

Dílčí zpráva IV/2016 - Hodnocení monitoringu napěťodeformačního stavu horninového masivu při dobývání sloje 30 (634) v rámci zkušebního provozu dobývací metody chodba - pilíř v OPJ Dolu ČSM - SEVER

Waclawik, Petr 2016

Dostupný z http://www.nusl.cz/ntk/nusl-261326

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL).

Datum stažení: 17.05.2024

Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

Ústav geoniky AV ČR, v. v. i.

DÍLČÍ ZPRÁVA IV/2016 Hodnocení monitoringu napěťodeformačního stavu horninového Masívu při dobývání sloje 30 (634) v rámci zkušebního provozu dobývací metody chodba-pilíř v OPJ Dolu ČSM – Sever

Vypracovali:

Ing. Petr Waclawik, Ph,D.	
Ing. Jiří Ptáček, Ph.D.	
Ing. Radovan Kukutsch, Ph.D.	
Ing. Vlastimil Kajzar, Ph.D.	
Ing. Petr Koníček, Ph.D	
Ing. Kamil Souček, Ph.D.	
RNDr. Lubomír Staš, CSc.	
Zodpovědný řešitel:	
Ing. Petr Waclawik, Ph.D.	
Vedoucí oddělení geomechaniky a báňského výzku	umu:
RNDr. Lubomír Staš, CSc.	
Ředitel ústavu:	

Prof. RNDr. Radim Blaheta, CSc.

.....

OSTRAVA, ŘÍJEN 2016

PREAMBULE

Tato výzkumná zpráva byla vyhotovena se zřetelem na vědecké a technické znalosti známé ke dni jeho dokončení.

Ústav geoniky AV ČR, v.v.i. nenese odpovědnost, pokud informace, které mu byly poskytnuty odběratelem, byly neúplné nebo chybné. Dále neodpovídá za rozhodnutí přijatá v souvislosti s nerespektováním nebo mylnou interpretací svých doporučení.

Příjemce této výzkumné zprávy bude používat výsledky zahrnuté v tomto dokumentu integrovaně a objektivně. Jeho použití v podobě výňatků nebo formou shrnutí poznámek je výhradně a zcela na jeho odpovědnosti. Totéž platí při jakékoliv úpravě, která by jím byla učiněna.

Veřejná publikace této zprávy nebo i jeho části a jeho další použití nad rámec smluvního určení je vázána na souhlas Ústavu geoniky AV ČR, v.v.i.

Ústav geoniky si vyhrazuje právo použít naměřená data pro vědecké účely ve svých odborných publikačních aktivitách.

Obsah:

1.	ÚVOD	4
2.	LOKALIZACE MONITOROVANÝCH PILÍŘŮ	5
3.	ZÁKLADNÍ PARAMETRY MONITORINGU	7
4. НС	PRŮBĚŽNÉ HODNOCENÍ MONITOROVANÝCH VELIČIN NAPĚŤOVĚ-DEFORMAČNÍHO ORNINOVÉHO MASIVU V MONITOROVANÉ LOKALITĚ A	MONITORINGU 9
	4.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA A	
	4.1.1 Extenzometry GEL 5-ti stupňové lankové - lokalita A	
	4.1.2 Tenzometrické svorníky	15
	4.2. Sledování napětí in situ - lokalita A	25
	4.2.1 Sledování napětí v nadloží monitorovaných pilířů - lokalita A	25
	4.2.2 Sondy CCBM v nadloží chodbic - lokalita A	
	4.2.3 Sledování zatěžování monitorovaných uhelných pilířů - lokalita A	
	4.3 DEFORMOMETRIE UHELNÉHO PILÍŘE - LOKALITA A	
	4.3.1 Individuální pozorování	33
	4.3.2 Výsledky monitoringu horizontálních extenzometrů (denní odečet)	33
	4.3.2.1 Monitoring pilíře V1	
	4.3.2.2 Monitoring piliře V2	
	4.3.3 Vysleaky monitoringu norizontainich extenzometru prepoctene ke kotvene urovni 10	m 3/
	4.3.3.1 Monitoring pilife V1	
	4.5.5.2 Μοπιτοπογάνι τατίζενι ινισται ονανých κοτεννίch ρργκů - ι οκαι πα Δ	
	4.5 MĚŘENÍ DEFORMACÍ CHODER - Ι ΟΚΑΙΙΤΑ Δ	۲۲ ۵۵
	4.5 1 Konvergenční měření - lokalita Δ	ΔΔ
5. HQ	PRŮBĚŽNÉ HODNOCENÍ MONITOROVANÝCH VELIČIN NAPĚŤOVĚ-DEFORMAČNÍHO DRNINOVÉHO MASIVU V MONITOROVANÉ LOKALITĚ B	MONITORINGU
	5.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA B	
	5.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA B 5.1.1 Extenzometry 3-ti stupňové lankové - lokalita B	
	 5.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA B	
	 5.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA B	
	 5.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA B	
	 5.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA B	
	 5.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA B	64
	 5.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA B	
	 5.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA B	64
	 5.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA B 5.1.1 Extenzometry 3-ti stupňové lankové - lokalita B 5.2. SLEDOVÁNÍ NAPĚTÍ IN SITU - LOKALITA B 5.2.1 Sledování napětí v nadloží monitorovaných pilířů - lokalita B 5.2.3 Sledování zatěžování monitorovaných uhelných pilířů - lokalita B 5.3 DEFORMOMETRIE UHELNÉHO PILÍŘE - LOKALITA B 5.3.1 Výsledky monitoringu horizontálních extenzometrů (denní odečet) 5.3.1.2 Monitoring pilíře II2 5.3.1.3 Monitoring pilíře II3 5.3.2 Výsledky monitoringu horizontálních extenzometrů přepočtené ke kotvené úrovni 10 	64
	 5.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA B 5.1.1 Extenzometry 3-ti stupňové lankové - lokalita B 5.2. SLEDOVÁNÍ NAPĚTÍ IN SITU - LOKALITA B 5.2.1 Sledování napětí v nadloží monitorovaných pilířů - lokalita B 5.2.3 Sledování zatěžování monitorovaných uhelných pilířů - lokalita B 5.3 DEFORMOMETRIE UHELNÉHO PILÍŘE - LOKALITA B 5.3.1 Výsledky monitoringu horizontálních extenzometrů (denní odečet) 5.3.1.2 Monitoring pilíře II1 5.3.1.3 Monitoring pilíře II3 5.3.2 Výsledky monitoringu horizontálních extenzometrů přepočtené ke kotvené úrovni 10 5.3.2.1 Monitoring pilíře II1 	64 65 65 70 70 75 80 81 81 81 83 85 m
	 5.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA B 5.1.1 Extenzometry 3-ti stupňové lankové - lokalita B 5.2. SLEDOVÁNÍ NAPĚTÍ IN SITU - LOKALITA B 5.2.1 Sledování napětí v nadloží monitorovaných pilířů - lokalita B 5.2.3 Sledování zatěžování monitorovaných uhelných pilířů - lokalita B 5.3 DEFORMOMETRIE UHELNÉHO PILÍŘE - LOKALITA B 5.3.1 Výsledky monitoringu horizontálních extenzometrů (denní odečet) 5.3.1.2 Monitoring pilíře II2 5.3.1.3 Monitoring pilíře II3 5.3.2 Výsledky monitoringu horizontálních extenzometrů přepočtené ke kotvené úrovni 10 5.3.2.1 Monitoring pilíře II1 	64
	 5.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA B 5.1.1 Extenzometry 3-ti stupňové lankové - lokalita B 5.2. SLEDOVÁNÍ NAPĚTÍ IN SITU - LOKALITA B 5.2.1 Sledování napětí v nadloží monitorovaných pilířů - lokalita B 5.2.3 Sledování zatěžování monitorovaných uhelných pilířů - lokalita B 5.3 DEFORMOMETRIE UHELNÉHO PILÍŘE - LOKALITA B 5.3.1 Výsledky monitoringu horizontálních extenzometrů (denní odečet) 5.3.1.1 Monitoring pilíře II2 5.3.1.3 Monitoring pilíře II3 5.3.2 Výsledky monitoringu horizontálních extenzometrů přepočtené ke kotvené úrovni 10 5.3.2.1 Monitoring pilíře II1 5.3.2.2 Monitoring pilíře II2 5.3.2.3 Monitoring pilíře II3 	64
	 5.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA B	64
	 5.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA B	64
6.	 5.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA B	64
6.	 5.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA B	64
6.	 5.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA B	64
6.	 5.1 HODNOCENÍ DEFORMACÍ NADLOŽNÍCH HORNIN - LOKALITA B 5.1.1 Extenzometry 3-ti stupňové lankové - lokalita B 5.2. SLEDOVÁNÍ NAPĚTÍ IN SITU - LOKALITA B 5.2.1 Sledování napětí v nadloží monitorovaných pilířů - lokalita B 5.2.3 Sledování zatěžování monitorovaných uhelných pilířů - lokalita B 5.3 DEFORMOMETRIE UHELNÉHO PILÍŘE - LOKALITA B 5.3.1 Výsledky monitoringu horizontálních extenzometrů (denní odečet) 5.3.1.1 Monitoring pilíře II1 5.3.1.2 Monitoring pilíře II2 5.3.1.3 Monitoring pilíře II3 5.3.2 Výsledky monitoringu horizontálních extenzometrů přepočtené ke kotvené úrovni 10 5.3.2.1 Monitoring pilíře II3 5.3.2 Monitoring pilíře II3 5.4 MĚŘENÍ DEFORMACÍ CHODEB - LOKALITA B 5.4.1 KONVERGENČAL VELIČIN K DOBÝVÁNÍ DOBÝVEK V A II CATAH MONITOROVANÝCH VELIČIN K DOBÝVÁNÍ DOBÝVEK V A II 6.1 MONITOROVANÉ VELIČINY VE VZTAHU K VÝVOJI DEFORMAČNÍCH ZÓN V PONECHANÝCH UHELNÝCH PILÍŘÍCH 6.3 ZHODNOCENÍ DYNAMIKY DEFORMACÍ UHELNÝCH PILÍŘU V LOKALITĚ B 	64

1. Úvod

Monitoring napěť odeformačního stavu horninového masivu je nezbytným předpokladem pro ověření nové neschválené dobývací metody chodba-pilíř a jejího dalšího použití v podmínkách české části hornoslezské uhelné pánve. Tato dobývací metoda je projektována pouze na základě zkušeností a postupů, které jsou ověřeny v odlišných přírodních podmínkách a hloubkách pod povrchem a proto je nezbytná její verifikace pro podmínky české části hornoslezské pánve na základě geotechnického monitoringu.

Předkládaná zpráva je zpracována na základě smlouvy o dílo č. 942/50/10, kde se Ústav Geoniky AV ČR, v.v.i. zavazuje provádět pravidelné vyhodnocování dat monitoringu napěťodeformačního stavu horninového masivu. V souladu s výše uvedenou smlouvou, je zpráva zpracována v 6-ti měsíčním intervalu a navazuje tak na dílčí zprávu III/2016 (Waclawik et al. 2016a) předanou odběrateli v dubnu 2016.

Průběžné výsledky geotechnického monitoringu, tak jak zkušenosti získané v době dobývání dobývek V a II, ukazují na specifika přírodních podmínek v lokalitě zkušebního provozu nové neschválené dobývací metody chodba-pilíř. Zkušenosti získané v průběhu dosavadního dobývání a geotechnického monitoringu poukazují na nutnost pokračovat i nadále v započatém monitoringu v dobývce V (lokalita A). Průběžné výsledky prováděného monitoringu z lokality A byly zahrnuty do dalších postupů a návrhu designu dalšího monitoringu v lokalitě B formou projektu monitoringu v dobývce II (viz Waclawik et al. 2016b). Monitoring tak byl rozšířen o sledování dalších tří uhelných pilířů, v jiných geotechnických podmínkách.

2. Lokalizace monitorovaných pilířů

Z důvodu potřeby dlouhodobého monitorování vývoje geotechnické (geomechanické) situace v průběhu zkušebního provozu budou v souladu s posudkem "Odborné posouzení výpočtu stability pilířů při dobývání sloje č. 30 (634) v ochranném pilíři jam Dolu ČSM, Závodu Sever" (Šňupárek et al. 2012) a jeho doplňkem "Aktualizace odborného posouzení výpočtu stability pilířů při dobývání sloje č. 30 (634) v ochranném pilíři jam Dolu ČSM Sever" (Šňupárek et al. 2013) vytvořeny dvě monitorovací lokality, lokalita A a B (viz obr. 2.1). *Lokalita A* v dobývce V, která byla již postupně nainstalována, bude přístupná po celou dobu dobývání v předmětné oblasti sloje č. 30 (634) a *lokalita B* v dobývce II bude přístupná minimálně po dobu dobývání dobývky II.

Obr. 2.1 Umístění monitorovaných pilířů v dobývce V a II v kontextu s dobýváním metodou chodba-pilíř ve sloji č. 30 (634)

První monitorovanou lokalitu (lokalita A) tvoří dva ponechané pilíře dobývky "V" s chodbami, které je obtínají (viz obr. 2.1). Ponechané uhelné pilíře se liší zejména svými rozměry, když menší pilíř má plochu přibližně 860 m² a větší 1200 m². Ponechané monitorované pilíře byly zvoleny tak, aby bylo možno vydobytou dobývku V po vydobytí výbuchovzdorně uzavřít a monitorované pilíře byly nadále zpřístupněny pro účely geotechnického monitoringu.

