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2015
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Datum staženı́: 06.05.2024
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http://www.nusl.cz/ntk/nusl-261335
http://www.nusl.cz
http://www.nusl.cz


 

 
 
 
 
 
 
 
 
 
 
 

WORKING PAPER SERIES 12 
 
 

František Brázdik, Zuzana Humplová, František Kopřiva 
  Evaluating a Structural Model Forecast: Decomposition Approach                                  





WORKING PAPER SERIES 

 
 

 
 

Evaluating a Structural Model Forecast: Decomposition Approach                             
 

 
 
 
 
 
 

František Brázdik 
Zuzana Humplová 
František Kopřiva 

 
 
 
 
  
 

 
 
 
 
 
 
 
 

12/2015 
 

 



CNB WORKING PAPER SERIES 
 
 
The Working Paper Series of the Czech National Bank (CNB) is intended to disseminate the 
results of the CNB’s research projects as well as the other research activities of both the staff 
of the CNB and collaborating outside contributors, including invited speakers. The Series 
aims to present original research contributions relevant to central banks. It is refereed 
internationally. The referee process is managed by the CNB Research Department. The 
working papers are circulated to stimulate discussion. The views expressed are those of the 
authors and do not necessarily reflect the official views of the CNB. 
 
Distributed by the Czech National Bank. Available at http://www.cnb.cz. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reviewed by:  Lorezno Burlon (Banca d’Italia) 
 Riccardo Masolo (Bank of England)  
 Jan Vlček (Czech National Bank)  
  
 
 
 
 
 

Project Coordinator: Jan Brůha 

 
© Czech National Bank, December 2015 
František Brázdik, Zuzana Humplová, František Kopřiva 



Evaluating a Structural Model Forecast: Decomposition Approach

František Brázdik, Zuzana Humplová, and František Kopřiva∗

Abstract

When presenting the results of macroeconomic forecasting, forecasters often have to explain the
contribution of data revisions, conditioning information, and expert judgment updates to the fore-
cast update. We present a framework for decomposing the differences between two forecasts
generated by a linear structural model into the contributions of the elements of the information set
when anticipated and unanticipated conditioning is applied. The presented framework is based on
a set of supporting forecasts that simplify the decomposition of the forecast update. The features
of the framework are demonstrated by examining two forecast scenarios with the same initial
prediction period but different forecast assumptions. The full capabilities of the decomposition
framework are documented by an example forecast evaluation where the forecast from the Czech
National Bank’s Inflation Report III/2012 is assessed with respect to the updated forecast from
Inflation Report III/2013.

Abstrakt

P̌ri prezentaci výsledků makroekonomické prognózy musí prognosticičasto vysv̌etlovat p̌rísp̌evky
revizí dat, podmǐnujících informací nebo expertních úprav k aktualizaci prognózy. V této práci
představujeme obecný způsob, kterým je možné rozložit rozdíly mezi dvěma prognózami vytvo-
řenými lineárním strukturálním modelem do přísp̌evků prvků informǎcní množiny prognózy p̌ri
aplikaci podmǐnujících informací provedené v očekávaném i neǒcekávaném módu. Prezentovaný
systém rozkladu je založen na souboru podpůrných prognóz, které rozklad aktualizace prognózy
zjednodušují. Vlastnosti tohoto systému demonstrujeme ukázkou rozkladu rozdílu dvou prognóz
se stejným pǒcátěcním obdobím predikce, avšak založených na rozdílných předpokladech. Plné
možnosti navrženého způsobu rozkladu prezentujeme pomocí příkladu hodnocení prognózy ze
Zprávy o inflaciČeské národní banky III/2012, která je vyhodnocena vzhledem k aktualizované
prognóze ze Zprávy o inflaci III/2013.
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Nontechnical Summary

In the contemporary monetary policy framework, considerable intellectual activity and computa-
tional power is devoted to forecasting the future trajectories of economic variables. Macroeconomic
forecasts based on structural models with forward-lookingmodel-consistent expectations are used
extensively in the modern process of monetary policy decision making.

As a macroeconomic forecast should provide answers to many questions, it is important to support
its presentation with a transparent quantification of its driving forces. Thus, the forecast update anal-
ysis has to explain how the newly available data (releases and revisions) and assumptions about the
future development of the forecasted variables are reflected in the identification of structural shocks
and unobserved variables. Forecasters require an elaborate examination of the contributions of the
forecast update in order to interpret the new data and improve the quality of their outputs. Exam-
ining the contributions of new information improves forecasters’ understanding of the underlying
shocks present in the economy.

We support our presentation of a forecast with an analysis ofthe responses of the forecasted trajec-
tories to changes in subsets of newly collected informationon a regular basis. For this purpose, we
develop a framework that is used for the analysis of forecastupdates. A detailed description of the
framework forms the main part of this paper.

Forecast accuracy evaluation has been a part of the forecasting process of the Czech National Bank
(CNB) since the Quarterly Projection Model was introduced in 2002 (Beneš et al., 2003). The in-
troduction of the g3 model framework (Andrle et al., 2009) in2008 and its further development
required more advanced evaluation techniques. This paper describes the up-to-date methodology
and its implementation into the CNB’s forecasting process to handle the tasks of forecast updat-
ing and forecast accuracy analysis. The presented framework is more general and complex than
previous approaches and delivers more detail into the forecast evaluation.

This paper describes the CNB’s forecasting process in general state-space form, which features
model-driven predictions based on a structural model and expert judgment applied in both antic-
ipated and unanticipated mode. We also present details on, and the assumptions of, the solution
method based on likelihood maximization, which is used to solve for the forecast trajectories. This
provides the rationale for the ordering of information setsin the decomposition procedure, which
itself is based on the projection update elasticities.

We demonstrate the features of the framework by identifyingthe driving forces behind the differ-
ences between two alternative forecast scenarios. Also, asforecasts are usually created periodically,
it is of interest to examine the driving forces behind the updates and evaluate the performance of
the forecast over some period of time. We therefore present the results of a forecast evaluation ex-
ercise where the CNB’s forecast released in Inflation ReportIII/2012 is analyzed with knowledge
of the forecast released in Inflation Report III/2013. This evaluation enables us to learn how well
our forecast performed in confrontation with the data and what lessons may lead to improvements
in our future forecasts.

We believe that the presented forecast evaluation methodology will help improve future CNB fore-
casts by identifying the main sources of forecast errors andby telling us more about the data and
model properties. The results provide forecasters with hints for further refining the forecasting
framework.
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1. Introduction

The modern view on the transmission mechanism of monetary policy emphasizes that monetary
policy actions have significant effects on the economy through expectations. As Svensson (2005)
summarizes, effective implementation of monetary policy requires effective communication of the
central bank’s forecast. Hence, the role of central bank communication is to explain and justify
the central bank’s decisions to the public, thereby purposefully influencing their expectations about
future developments.

In the forward-looking monetary policy of Czech National Bank (CNB), the CNB’s monetary policy
decisions are supported by its own forecast. This raises many questions about the construction of
the forecast and its consistency over time. Acceptance of the forecast may be hampered by the
inclusion of conditioning information that can often be considered opaque. This opacity is the
basis for the critique of forecast communication by Heilemann (2002). Therefore, CNB supports
its communication by examining forecast updates and evaluating the forecast every forecast round.
This has helped it document and support the inclusion of conditioning information in its forecast
since the introduction of the structural model forecast.

In this paper, we present the general framework and its assumptions used for decomposing differ-
ences between two conditional forecasts based on a linear structural model. Though the framework
is based on the projection update elasticities, the noveltylies in the presence of conditioning applied
in anticipated mode. We also demonstrate the use of this framework in the forecasting process.

The motivation for the development of a general decomposition framework originated from the state
of the available tools, which handled similar problems using incompatible approaches, thus limiting
their applicability. These tools were subject to many constraining assumptions, so inconsistencies
between decomposition methodologies were present. The newframework delivers more flexibility
and consistency than the former ones that accompanied the previously used Quarterly Projection
Model (Beneš et al., 2003) and the currently used g3 model (Andrle et al., 2009). The list of
advances includes consistency of the model used in the identification and prediction phase and the
possibility of applying conditioning information in anticipated and unanticipated mode.

