
fact that data collected in the evaluation perigdare subject to revisions and forecasters cannot
forecast these.

The decomposition of the New—Old forecast difference,tptbtn Figure 6, into the contributions
of structural shocks is presented in Figuré28The demanding part of the examination of miss-
ing structural shocks is to interpret those shocks and laitdedible story based on the model

12Readers should note that the decomposed difference is e @8 the one considered in the variable view of
the forecast evaluation as shown in Figure 7.
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Figure 8: Missing Structural Shocks
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mechanism. The case shown in Figure 8 indicates that mgnetdicy was more expansionary
than the model-based forecast would imply. This is consistéth the negative contribution of the
policy shock (MP Misalignment) to the difference in net itis@. The significant appreciation of
the exchange rate in the first quarter of 2012 (Exchange Rie)ontributed significantly to low

inflation. Even the subsequent depreciation was not ablettwrr the exchange rate closer to the
Old forecast trajectories.

The presented decomposition results also indicate thdbtkeasters in the Old forecast were not
expecting the negative shocks to prices (Market Priceg)wkee identified in the creation of the
New forecast. The slowdown of the economy is consistent thighpositive contribution of technol-
ogy shocks, as the slower growth of productivity is not ableliminate the growth in production
factor prices. The decrease in productivity resulting fittv&economic slowdown (Productivity) is
reflected in a negative contribution to wage growth. Slowehhology growth and positive cost-

push shocks at the beginning of the transition range supperdepreciation (positive change) of
the exchange rate.

In the process of developing the macroeconomic story, wetgentify reflections of the observed
events over the transition range. As mentioned earlieidémification of missing structural shocks
can be done in fully detailed mode, too. This detail of disaggtion is used for further development
of the economic story presented in the Inflation Forecastuatian. Also, the results from this
exercise are used in planning future upgrades of the stalehwdel used. Too large missing shocks
or persistent sequences of omitted shocks can direct @mteth to an absent mechanism or feature

of the model. This often leads to improvements in the stmeobfithe model and also helps validate
the model used.
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6. Conclusions

Stimulated by the criticism that conditional forecastsniretructural macroeconomic models are
not transparent, we present a decomposition frameworkehables forecasters to quantify the
contributions to forecast updates. Approaches based gagbien update elasticities, as described
in the literature, do not take into account the use of expelginent applied in anticipated mode.
Although our decomposition approach used in the past coptbotiws complication, the resulting
identification of contributions was significantly limited@éconditional on the ordering of the model
variables, which used to hamper interpretation.

Following Todd (1990), Andrle et al. (2009), and Andrle (3p1lwe developed a forecast update
decomposition framework that can be applied to decompasdifferences between two forecasts
generated by any linear model. Its design is based on a sartidiglecompositions that enable us
to identify the effects of specific groups of forecast eleta@ven when the filtration and projection
ranges differ. The main advantage of the presented frankaw/ds versatility, as it covers a variety
of decomposition problems.

The novelty of the framework lies in its ability to provideadenpositions even when expert judg-
ment is simultaneously applied in anticipated and ungvdieid modes, while the contributions
are independent of ordering. This framework supports parent presentation of macroeconomic
forecasts based on a structural DSGE model under the assmsippplied in the CNB forecasting
process.

Starting with the simplest case, the flexibility of the framoek is demonstrated by using it to an-
alyze the differences between two forecast scenarios. yifapthe decomposition methodology
enables us to identify the contributions of, and the propagaf changes in, the forecast elements
(e.g. assumptions about foreign variables) to the chantieiforecast trajectories.

Further, our framework is used to conduct an ex-post amalykactual data—forecast variation,
known as forecast evaluation. We demonstrated that acati@t-fbrecast variation can be expressed
as the sum of the contributions of specific subsets of thanmétion set. These subsets include
model and data revisions, data releases, and identificatigmediction tunes. Moreover, these
elements of forecast revisions can be linked to a specifisetudd model variables. The introduction
of higher-level aggregation allows us to improve underditag of the results, as concepts such as
the foreign economy and regulated prices are intuitive tedast users.

Forecast evaluation is an important exercise, as it doctsilea reasons why particular adjustments
and revisions are made to forecasts. Keeping track of fetecrsl actions allows us to learn from
the forecast and actual data misalignment and to avoid exeting to noise in time series or an-
ticipated events. The presentation of our framework demnates how useful it is to understand
the forces driving the forecast update. It also shows thamtages of the evaluation framework in
the real-time forecasting exercise and explains our midirdor, and interest in, decomposing and
evaluating forecasts.
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