V rámci monitorované lokality B v dobývce II jsou navrženy tři monitorované pilíře o velikosti 590 m², 730 m² a 590 m² (viz. obr. 2.1). Design monitoringu byl upraven na základě zkušeností získaných při monitoringu lokality A. Specifikace monitoringu lokality B je součástí modifikovaného projektu napěťodeformačního monitoringu, který byl zpracován v dubnu tohoto roku (viz. Waclawik et al. 2016b).

Lokalita A je umístěna v dobývce V, v nadložní kře přesmykového pásma východního přesmyku. Dobývka V je první dobývkou exploatovanou v rámci zkušebního provozu dobývací metody chodba-pilíř v ochranném pilíři jam lokality ČSM–Sever. Exploatace dobývky V byla ukončena v průběhu měsíce září 2015. V současné době probíhají dobývací práce v rámci dobývky II. Vzhledem k nepříznivému průběhu přesmykového pásma východního přesmyku bylo nutno dobývku II modifikovat a posunout východním směrem. To se se také odrazilo do konečné podoby návrhu monitoringu v lokalitě B (viz projekt monitoringu pro dobývku II – Waclawik et al. 2016b).

V předmětné ploše monitorované lokality A sloj č. 30 (634) společně ve spojení se slojí n.n. dosahuje mocnosti kolem 300 cm. Bezprostřední nadloží sloje je tvořeno 10 – 15 cm mocnou vrstvičkou písčitého jílovce s ostrým přechodem do šedého, pískovcem laminovaného prachovce. Vrstvička písčitého jílovce je výrazně oddělena ohlazy na vrstevních plochách. Ve vzdálenosti cca 5 m následuje ostrý erozivní přechod do lavice střednězrnného pískovce. V mezislojové vzdálenosti cca 11 m je místně vyvinuta slojka č. 624 o mocnosti kolem 30 cm. V nadloží této slojky je pak vyvinut cca 5 m mocný prachovec, který přechází do cca 10 m mocné lavice jemnozrnného pískovce s lokálními vložkami prachovce až po sloj č. 29b. sp.l. (648+649). Mezislojová vzdálenost mezi slojemi č. 30 (634) a nejbližší nadložní slojí č. 29bsp.l. (648+649) je proměnlivá a pohybuje se od 20 m do 35 m. V mezislojové vzdálenosti cca 40 cm je pod slojí č. 30+n.n. vyvinuta sloj č. 31 o mocnosti cca 80 cm, která se odštěpuje do podloží JV směrem. Meziloží slojí č. 30+n.n. a sloje č. 31 je tvořeno kořenovým prachovcem. Podloží sloje č. 31 je tvořeno asi 1 m mocnou vrstvou prachovce, který následně přechází do pískovce. Vzhledem k malé mezislojové vzdálenosti mezi slojemi č. 30. 31.

V předmětné ploše lokality B sloj č. 30 (634) dosahuje mocnost kolem 240 cm. V mezislojové vzdálenosti cca 20 cm je pod slojí č. 30 (634) vyvinuta sloj n.n o mocnosti cca 50 - 70 cm, která se odštěpuje do podloží JV směrem. Meziloží slojí č. 30 (634) a sloje n.n. je tvořeno prachovcem s přechodem do jílovce. Podloží sloje n.n. je tvořeno prachovcem až po sloj č. 31 v mezislojové vzdálenosti cca 6 m. Litologický vývoj v nadloží sloje č. 30 (634) se předpokládá podobný jako v lokalitě A. V průběhu instalačních prací bylo ověřeno, že v přímém nadloží monitorovaných pilířů, ve vzdálenosti cca 6-15 m od stropu sloje, probíhá výrazná přesmyková plocha. Charakter a průběh přesmyku patrně ovlivnil a ovlivňuje výsledky monitoringu napěťo-deformačního stavu pilířů v lokalitě B.

3. Základní parametry monitoringu

Monitoring napěťodeformačního stavu horninového masivu vychází ze zásad stanovených v odborném posudku (Šňupárek et al. 2012) a v jeho aktualizaci (Šňupárek et al. 2013). Vlastní návrh respektuje specifické požadavky monitoringu a byl navržen tak, aby podal komplexní obraz o chování horninového masivu v maximálně možném časovém období tak, aby zachytil všechny fáze dobývání. Základním předpokladem úspěšnosti metody chodbapilíř je stabilita ponechaných uhelných pilířů. Z tohoto důvodu je nutné věnovat významnou pozornost sledování stability ponechaných uhelných pilířů jak v průběhu zatěžování těchto pilířů při vlastním dobývání, tak v průběhu jejich další životnosti.

Průběžné výsledky geotechnického monitoringu, tak jak zkušenosti získané v době dobývání první dobývky V, ukazují na specifika přírodních podmínek v 30. sloji, v lokalitě zkušebního provozu nové neschválené dobývací metody chodba-pilíř. Zkušenosti získané v průběhu dosavadního dobývání a geotechnického monitoringu poukazují na nutnost pokračovat i nadále v započatém monitoringu v dobývce V (lokalita A) a rozšířit toto sledování o další uhelné pilíře v různých geotechnických podmínkách (lokalita B v dobývce II viz obr. 2.1). Výsledky prováděného monitoringu z lokality A tak byly zahrnuty do dalších postupů a návrhu designu monitoringu v lokalitě B. Specifikace monitoringu lokality B je součástí modifikovaného projektu napěťodeformačního monitoringu, který byl zpracován v dubnu tohoto roku (viz. Waclawik et al. 2016b).

Na základě charakteru monitorovaných veličin případně monitorovaného prostředí je vlastní monitoring rozdělen do následujících kategorií:

- deformometrie nadložních hornin chodeb,
- sledování a měření napěťového stavu v horninovém masivu v podmínkách in situ,
- deformometrie uhelného pilíře,
- zatížení instalovaných kotevních prvků (pouze lokalita A),
- měření konvergence chodeb.

Pro sledování deformací nadložních hornin chodeb byly v rámci monitorované lokality A instalovány tři monitorovací prvky, extenzometry, tenzometrické svorníky a sondy CCBM. Dvouúrovňové, popř. tříúrovňové mechanické indikátory rozsazování nadloží (dále jen extenzometry, typ TTW 01 a TTW 07 - viz Projekt samostatné svorníkové výztuže -Antoszyk 2012, 2013 a Sembol 2014) byly doplněny 5-ti stupňovými extenzometry GEL s elektronickým odečtem jednotlivých poloh. Za účelem splnění požadavku "posudku" (Šňupárek et al. 2012), kde je požadavek monitorování minimálně 10-ti úrovní, byly instalovány vždy ve dvojici. Ve vybraných místech byly do nadloží ražených chodbic instalovány tenzometrické svorníky SG01 délky 2,4 m o průměru 22 mm, které jsou osazeny 9-ti páry tenzometrů. Přesná lokalizace a doba instalace všech instalovaných zařízení byla již specifikována v dílčí zprávě I/2015. Vzhledem k výsledkům monitorování deformací nadložních hornin chodeb v lokalitě A (viz Waclawik et al. 2015a,b, 2016b), když rozvrstvení hornin v nadloží vyražených chodeb v rámci monitorovaných pilířů V1 a V2 bylo minimální, jsou v monitorované lokalitě B pro sledování rozvrstvování instalovány pouze extenzometry. Za tímto účelem budou použity tříúrovňové mechanické indikátory rozsazování nadloží, které jsou v rámci zkušebního provozu metody chodba-pilíř běžně instalovány (dále jen extenzometry, typ TTW 01 a TTW 07 - viz. Projekt samostatné svorníkové výztuže -Antoszyk 2012, 2013 a Sembol 2014). Přesná lokalizace extenzometrů je specifikována v kapitole 5.1.1.

Rozhodujícím faktorem pro stabilitu ponechaného pilíře je, kromě správného návrhu (naprojektování) rozměrů pilíře, charakter zatěžování uhelného pilíře a reálný napěťový stav horninového masivu. Za účelem zjištění stávajících napěťových polí a dále jejich změn je prováděno měření napětí in situ. Pro zjištění napětí resp. pro sledování změn napětí v nadloží ponechaného monitorovaného uhelného pilíře byly instalovány sondy CCBO resp. CCBM, které jsou používány na Ústavu geoniky AV ČR, v.v.i (Staš et al. 2005). Sondy konického tvaru jsou osazeny 6 páry tenzometrů a umožňují tak určit úplný tenzor napjatosti (napěťového pole) horninového masivu případně sledovat jeho změny. Určení úplného tenzoru napětí horninového masivu bylo provedeno sondou CCBO metodou odlehčeného vrtného jádra. Následně byly v monitorovaných pilířích instalovány sondy CCBM, které zaznamenávají změny napěťového stavu horninového masivu. Za účelem monitorování změn zatěžování uhelného pilíře byly do ponechaných uhelných pilířů instalovány hydraulické zátěžové buňky HMA (dále též stress cell) měřící změny jednoosého vertikálního zatížení v rozsahu 0 až 60 MPa. Přesná lokalizace a doba instalace všech instalovaných zařízení v lokalitě A byla již specifikována v dílčí zprávě I/2015 (Waclawik et al. 2015a). Specifikace zařízení instalovaných v lokalitě B je uvedena v kapitole 5.2.

Za účelem sledování *deformací uhelného pilíře* byly v polovině strany ponechaných monitorovaných pilířů do uhelné hmoty instalovány extenzometry horizontální GEL s pěti monitorovanými polohami. Měření rozsazování uhelné hmoty bude spolu s měřenými konvergencemi a měřením změn napětí pomocí 1-dimensionálních zátěžových buněk základem k hodnocení vývoje deformačních zón ponechaného uhelného pilíře. Na základě těchto měření bude také hodnocena dynamika deformačních změn.

Zatěžování instalovaných kotevních prvků na křížení chodeb je monitorováno pomocí hydraulických dynamometrů Glötzl, které byly osazeny na pramencové kotvy. Hydraulické dynamometry byly instalovány na vybraných kříženích chodeb v rámci monitorovaných uhelných pilířů. Vzhledem k tomu, že za celou dobu monitorování v lokalitě A nedosáhla změna osového zatížení kotev, na kterých jsou instalovány hydraulické dynamometry významnějších hodnot (viz Waclawik et. al 2015 a,b, 2016b) není v rámci monitoringu lokality B zatěžování instalovaných kotevních prvků monitorováno.

Za účelem zhodnocení stability vyražených chodeb, ale také stability ponechaných pilířů jsou v pravidelných intervalech měřeny *konvergence chodeb*. Konvergenční profily byly stabilizovány v polovině strany ponechaných monitorovaných pilířů a na vybraných kříženích chodeb. Přesná lokalizace je specifikována v kapitolách 4.5 a 5.4.

4. Průběžné hodnocení monitorovaných veličin napěťovědeformačního monitoringu horninového masivu v monitorované lokalitě A

Obr. 4.1 *Pozice jednotlivých typů technických zařízení napěťodeformačního monitoringu v rámci monitorovaných pilířů V1 a V2, v lokalitě A.*

V rámci projektovaného monitoringu v lokalitě A byla instalována řada technických zařízení. Celkový přehled instalovaných monitorovacích zařízení v lokalitě A udává obr. 4.1. Pro snadnější orientaci při instalaci, sběru dat a vyhodnocování dat byla veškerá instalovaná zařízení označena. První znakem označení zařízení je číslo dobývky, následuje označení typu monitorovacího zařízení a pořadové číslo. Například VEh3 je extenzometr horizontální, pořadové číslo 3 umístěný v dobývce V. Monitorované pilíře v rámci lokality A jsou pro snadnější orientaci označeny V1 a V2.

Hodnocení výsledků geotechnického monitoringu navazuje na vyhodnocení zpracované v rámci předchozích dílčích zpráv I/2015, II/2015 z dubna a října loňského roku a zprávy III/2016 zpracované v dubnu tohoto roku. Výsledky byly průběžně vyhodnocovány a intepretace výsledků byla projednávána na pravidelném jednání komise odborníků scházející se v souvislosti se zkušebním provozem nové neschválené dobývací metody chodba-pilíř.

Vzhledem k tomu, že u všech deformometrických měření hrají důležitou roli nejen dosažené hodnoty jednotlivých deformací (konvergence, rozvolnění), ale také jejich časový vývoj a prostorový vztah k průběhu dobývání, bylo při hodnocení také přihlíženo i k celkovému časovému průběhu a vývojovému trendu deformačních procesů.

Samotné hodnocení je na základě charakteru monitorovaných veličin případně monitorovaného prostředí členěno do následujících podkapitol:

- hodnocení deformací nadložních hornin chodeb,
- hodnocení napěťového stavu horninového masivu in situ,
- hodnocení deformometrie uhelného pilíře,
- monitorování zatížení instalovaných kotevních prvků,
- měření konvergence chodeb.

4.1 Hodnocení deformací nadložních hornin - lokalita A

Za účelem sledování deformací nadložních hornin chodeb byly instalovány 5-ti stupňové lankové extenzometry GEL s elektronickým odečtem naměřených dat. Aby byl naplněn požadavek monitorování alespoň 10-ti pozic, byly tyto extenzometry instalovány vždy ve dvojici (extenzometr A a B) do dvou dovrchně vedených vrtů v požadovaných výškových úrovních specifikované v modifikovaném projektu.