Regular examination of forecast updates and forecast accuracy allows forecasters to learn about the
properties of the model, data revisions, and conditioning information. Moreover, the learning pro-
cess enhances forecasters’ notion of expert judgment. As Goodwin (2000) points out, the need for
explanation of the conditioning information used in forecasts helps reduce forecasters’ overreaction
to random movements in the data. Also, to address the opacityof such conditioning, Heilemann
(2002) suggests that the prediction process should start with a number of test runs to examine the
effects of assumptions and updates on the forecast. He points out that these test runs help increase
the transparency of the forecasting process by demonstrating the role of the assumptions in the pre-
diction. Furthermore, the repetitious analysis of forecast updates helps improve the narrative of the
forecast, which is important for delivering high-quality forecast reports.

The evaluation of forecast accuracy has been a focus of attention since the early 1970s (e.g. Mincer
and Zarnowitz, 1969) as a vital component of the empirical work of econometricians, and we agree
that, as in Todd (1990), forecast revisions should be analyzed to help forecasters and forecast users
evaluate and justify the forecasting process. The main stream of literature on forecast accuracy and
forecast update evaluation puts great emphasis on the statistical properties of forecasts based on the
evaluation of forecast errors. Some of the forecast evaluation exercises only require moments from
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the predictive distribution, quantiles, confidence intervals, or the probability that the variables take
some value (e.g. Christoffel et al., 2010; Mincer and Zarnowitz, 1969).

However, statistical moment-based forecast evaluation isnot capable of explaining the story behind
the differences in forecasts, of or delivering answers about the origins of deviations from the ob-
served data as well as the future propagation of those deviations. Moreover, we believe that the
complexity of conditioning (e.g. the use of anticipated information) creates a difficulty for evalu-
ating forecast properties via traditional methods such as those described in Mincer and Zarnowitz
(1969). Therefore, as central bank forecasters, we consider the evaluation of forecast performance
by forecast error statistics (e.g. West, 2006; Antal et al.,2008) to be insufficient.

Improving the understanding of forecast properties has motivated decomposition analysis since the
early days of forecasting with structural models, as discussed by Todd (1990). Todd (1990) presents
an algorithm based on partitioning of the forecast information set. However, his procedure is set up
in a one-step-ahead framework that lacks the possibility ofimplementing expert judgment. Inspired
by his approach and the work by Andrle (2013), we develop a general decomposition framework
which allows us to analyze the contributions of informationset elements to the prediction trajectory.
To our knowledge, there is no such publicly available and complex analysis that can be performed
on a linear structural model with expert judgment applied inboth anticipated and unanticipated
modes.

In the next section, the CNB’s forecasting process, which isbased on an advanced structural model,
is presented. This is followed in the third section by solution of the model prediction. In the fourth
section, the methodology for examining the forecast updateis described, and in the fifth section, ap-
plications of this general framework (scenario analysis and forecast evaluation) are demonstrated.

2. Structural Model Forecast

First, we introduce our notation and describe the forecasting process, which is based on the use of
a structural model in linear form. We present a CNB implementation of the forecasting process
represented in the general form of a structural model in state-space representation, as our goal is to
develop a framework with a minimal set of assumptions. Further, we describe the components and
phases of the forecast.

The terms “forecast” and “prediction” are generally considered to be synonyms. However, we
follow the definition of Mincer and Zarnowitz (1969), who usethe term “forecast” to describe the
set of predictions produced by the prediction method. So, predictions of variables are elements of
the forecast.

Our forecasting framework is built around a linear structural model expressed in the following state-
space form:

Yt = CXt +Dξt (1)

Xt = AXt−1+Bεt , (2)

whereYt is an(ny×1) vector of observed variables (observables/measurables),Xt denotes an (nx×1)
vector of transition (state) variables, andξt andεt are, respectively,(nξ ×1) and(nε ×1), vectors of
measurement and structural shocks.
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The shocks are independent and identically distributed random variables from the normal distribu-
tion with zero mean. MatricesA,B,C, andD are known matrices based on the structural model and
its parameters of sizenx × nx,nx × nε ,ny× nx,andny × nξ . Further, the model given by the system
of Equations 1 and 2 will be augmented with additional equations to allow for implementation of
expert judgment.

To describe the phases of the forecasting exercise, we startwith the definition of information setIt
in periodt. Information setIt includes the past and current values of the observable variables. It
may also include the future values for outlooks without any constraint on their observability. For
the information sets we assume thatIt ⊇ Ik, for t ≥ k, so forecasters accumulate knowledge about
the past forecasts and data revisions.

As the information sets are updated by revisions and enlarged by new observations, these informa-
tion set updates are the driving forces of the forecast updates.

Figure 1: Forecast Phases

The construction of the CNB forecast at timeT based on information setIT has two phases: identi-
fication of the initial conditions and solution of the prediction problem. Figure 1 shows the timing
of these two phases. In the forecasting process, periodT is known as the end of history (generally,
the end of the available data),1 while periodTEND is usually some distant period known as the end
of the prediction computation.

The first phase of the forecast is identification of the initial state (cyclical position) based on the
history up to periodT. The data from period1 (the start of the data used) up to the end of historyT
are used in combination with expert judgment to identify theinitial state of the prediction. As the
technique based on the use of a structural model and the Kalman smoother is used for identification
of the initial state, identification is often referred to as filtration and the history range as the filtration
range.2

The results of the initial state identification enter the prediction phase as the starting point. In the
prediction phase, expert judgment and outlooks are used to condition the prediction. The future
range thus refers to the set of periods fromT+1 to the end of the prediction computationTEND. The
number of periodsTEND− (T+1) is also known as the prediction span, as in Mincer and Zarnowitz
(1969).

1 Usually only higher-frequency data (e.g. the exchange rate, the interest rate or the inflation rate) is already
available at the end of history. To balance the panel of data,lower-frequency data enter in the form of a data
estimate and are subject to update when a new data release occurs.
2 We should point out here the mismatch between the naming convention and the tool actually used. The Kalman
smoother is used to identify the initial conditions, but application of is often referred to as filtration.
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The identification of the prediction’s initial state shouldreflect the forecaster’s view on the current
position of the economy in the cycle. As this view tries to capture many expert opinions, expert
judgment has to be applied in the process of initial state identification. This expert judgment is
referred to as the identification tunes and integrates information that is not captured by the model
mechanisms. The identification tunes impose constraints onthe estimation of state variables or
shock realizations to reflect expert opinions.

The expert judgment imposed in the identification phase is implemented by augmenting the state-
space representation with new time-varying restrictions on the observable variables.3 That is, the
measurement Equation 1 of the model is augmented by a vector of identification tunesYJ

t|T ,(nyJ ×1),

and the restrictions imposed between observed variables and unobserved states are described by the
matricesΓt|T ,(nyJ ×nx) for each periodt ∈ 〈1, . . . ,T〉 :

[
Yt

YJ
t|T

]
=

[
CXt

ΓΓΓt|TXt

]
+

[
Dξt

∆∆∆t|Tνt

]
(3)

Xt = AXt−1+Bεt . (4)

The presented extension exposes unobserved elements of thestate-space system to forecasters, so
expert judgment can be applied as the observation of the variable. As the identification tunes are
imposed in the period of interest, the expert judgment series is observed only in these periods, while
the rest of the corresponding additional measurement series has missing values. The implementation
of expert judgment in the identification phase is based on theuse of a filter that is able to handle
missing observations. See, for example, Harvey (1989) for more details on the implementation of
such a filter.

Uncertainty about expert judgment can also be present. It arises from shocksνt ,(nyJ ×nyJ) with a
covariance matrix∆∆∆t|T ,(nyJ ×nyJ). In our implementation of the forecasting process, we focus only
on expert judgment in the form of hard tunes (hard conditioning) as introduced by Waggoner and
Zha (1999) and described by Beneš et al. (2010). Therefore, we assume no uncertainty about the
filter judgment, so∆∆∆t|Tνt = 0.4 In our forecasting framework, we use matricesΓΓΓt to impose the
one-to-one judgment–variable relation, implying thatΓΓΓt is the identity matrix in this simple case.