Sledování osového zatížení svorníkové výztuže je prováděno pomocí tenzometrických svorníků SG01 délky 2,4 m o průměru 22 mm, které jsou osazeny 9-ti páry tenzometrů.

Vývoj napěťového pole v nadloží chodbic je monitorován kuželovými sondami CCBM.

4.1.1 Extenzometry GEL 5-ti stupňové lankové - lokalita A

Na chodbách v monitorovací lokalitě A bylo instalováno celkem 14 dvojic 5-ti stupňových extenzometrů GEL. Extenzometry GEL byly instalovány vždy ve dvojici do vertikálních vrtů délky 3 m a 8 m. Vertikální extenzometry byly instalovány přibližně ve středu každého kříže resp. odbočky a v polovině chodby (mezi kříži a odbočkami), co nejblíže středu chodeb v rámci monitorovaných pilířů. Přesná lokalizace instalovaných extenzometrů je zřejmá z obr. 4.2. Dle dodaných extenzometrů byly kotvičky 5-ti stupňových extenzometrů instalovány takto: extenzometr A – 1,0 m, 1,5 m, 2,0 m, 2,5 m, 3,0 m a extenzometr B – 1,0 m (resp. 3,0), 4,0 m, 5,0 m, 6,0 m, 8,0 m. Výjimkou jsou extenzometry VE11_B a VE12_B, kde je z důvodu pozměněné dodávky extenzometrů od výrobce první kotva umístěna do hloubky 3,0 m.

Obr. 4.2 *Rozmístění vertikálních 5-ti stupňových lankových extenzometrů GEL v monitorovací lokalitě A.*

V tabulce 4.1 jsou shrnuty naměřené hodnoty rozvrstvení nadložních hornin indikovaných na jednotlivých extenzometrech, v jednotlivých kotvených polohách. Jsou zde uvedeny inicializační hodnoty, které byly nastaveny při instalaci extenzometrů a hodnoty z konce hodnotícího období k **22.9. 2016**.

Z naměřených hodnot indikovaných na vertikálních extenzometrech GEL je zřejmé (viz digitální příloha č. 1 - Extenzometry_strop_panel_V.xlsx), že rozvrstvení hornin v nadloží vyražených chodeb monitorovaných pilířů V1 a V2 jsou minimální. I přesto, že celkové sledované období dosáhlo téměř dvou let, nebylo na poměrně velkém počtu extenzometrů (VE4, VE6, VE7, VE9, VE11 a VE12) indikováno žádné rozvrstvení nadložních hornin, resp. naměřené hodnoty se pohybovaly na hranicí výrobcem garantované přesnosti měření ±0,5 mm. I na ostatních extenzometrech (VE1, VE2, VE3, VE5, VE10, VE13 a VE14) jsou naměřené hodnoty zanedbatelné a dosahují maximálně 3,3 mm. Největší hodnoty rozvrstvení byly zaznamenány na extenzometru VE8, kde maximální rozvrstvení dosáhlo 7,6 mm na kotvené poloze v hloubce 2.0 m. Přesto i tyto maximální hodnoty rozvrstvení jsou, vzhledem k velikosti monitorovaných pilířů a k dobývané mocnosti cca 3,5 m, zanedbatelné. Nutno

však podotknout, že uvedené maximální hodnoty byly dosaženy v době prvního hodnotícího období tj, do 30.3. 2015. V druhém (4-9/2015), třetím (10/2015-3/2016) a čtvrtém (4-9/2016) hodnotícím období nebyly na uvedených extenzometrech zaznamenány téměř žádné změny, respektive se hodnoty rozvrstvení pohybovaly kolem hranice výrobcem garantované přesnosti měření ± 0.5 mm. Maximální hodnoty rozvrstvování nadloží časově odpovídají do doby, kdy v okolí monitorovaných pilířů probíhala ražba dalších chodeb.

Označaní	Datum-		Exte	nzome	tr_A			Exte	enzome	tr_B	
Oznaceni	Poloha kotvy	1.0	1.5	2.0	2.5	3.0	1.0	4.0	5.0	6.0	8.0
	I26.11.2014	2,1	2,2	2,4	2,1	2,5	2,6	2,4	1,8	1,7	1,7
	II30.3.2015	2,1	2,1	2,4	2,2	2,6	2,5	2,5	2,6	2,0	2,5
	III21.9.2014	2,2	2,1	2,5	2,4	2,6	2,5	2,5	2,6	2,0	2,5
	IV30.3.2016	2,2	2,1	2,5	2,4	2,6	2,5	2,6	2,6	2,0	2,6
VE1	V22.9.2016	2,2	2,1	2,5	2,4	2,7	2,5	3,0	2,6	2,1	3,3
	Rozdíl IIIII.	0,1	0,0	0,1	0,2	0,0	0,0	0,0	0,0	0,0	0,0
	Rozdíl IIIIV.	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,1
	Rozdíl IVV.	0,0	0,0	0,0	0,0	0,1	0,0	0,4	0,0	0,1	0,7
	Rozdíl IV.	0,1	-0,1	0,1	0,3	0,2	-0,1	0,6	0,8	0,4	1,6
	I26.11.2014	2,6	1,7	1,5	1,6	2,0	1,5	2,0	2,0	1,6	1,2
	II30.3.2015	2,7	1,8	1,5	1,6	2,1	1,5	2,0	2,0	1,6	1,8
	III21.9.2014	2,7	1,8	1,5	1,6	2,1	1,5	2,0	2,0	1,6	1,8
	IV30.3.2016	2,7	1,8	1,5	1,6	2,1	1,5	2,0	2,0	1,9	2
VE2	V22.9.2016	2,7	1,8	1,6	1,7	2,1	1,5	2,0	2,0	2,5	2,4
	Rozdíl IIIII.	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Rozdíl IIIIV.	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,3	0,2
	Rozdíl IVV.	0,0	0,0	0,1	0,1	0,0	0,0	0,0	0,0	0,6	0,4
	Rozdíl IV.	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,9	1,2
	I26.11.2014	2,2	1,6	1,7	3,4	1,9	1,8	2,1	1,5	1,6	1,6
	II30.3.2015	2,4	1,6	1,8	3,4	1,9	1,9	2,3	1,6	1,6	1,6
	III21.9.2014	2,4	1,6	1,8	3,4	1,9	1,9	2,3	1,6	1,6	1,9
	IV30.3.2016	2,4	1,6	1,7	3,4	1,9	1,9	2,3	1,8	1,6	2,6
VE3	V22.9.2016	2,4	1,6	1,9	3,4	1,9	1,9	2,3	2,2	1,6	3,2
	Rozdíl IIIII.	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,3
	Rozdíl IIIIV.	0,0	0,0	-0,1	0,0	0,0	0,0	0,0	0,2	0,0	0,7
	Rozdíl IVV.	0,0	0,0	0,2	0,0	0,0	0,0	0,0	0,4	0,0	0,6
	Rozdíl IV.	0,2	0,0	0,2	0,0	0,0	0,1	0,2	0,7	0,0	1,6
	I26.11.2014	1,7	1,4	2,5	1,7	1,5	1,9	2,1	2,1	1,7	1,6
	II30.3.2015	1,7	1,4	2,6	1,7	1,5	1,9	2,1	2,1	1,8	2,0
	III21.9.2014	1,7	1,4	2,7	1,7	1,5	1,9	2,1	2,1	1,8	2,1
VE4	IV30.3.2016	1,7	1,4	2,7	1,7	1,5	1,9	2,1	2,1	1,8	2,1
V L)+	V22.9.2016	1,7	1,4	2,7	1,7	1,5	1,9	2,1	2,1	1,8	2,1
	Rozdíl IIIII.	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,1
	Rozdíl IIIIV.	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Rozdíl IVV.	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0

Tab. 4.1 Celkové hodnoty rozvrstvení nadložních hornin indikovaných na 5-ti stupňových vertikálních extenzometrech GEL v lokalitě A

Označaní	Datum-	Extenzometr_A					Extenzometr_B					
Označeni	Poloha kotvy	1.0	1.5	2.0	2.5	3.0	1.0	4.0	5.0	6.0	8.0	
	Rozdíl IV.	0,0	0,0	0,2	0,0	0,0	0,0	0,0	0,0	0,1	0,5	
	I26.11.2014	4,2	4,7	3,0	3,5	3,9	4,3	4,2	1,6	1,9	1,9	
	II30.3.2015	5,3	5,7	3,8	3,8	5,9	4,3	4,2	1,9	2,3	2,2	
	III21.9.2014	5,4	5,7	3,9	4,0	6,2	4,3	4,2	1,9	2,3	2,3	
	IV30.3.2016	5,4	5,7	3,9	4,1	6,3	4,3	4,2	1,9	2,3	2,3	
VE5	V22.9.2016	5,5	5,7	4,0	4,2	6,5	4,3	4,2	1,9	2,3	2,5	
	Rozdíl IIIII.	0,1	0,0	0,1	0,2	0,3	0,0	0,0	0,0	0,0	0,1	
	Rozdíl IIIIV.	0,0	0,0	0,0	0,1	0,1	0,0	0,0	0,0	0,0	0,0	
	Rozdíl IVV.	0,1	0,0	0,1	0,1	0,2	0,0	0,0	0,0	0,0	0,2	
	Rozdíl IV.	1,3	1,0	1,0	0,7	2,6	0,0	0,0	0,3	0,4	0,6	
	I26.11.2014	1,9	1,6	1,6	1,9	1,7	2,8	0,1	1,7	1,4	2,0	
	II30.3.2015	1,9	1,6	1,6	1,9	1,7	2,8	0,1	1,7	1,4	2,1	
	III21.9.2014	1,9	1,6	1,6	1,9	1,7	2,8	0,1	1,7	1,4	2,1	
	IV30.3.2016	1,9	1,6	1,6	1,9	1,7	2,8	0,1	1,7	1,5	2	
VE6	V22.9.2016	1,9	1,6	1,6	1,9	1,7	2,8	0,1	1,7	1,5	2,1	
	Rozdíl IIIII.	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
	Rozdíl IIIIV.	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	-0,1	
	Rozdíl IVV.	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	
	Rozdíl IV.	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	
	I26.11.2014	2,6	1,9	1,8	2,6	3,2	2,1	2,2	1,7	1,8	2,3	
	II30.3.2015	2,6	2,0	2,0	2,7	3,2	2,1	2,2	1,7	1,8	2,3	
	III21.9.2014	2,6	2,0	2,0	2,7	3,2	2,1	2,2	1,7	1,9	2,4	
	IV30.3.2016	2,6	2,0	2,0	2,7	3,2	2,2	2,2	1,8	1,9	2,5	
VE7	V22.9.2016	2,6	2,0	2,0	2,7	3,2	2,2	2,2	1,8	1,9	3,1	
	Rozdíl IIIII.	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	
	Rozdíl IIIIV.	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,1	
	Rozdíl IVV.	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,6	
	Rozdíl IV.	0,0	0,1	0,2	0,1	0,0	0,1	0,0	0,1	0,1	0,8	
	I26.11.2014	2,7	1,6	1,7	2,7	1,7	1,7	1,3	1,6	2,2	3,4	
	II30.3.2015	5,3	7,9	9,2	7,2	4,9	3,2	3,3	4,1	4,4	5,5	
	III21.9.2014	5,3	7,9	9,3	7,2	4,9	3,2	3,3	4,2	4,4	6,4	
	IV30.3.2016	5,2	7,9	9,2	7,2	5	3,3	3,4	4,2	4,5	7,6	
VE8	V22.9.2016	5,3	7,9	9,3	7,3	5	3,4	3,4	4,3	4,5	7,6	
	Rozdíl IIIII.	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,1	0,0	0,9	
	Rozdíl IIIIV.	-0,1	0,0	-0,1	0,0	0,1	0,1	0,1	0,0	0,1	1,2	
	Rozdíl IVV.	0,1	0,0	0,1	0,1	0,0	0,1	0,0	0,1	0,0	0,0	
	Rozdíl IV.	2,6	6,3	7,6	4,6	3,3	1,7	2,1	2,7	2,3	4,2	
	126.11.2014	3,1	2,8	3,1	2,8	3,1	2,6	3,2	3,4	3,1	1,5	
	II30.3.2015	3,1	2,8	3,1	3,0	3,1	2,6	3,3	3,4	3,1	1,5	
VEO	III21.9.2014	3,1	2,8	3,1	2,8	3,1	2,6	3,3	3,4	3,1	1,5	
VE9	IV30.3.2016	3,1	2,8	3,1	2,8	3,1	2,6	3,3	3,4	3,1	1,5	
	V22.9.2016	3,1	2,8	3,1	2,8	3,2	2,6	3,3	3,4	3,2	1,6	
	Rozdil IIIII.	0,0	0,0	0,0	-0,2	0,0	0,0	0,0	0,0	0,0	0,0	
	Rozdíl IIIIV.	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	