The identification tunes implementation, given by Equation3, is flexible enough to implement con-
ditioning on the value of a state variable (the elements ofXt), or on the value of a single structural
shock (an element ofεt). This flexibility originates from the equivalence impliedby the linearity
of the restrictions in the measurement block given by Equation 3. Due to the nature of the Kalman
smoother, the identification tunes are implemented in the form of unanticipated shocks. The initial
state for the prediction phase is estimated by applying the structural model given by the system of
Equations 3–4 using the Kalman smoother on the data up to periodT.

In the second phase of the forecasting exercise, predictiontrajectories are computed. In this phase,
the initial state from the identification phase is used to construct a prediction over the future range
〈T+1, . . . ,TEND〉. The prediction trajectories are a function of the initial state and are conditioned on
the assumption regarding the trajectories of exogenous variables (outlooks) and the expert judgment
available in the information setIT .

3 The detailed implementation of expert judgment in the CNB’sstructural model environment is described by
Andrle et al. (2009) and examples are presented by Brůha et al. (2013).
4 The introduction of expert judgment is based on Doran (1992), where the augmented system of measurement
equations constrains the estimated state variables, so that expert judgment on state variables is delivered.
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In general, these outlooks and expert judgment applied overthe future range are called prediction
tunes. Forecasters’ assumptions about the prediction tunes originate from the information setIT and
can be revised together with any future updates of the information set.5

In the prediction phase, there are two modes for applying prediction tunes over the future range.
From the model agent point of view, prediction tunes can be applied in unanticipated or anticipated
mode. Prediction tunes applied in anticipated mode over thefuture range〈T+1, . . . ,TEND〉 allow the
behavior of model agents to be affected as from periodT +1, as model agents are forward looking
and anticipate these shocks as from the first prediction period. In contrast, prediction tunes ap-
plied in unanticipated mode affect model agents’ behavior only from the period in which they were
applied. To implement prediction tunes in both modes, the state-space system is augmented with
the linear restrictions and shocksεt anticipated at timeT. In our implementation of the forecasting
process, we stress the fact that prediction tunes applied inanticipated mode do not change over the
future range, so no expectation shocks are present. The absence of expectation shocks originates
from our need for transparency when the resulting prediction has to be interpreted and presented.

Augmenting the state space of the basic model given by Equations 1–2 with the sequence of con-
straints and shocks creates the following general form of the prediction problem:

Yt = CXt +Dξt (5)

Xt = AXt−1+Bεt +Bεt (6)

Zt|TXt = Rt|T +ΛΛΛt µt (7)

Zt|TXt = Rt|T +ΛΛΛt|T µt|T , (8)

where vectors and matrices with bars refer to expert judgment applied in anticipated mode.

In this general augmented system,Zt|T (nr ×nx) andZt|T (nr ×nx) are fixed matrices that, together
with the vectors of constantsRt|T (nr ×1) andRt|T (nr ×1), define the restrictions on the variables
imposed by implementing the outlooks and expert judgment for periodst ∈ 〈T +1, . . . ,TEND〉. The
linear constraints imposed by matricesZt|T andZt|T usually have a straightforward structure, as the
usual restriction binds one shock and one variable.

As in the application of identification tunes, prediction tunes can be applied with some uncertainty
in the most general case. This uncertainty originates from the presence of shocksµt ,(nµ ×1) and
µt|T ,(nµ ×1) with a covariance structure described by matricesΛΛΛt|T (nµ ×nµ) andΛΛΛt|T (nµ ×nµ ).
Such mode of tune application allows for some flexibility in deviating from the tunes applied. How-
ever, for the sake of clear forecast interpretation, in our application we assume no uncertainty about
prediction tunes, soΛΛΛt|Tµt|T = 0 andΛΛΛt|T µt|T = 0. Implementing prediction tunes without any un-
certainty is known as hard tunes conditioning, as defined by Beneš et al. (2010).

5 The CNB’s forecast is conditioned on the trajectories for the following variables: the foreign demand, inflation,
and interest rate paths; the inflation target trajectory; the outlook for administered prices; the government spending
prediction; and the near-term forecast for inflation and theexchange rate for the first quarter of the prediction. The
prediction is created under the assumption of endogenous monetary policy responses derived from the monetary
policy rule of the model. As monetary policy operates via setting a trajectory for the nominal interest rate in a
regime of inflation targeting, many may regard this forecastas unconditional. However, our forecast is conditioned
on the outlooks and expert judgment. The uncertainty about the outlooks included in the information setIT and
expert judgment are described by creating alternative forecast scenarios. More information on the role of scenarios
in the forecasting process can be found in Brůha et al. (2013).
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When solving the prediction problem, prediction tunes thatare described by the constraints given
by Equations 7 and 8 are reflected in the predictions of unanticipated structural shocksεt and antic-
ipated structural shocksεt|T for t ∈ 〈T +1, . . . ,TEND〉. The prediction phase problem, described by
Equations 5–8 fort ∈ 〈T +1, . . . ,TEND〉 with the initial state given by the result of the identification
phase, can be viewed as the constrained optimization problem of finding the likelihood-maximizing
paths for the state variables. The process of solving the forecast problem conditioned by the con-
straints given by Equations 7–8 is described in the following section.

In the CNB’s implementation of the conditional forecast, wemap one variable to one structural
shock in the given period of time. As pointed out by Andrle et al. (2009), the expert choice of
the variable-shock pair is a crucial decision in the forecasting process and is known as the forecast
plan. The use of one-to-one (injective) mapping originatesfrom the interpretation approach used for
writing the inflation report, as it allows us to suppress non-uniqueness problems and provides more
details in the explanation of the forecast. In our view, thisform of conditioning implementation
also increases the consistency of the CNB forecast with the experts’ view on future developments
in the economy and with the behavior of economic agents making their decisions with regard to
anticipated developments.

The structure of the forecast problem given by Equations 5–8allows for a very broad structure of
conditioning. Also, as in the initial state identification,expert judgment applied via the series of
structural shocksεt andεt is equivalent to conditioning applied to the variables associated via the
linear restrictions.

The two-phase forecasting exercise given by the identification and prediction problem allows us
to define the forecast as a structure of time series. The forecast produced at timeT conditional
on the information setIT is a structure of time seriesTF(IT) = {TY,T YJ,T ξξξ ,T X,T εεε ,T εεε}, where

TY is a matrix of observed variables including their prediction TY = (Y1, . . . ,YT ,YT+1, . . . ,YEND),

TYJ is a matrix of identification tunesTYJ = (YJ
1|T , . . . ,Y

J
T |T), andXT is a matrix of unobserved

state variablesTX = (X1, . . . ,XT ,XT+1, . . . ,XEND). To avoid loss of information when assessing
the forecast trajectories’ forecast structure, the forecast also includes shocks, soTξξξ is a matrix
of measurement shocksTξξξ = (ξ1, . . . ,ξT ,ξT+1, . . . ,ξEND), Tεεε is a matrix of unanticipated struc-
tural shocksTεεε = (ε1, . . . ,εT ,εT+1, . . . ,εEND), andTεεε is a matrix of anticipated structural shocks
Tεεε = (εT+1, . . . ,εEND).

In the forecastTF(IT), the values for the time series for periodst ∈ 〈1, . . . ,T〉 originate from the
initial state identification as defined by Equations 3 and 4 and the values fort ∈ 〈T +1, . . . ,TEND〉

form the solution to the prediction problem given by Equations 5 and 8. A prediction trajectory is
therefore aTEND×1 vectorTx(IT) from forecastTF(IT). An element of the prediction trajectory

Txh(IT) is the prediction stated at periodT for periodh, h∈ 〈1, . . . ,TEND〉 and based on information
setIT .

ForecastTF(IT) cannot be viewed as a mechanistic one, as it is conditioned onjudgment and out-
looks imposed by forecasters. This judgment is based on expert views regarding recent develop-
ments and on knowledge of the model properties.6

6 Expert judgment as seen by Svensson (2005) consists of information, knowledge, and views outside the scope of
a particular model. Svensson (2005) argues that judgmentaladjustments are a necessary and essential ingredient
of modern monetary policy.
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Since the forecasting exercise has two phases, there are twogroups of expert judgment: filter and
prediction tunes. As there are differences in the methods used in the identification and prediction
phases, there are also differences in expert judgment implementation.