0	Datum-		Exte	nzome	tr_A		Extenzometr_B					
Sznacerii	Poloha kotvy	1.0	1.5	2.0	2.5	3.0	1.0	4.0	5.0	6.0	8.0	
	Rozdíl IVV.	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,1	0,1	
	Rozdíl IV.	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,1	0,1	
	I26.11.2014	1,6	2,7	2,5	1,9	1,8	1,8	2,4	2,8	2,0	0,9	
	II30.3.2015	1,7	2,8	2,7	1,9	1,9	1,9	3,1	3,9	2,0	0,9	
	III21.9.2014	1,7	2,9	2,9	1,9	1,9	1,9	3,2	3,9	2,1	1,0	
	IV30.3.2016	1,7	2,9	2,9	1,9	1,9	1,9	3,3	3,9	2,0	1	
VE10	V22.9.2016	1,7	2,9	2,9	1,9	2	1,9	3,3	3,9	2,0	1	
	Rozdíl IIIII.	0,0	0,1	0,2	0,0	0,0	0,0	0,1	0,0	0,1	0,1	
	Rozdíl IIIIV.	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	-0,1	0,0	
	Rozdíl IVV.	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	
	Rozdíl IV.	0,1	0,2	0,4	0,0	0,2	0,1	0,9	1,1	0,0	0,1	
	I26.11.2014	2,6	1,9	2,4	1,7	1,5	1,3	1,7	1,4	1,3	1,3	
	II30.3.2015	2,6	2,0	2,5	1,7	1,6	1,4	1,7	1,4	1,4	1,3	
	III21.9.2014	2,7	2,1	2,6	1,7	1,7	1,4	1,8	1,6	1,4	1,3	
	IV30.3.2016	2,7	2,1	2,6	1,7	1,7	1,4	1,8	1,6	1,4	1,3	
VE11	V22.9.2016	2,7	2,1	2,7	1,7	1,8	1,4	1,8	1,6	1,4	1,3	
	Rozdíl IIIII.	0,1	0,1	0,1	0,0	0,1	0,0	0,1	0,2	0,0	0,0	
	Rozdíl IIIIV.	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
	Rozdíl IVV.	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	
	Rozdíl IV.	0,1	0,2	0,3	0,0	0,3	0,1	0,1	0,2	0,1	0,0	
	I26.11.2014	0,1	2,5	3,2	3,2	4,0	2,4	2,4	1,9	2,6	2,6	
	II30.3.2015	0,1	3,1	3,8	4,1	5,1	2,2	2,5	2,1	2,7	2,5	
	III21.9.2014	0,1	3,3	4,1	4,6	5,3	2,5	2,8	2,3	2,8	2,6	
	IV30.3.2016	0,1	3,2	4,0	4,6	5,2	2,5	2,8	2,4	2,9	2,7	
VE12	V22.9.2016	0,1	3,2	2,4	3,1	4,5	2,3	2,6	2,1	2,5	2,7	
	Rozdíl IIIII.	0,0	0,2	0,3	0,5	0,2	0,3	0,3	0,2	0,1	0,1	
	Rozdíl IIIIV.	0,0	-0,1	-0,1	0,0	-0,1	0,0	0,0	0,1	0,1	0,1	
	Rozdíl IVV.	0,0	0,0	-1,6	-1,5	-0,7	-0,2	-0,2	-0,3	-0,4	0,0	
	Rozdíl IV.	0,0	0,7	-0,8	-0,1	0,5	-0,1	0,2	0,2	-0,1	0,1	
	I26.11.2014	3,5	5,5	2,8	2,4	3,8	5,7	1,8	5,4	1,8	4,8	
	II30.3.2015	3,6	5,6	2,8	3,2	4,6	5,7	2,7	6,4	2,7	6,1	
	III21.9.2014	3,7	5,6	2,8	3,2	4,7	5,8	2,7	6,7	3,5	6,4	
	IV30.3.2016	3,7	5,6	2,8	3,3	5,5	5,8	2,7	6,8	3,6	6,4	
VE13	V22.9.2016	3,7	5,6	3,0	3,9	5,7	5 <i>,</i> 8	3,1	7,4	4,2	6,5	
	Rozdíl IIIII.	0,1	0,0	0,0	0,0	0,1	0,1	0,0	0,3	0,8	0,3	
	Rozdíl IIIIV.	0,0	0,0	0,0	0,1	0,8	0,0	0,0	0,1	0,1	0,0	
	Rozdíl IVV.	0,0	0,0	0,2	0,6	0,2	0,0	0,4	0,6	0,6	0,1	
	Rozdíl IV.	0,2	0,1	0,2	1,5	1,9	0,1	1,3	2,0	2,4	1,7	
	I26.11.2014	1,4	1,5	1,7	1,7	1,4	1,6	1,7	1,7	1,7	1,7	
	II30.3.2015	1,4	2,4	3,5	2,5	1,5	1,6	1,7	1,7	2,0	2,2	
VE14	III21.9.2014	1,4	2,4	3,5	2,5	1,5	1,6	1,8	2,4	3,2	3,2	
VE14	IV30.3.2016	1,5	2,4	3,5	2,5	1,5	1,8	1,8	2,4	4,5	4,4	
	V22.9.2016	1,5	2,4	3,5	2,5	1,5	1,7	1,8	2,5	5,0	4,4	
	Rozdíl IIIII.	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,7	1,2	1,0	

Označení	Datum-		Exte	nzome	tr_A		Extenzometr_B					
	Poloha kotvy	1.0	1.5	2.0	2.5	3.0	1.0	4.0	5.0	6.0	8.0	
	Rozdíl IIIIV.	0,1	0,0	0,0	0,0	0,0	0,2	0,0	0,0	1,3	1,2	
	Rozdíl IVV.	0,0	0,0	0,0	0,0	0,0	-0,1	0,0	0,1	0,5	0,0	
	Rozdíl IV.	0,1	0,9	1,8	0,8	0,1	0,1	0,1	0,8	3,3	2,7	

Na základě výše uvedeného lze tedy konstatovat, že v nadloží chodeb ve výškovém rozsahu použitých extenzometrů 0 až 8 m, za celé sledované období, v oblasti monitorovaných pilířů V1 a V2 je vertikální rozvrstvení hornin zanedbatelné.

Největší deformace chodeb jsou evidovány v bocích a počvě chodeb. Tento fakt je podporován malou pevností uhelné hmoty, ale také skutečností, že na styku strop slojehornina je vyvinuta nevýrazná vrstvička jílovce, která je oddělena na mezivrstevních plochách ohlazovými plochami. Na kontaktu sloj-hornina je tak snížen koeficient tření, což v konečném důsledku snižuje indukované horizontální napětí v ponechaných uhelných pilířích a porušování pilířů tak postupně pokračuje směrem do centra pilířů.

S přihlédnutím k výše uvedeným skutečnostem byl zpracován projekt monitoringu pro monitorovanou lokalitu B v dobývce II (viz. Waclawik et al. 2016b). Součástí monitoringu v dobývce II již tedy není precizní monitoring nadloží chodeb. Monitoring rozvrstvování nadloží chodeb však nadále probíhá pomocí dvouúrovňových, popř. tříúrovňových mechanických lankových extenzometrů (extenzometry, typ TTW 01 a TTW 07 – viz Projekt samostatné svorníkové výztuže - Antoszyk 2012, 2013 a Sembol 2014).

4.1.2 Tenzometrické svorníky

Na chodbách obklopujících monitorovaný pilíř V2 bylo instalováno celkem 11 tenzometrických svorníků SG01 výrobce Golder Associates. Tři skupiny po třech tenzometrických svornících byly instalovány v polovině délek zájmových chodeb (mezi kříži a odbočkami) a dva tenzometrické svorníky byly instalovány v místě odboček. Přesná lokalizace instalovaných tenzometrických svorníků je zřejmá z obr. 4.3. Po nainstalování byly tenzometrické svorníky osazeny měřící elektronikou, která umožnila pravidelný digitální odečet dat.

Tenzometrické svorníky SG01, mají průměr 22 mm a délku 2,4 m a jsou osazeny 9-ti páry tenzometrů. Vzdálenosti jednotlivých čidel od rozhraní důlní dílo – masiv jsou následující: čidlo 1 - 2,2 m; čidlo 2 - 1,95 m; čidlo 3 - 1,7 m; čidlo 4 - 1,45 m; čidlo 5 - 1,2 m, čidlo 6 - 0,95 m; čidlo 7 - 0,70 m; čidlo 8 - 0,45 m a čidlo 9 - 0,2 m.

Tenzometrické svorníky byly instalovány za účelem sledování napěťových a deformačních změn v horninovém masivu, resp. pro monitorování zatížení svorníkové výztuže. V následujících grafech na obrázcích č. 4.4 až 4.13 jsou uvedeny průběhy zatížení tenzometrických svorníků VS1 až VS11. V prezentovaných grafech kladná změna hodnot představuje tahové namáhání svorníkové tyče, záporná pak tlakové namáhání.

Skupina tenzometrických svorníků VS1-VS2-VS3 byla instalována na chodbě V3005 ve staničení 77 m v místě odbočení chodby V300401. Současně je tato skupina tenzometrických svorníků umístěna v přibližné polovině chodby omezující monitorovaný pilíř V2 na jeho jižní straně. Na základě naměřených dat lze konstatovat, že trend a způsob zatěžování tenzometrických svorníků VS1 a VS3 je obdobný. V počátečním období monitoringu byly tenzometrické svorníky VS1 a VS3 ve spodní části (čidla 7, 8) namáhány tahově silou 1 až 2 kN a v horní části (od čidla 5 až 1) namáhány tlakem až 5 kN. Zhruba od poloviny měsíce

dubna, kdy začal být formován sousední (západní) pilíř monitorovaného pilíře V2, je na všech tenzometrech zaznamenaný postupný nárůst osového zatížení. Tento trend nadále pokračoval až do stavu, kdy se všechny čidla dostala do tahového zatížení (cca na konci 05/2015). V dalším období tahové zatížení postupně vzrůstalo až k hodnotám těsně nad 11 kN. Začátkem 9/2015 začalo napětí postupně klesat až k hodnotám kolem 7 kN. Od konce 9/15 do začátku 5/2016 změny napětí oscilovaly jen nepatrně, když rozsah změn byl jen kolem 3 kN. V další období ovšem dochází k postupnému nárůstu tahového zatížení na všech sledovaných čidlech. Maximálního tahového zatížení kolem 14 kN bylo dosaženo na čidlech č. 6 a 7 na konci sledovaného období tedy v 09/2016. Největší tahové osové zatížení bylo tedy zaznamenáno ve střední části svorníku.

Obr. 4.3 Rozmístění tenzometrických svorníků v monitorovací lokalitě A.

Tento průběh zatěžování nadloží chodby V3005 dobře koreluje s jednotlivými stádii porušování monitorovaného pilíře V2. Prudký nárůst zatížení na obou svornících VS1 a VS3 o cca 5 kN v období od 15.5. do 31.5 lze korelovat se stádiem porušování pilíře V2, když 31.5. 2015 došlo k náhlému poklesu poslední zátěžové buňky VSC3, což si vysvětlujeme porušením uhelné hmoty v okolí buňky vlivem postupujícího porušování uhelného pilíře

směrem k jeho středu (těžišti). Následující tahové zatížení 8-11 kN, které bylo dosaženo na čidlech č. 6 a 7 v období 06/2015-08/2015 pravděpodobně souvisí s pokračující porušováním pilíře směrem do jeho centra. Poté v období 10/2015-4/2016 hodnoty zatížení klesají a změny jsou již neznatelné (3 kN), což dobře koreluje s celkovým snížením dynamiky deformací pilíře V2, potvrzených měřeními na horizontálních extenzometrech, konvergenčních profilech aj. Od 5/2016 až do konce posledního sledovaného období (9/2016) byl zaznamenán trendový nárůst tahového zatížení svorníků. Přestože velikosti změn tahového zatížení v uvedeném období jsou relativně malé (cca 7 kN) a měsíční přírůstky deformací monitorovaného pilíře jsou minimální (viz. hodnoty na horizontálních extenzometrech a konvergenčních profilech – kap.4.3) může nárůst zatížení souviset s pokračujícím porušováním pilíře.

Vývoj naměřených hodnot (viz. digitální příloha č.2 - soubor SVA_65_10.csv) na tenzometrech č. F2 až F8 tenzometrického svorníku VS2, ukazují na pravděpodobné jejich poškození již při instalaci, případně na poškození svodné kabeláže svorníku. Z tohoto důvodu nelze považovat data z tenzometrického svorníku VS2 za relevantní a dále interpretovatelná. Navíc od 23.4. 2015 došlo k úplnému přerušení komunikace mezi zbývajícími čidly tenzometrického svorníku a odečítacím zařízením (PDA) a odečet svorníku SV2 byl ukončen. Lze pouze konstatovat, že trend měření na tomto svorníku v počátečním období měření, kdy měření byla v pořádku, vykazoval obdobný průběh jako na svornících VS1 a VS3.

Tenzometrický svorník VS4 byl instalován na chodbě V3005 ve staničení 93 m v místě odbočení chodby V300502, tedy na jihozápadním rohu monitorovaného pilíře V2. Trendově je průběh osového zatížení podobný s tenzometrickými svorníky SV1 a SV3. I zde je zhruba od poloviny měsíce dubna 2015 na všech tenzometrech zaznamenaný postupný nárůst osového zatížení směrem ke kladným hodnotám, tedy k jeho postupnému tahovému zatěžování. I zde tento nárůst, s trendem do tahového zatížení na všech čidlech, můžeme korelovat s formováním sousedního (západního) pilíře monitorovaného pilíře V2. Poté v období 10/2015-4/2016 hodnoty maximální tahového zatížení oscilují kolem 13-15 kN. Výjimkou jsou čidla č. 4 a 5, kde tahové zatížení neustále narůstalo. Podobně jak u předchozí skupiny tenzometrických svorníků, i zde v období od 5/2016 až do konce posledního sledovaného období (9/2016) byl zaznamenán trendový nárůst tahového zatížení svorníků na všech sledovaného období.