3. Solving the Prediction Problem

The method for solving the prediction problem allows for mixing of unanticipated and anticipated
shocks and is based on the seminal works by Blanchard and Kahn(1980) and Klein (2000). The
introduction of conditioning into the forecast follows thestream originated by Doan et al. (1983),
while the solution method largely builds on the methodologydeveloped by Waggoner and Zha
(1999). Implementation details on the introduction of anticipated prediction tunes can be found in
Leeper and Zha (2003) and Schmitt-Grohe and Uribe (2008).7

The point forecasts based on the linear model conditional onthe expert judgment applied in an-
ticipated and unanticipated mode, given by Equations 5 and 8, are constructed by two runs of the
general solution procedure. In the first run, judgment in anticipated mode is implemented via the
general solution method. In the second round, the general solution method is used to include unan-
ticipated judgment while conditioning on the paths from thefirst round.

The general solution method has four steps. First, the modelsolution is constructed by forward
expansion, so that the effect of future shocks is retained. Second, the expert judgment is translated
to linear constraints on shocks and initial conditions for the constructed model solution. In the third
step, the likelihood maximization problem is solved to calculate the values of shocks and initial
conditions consistent with the judgment. Finally, the original system is simulated to obtain paths
for the variables.

Originating from the notation by Blanchard and Kahn (1980),the model given by Equations 5–6
can be cast in the general form:

ÃE[X̃t+1|It ]+ B̃Xt + C̃ε̃t = 0, (9)

whereX̃t is a vector that includes measurement and state variables,ε̃t is an augmented vector of
structural and measurement shocks, andÃ, B̃, andC̃ are matrices that are functions of the model
structural parameters. Fort > T, forward iteration of the model given by Equation 9 delivers a
general solution conditional on expectations of future shocks given by:

X̃t = F̃Xt−1+ G̃0ε̃t +
∞
∑
k=1

G̃kE[ε̃t+k|It ]. (10)

The mean and covariance matrix of the initial conditionX̃T originates from the application of the
Kalman smoother in the first stage of the forecasting processusing the available information. In our
forecasting process, it is assumed that the distribution ofshocks is normal with zero mean and co-
variance matricesΩt =COV(ε̃t |IT) for t > T. Using forward expansion and substitutions, it follows

7 Our implementation is based on the IRIS toolbox. IRIS is a free, open-source toolbox for macroeconomic mod-
eling and forecasting in Matlab, developed by Jaromír Beneš. IRIS integrates core modeling functions (such as a
flexible model file language, simulation, and estimation) with a wide range of supporting features (such as time
series analysis, data management, and reporting) in a user-friendly command-oriented environment. The toolbox
and its documentation are available athttp:\\www.iris-toolbox.om.
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that each value of̃XT is a linear function of̃XT , structural shocks, and expectations thereof. In our
forecasting process, the forecast conditioning is added inform of a sequence of linear constraints:

Z̃t|T X̃t = R̃t|T , (11)

whereZ̃t|T andR̃t|T are matrices defining the constraints fort > T. This allows us to transform the
problem of finding the likelihood-maximizing paths for the variables of the model given by Equa-
tions 5–6 subject to the constraints given by Equations 7–8 into the problem of finding likelihood-
maximizing values for̃XT and the sequence of shocksε̃t , subject to the constraint given by the
sequence of Equation 11. Solving forX̃T and the sequence of shocksε̃t and constraints can be
converted into a likelihood-maximization problem by stacking these sequences into vectors.

Generally, the solution depends on the infinite sum of conditional expectations. We useTEND
as the cut-off point, as beyond this point our forecast does not contain any conditioning infor-
mation, so the shocks beyond this point are considered to be zero (the mean of their distribu-
tion). The simplifying assumption taken to compute our forecast trajectory is stated as follows:
E[εTEND+k|IT ] = E[εTEND+k|IT+1] = · · ·= E[εTEND+k|ITEND] = 0 for k> 1.

An interesting fact about the likelihood-maximizing solution is that for the shocks there will be no
change in the conditional expectations, and this will make them equal to the realizations ofεt , so
E[εt |IT ] = E[εt |IT+1] = · · · = E[εt |It−1] = εt for t > T. Also, as we assume shocks from the normal
distribution, the solution to the likelihood-maximization problem coincides with the mean of the
distribution of the stacked vector conditional on the linear constraint.

Finally, after the optimal solution to forecasting problemis obtained, the system is simulated by
plugging it into Equation 12 for periodst, t ∈ 〈T +1, . . . ,TEND〉 :

X̃∗
t = F̃X∗

t−1+ G̃0ε̃∗t +
TEND

∑
k=T+1

G̃kε̃∗k . (12)

So, performing two runs of the general solution procedure allows us to create forecastTF(IT),
while we also keep the trajectories of the forecast that doesnot include expert judgment applied in
unanticipated mode.8

4. Forecast Update Decomposition

As presented above, every forecast is driven by the elementsof the information set, e.g. the observed
data, the filter, and the prediction tunes. As the information set used for conditioning a forecast is
updated over time, forecasters respond by updating the forecast to reflect new information. Thus,
several prediction trajectories for the same variable are available over the period of time considered.

The dissemination of the updated forecast raises questionsabout the contributions of new elements
of the information set to the changes in the forecast trajectories. In order to find answers, forecasters
would like to identify which elements of the information setcontributed to the particular forecast
updates, as mentioned by Andrle et al. (2009) (see Section 6.5) and by Todd (1990). Moreover, a

8 In our implementation, the final forecastTF(IT) and the forecast without unanticipated judgment are storedas a
set of trajectories of the variables and shocks as a series ofcomplex numbers.
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forecast is often judged not only on its accuracy, but also onhow intuitively it explains its updates.
Therefore, the purpose of the forecast update decomposition is to provide additional insights into
the forecast and the properties of the forecasting process and also to improve understanding of the
structural model used.

Early versions of our decomposition tools were implementedwith the introduction of the Quar-
terly Projection Model (Beneš et al., 2003) into the forecasting framework of the CNB. The most
noticeable limitation of these tools originated from sequential evaluation of the elements of the in-
formation set, leading to results that were conditional on the ordering. Another drawback stemmed
from the QPM framework, which did not allow for mixing of conditioning in anticipated and unan-
ticipated mode. Since the current forecasting framework (Andrle et al., 2009; Brůha et al., 2013) is
much more advanced than the previous one, we are motivated tocreate a more general decomposi-
tion framework that meets our needs.

The current decomposition procedure decomposes the forecast update into components identified
with the direct and indirect effects of the updates of information set elements. The goal is to analyze
the difference between the prediction trajectories of the New forecastTNF(ITN) and the Old forecast

TOF(ITO), whereTO < TN.

Figure 2: Time Conventions

Figure 2 shows the timing of the two forecasts under analysis. Each of the forecasts has its own
identification and prediction phase. Figure 2 defines the ranges of interest in the forecast update
decomposition. Range〈TO+ 1, . . . ,TN〉 denotes the transition range, which corresponds to the in-
tersection of the prediction of the Old forecastTOF(ITO) and the identification of the New forecast
TNF(ITN). The history range〈1, . . . ,TO〉 denotes the intersection of the two forecasts’ initial state
identification phases. The future range〈TN+1, . . . ,TEND〉 is the intersection of the prediction phases
of the two forecasts analyzed.

The forecast update decomposition identifies the contributions of the updates of the elements of the
information set to the difference between the New forecastTNF(ITN) and the Old forecastTOF(ITO).

If TO<TN, then a time shift is present between the forecasts and the prediction from the Old forecast

TOF(ITO) has to be compared with the identification of the New forecastTNF(ITN). The decomposition
of the forecast update is based on the partitioning of the information set update fromITO to ITN
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into disjoint subsets while keeping in mind the difference between the identification and prediction
methodology.