Skupina tenzometrických svorníků VS5-VS6-VS7 byla instalována na chodbě V300502 ve staničení 21,5 m tedy v přibližné polovině chodby omezující monitorovaný pilíř V2 na jeho západní straně. Kabeláž tenzometrického svorníku VS5 byla bohužel v průběhu instalace svorníku poškozena. Z tohoto důvodu nebyl svorník VS5 osazen elektronikou a není předmětem dalšího hodnocení. Zaznamenané namáhání tenzometrických svorníků VS6 a VS7 se pohybovalo v rozmezí +11 kN až -20 kN. U tenzometrických svorníků VS6 a VS7 jsou výraznější změny v osovém zatížení zřetelné na začátku monitorovacího období (od instalace do poloviny 04/2015), kdy zatížení na jednotlivých čidlech prudce narůstalo, či klesalo. Posléze, v období 5-9/15 hodnoty oscilovaly bez výraznějších trendových výkyvů a v 10/15 došlo k výraznějšímu poklesu až o 6 kN což může souviset s aktivací deformací vlivem započetí dobývacích prací v dobývce I. Poté v období 10/2015-4/2016 hodnoty zatížení klesají a změny jsou minimální (3 kN). Podobně jako na ostatních tenzometrických svornících, byl i na této skupině svorníků v období od 5/2016 až do konce posledního sledovaného období (9/2016) zaznamenán trendový nárůst tahového zatížení svorníků. Maximálního tahového zatížení 11 kN, tak zde bylo dosaženo na konci sledovaného období.

Tenzometrický svorník VS8 byl instalován na chodbě V3006 ve staničení 97 m v místě odbočení chodby V300502, tedy na severozápadním rohu monitorovaného pilíře V2. Trend

zatížení tenzometrického svorníku VS8 byl na počátku monitorovacího období nepochybně ovlivněn průběhem dobývání. Od instalace svorníku VS8 byly všechna čidla svorníku bez patrných výchylek namáhaná tlakově, silou maximálně -2 kN. Dne 22.2.2015 došlo k prudké změně v zatížení svorníku a svorník přešel po celé své délce do režimu tahového namáhání. Hodnoty tahového namáhání vzrůstají od rozhraní důlní dílo-masiv směrem k horní části svorníku. Tato prudká změna v režimu namáhání svorníku nepochybně souvisí s přiblížením se ražené chodby V300502 k chodbě V3006 a jejím následným probitím do chody V3006 dne 23.2. 2015. V následujícím období tahové zatížení postupně narůstalo, když maximální hodnoty dosahují 45 kN na čidle č.2, tedy v horní části svorníku. Čidlo č. 1 (R1) bylo vyloučeno z hodnocení, neboť údaje na tomto čidle nabývají nerelevantních hodnot (viz. digitální příloha č.2 - soubor SVA 65 10.csv). I zde, podobně jako u předchozích tenzometrických svorníků, v 10/2015 dochází k zřetelnému poklesu osového zatížení o cca 3 kN a posléze až do 4/2016 jen neznatelně osciluje. Podobně jako na ostatních tenzometrických svornících, byl i na této skupině svorníků zaznamenám v období od 5/2016 až do konce posledního sledovaného období (9/2016) zaznamenán trendový nárůst tahového zatížení svorníků.

Skupina tenzometrických svorníků VS9-VS10-VS11 byla instalována na chodbě V3006 ve staničení 81 m tedy v přibližné polovině chodby omezující monitorovaný pilíř V2 na jeho severní straně. Na základě naměřených dat lze konstatovat, že trend a způsob zatěžování tenzometrických svorníků VS9, VS10 a VS11 byl na počátku monitorovacího období, podobně jako u tenzometrického svorníku VS8, výrazně ovlivněn průběhem dobývání. V době přiblížení se ražené chodby V300502 k dílu V3006 (od 22.2. 2015) a následném probití došlo k prudkému poklesu hodnot zatížení resp. k zvýšení tlakového namáhání na jednotlivých čidlech. Prudké změny v monitorovaných hodnotách nepochybně souvisí s dokončením monitorovaného pilíře V2. V dalším období dochází k postupnému nárůstu téměř na všech čidlech, přičemž maximální osové zatížení se pohybuje kolem 40 kN (VS10, čidlo 6). Údaje z tenzometrických svorníků VS10 a VS11 potvrzují generální trend, že nejvyšší osové zatížení svorníku je v jeho střední části (čidlo č. 6 – 9 až 40 kN). Obdobně jako u ostatních svorníků i zde je patrný pokles osového zatížení v 10/2015 a následnému srovnání hodnot zatížení s minimálními změnami v následujícím období. Bohužel díky mechanickému poškození přívodní kabeláže byl ukončen odečet na tenzometrických svornících VS10 dne 25.11. 2015 a VS11 dne 17.12. 2015. Naměřené hodnoty na tenzometrickém svorníků VS9 však potvrzují trendové vývoj zatížení na všech instalovaných tenzometrických svornících instalovaných v oblasti monitorovaného pilíře V2. I zde se v období 10/2015-4/2016 hodnoty zatížení svorníků mění jen neznatelně a následně v období od 5/2016 až do konce posledního sledovaného období (9/2016) byl zaznamenán trendový nárůst tahového zatížení svorníků na všech sledovaných čidlech.

Obr. 4.4 Průběh zatížení tenzometrického svorníku VS1.

Obr. 4.5 Průběh zatížení tenzometrického svorníku VS2.

Obr. 4.6 Průběh zatížení tenzometrického svorníku VS3.

Obr. 4.7 *Průběh zatížení tenzometrického svorníku VS4.*

Obr. 4.8 Průběh zatížení tenzometrického svorníku VS6.

Obr. 4.9 *Průběh zatížení tenzometrického svorníku VS7.*

Obr. 4.10 *Průběh zatížení tenzometrického svorníku VS8.*

Obr. 4.11 Průběh zatížení tenzometrického svorníku VS9.

Obr. 4.12 Průběh zatížení tenzometrického svorníku VS10.

Obr. 4.13 Průběh zatížení tenzometrického svorníku VS11.

Závěrem lze konstatovat, že zatížení tenzometrických svorníků se pohybuje v rozmezí +45 kN (tj. cca 10 % maximálního zatížení na mezi pevnosti použité svorníkové výztuže - 350 kN) až -20 kN. Nejvyšší zatížení svorníků bylo zaznamenáno v jejich střední části, nejčastěji na čidlech č. 6 a 7 umístěných v hloubce 0,95 m resp. 0,7 m od úrovně stropu ražené chodby. Zjištěné maximální osové zatížení na tenzometrických svornících jsou v porovnání s jmenovitou tahovou únosnosti použitých svorníků zanedbatelné.

Trendy osového zatížení tenzometrických svorníků jsou dobře korelovatelné s charakterem porušování monitorovaných pilířů a dobře také odrážejí deformační procesy zachycené jednotlivými monitorovacími prvky (extenzometry, konvergenční měření, CCBM). Prakticky u všech svorníků bylo zachyceno zvyšování osového zatížení až do 9/2015. Posléze (10/2015) dochází k znatelnému poklesu osového zatížení, což může souviset s přírůstkem měsíčních deformací monitorovaných pilířů vlivem započetí dobývacích prací v dobývce I. Poté v období 10/2015-4/2016 jsou změny hodnot zatížení minimální, což dobře koreluje s celkovým snížením dynamiky deformací pilíře V2, potvrzených měřeními na horizontálních extenzometrech, konvergenčních profilech aj. Od 5/2016 až do konce posledního sledovaného období (9/2016) byl však zaznamenán trendový nárůst tahového zatížení na všech instalovaných tenzometrických svornících. Přestože velikosti změn tahového zatížení v uvedeném období jsou relativně malé (cca 8 kN) a měsíční přírůstky deformací monitorovaného pilíře jsou minimální (viz. hodnoty na horizontálních extenzometrech a konvergenčních profilech – kap.4.3) může nárůst zatížení souviset s pokračujícím, byť minimálním, porušováním pilíře.

Nevýrazné (nevýznamné, do jisté míry obdobné) rozdíly v trendech zatěžování nainstalovaných měřících tenzometrických svorníků lze pravděpodobně přičíst na vrub velice pevnému efektivnímu nadloží průvodních hornin a různé míře jeho průhybu (ohybu), který generuje zatěžování nainstalovaných tenzometrických svorníků. Míra průhybu nadložních vrstev je odvislá od míry únosnosti uhelné sloje (pilířů) v místě měření (instalace svorníků) a důlně-geologické situaci (viz. obr. 4.3). Z tohoto obrázku je zřejmé, že geomechanické situace, které mají přímý vliv na míru a způsob průhybu nadloží (poloměr jeho zakřivení, posun neutrální osy prohýbajícího se nadloží, které lze považovat za nosník s různou mírou uchycení, rozsedání vrstev apod.) jsou následovné:

- svorníky VS1 4 byly nainstalovány v místě křížení chodeb a měřící stanice je obklopena ze všech její stran vytvořenými uhelnými pilíři,
- svorníky VS5 7 byly nainstalovány v samostatné chodbě v místě, které je přibližně uprostřed délky západního a východního vytvořeného pilíře, bez přítomnosti křížení chodeb,
- svorník VS8 byl instalován jak v místě křížení chodeb, vytvořené pilíře obklopují měřící z JZ a JV směru, ze severní strany přiléhá tzv. bariérový pilíř,
- svorníky VS9 11 byly nainstalovány v samostatné chodbě v místě, které je přibližně uprostřed délky jižního vytvořeného pilíře bez přítomnosti křížení chodeb, ze severní strany přiléhá tzv. bariérový pilíř.

S přihlédnutím k výše uvedeným skutečnostem byl zpracován projekt monitoringu pro druhou monitorovanou lokalitu B v dobývce II. V rámci monitoringu v dobývce II již nejsou tenzometrické svorníky instalovány. Nicméně monitoring pomocí tenzometrických svorníků bude nadále pokračovat v rámci monitoringu lokality A, když společně s hodnotami z horizontálních extenzometrů, konvergencí, a ze sond CCBM jsou indikátorem stability ponechaných monitorovaných pilířů.

4.2. Sledování napětí in situ - lokalita A

4.2.1 Sledování napětí v nadloží monitorovaných pilířů - lokalita A

Pro stanovení napětí v horninovém masivu v době instalace sondy (počátečního napětí) byly v lokalitě A instalovány dvě sondy CCBO (Staš et al. 2005) v nadložních horninách pilířů V1 a V2. V obr. 4.14 je v půdoryse zobrazeno umístění obou sond. Sondami bylo metodou "overcoring" odečteno a interpretováno počáteční napětí. Po realizaci CCBO měření byly do téměř stejných pozic ve sledovacích vrtech instalovány monitorovací CCBM sondy. Těmi jsou průběžně monitorovány změny napětí nad sledovanými pilíři.

Obr. 4.14 Lokalizace sond CCBO, CCBM určených k monitorování napěťového pole v nadloží ponechaných pilířů, s vyznačením vrtů v lokalitě A (el. 34 a el. 37 značí identifikační čísla elektronik instalovaných v sondách VCCBM1 a VCCBM2)

Výsledky a interpretace hlavních složek napětí před začátkem dobývání resp. v době kdy byla vyražena první chodba obetínající předmětný pilíř, byly uvedeny v předchozích dílčích zprávách (viz Waclawik et al. 2015 a,b)

Obr. 4.15 Grafický vývoj hlavních složek tenzoru napětí na měřicí sondě VCCBM2

Vzhledem k tomu, že z důvodu poruchy na téměř všech tenzometrech sondy, nebyl monitoring sondy VCCBM1 ve sledovaném období prováděn, nejsou již výsledky změn napětí na této sondě součástí této zprávy. Výsledky a interpretace změn napětí na sondě VCCBM1 byly uvedeny v předchozích dílčích zprávách (viz Waclawik et al. 2015 a,b, 2016)

Na základě dalšího hodnocení lze konstatovat, že pro sondu VCCBM2 platí, že počínaje zhruba dnem 5. 2. 2015 k ustálení hodnot všech tří složek tenzoru. Od uvedené doby, tedy ani za poslední sledované období, nebyly registrovány na sondě VCCBM2 žádné výraznější anomálie. I v případě sond VCCBM2 platí tedy výsledky a interpretace uvedené v přechozí etapové zprávě (viz. Waclawik et al. 2016a),

4.2.2 Sondy CCBM v nadloží chodbic - lokalita A

V rámci monitorované lokality A byly instalovány dvě trojice sond CCBM do nadloží vyražených chodbic pilíře V2. S ohledem na litologický vývoj, kdy směrem do nadloží sloje prachovec pozvolně přechází v jemnozrnný až střednězrnný pískovec byly sondy CCBM umístěny v obou lokalitách ve vzdálenostech cca 3, 6 a 9 m nad stropem vyražené chodby. Umístění sond je zřejmé z obr. 4.17.