To examine the contributions of the information set elements, we use a complex but still general
procedure based on partitioning the information set into subsets. This partitioning procedure ex-
ploits properties of the forecasting process and divides the examination process into several steps.
These steps are based on supporting forecasts used to identify the contributions of the information
set elements to the forecast update. The creation of these supporting forecasts exploits the linear-
ity of the model, as it implies that the construction of a prediction is additive with respect to the
information set elements. The additivity property allows us to express the differences between the
New and Old forecasts as the sum of the differences between the New forecast and the supporting
forecast, and the supporting forecast and the Old forecast.

Generally, decomposition is a non-linear problem, as shownby Todd (1990). However, Andrle
(2013) shows that in the case of a linear model, independent normally distributed shocks, and the
use of a multivariate linear filter (such as the Kalman filter/smoother), decomposition is a linear
problem and can be solved numerically by an iterative process that sequentially analyzes the forecast
elements. Therefore, under the assumption of a linear state-space model, a linear multivariate filter,
and the same model parametrization for both forecasts, the forecast decomposition analysis is also
a linear problem.

The role of the supporting forecast in the decomposition of the forecast update between the New
forecast trajectoryTNxh(ITN) and the Old forecast trajectoryTOxh(ITO) is based on the following
scheme:

TNxh(ITN)−TO xh(ITO) = (TNxh(ITN)−T xh(I
S))+ (Txh(I

S)−TO xh(ITO)), (13)

whereTxh(I
S) is the forecast trajectory from the supporting forecastTF(IS) based on the informa-

tion setIS with the end of history in periodT. In this simplified decomposition scheme, we have
ITO ⊆ IS⊆ ITN andT is eitherTN or TO depending on the construction ofIS.

In the forecast update examination process, the decomposition procedure has to cope with the in-
clusion of expert judgment in anticipated mode, revisions,and the change from the identification
to the prediction phase. Hence, the decomposition procedure has to exploit a rich structure of sup-
porting forecasts to extract the effects of the informationset elements on the prediction trajectories
considered. Taking into account the simple step described by Equation 13, the decomposition has
the following complex form:

TNxh(ITN)−TO xh(ITO) = (TNxh(ITN)−T1 xh(I
S1))+ (T1xh(I

S1)−T2 xh(I
S2))+

+ (T2xh(I
S2)−T3 xh(I

S3))+ (T3xh(I
S3)−T4 xh(I

S4))+

+ · · ·+

+ (TK−1xh(I
SK−1)−TK xh(I

SK ))+ (TK xh(I
SK )−TO xh(ITO)), (14)

where supporting forecastsT1xh(I
S1), . . . ,TK xh(I

SK ) are used to extract specific groups of infor-
mation. As ITN ⊇ ITO, supporting information setsISi are constructed so thatITN ⊇ ISi for all
i = {1, . . . ,K}. In the scheme given by Equation 14, each term in brackets shows how a subset
of the information set (forecast component) would have changed the forecast trajectory.

Partitioning the update of the information set fromITN to ITO into subsets is the core of the decom-
position analysis, and the supporting information setsISi , i = {1, . . . ,K} are the building blocks of
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the algorithm. The supporting information setsISi are used to partition the update of the informa-
tion set from the time perspective with respect to the phasesof the forecasting process. As setISi

includes aggregates of variables, it can be partitioned further into the disjoint setsISi j , j = {1, . . . ,J}
with respect to the variables. So, the information setISi j allows us to examine the effect of the time
subseti of a specific variablej over the periods covered by the aggregate information setISi .

This aggregate set usually covers multiple periods, therefore ISi j can be partitioned further so that
the information subsetISi jl identifies the effect of a specific variable in time periodl .

For the sake of clarity of the decomposition algorithm, we explain the construction of the supporting
information setsISi , i = {1, . . . ,K}, because the search for the effect of a particular variable in a given
time period is dependent on this set. For the reader’s convenience, we describe the crucial sets in
steps. Partitioning the supporting information setISi into the disjoint elementsISi jl then involves a
very straightforward cycle through all periods and variables included in the aggregate.

1. Removing new unanticipated judgment on future range: New forecast (with expert
judgment both anticipated and unanticipated) ⇐⇒ New forecast without unantici-
pated expert judgment on future range The decomposition algorithm starts with the
forecastTNF(ITN) and moves toward replication ofTOF(ITO) by altering the information
sets used to create the forecasts. The last component added to the forecast is expert judg-
ment on the future range applied in unanticipated mode, so the first supporting informa-
tion set IS1 is constructed fromITN by removing this expert judgment from the prediction
phase. The first supporting forecast based onIS1 is constructed with its identification
phase ending in periodTN and without expert judgment applied in unanticipated mode,
so TNF(I

S1) = {TNY,TN YJ,TN ξξξ ,TN X(IS1),TN εεε(IS1),TN εεε}, where TNεεε(IS1) = (ε1, . . . ,εTN) and

TNX(IS1) is the matrix of state variables that is the solution to the identification and predic-
tion phase of the forecast. The differences in the forecast trajectoriesTNxh(ITN)−TN xh(I

S1)

describe the effect of the expert judgment in unanticipatedmode applied over the future range.

2. Removing new anticipated judgment on future range: New forecast without unantici-
pated expert judgment on future range ⇐⇒ New forecast without expert judgment on
future range The second supporting information setIS2 is constructed fromIS1 by the removal
of the expert judgment applied in anticipated mode over the future range, soIS1 ⊇ IS2. In this
step of the decomposition algorithm,TNεεε(IS1) =TN εεε(IS2) andTNεεε(IS2) = /0 is used to create
the following supporting forecastTNF(I

S2) = {TNY,TN YJ,TN ξξξ ,TN X(IS2),TN εεε(IS2),TN εεε(IS2)},

whereTNX(IS2) is the corresponding matrix of state variables. The differences in the tra-
jectories of the forecastsTNF(I

S2) andTNF(I
S1) identify the effects of expert judgment applied

in anticipated mode over the future range〈TN +1, . . . ,TEND〉.

3. Removing new judgment on transition range: New forecast without expert judg-
ment on future range ⇐⇒ New forecast without expert judgment on future and
transition range After removing the expert judgment applied in the prediction phase of
the New forecast, the decomposition algorithm shifts its focus to the transition range.
The goal is to identify the effects of the expert judgment applied with respect to the
newly released data. Hence, the expert judgment of the New forecastTNF(ITN) applied
in the identification phase over the periods{TO + 1, . . . ,TN} is removed from the informa-
tion set IS2 and the subsequent setIS3, such thatIS2 ⊇ IS3, is constructed. By creating
the supporting forecastTNF(I

S3) = {TNY,TN YJ(IS3),TN ξξξ (IS3),TN X(IS3),TN εεε(IS3), /0}, where

TNεεε(IS3) = (TNε1, . . . ,TN εTO) is the matrix of shocks identified in the forecast constructed
in periodTN, we are able to identify the effect of the transition range expert judgment on
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the identified initial state used in the prediction phase. Comparison of the trajectories of
the forecastsTNF(I

S3) and TNF(I
S2) allows us to identify the propagation of expert judg-

mentTNεεε = (TNεTO+1, . . . ,TN εTN) to the prediction, thus the contributions to the update of the
forecast trajectories over the future range are also identified.

4. Removing new judgment on history range: New forecast without expert judgment on
future and transition range ⇐⇒ New forecast without expert judgment The fourth sup-
porting information set completes the removal of the expertjudgment applied in the New
forecastTNF(ITN). The setIS4 is constructed fromIS3 by omitting the remaining expert judg-
ment applied in the identification phase over the periods{1, . . . ,TO}, soIS3 ⊇ IS4. Identification
of the effect of the expert judgment from the information setITN is finalized by creating the
supporting forecastTNF(I

S4) = {TNY, /0,TN ξξξ (IS4),TN X(IS4),TN εεε(IS4), /0}, whereTNεεε(IS4) = /0,
so there is no expert judgment applied. The forecastTNF(I

S4) is an expert judgment-free (un-
conditional) version of the New forecastTNF(ITN), but the information setIS4 still includes the
new data (revisions and releases) collected after the Old forecastTOF(ITO) was constructed.

5. Removing newly released data and time shift: New forecast without expert judgment
⇐⇒ New forecast without expert judgment and newly released data In the construction
of the fifth supporting forecast, we exploit the consistencyof the model applied for the identi-
fication and prediction phase to alter the end of the history period. The information setIS5 is
constructed fromIS4 by removing the observations used in the identification overthe transition
range, so the observed data set becomesTNY(IS5) = (TNY1, . . . ,TN YTO). The setIS5, IS5 ⊆ IS4,

does not contain all the data observed at timeTN, as the data for periods{TO+1, . . . ,TN} are
replaced with missing values. The model consistency over the forecast phases, along with
the properties of the Kalman filter and its ability to handle missing values, implies equiva-
lence between the forecastTNF(I

S5) = {TNY(IS5), /0,TN ξξξ (IS5),TN X(IS5), /0, /0} and the forecast

TOF(I
S5) = {TOY(IS5), /0,TN ξξξ (IS5),TO X(IS5), /0, /0}. This equivalence allows us to replicate the

forecast trajectoriesTNxh(IS5
) with the forecast trajectoriesTOxh(IS5

). So, the following steps
of the decomposition algorithm are based on the forecasts with the end of historyTO.

6. Replacing new revisions with old data on history range: New forecast without expert
judgment and newly released data ⇐⇒ Old forecast without expert judgment After the
last element of the end of the identification phase of the forecast is shifted from periodTN
to periodTO, the last component of the information setITN consists of revisions of the obser-
vations over the history range〈1, . . . ,TO〉. So, the sixth aggregate supporting information set
IS6 is constructed fromIS5 by reverting from the observations collected inITN to the obser-
vations from the information setITO, whereTOY(IS6) = (TOY1, . . . ,TOYTO) andIS5 ⊇ IS6. Using
the supporting forecastTOF(I

S6)= {TOY, /0,TN ξξξ (IS6),TN X(IS6), /0, /0} and its forecast trajectories
unravels the effects of the data revisions.

7. Adding old judgment on history range: Old forecast without expert judgment ⇐⇒ Old
forecast without expert judgment on transition and future range The following support-
ing simulations focus on reconstruction of the Old forecastTOF(ITO). As IS6 contains the data
for the identification phase,IS7 is constructed by adding the expert judgment over the his-
tory range used in the construction of the Old forecast, soIS7 ⊇ IS6. The supporting forecast
TOF(I

S7) = {TOY,TO YJ,TO ξξξ (IS7),TO X(IS7), /0, /0} is used to identify the effects of the expert
judgment for the initial state identification (the effect onthe forecast trajectories over the his-
tory range) and its propagation to the prediction phase (theeffect on the forecast trajectories
over the transition and future range).

8. Adding old anticipated judgment on transition and future range: Old forecast without
expert judgment on transition and future range ⇐⇒ Old forecast without unanticipated
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expert judgment on transition and future range The forecast based on setIS7 replicates the
identification phase results ofTOF(ITO). IS8 is augmented by adding expert judgment in antici-
pated mode, soIS8 ⊇ IS7. The supporting forecastTOF(I

S8)= {TOY,TO YJ,TO ξξξ ,TO X(IS8), /0,TO εεε}
and the forecast trajectory differencesTOxh(I

S7)−TO xh(I
S8) identify the contributions of the

expert judgment applied in anticipated mode when constructing the Old forecastTOF(ITO).

9. Adding old unanticipated judgment on transition and future range: Old forecast without
unanticipated expert judgment on transition and future range ⇐⇒ Old forecast (with ex-
pert judgment both anticipated and unanticipated) The decomposition algorithm is com-
pleted by adding the expert judgment applied in unanticipated mode in the prediction phase.
So, the setITO is obtained in this step and the forecastTOF(ITO) is replicated. The supporting
forecastTOF(I

S8) is compared against the forecastTOF(ITO) = {TOY,TO YJ,TO ξξξ ,TO X,TO εεε ,TO εεε}
to identify the contributions of expert judgment in unanticipated mode.

As mentioned above, each of the aggregate supporting information setsISi , i = {1, . . . ,K} can be
further partitioned to reflect the structure of expert judgment. This detailed partitioning can provide
more details on the period-by-period effect of the forecastelement under scrutiny.

5. Decomposition Analysis

First, we demonstrate the features of the decomposition framework by decomposing the difference
between two forecast trajectories into the contributions of new information as the simplest case.
Further, we use the CNB’s forecasts presented in Inflation Report III/2012 and Inflation Report
III/2013 to demonstrate the use of the framework in the complex case of forecast evaluation.

5.1 Alternative Forecast Scenarios

We begin with a comparison of a forecast scenario that uses the set of conditioning information
TF(IT,1) (Scenario 1) and a forecast scenario without any application of conditioning information
TF(IT,2) in the prediction (Scenario 2).

In our example, Scenario 1 is represented by the baseline scenario of the CNB’s forecast released in
Inflation Report III/2013. Scenario 1 is created by conditioning on the outlooks for nominal govern-
ment consumption, administered prices, the external environment outlook (inflation, the short-term
interest rate, demand), and the one-quarter-ahead outlookfor domestic inflation and the exchange
rate. In the forecasting process, the external environmentoutlook is implemented in anticipated
mode.

Scenario 2 is a fictional forecast created with the same information set, but it does not use any
conditioning information over the future range. The role ofthis comparison in the forecasting
process is to identify the driving forces of the prediction story delivered by the assumptions applied.

Figure 3 shows the trajectories of the variables of interestfor Scenario 1 and Scenario 2. In the
graphs, the white area represents the history range (up to the second quarter of 2013) and the shaded
background indicates the future range (from the third quarter of 2013), while the bars indicate the
differences between the trajectories considered. The sameinitial state is used in both scenarios, so
there is no difference observable over the history range.



16 František Brázdik, Zuzana Humplová, and František Kopřiva

Figure 3: Scenario Comparison – Data
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In general, we consider two alternative forecast scenariosTF(IT,1) andTF(IT,2). There is no time
shift between these two forecasts; however,IT,1 ⊇ IT,2. In our example, the extra information in-
cluded inIT,1 describes the expert opinion on the trajectories of some of the variables.

Figure 4: Scenario Comparison

The two alternative forecast scenarios, with a prediction span from periodT+1 to TEND, can easily
be compared and their differences analyzed, as these scenarios have the same range for initial state
identification and for prediction. The scheme for evaluation of the two scenarios is presented in
Figure 4. The simplicity of this case originates from the fact that there is no overlap between the
identification and prediction part and the decomposition problem breaks down into a simple task
also known as alternative scenario decomposition, as presented in Andrle et al. (2009). This process
is heavily used during the standard CNB forecasting processdue to improved understanding of the
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driving forces of the forecast trajectories. The core of theexercise involves computing the model’s
elasticities to changes in the model variables. These elasticities are evaluated for each time period
in the future range. The overall response of a prediction trajectory is then computed as the sum of
the responses to the conditioning information groups.

Figure 5: Scenario Comparison – Contributions
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Figure 5 shows the results of applying the decomposition approach for the alternative scenario
analysis. As there is no difference in the identification phase, only the future range (from the third
quarter of 2013) is shown. The differences (Scenario 1–Scenario 2) between the trajectories shown
in Figure 3 are decomposed into the contributions of the forecast elements, while the solid line
shows the difference. A brief assessment of the contributions reveals that the major driving force of
the forecast is the outlook for the external environment.

5.2 Forecast Evaluation

The extensive capabilities of our evaluation framework areclearly demonstrated when the frame-
work is applied to decompose the difference between two forecasts which were created in different
periods of time.

In the production of the new forecastTNF(ITN), its stability in comparison to the previous forecast
TOF(ITO), whereTN = TO+1, is of high importance. Although this type of assessment is an example
of general decomposition, the current comparison concentrates mainly on the impact on the future
range. This assessment is known as forecast update analysis.

However, our framework can be also applied to examine the actual–predicted data variation. To
demonstrate its use, details of our methodology are provided for the Inflation Forecast Evaluation
exercise.9 This exercise is conducted on a quarterly basis and we are interested in identifying the
9 The Inflation Forecast Evaluation is a regular exercise thatis a part of the forecasting process. It takes the form
of a report and provides an assessment of the old forecast, created 6 quarters ago, and its deviation from the latest
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sources of the medium-term differences between the New and Old forecasts, with a focus on the
transition range, as it includes the latest data releases. Nevertheless, the decomposition is also
provided on the history and future ranges.