V následujících obrázcích 4.17 až 4.22 je graficky zobrazen dosavadní průběh změn jednotlivých složek tenzoru napětí. Změny jsou malé, téměř ve všech případech dochází k poklesům hodnot, především v souvislosti s postupným rozvolňováním nadložních vrstev a k jejich deformacím. Celkově lze konstatovat, že průběh napěťových změn v nadloží chodbic odpovídá teoretické představě o průběhu deformací v zóně odlehčení. Její dosah až do 9 m byl také potvrzen verifikovanými numerickými modely (viz předchozí zpráva Waclawik et al. 2016a).

Obr. 4.16 Lokalizace sond CCBM určených k monitorování napěťového pole v nadloží vyražených chodeb v lokalitě A

Další vývoj bude sledován i v souvislosti s pokračujícími, byť minimálními, deformacemi ponechaných pilířů v monitorovací lokalitě A. Vzhledem k velikostem měsíčních přírůstků deformací bylo dohodnuto, že frekvence odečtů zbývajících monitorovacích prvků v lokalitě A bude jednou za měsíc.

Obr. 4.17 Grafický vývoj hlavních složek tenzoru napětí na měřicí sondě VCCBM3

Obr. 4.18 Grafický vývoj hlavních složek tenzoru napětí na měřicí sondě VCCBM4

Obr. 4.19 Grafický vývoj hlavních složek tenzoru napětí na měřicí sondě VCCBM5

Obr. 4.20 Grafický vývoj hlavních složek tenzoru napětí na měřicí sondě VCCBM6

Obr. 4.21 Grafický vývoj hlavních složek tenzoru napětí na měřicí sondě VCCBM7

Obr. 4.22 Grafický vývoj hlavních složek tenzoru napětí na měřicí sondě VCCBM8

4.2.3 Sledování zatěžování monitorovaných uhelných pilířů - lokalita A

Změny zatížení uhelného pilíře byly monitorovány pomocí zátěžových buněk (stress cell). Dle preferencí OKD, a.s. byly zakoupeny a instalovány jednoosé hydraulické zátěžové buňky (borehole hydraulic stress cell) výrobce HMA, Austrálie, s měřícím rozsahem do 60 MPa, Do každého monitorovaného pilíře (V1 a V2) byly instalovány 4 zátěžové buňky. Celkem v rámci monitorované lokality A bylo nainstalováno 8 zátěžových buněk. Rozmístění jednotlivých zátěžových buněk je zřejmé z obr. 4.23.

Obr. 4.23 Lokalizace zátěžových buněk HMA instalovaných ve sloji v lokalitě A.

Vhledem k tomu, že v rámci hodnoceného období (4/2016 – 9/2016) nejsou funkční, resp. neposkytují relevantní data, žádné zátěžové buňky instalované v monitorovací lokalitě A, nebude tento monitorovací prvek již dále hodnocen. Veškerá hodnocení a závěry související s monitoringem pomocí zátěžových buněk jsou uvedeny v etapové zprávě hodnocení monitoringu z října roku 2015 (Waclawik et al. 2015b).

4.3 Deformometrie uhelného pilíře - lokalita A

V lokalitě A – dobývka V bylo nainstalováno postupně 8 horizontálních extenzometrů délky 10 m v polohách – 1.5 m, 3.0 m, 5.0 m, 7.0 m a 10 m v polovině chodeb tvořící monitorované pilíře V1 a V2 (obr. 4.24). Pro účely zhodnocení deformometrie a dynamiky rozvolnění uhelných pilířů jsou vyhodnocovány pouze extenzometry v pilíři V2, tj. VEh2, VEh6, VEh7 a VEh8, neboť instalace těchto extenzometrů proběhla bez výraznější záměny kotevních úrovní a výsledky měření nejsou zkresleny korekcí dat na PC. Ta umožňuje zpětný přepočet hodnot na hodnoty odpovídající korektně instalovaným extenzometrům, nicméně přepočet je zatížen jistou chybou a odchylkou v rámci přepočetných hodnot.

Obr. 4.24 Lokalizace horizontálních extenzometrů v lokalitě A.

Aby bylo možné komplexně hodnotit míru rozvolnění pilíře, je nutné vycházet z grafů, které znázorňují pohyb uhelné hmoty od největší kotvené úrovně, tj. od 10 m, přičemž tuto úroveň chápeme jako fixní bod, viz. kap. 4.3.3. Tento typ grafu je vhodný pro posouzení dynamiky rozvolnění uhelného pilíře, neboť již na první pohled je patrné, jak rychle a k jakým změnám dochází. Data, na základě kterých byly grafy vyhotoveny, vychází z časových řad v intervalu \pm 30 dní. Tímto lze data jednoduše interpretovat tak, že čím blíže jsou si jednotlivé časové řady vůči sobě, tím se jedná o zpomalení rozvolnění uhelného pilíře a naopak. Čím více jsou od sebe časové řady, tím je dynamika rozvolnění větší.

4.3.1 Individuální pozorování

Individuální pozorování spočívá v neustálém vizuálním sledování změn velikosti a tvaru pilířů V1 a V2 všemi pracovníky. Z pozorování je patrné, a potvrzují se tím závěry v rámci I. a II. dílčí zprávy, že pilíř V2 vykazuje větší deformace než pilíř V1. Ty se i nadále projevují vyjížděním pilíře, zátrhy v rozích pilíře i významnějšími trhlinami na pilíři.

4.3.2 Výsledky monitoringu horizontálních extenzometrů (denní odečet)

Grafy v této podkapitole vyjadřují hodnoty získané denním odečtem bez přepočtu ke kotveným úrovním, výsledky tak prezentuje součtový vývoj hodnot bez bližšího zdůvodnění vyvolaných změn. Přesto tento typ grafu odhaluje jakékoliv vzniklé nesoulady a problémy související s instalací a provozem horizontálních extenzometrů, což lze pokládat za největší přínos tohoto grafu. Pro interpretační účely je již méně vhodný, a proto zde nebude hodnoceno rozvolnění uhelného pilíře, ale bude uvedena stručná diagnostika chyb, která může být svým způsobem vhodná pro budoucí instalaci horizontálních extenzometrů ve vybraných pilířích v rámci dobývky II.

4.3.2.1 Monitoring pilíře V1

Kotvy v úrovních 5 a 7 m extenzometru VEh1 (obr. 4.25) byly při instalaci zaměněny a pozice na dataloggeru tak neodpovídají pozicím ve vrtu.

Obr. 4.25 Graf rozvolnění uhelného pilíře – extenzometr VEhl

Z grafu pro extenzometr VEh3 je patrné (obr. 4.26), že došlo k zaseknutí extenzometru společně se záměnou kotevních úrovní. V dílčí zprávě I/2015 byla nastíněna korekce hodnot a grafu, nicméně v srpnu 2015 bylo odečítání hodnot z důvodu neúspěšné reinstalace ukončeno.

Obr. 4.26 Graf rozvolnění uhelného pilíře – extenzometr VEh3.

Kotvy v úrovních 5 a 7 m extenzometru VEh4 (obr. 4.27) byly nesprávně nainstalovány a pozice na dataloggeru neodpovídá pozicím ve vrtu. Rovněž se projevují neodůvodněné skokové změny v období 5/2015-9/2015.

Obr. 4.27 Graf rozvolnění uhelného pilíře – extenzometr VEh4.

Obr. 4.28 Graf rozvolnění uhelného pilíře – extenzometr VEh5.

Graf extenzometru VEh5 (obr. 4.28) opět dokládá chybnou instalaci, navíc je zřejmé nelogické chování kotev v úrovni 5 a 7 m, které je patrně zapříčiněno špatným ukotvením kotev.

4.3.2.2 Monitoring pilíře V2

Jak je z grafu patrné (obr. 4.29), extenzometr je správně instalován, nicméně průběh grafu kotvených úrovní 5,7 a 10 m je natolik identický a přírůstky tak malé, že interpretace tohoto grafu je velmi obtížná a jedná se o názornou ukázku toho, proč je tento typ grafu pro konečné vyhodnocování nevhodný. Skoková změna odpovídající kotvené úrovní 5 m může být interpretována jako chyba v přepisu dat.

Obr. 4.29 Graf rozvolnění uhelného pilíře – extenzometr VEh2.
Na obr. 4.30 je znázorněn průběh rozvolnění uhelného pilíře zachyceném extenzometrem VEh6. Z průběhu jednotlivých křivek je patrné, že extenzometr funguje správně, skokovou změny veličin lze spatřovat v nesprávném přepisu dat.

Obr. 4.30 Graf rozvolnění uhelného pilíře – extenzometr VEh6.

Extenzometr VEh7 (obr. 4.31) funguje správně, nejsou zde patrny chyby měření.

Obr. 4.31 Graf rozvolnění uhelného pilíře – extenzometr VEh7.

Extenzometr VEh8 (obr. 4.32) není korektně nainstalován, dochází k maximálnímu rozvolnění na kotevní úrovni 5 m, zatímco celkové rozvolnění je i nadále k 09/2016 o cca

20 mm menší, jedná se tak o chybu. Nicméně tato chyba byla početně korigována a v kapitole 4.3.3 je provedena interpretace naměřených veličin.

Obr. 4.32 *Graf rozvolnění uhelného pilíře – extenzometr VEh8.*

4.3.3 Výsledky monitoringu horizontálních extenzometrů přepočtené ke kotvené úrovni 10 m

Vzhledem k tomu, že již v kapitole 4.3.2.1 a 4.3.2.2 byly na základě doložených grafů patrny záměny kotevních úrovní vzhledem k pozicím na datalogeru, jsou v této kapitole komentovány výsledky těch extenzometrů, jejichž instalace proběhla korektně bez nutnosti výrazné korekce měřených dat.

4.3.3.1 Monitoring pilíře V1

V pilíři V1 byly instalovány extenzometry VEh1, VEh3, VEh4 a VEh5, přičemž již ze základního grafu (kap. 4.3.2.1) bylo možné diagnostikovat chyby při instalaci. Extenzometr VEh3 již od začátku monitoringu vykazoval zablokování kotevních lanek v odečítací jednotce a při pokusu o opětovnou instalaci byl extenzometr zničen. Extenzometr VEh5 je z pohledu interpretace hodnot stěží analyzovatelný, neboť kromě chybné instalace došlo patrně k chybě při přepisu hodnot do vyhodnocovacích tabulek a tímto byly výsledky zkresleny. Vzhledem k tomu, že v monitorovaném pilíři V1 jsou na konci monitorovaného období (9/2016) funkční pouze dva horizontální extenzometry a přírůstky maximálního rozvrstvení za dané časové období jsou již minimální (VEH1 – 8 mm, VEH4 – 11 mm), není již v rámci předkládané zprávy tento monitorovaný pilíř hodnocen.

4.3.3.2 Monitoring pilíře V2

Přestože je monitoring a odečet hodnot horizontálních extenzometrů po ukončení aktivit v dobývce V a po dohodě s ÚGN prováděn v omezeném rozsahu, bylo nutné z důvodu

zachování přehlednosti grafů přistoupit k redukci časových řad s tím, že byly vytvořeny grafy znázorňující rozvolnění uhelného pilíře v měsíčních časových řadách. Do úvahy byly vzaty hodnoty k poslednímu dni monitorovaného období. Jelikož nebylo možné pokaždé zahrnout hodnoty odpovídající konci měsíce, byly časové řady vybrány podle následujícího klíče:

leden 31.1. únor 28.2. březen 31.3. duben 30.4. květen 31.5. červen 28.6. (-2 dny) červenec 31.7. srpen 31.8. září 29.9. (-1 den) říjen 31.10. listopad 2.12. (+2 dny)prosinec 30.12. (-1 den) leden 2016 3.2. (+3 dny) únor 2016 3.3. (+3 dny) březen 2016 30.3. (-1 den) září 2016 22.9. (konec hodnoceného období)

Obr. 4.33 Graf rozvolnění uhelného pilíře x hloubka kotvy – extenzometr VEh2.

Z grafu na obr. 4.33 je v rámci celého sledovaného období patrné zpomalení rychlosti rozvolnění uhelného pilíře. Zatímco v období 1/2015 – 4/2015 činilo celkové rozvolnění 148 mm, v období 4/2015 – 9/2015 činí dodatečné rozvolnění 79 mm, v období 10/2015 – 3/2016

činí dodatečné rozvolnění 26 mm. V posledním sledovaném období 4/2016 – 9/2016 činí dodatečné rozvolnění 14 mm, tudíž oproti přechozímu hodnocenému období již nedošlo k výraznějšímu zpomalení deformací monitorovaného pilíře. Rozvolnění pilíře je významnějšího charakteru v zóně 1,5 do 5m.

Celkově zde bylo registrováno vůbec největší rozvolnění ze všech extenzometrů (264 mm) a příčinu lze spatřovat ve vytvořeném "zubu" na chodbě V300501, kde dynamika a míra rozvolnění za tímto zubem je větší než před ním. Taktéž se na míře rozvolnění významně podílí vliv úklonu, resp. gravitačních sil.

Obr. 4.34 *Graf rozvolnění uhelného pilíře x hloubka kotvy – extenzometr VEh6.*

Rozvolnění vykazované horizontálním extenzometrem VEh6 (obr. 4.34) opět potvrzuje předpoklady relaxace a zpomalení rozvolnění uhelného pilíře v delším časovém horizontu. Do období 9/2015 činilo celkové rozvolnění 140 mm a v následujícím sledovaném období již pouze 35 mm. Za poslední sledované období (4/2016-9/2016) činí rozvolnění 23 mm a celkové rozvolnění na konci sledovaného období je 192 mm. Maximální zóna rozvolnění je i v tomto případě v zóně od 1,5 do 5 m, přičemž nevýraznějších hodnot nabývá rozvolnění v zóně 1,5-3 m. V rámci extenzometrů instalovaných v pilíři V2 je zde rozvolnění nejmenší, přestože se jednalo o chodbu uprostřed dobývky, kde se očekávalo rozvolnění výraznějšího charakteru.