The goal of the Inflation Forecast Evaluation is to identify the contributions of newly acquired
elements of the information setITN to the update of the forecast trajectories. Knowledge of the
propagation of information helps us improve the quality of future forecasts, as we learn about the
sensitivity of the forecast to its assumptions. We focus on the inflation prediction due to the inflation-
targeting nature of the CNB’s monetary policy. The results of the evaluation also enhance the
transparency and consistency of the forecasting process and serve as a measure of monetary policy
performance.

Figure 2 shows the general timing scheme for two forecasts created at different points of time: New
(TNF(ITN) = {TNY,TN YJ,TN ξξξ ,TN X,TN εεε ,TN εεε}) and Old (TOF(ITO) = {TNY,TO YJ,TO ξξξ ,TO X,TO εεε,TO εεε}).
Here, the New forecast data is available up to periodTN and the New forecast prediction starts in
periodTN + 1. Similarly, the Old forecast data is available up to periodTO and the Old forecast
prediction starts in periodTO+1.

The information set of the New forecastITN enriches the Old forecast information setITO by the
release of new data for the periods fromTO+1 to TN and by data revisions up to periodTO. Also,
the expert judgment (the identification and prediction tunes and the outlooks) for the prediction can
be updated, reflecting either observed data revisions or expert information updates.

Figure 6: Forecast Evaluation – Trajectories
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The trajectories from the forecasts analyzed are presentedin Figure 6. In our example, the Old
forecast (the blue line) is represented by the forecast released in the third quarter of 2012 (Inflation

data vintage. The focus is on assessing the accuracy of the forecast. The Inflation Forecast Evaluation also features
an analysis of the monetary policy decisions made over the period TO–TN.
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Report III/2012) and uses the data up to the second quarter of2012 (TO). The New forecast (the
red line) shows the trajectories from the forecast releasedin the third quarter of 2013 (Inflation
Report III/2013). The New forecast uses the data up to the second quarter of 2013 (TN). The
Inflation Forecast Evaluation takes place inTN+1, after the data for 4 quarters have been collected.
The graphs show the history range (the dark shaded area) up toperiodTO, the transition range (the
light shaded area)〈TO+1,TN〉, and the future range from periodTN +1.

The task of the forecast update analysis is to explain the role of the forecast elements and their
contributions to the New–Old forecast difference. This task is complicated, as the difference in
the initial prediction periods has to be considered. This means that the results of the identification
phase of the New forecast have to be compared with the prediction phase of the Old forecast. The
complication arises especially from the presence of prediction tunes that are applied in anticipated
mode and the forward-looking nature of the model used. At this point, we exploit our knowledge of
the elements of the forecast.10

In the former specification of the decomposition methodology, starting from the period of use of
the Quarterly Projection Model (QPM) framework (Beneš et al., 2003) and also covering the use of
the current g3 model, the forecast evaluation was conductedby means of a “what if” analysis. In
this analysis, forecasters recreated the Old forecast using the actually collected data in the forecast-
ing process for the identification phase and as the conditioning information in the prediction phase.
The analysis consisted of two stages. In the first stage, the data update over the history range and
the actual data observations over the transition range in the role of outlooks were used to create a
fictional forecast, labeled the “hypothetical forecast with up-to-date knowledge.” Then, the differ-
ences between the fictional forecast and the Old forecast were examined to assess the contributions
of the various information groups to the shift in trajectories. These contributions were analyzed by
sequential inclusion of the new data, so the contributions were not independent of the choice of the
order for information inclusion. This created a very stronglimitation for the interpretation of the
results. Very good knowledge of the model responses was necessary to understand the results of the
analysis. This requirement, and the dependence on the ordering of the information, limited us in
delivering an evaluation of the forecast to a wider audience.

In the second stage of the evaluation in the former framework, the analysis was focused on the
deviations between the New forecastTNF(ITN) and the fictional forecastTOF(ITN). This stage was
focused on missing structural shocks that were omitted or that we formed wrong expectations about
while preparing the Old forecastTOF(ITO). The drawback of the old framework was that the missing
structural shocks could not have been identified because of inconsistences between the New and
the fictional forecasts in their assumptions. Consequently, the presentation of this step was very
demanding and suffered heavily from the problem of subjective interpretation, as recent economic
developments had to be related to the model variables, whichrequired a deep knowledge of both
the economy and the structure of the model.

The improved version of the Inflation Forecast Evaluation provides the analysis in one stage and is
fully model based. The principal value added of the suggested procedure is that the decomposition is
reduced to a technical computation which is independent of forecasters’ views. Moreover, missing
structural shocks can be identified, which can help in interpreting the results.

Contrary to the computation itself, interpretation remains largely a subjective matter. Since the
decomposition provides the impact of every single observedor exogenized (either a shock or an

10 That is, as forecast creators, we have knowledge about the counterpart identification tunes in the Old forecast.
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outlook) variable in every period of time on all the model state variables, it ends up providing hun-
dreds of contributions to the New–Old forecast difference even for a small model. Hence, in order
to analyze and interpret the results effectively, we have toaggregate the individual contributions
into a reasonable number of groups. The grouping depends primarily on the purpose of the analysis
and can vary substantially for different exercises. Although there are no restrictions on grouping,
there are some natural ways suggested by the decomposition procedure, such as grouping by type of
forecast element (e.g. keeping observations and tunes separate) or time perspective (e.g. separating
shocks that occurred in the history, transition, or future range). Other ways of grouping may follow
economic interpretation (e.g. groups of foreign variables, real economy variables, monetary policy
variables, technology variables, prices). In practice, wepredefined several standard sets of groups
for every decomposition exercise, as this seemed most appropriate and helpful for that particular
analysis, and kept them unchanged over time. This standardization helps us limit subjectivity in
interpretation and enhances the consistency of the analysis over time.

The capabilities of the new framework allow us, but do not require us, to keep the form of the
Inflation Forecast Evaluation and present its results in twoparts. Due mainly to storytelling consis-
tency with the old version, we continue to interpret the results in this way, keeping two views of the
variation of the forecasted trajectories, although the computation is different from the previously
used approach. Firstly, the forecast update view is used, where we explain the New–Old forecast
difference with the updates in the assumptions that were imposed to create the forecasts. Secondly,
the Inflation Forecast Evaluation offers a detailed analysis of the model dynamics through the dif-
ferences in the remaining shocks identified by the model. This second view is helpful in identifying
structural shocks that the forecasters could not have anticipated when the forecast was created.

5.3 Forecast Evaluation: Variables View

In the first part of the forecast evaluation, the effect of model changes, data revisions, and updates of
outlooks contributing to the difference between the New forecast and the Old forecast is analyzed.
The variables which form the conditioning information for the forecast can be distributed into sev-
eral subgroups mostly according to the source of the underlying data. The usual subgroup under
consideration is the foreign environment outlook, represented by the trajectories of foreign demand,
the interest rate, and inflation. The outlooks for domestic variables such as administered prices and
government consumption form other subgroups. Figure 7 demonstrates the results of identification
of the contributions to the variations between the trajectories of the New forecastTNF(ITN) and the
Old forecastTOF(ITO) as shown in Figure 6.

The presented decomposition framework does not allow for changes in the model between the New
and Old forecasts. In practice, when a model change is present in the evaluation, the initial step of
the evaluation is to switch to the new model. The Old forecastis recreated with the updated version
of the model and for the rest of the analysis this forecast is used as a replacement for the Old forecast.
This delivers linearity of contributions to our analysis. Unless there is a substantial change in the
model parameters, it usually makes only a small or zero contribution to the difference between the
New and Old forecasts. In addition, this contribution covers possible numerical imprecisions.11 As
we assumed no model change in our example for the purposes of this presentation, the contribution
of the model change is zero.