Obr. 4.35 Graf rozvolnění uhelného pilíře x hloubka kotvy – extenzometr VEh7.

Extenzometr VEh7 (obr. 4.35) vykazuje z extenzometrů instalovaných v pilíři V2 druhé největší rozvolnění, a to 250 mm, nicméně z grafu je patrné, že po prvotním rozvolnění, které první měsíc od instalace extenzometru činilo 80 mm, došlo ke zpomalení (postupné relaxaci), které pak v absolutním vyjádření vyjadřuje průměrný přírůstek 6 mm/měsíc v období 10/2015-03/2016, celkem 31 mm. V posledním hodnoceném období (4/2016-9/2016) činí celkový přírůstek rozvolnění 19 mm. Významná zóna rozvolnění je až do hloubky 5 m do pilíře s tím, že maximální hodnoty jsou registrovány v kotevní úrovni 0 až 1,5 m.

Obr. 4.36 Graf rozvolnění uhelného pilíře x hloubka kotvy – extenzometr VEh8.

Extenzometr VEh8 nebyl korektně nainstalován, kotvené úrovně jsou v pořadí 1-2-3-5-4 namísto 1-2-3-4-5, proto došlo k úpravě hodnot a následně změnám v grafu (obr. 4.36). Ke konci monitorovacího období (22.9.2016) činí rozvolnění cca 237 mm, rozdíl mezi posledními dvěma obdobími činí 21 mm, což odpovídá průměrnému měsíčnímu přírůstku rozvolnění 3,5 mm. Přesněji jsou měsíční přírůstky definovány v kapitole o dynamice uhelného pilíře.

Maximální zóna rozvolnění je do 3 metrů směrem do pilíře, s maximy v zóně 1,5 - 3m.

4.4 Monitorování zatížení instalovaných kotevních prvků - lokalita A

Zatížení instalovaných kotevních prvků je monitorováno pomocí hydraulických dynamometrů Glötzl s měřícím rozsahem do 500 kN, které jsou osazeny na pramencové, případně strunové kotvy. Hydraulické dynamometry jsou instalovány na každém kříži v rámci ponechaných monitorovaných pilířů. Lokalizace instalovaných dynamometrů je zřejmá z obr. 4.36.

Obr. 4.36 Lokalizace dynamometrů v lokalitě A.

Za celou dobu monitorování nedosáhla změna osového zatížení kotev, na kterých jsou instalovány hydraulické dynamometry významnějších hodnot (viz. tab. 4.2). Na dynamometrech VD5, VD6 dokonce změna osového zatížení kotev nepřesáhla původní (inicializační) napětí (viz. digitální příloha č. 4). I na ostatních dynamometrech (VD1, VD2, VD3, VD4 a VD7) je změna osového zatížení zanedbatelná a vzhledem k manuálnímu způsobu odečtu, rozpětí měřícího manometru (0-500 KN) a umístění manometru u stropu chodby, jsou zaznamenané změny na hranici přesnosti odečtu. Největší změny (10-15 KN) byly zaznamenány v prvním hodnotícím období (do 30.3. 2015), tedy v době formování uhelných pilířů, kdy byly taky zaznamenány deformační změny s největší dynamikou. Přesto lze změny v zatížení považovat za zanedbatelné.

Dynamometr č. datum-zatížení [KN]	VD1	VD2	VD3	VD4	VD5	VD6	VD7
Inicializační předpětí (I.)	30	30	45	25	25	10	70
II_30.3. 2015	30	30	50	25	25	10	85
III_21.9.2015	35	40	60	25	25	10	100
IV_30.3.2016	30	40	55	30	25	10	100
V_22.9.2016	30	40	60	30	25	10	100
Rozdíl IIIII.	5	10	10	0	0	0	15
Rozdíl IIIIV.	-5	0	-5	5	0	0	0
Rozdíl IVV.	0	0	5	0	0	0	0
Rozdíl IV. (celkové zatížení)	0	10	15	5	0	0	30

Tab. 4.2 Zatížení lanových kotev osazených hydraulickými dynamometry

Podobně jako u vertikálních extenzometrů, lze i zde vyvodit, že v místě křížení chodeb nedochází k význačnějším deformacím a průhybu stropu chodby, zatížení je tak rovnoměrně rozloženo na všechny kotevní prvky instalované v místě křížení chodeb.

Observace na instalovaných dynamometrech bude v rámci monitorované lokality A v dobývce V probíhat nadále. S přihlédnutím k výše uvedeným skutečnostem neprobíhá v lokalitě B precizní monitoring osového zatížení lanových kotev.

4.5 Měření deformací chodeb - lokalita A

4.5.1 Konvergenční měření - lokalita A

Na chodbách v monitorovací lokalitě A bylo instalováno 9 pozorovacích konvergenčních stanic (viz obr. 4.37) Konvergenční stanice (profily) jsou umístěny přibližně v polovině ponechaných monitorovaných pilířů a v jednom případě na kříži chodeb (V3003xV3005). Pro účely měření konvergence je využito stabilně instalovaných ocelových svorníků ve stropě díla a v bocích chodby o délce 2,4 m. Konvergenční stanice (profily) sestávají z 3 svorníků ve stropě a dvou dvojic svorníků v bocích díla. Jednotlivé konvergenční profily zaměřují odborní pracovníci OMG pomocí totální stanice. Od začátku konvergenčních měření byly sledovány pouze pohyby bočních svorníků, neboť z důvodu pohybu kolových mechanismů nebylo možné řádně stabilizovat body v počvě důlního díla. V místech kde to provozní podmínky dovolily, byly posléze stabilizovány měřící svorníky i do počvy chodeb. Stabilizované body (svorníky) byly do počvy chodeb přidány u profilů č. 3 (první měření 23.4. 2015), č. 8 (první měření 5.6. 2015) a č. 9 (první měření 17.4. 2015). Nicméně díky velkým a nerovnoměrným deformacím počvy bylo na několika bodech měření ukončeno (viz tab. 4.6, 4.12 a 4.14).

Obr. 4.37 Umístění konvergenčních profilů v lokalitě A.

Níže uvedené konvergenční profily byly poskytnuty OMG Důlního závodu 2. U zobrazených profilů jsou pohyby bodů vůči chodbě pro lepší názornost cca 12-ti násobně zvětšeny. Při měření se nepředpokládá výraznější pohyb bodů stabilizovaných ve stropě díla. Minimální pohyby stropu chodeb potvrzují měření na vertikálních extenzometrech, které doposud zaznamenaly pohyby stropu v řádech prvních milimetrů.

V níže uvedených tabulkách jsou uvedeny velikosti horizontálních posunů bodů stabilizovaných v bocích díla. Z těchto hodnot následně rezultují změny šířky díla, dynamika boční deformace chodby v čase a hodnota celkového přetvoření. Vzhledem k tomu, že byly zaměřovány vždy dvě dvojice svorníků stabilizovaných v bocích díla, je možné tyto veličiny samostatně hodnotit ve dvou výškových úrovních (šířka 1 ve spodní části profilu a šířka 2 v horní části profilu díla). Díky metodě měření lze také samostatně hodnotit deformace jednotlivých boků důlního díla.

Pro posouzení stability ponechaných uhelných pilířů je také důležitá vertikální deformacekonvergence chodeb. Z důvodů pohybů kolových mechanismů byly v počvě díla stabilizovány body pouze omezeně na profilech č. 3, 8 a 9 a měření vertikálních konvergencí tak bylo započato až od 04/2015.

Obr. 4.38 Sledování pohybů bodů na konvergenčním profilu č. 1 na díle V3005, st. 31 m

Horizontální posu				hadu		změna			změna	
Horizontalni posun bodu			šířka 1	š.1	Přetvoření	šířka 2	š.2	Přetvoření		
Datum	[mm]			[mm]	[mm]	1	[cm]	[mm]	2	
mereni					1/1-		[mm/m]	1/2-		[mm/m]
	1/1	1/1 1/7 1/2 1/6		1/7	1/1+1/7		1/6	1/2+1/6		
4.2.2015	0	0	0	0	6213	0	0,0	5852	0	0,0

 Tab. 4.3 Horizontální posuny bodů v konvergenčním profilu č. 1

	Horizontální posun bodu					změna			změna	
Datum	110112	Im]	ml	bouu	šířka 1	š.1	Přetvoření	šířka 2	š.2	Přetvoření
měření		[]		[mm]	[mm]	1	[cm]	[mm]	2
	a /a	4 /7	4 /2	4.10	1/1-	4/4 4/7	[mm/m]	1/2-	1/2.1/6	[mm/m]
	1/1	1//	1/2	1/6	1//	1/1+1//		1/6	1/2+1/6	
12.2.2015	15	18	12	21	6180	-33	5,3	5819	-33	5,6
18.2.2015	30	27	16	32	6156	-57	9,2	5804	-48	8,2
27.2.2015	54	27	47	32	6132	-81	13,0	5773	-79	13,5
6.3.2015	61	30	53	52	6122	-91	14,6	5747	-105	17,9
12.3.2015	60	56	52	61	6097	-116	18,7	5739	-113	19,3
20.3.2015	68	64	61	71	6081	-132	21,2	5720	-132	22,6
25.3.2015	78	63	71	70	6072	-141	22,7	5711	-141	24,1
1.4.2015	88	72	85	84	6053	-160	25,8	5683	-169	28,8
9.4.2015	91	80	86	89	6042	-171	27,5	5677	-175	30,0
17.4.2015	95	86	91	97	6032	-181	29,1	5664	-188	32,1
23.4.2015	102	93	98	108	6018	-195	31,4	5646	-206	35,1
27.4.2015	112	90	106	105	6011	-202	32,5	5641	-211	36,0
5.5.2015	120	99	112	114	5994	-219	35,2	5626	-226	38,6
14.5.2015	128	105	119	121	5980	-233	37,5	5612	-240	41,0
5.6.2015	143	119	134	137	5951	-262	42,1	5581	-271	46,3
17.6.2015	154	125	143	142	5934	-279	44,9	5567	-285	48,8
14.7.2015	173	138	161	159	5902	-311	50,0	5532	-320	54,6
11.8.2015	190	155	176	178	5868	-345	55,5	5498	-354	60,5
15.9.2015	207	169	193	194	5837	-376	60,4	5465	-387	66,1
7.10.2015	226	238	214	207	5749	-464	74,7	5431	-421	72,0
4.11.2015	241	257	226	225	5716	-497	80,0	5401	-451	77,0
10.12.2015	261	276	242	246	5676	-537	86,4	5364	-488	83,4
11.1.2016	274	290	254	261	5650	-563	90,7	5338	-514	87,9
18.2.2016	289	304	268	278	5620	-593	95,4	5307	-545	93,2
12.3.2016	303	312	280	287	5598	-615	99,0	5285	-567	96,8
19.5.2016	322	330	300	309	5561	-652	105,0	5243	-609	104,0
15.7.2016	345	345	319	323	5523	-690	111,0	5210	-642	109,7
23.9.2016	361	358	336	336	5494	-719	115,8	5180	-672	114,8

Konvergenční profil č. 1 je stabilizován na křížení chodeb V3005 a V3003. Deformace profilu jsou rovnoměrné, čemuž odpovídají téměř stejné změny šířek ve spodní (šířka 1) i vrchní části (šířka 2) sledovaného profilu. Za celou dobu sledování dosáhla změna šířky 1 - 719 mm a změna šířky 2 -672 mm, což odpovídá hodnotě přetvoření 115,8 mm/m resp. 114,8 mm/m. Deformační změny ve vztahu k sledovanému období se zřetelně zpomalily. Zatímco po prvním sledovaném měsíci změny šířky dosahovaly téměř 80 mm, v následujících třech měsících 60 mm, tak na konci sledovaného období se již pohybovala pouze kolem 15 mm. Za poslední sledované období (4/2016-9/2016) ovšem nedošlo k výraznému zpomalení měsíčních přírustků deformací, neboť měsíční změny šířek se pohybovaly v rozmezí 15-21mm.