11 The standard procedure within our forecasting process is toextend the weights of the inflation components in the
prediction computation to include the last observed value.This model parameter update usually has a negligible
effect on the predicted trajectories.
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Figure 7: Forecast Evaluation – Contributions
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The presentation of the decomposition usually follows the timing of the forecast elements. The data
revisions affect both considered forecasts over the history range. Therefore, the contribution of data
revisions to the New–Old forecast difference originating in data revisions over the history range
usually follows the model change contribution. Data revisions affect the identification of the initial
state of the forecasts and usually show a hump-shaped response due to the presence of rigidities
in the variables. The plots in Figure 7 show two patterns overthe history range depending on the
nature of collection of the variable. For variables such as the exchange rate change and the policy
rate there are no revisions present, as these are precisely measured by market readings.

The presented results show that the revisions imply lower inflation growth and a lower policy rate.
Contrary to this, wage growth was revised upwards. Our knowledge of the data and the ability
to break down the revisions group into a single variable contribution reveal that the low inflation
and policy easing are a response to the downward revision of economic activity over the history
range. These downward revisions also lead to depreciation of the currency, as shown by the positive
contribution to the exchange rate change over the initial periods of the transition range.

The contribution of data released over the transition rangeis also analyzed. The motivation for
the inclusion of this group is to analyze the precision of theoutlooks used in the forecast and their
influence on the forecast trajectories.

As mentioned in the description of the forecasting process,our forecast is conditioned on the tra-
jectories of several outlooks. These outlooks can be split into outlooks for foreign (Foreign Envi-
ronment Outlook group) and domestic variables (GovernmentConsumption, Administered Prices).
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The plots in Figure 7 show that the use of actually observed data instead of outlooks compensate for
the effect of revisions over the transition range, as the lower foreign inflation and economic activity
will slow down domestic economic activity. The compositionof the release groups is mirrored in
the outlook groups. The outlook groups represent the updateof the variables used for conditioning
the forecast over the future range.

The forecast judgment group shows the contribution of updates of the prediction tunes in both
forecasts over the future range. The contribution of this group reflects the updates of the forecasters’
views on recent developments in the economy.

The forecast error group, as shown in the plots in Figure 7, covers the contributions of domestic ob-
servable variables. These variables are used in the identification stage of the New forecastTNF(ITN)

and the shocks identified are compared with the shocks implied by the prediction from the Old fore-
castTOF(ITO). The contributions of this group reflect the misalignment between the forecast and the
observed data. In the interpretation of the forecast error contributions, we usually break down the
group into the individual contributions of the variables for the purposes of detailed analysis of their
propagation over the transition range.

Although the presented groups are standard aggregations ofthe variables we use in the Inflation
Forecast Evaluation, our tool enables us to identify the contributions of each forecast element. As
mentioned earlier, identification can even be done on a period-by-period basis. This ability allows
us to focus on the precise details and their propagation overthe forecasts considered.

5.4 Forecast Evaluation: Structural Shocks View

As stated in the description of the forecasting process, conditioning on variables is equivalent to
conditioning on structural shocks. Our general framework is based on this equivalence, therefore
the differences between forecastsTNF(ITN) andTOF(ITO) can also be interpreted as differences in
structural shocks. The role of the second view of the Inflation Forecast Evaluation is to provide a
detailed examination and help interpret the contribution of the forecast error.

In our standard forecast evaluation process, shocks are separated into six groups: Monetary Policy
Misalignment, Exchange Rate (a shock to uncovered interestrate parity), Market Prices (shocks
to pricing markups and prices), Wage, Productivity (shocksthat increase productivity and affect
supply), and Demand. The Information Set Update group covers the effects of the information set
update, which was analyzed in the first step of the forecast evaluation.

In the evaluation, we consider the contributions of shocks to be an indication of missing information
from the ex-post view rather than forecasters’ mistakes. Specifically, in the case of monetary policy,
the presence of non-zero monetary policy shocks indicates too loose or too tight policy from the
ex-post view. The preference for using the interpretation as missing information is supported by the
fact that data collected in the evaluation periodTN are subject to revisions and forecasters cannot
forecast these.

The decomposition of the New–Old forecast difference, plotted in Figure 6, into the contributions
of structural shocks is presented in Figure 8.12 The demanding part of the examination of miss-
ing structural shocks is to interpret those shocks and builda credible story based on the model

12 Readers should note that the decomposed difference is the same as the one considered in the variable view of
the forecast evaluation as shown in Figure 7.
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Figure 8: Missing Structural Shocks
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mechanism. The case shown in Figure 8 indicates that monetary policy was more expansionary
than the model-based forecast would imply. This is consistent with the negative contribution of the
policy shock (MP Misalignment) to the difference in net inflation. The significant appreciation of
the exchange rate in the first quarter of 2012 (Exchange Rate)also contributed significantly to low
inflation. Even the subsequent depreciation was not able to return the exchange rate closer to the
Old forecast trajectories.

The presented decomposition results also indicate that theforecasters in the Old forecast were not
expecting the negative shocks to prices (Market Prices) that were identified in the creation of the
New forecast. The slowdown of the economy is consistent withthe positive contribution of technol-
ogy shocks, as the slower growth of productivity is not able to eliminate the growth in production
factor prices. The decrease in productivity resulting fromthe economic slowdown (Productivity) is
reflected in a negative contribution to wage growth. Slower technology growth and positive cost-
push shocks at the beginning of the transition range supportthe depreciation (positive change) of
the exchange rate.

In the process of developing the macroeconomic story, we tryto identify reflections of the observed
events over the transition range. As mentioned earlier, theidentification of missing structural shocks
can be done in fully detailed mode, too. This detail of disaggregation is used for further development
of the economic story presented in the Inflation Forecast Evaluation. Also, the results from this
exercise are used in planning future upgrades of the structural model used. Too large missing shocks
or persistent sequences of omitted shocks can direct our attention to an absent mechanism or feature
of the model. This often leads to improvements in the structure of the model and also helps validate
the model used.
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6. Conclusions

Stimulated by the criticism that conditional forecasts from structural macroeconomic models are
not transparent, we present a decomposition framework thatenables forecasters to quantify the
contributions to forecast updates. Approaches based on projection update elasticities, as described
in the literature, do not take into account the use of expert judgment applied in anticipated mode.
Although our decomposition approach used in the past coped with this complication, the resulting
identification of contributions was significantly limited and conditional on the ordering of the model
variables, which used to hamper interpretation.

Following Todd (1990), Andrle et al. (2009), and Andrle (2013), we developed a forecast update
decomposition framework that can be applied to decompose the differences between two forecasts
generated by any linear model. Its design is based on a set of partial decompositions that enable us
to identify the effects of specific groups of forecast elements even when the filtration and projection
ranges differ. The main advantage of the presented framework is its versatility, as it covers a variety
of decomposition problems.

The novelty of the framework lies in its ability to provide decompositions even when expert judg-
ment is simultaneously applied in anticipated and unanticipated modes, while the contributions
are independent of ordering. This framework supports transparent presentation of macroeconomic
forecasts based on a structural DSGE model under the assumptions applied in the CNB forecasting
process.

Starting with the simplest case, the flexibility of the framework is demonstrated by using it to an-
alyze the differences between two forecast scenarios. Applying the decomposition methodology
enables us to identify the contributions of, and the propagation of changes in, the forecast elements
(e.g. assumptions about foreign variables) to the change inthe forecast trajectories.

Further, our framework is used to conduct an ex-post analysis of actual data–forecast variation,
known as forecast evaluation. We demonstrated that actual data–forecast variation can be expressed
as the sum of the contributions of specific subsets of the information set. These subsets include
model and data revisions, data releases, and identificationor prediction tunes. Moreover, these
elements of forecast revisions can be linked to a specific subset of model variables. The introduction
of higher-level aggregation allows us to improve understanding of the results, as concepts such as
the foreign economy and regulated prices are intuitive to forecast users.

Forecast evaluation is an important exercise, as it documents the reasons why particular adjustments
and revisions are made to forecasts. Keeping track of forecasters’ actions allows us to learn from
the forecast and actual data misalignment and to avoid overreacting to noise in time series or an-
ticipated events. The presentation of our framework demonstrates how useful it is to understand
the forces driving the forecast update. It also shows the advantages of the evaluation framework in
the real-time forecasting exercise and explains our motivation for, and interest in, decomposing and
evaluating forecasts.
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