Obr. 4.39 Sledování pohybů bodů na konvergenčním profilu č. 2 na díle V3005, st. 51 m

					1 101110	- <u>serieriin</u>	<i>i projita</i> e.	-	~	
	Horiz	ontální	posun l	odu	×/×1 4	zmena		×/×I 0	zmena	
Datum		[m	m]		sirka 1	s.1	Přetvoření	sirka 2	s.2	Přetvoření
měření					[mm]	[mm]	1	[cm]	[mm]	2
					2/1-		[mm/m]	2/2-		[mm/m]
	2/1	2/7	2/2	2/6	2/7	2/1+2/7		2/6	2/2+2/6	
4.2.2015	0	0	0	0	5325	0	0,0	5265	0	0,0
12.2.2015	4	3	7	33	5318	-7	1,3	5225	-40	7,6
18.2.2015	9	4	13	33	5312	-13	2,4	5219	-46	8,7
27.2.2015	16	8	20	33	5301	-24	4,5	5212	-53	10,1
6.3.2015	16	7	21	36	5302	-23	4,3	5208	-57	10,8
12.3.2015	20	8	24	37	5297	-28	5,3	5204	-61	11,6
20.3.2015	22	9	27	38	5294	-31	5,8	5200	-65	12,3
25.3.2015	24	11	28	39	5290	-35	6,6	5198	-67	12,7
1.4.2015	26	10	30	40	5288	-37	6,9	5195	-70	13,3
9.4.2015	26	11	31	40	5288	-37	7,0	5195	-70	13,4
17.4.2015	26	10	33	40	5288	-37	6,9	5193	-72	13,7
23.4.2015	26	11	37	40	5287	-38	7,1	5188	-77	14,6
27.4.2015	26	13	38	40	5286	-39	7,4	5187	-78	14,8
5.5.2015	26	14	39	42	5284	-41	7,6	5184	-81	15,4
14.5.2015	26	14	42	44	5284	-41	7,6	5180	-85	16,2
5.6.2015	44	17	51	44	5264	-61	11,4	5170	-95	18,0
17.6.2015	45	15	52	46	5264	-61	11,4	5167	-98	18,6

Tab. 4.4 Horizontální posuny bodů v konvergenčním profilu č. 2

	Horizontální posun bodu					změna			změna	
Datum	HOUT	ontaini m	posuii i ml	Jouu	šířka 1	š.1	Přetvoření	šířka 2	š.2	Přetvoření
Datum měření		[11]]		[mm]	[mm]	1	[cm]	[mm]	2
mereni					2/1-		[mm/m]	2/2-		[mm/m]
	2/1	2/7	2/2	2/6	2/7	2/1+2/7		2/6	2/2+2/6	
14.7.2015	51	16	56	47	5258	-67	12,6	5162	-103	19,6
11.8.2015	57	22	64	49	5245	-80	14,9	5152	-113	21,5
15.9.2015	64	23	71	51	5237	-88	16,5	5143	-122	23,1
7.10.2015	68	26	76	52	5231	-94	17,6	5137	-128	24,3
4.11.2015	73	28	79	54	5225	-100	18,9	5131	-134	25,4
10.12.2015	78	28	83	54	5219	-106	19,9	5128	-137	26,1
11.1.2016	81	30	89	56	5214	-111	20,9	5120	-145	27,5
18.2.2016	85	31	93	57	5209	-116	21,8	5115	-150	28,6
12.3.2016	89	32	97	58	5204	-121	22,6	5110	-155	29,5
19.5.2016	95	34	103	62	5196	-129	24,2	5100	-165	31,3
15.7.2016	100	36	107	64	5189	-136	25,5	5094	-171	32,5
23.9.2016	105	40	112	64	5180	-145	27,3	5088	-177	33,6

Konvergenční profil č. 2 je stabilizován na chodbě V3005 ve staničení 51 m za účelem sledování deformací monitorovaného pilíře V1. Deformační změny na sledovaném profilu č. 2 jsou nejmenší ze všech sledovaných konvergenčních profilů. Tyto malé změny poměrně dobře korelují s nízkými hodnotami na horizontálním extenzometru VEh1, když celkové rozvolnění na VEh1 činilo na konci sledovaného období (9/2016) necelých 57 mm. Za celou dobu observace dosáhla změna šířky 1 -145 mm a změna šířky 2 -177 mm, což odpovídá hodnotě přetvoření pouze 27,3 mm/m resp. 33,6 mm/m. Rychlost deformačních změn ve vztahu k sledovanému období má klesající tendenci, když se měsíční přírůstky za sledovaných 19 měsíců zmenšily téměř osminásobně, avšak za poslední dvě sledované období (10/15-3/16 a 4/2016-9/2016) se téměř nezměnily a měsíční změny v šířce sledované chodby činí cca 5 mm.

Obr. 4.40 Sledování pohybů bodů na konvergenčním profilu č. 3 na díle V300501, st. 21 m

1 ab. 4.5 110	112,01110	uni po	suny t	ouu v	KUNVETE	genenim p	<i>Stojiu</i> c. 5		1	
	Horiz	ontální	posun	bodu	¥/¥I	změna	5×. × /	¥/¥l 0	změna	5×. × /
Datum		[m	m]		sirka 1	S.1	Pretvoreni	sirka 2	S.2	Pretvoreni
měření		-	-	1	[mm]	[mm]	1	[cm]	[mm]	2
					3/1-		[mm/m]	3/2-		[mm/m]
	3/1	3/7	3/2	3/6	3/7	3/1+3/7		3/6	3/2+3/6	
4.2.2015	0	0	0	0	4749	0	0,0	4913	0	0,0
12.2.2015	21	27	16	16	4701	-48	10,1	4881	-32	6,5
18.2.2015	42	42	33	25	4665	-84	17,7	4855	-58	11,8
27.2.2015	85	74	68	46	4590	-159	33,5	4799	-114	23,2
6.3.2015	96	79	77	48	4574	-175	36,8	4788	-125	25,4
12.3.2015	118	89	96	55	4542	-207	43,6	4762	-151	30,7
20.3.2015	134	101	108	64	4514	-235	49,5	4741	-172	35,0
25.3.2015	143	106	118	67	4500	-249	52,4	4728	-185	37,7
1.4.2015	136	113	129	72	4501	-248	52,3	4712	-201	40,9
9.4.2015	167	125	137	82	4457	-292	61,6	4694	-219	44,5
17.4.2015	178	130	147	83	4441	-308	64,8	4683	-230	46,9
23.4.2015	195	130	162	83	4423	-326	68,6	4668	-245	49,8
27.4.2015	203	135	171	87	4410	-339	71,3	4655	-258	52,4
5.5.2015	217	146	181	94	4386	-363	76,5	4638	-275	56,0
14.5.2015	231	153	194	97	4366	-383	80,7	4622	-291	59,1
5.6.2015	252	167	212	106	4330	-419	88,2	4595	-318	64,8
17.6.2015	265	172	223	111	4312	-437	92,1	4579	-334	68,0

 Tab. 4.5
 Horizontální posuny bodů v konvergenčním profilu č. 3

	Horizontální posun bodu					změna			změna	
Datum		ontaini	posun ml	bodu	šířka 1	š.1	Přetvoření	šířka 2	š.2	Přetvoření
Datum		[111	mj		[mm]	[mm]	1	[cm]	[mm]	2
merem					3/1-		[mm/m]	3/2-		[mm/m]
	3/1	3/7	3/2	3/6	3/7	3/1+3/7		3/6	3/2+3/6	
14.7.2015	295	189	250	122	4265	-484	102,0	4541	-372	75,6
11.8.2015	321	205	271	133	4223	-526	110,7	4509	-404	82,3
15.9.2015	340	219	287	141	4191	-558	117,5	4485	-428	87,1
7.10.2015	355	228	301	147	4166	-583	122,7	4465	-448	91,3
4.11.2015	368	240	312	156	4141	-608	128,0	4445	-468	95,3
10.12.2015	388	247	330	161	4114	-635	133,7	4422	-491	99,9
11.1.2016	396	254	337	166	4099	-650	136,9	4410	-503	102,5
18.2.2016	405	262	348	173	4082	-667	140,4	4392	-521	106,0
12.3.2016	416	269	354	176	4064	-685	144,1	4383	-530	107,9
19.5.2016	432	279	367	183	4038	-711	149,8	4363	-550	111,9
15.7.2016	443	289	377	190	4017	-732	154,1	4347	-566	115,3
23.9.2016	454	297	384	197	3998	-751	158,2	4332	-581	118,2

Konvergenční profil č. 3 je stabilizován na chodbě V300501 ve staničení 21 m za účelem sledování deformací monitorovaného pilíře V2. Deformace profilu jsou nerovnoměrné, větší deformace jsou sledovány na bodech stabilizovaných v levém boku díla. Za celou dobu sledování dosáhla změna šířky 1 -751mm a změna šířky 2 -581 mm, což odpovídá hodnotě přetvoření téměř 158,2 mm/m resp. 118,2 mm/m. Deformační změny na sledovaném profilu č. 3 jsou největší ze všech sledovaných konvergenčních profilů, což také koresponduje s deformačními změnami pilíře V2 (viz. celkové rozvolnění na horizontálním extenzometru VEh2 přesahuje 260 mm). Rychlost deformačních změn ve vztahu k sledovanému období má klesající tendenci, když se měsíční přírůstky za sledovaných devatenáct měsíců zmenšily téměř desetinásobně. Nutno však podotknout, že i zde za poslední sledované období (4/2016-9/2016) nedošlo k výraznému zpomalení měsíčních přírustků deformací, neboť měsíční změny šířek se pohybovaly v rozmezí 7-12 mm.

Od poloviny dubna započalo na konvergenčním profilu č. 3 také sledování vertikálních deformací (viz. tab. 4.6). Vertikální změny chodby jsou značně proměnlivé, což nepochybně souvisí s nerovnoměrným bubřením počvy. Nerovnoměrnost deformací v počvě tak znemožnila dlouhodobé sledování vertikálních konvergencí díla a od 18.2. 2016 byl zaměřován pouze jediný stabilizovaný bod (svorník).

Datum	verti bo	kální po: du [mm	sun]	výška 1 [mm]	výška 2 [mm]	výška 3 [mm]
mereni				3/35-		
	3/3S	3/4S	3/5S	3/3	3/4S-3/4	3/5S-3/5
17.4.2015	0	0	0	2545	2295	2237
23.4.2015	5	6	8	2540	2289	2229
27.4.2015	7	11	12	2538	2284	2225
5.5.2015	9	15	17	2536	2280	2220
14.5.2015	9	18	23	2536	2277	2214
5.6.2015	6	24	35	2539	2271	2202

Tab. 4.6 Vertikální posuny bodů v konvergenčním profilu č. 3

Datum	verti bc	kální po: odu [mm	sun]	výška 1 [mm]	výška 2 [mm]	výška 3 [mm]
mereni				3/35-	_ / / .	- / /
	3/3S	3/4S	3/55	3/3	3/4S-3/4	3/5S-3/5
17.6.2015	4	24	40	2541	2271	2197
14.7.2015	-6	27	54	2551	2268	2183
11.8.2015	-15	36	64	2560	2259	2173
15.9.2015	nem.*	40	77	nem.*	2255	2160
7.10.2015	nem.*	43	84	nem.*	2252	2153
4.11.2015	nem.*	42	91	nem.*	2253	2146
10.12.2015	nem.*	44	100	nem.*	2251	2137
11.1.2016	nem.*	45	108	nem.*	2250	2129
18.2.2016	nem.*	nem.*	112	nem.*	nem.*	2125
12.3.2016	nem.*	nem.*	118	nem.*	nem.*	2119
19.5.2016	nem.*	nem.*	128	nem.*	nem.*	2109
15.7.2016	nem.*	nem.*	135	nem.*	nem.*	2102
23.9.2016	nem.*	nem.*	144	nem.*	nem.*	2093

Obr. 4.41 Sledování pohybů bodů na konvergenčním profilu č. 4 na díle V3003, st. 116 m

						změna	v		změna	
Datum	Horizontální po	sun bo	odu [r	nm]	šířka 1	š.1	Přetvoření	šířka 2	š.2	Přetvoření
měření					[mm]	[mm]	1	[cm]	[mm]	2
merem	. (.				4/1-		[mm/m]	4/2-		[mm/m]
	4/1	4/7	4/2	4/6	4/7	4/1+4/7		4/6	4/2+4/6	
4.2.2015	0	0	0	0	5217	0	0,0	5894	0	0,0
12.2.2015	33	15	28	11	5169	-48	9,2	5855	-39	6,6
18.2.2015	45	31	36	23	5141	-76	14,6	5835	-59	10,0
27.2.2015	67	48	54	38	5102	-115	22,0	5802	-92	15,6
6.3.2015	71	52	59	40	5094	-123	23,6	5795	-99	16,8
12.3.2015	82	57	66	45	5078	-139	26,6	5783	-111	18,8
20.3.2015	89	71	70	57	5057	-160	30,7	5767	-127	21,5
25.3.2015	97	74	77	59	5046	-171	32,8	5758	-136	23,1
1.4.2015	103	82	83	65	5032	-185	35,5	5746	-148	25,1
9.4.2015	113	87	91	69	5017	-200	38,4	5734	-160	27,2
17.4.2015	121	88	99	70	5009	-208	39,9	5725	-169	28,7
23.4.2015	118	102	94	84	4996	-221	42,3	5716	-178	30,3
27.4.2015	137	91	112	73	4989	-228	43,8	5709	-185	31,3
5.5.2015	133	108	108	87	4976	-241	46,2	5699	-195	33,1
14.5.2015	142	111	113	91	4963	-254	48,6	5690	-204	34,7
5.6.2015	156	125	125	102	4935	-282	54,0	5666	-228	38,6
17.6.2015	162	133	130	108	4922	-295	56,5	5656	-238	40,4
14.7.2015	178	148	142	121	4891	-326	62,5	5631	-263	44,7
11.8.2015	192	163	153	134	4862	-355	68,0	5607	-287	48,7
15.9.2015	202	182	161	152	4833	-384	73,7	5582	-312	53,0
7.10.2015	215	184	173	152	4817	-400	76,6	5568	-326	55,3
4.11.2015	223	208	179	173	4786	-431	82,5	5542	-352	59,8
10.12.2015	236	226	191	188	4755	-462	88,5	5515	-379	64,3
11.1.2016	244	239	197	199	4734	-483	92,6	5498	-396	67,2
18.2.2016	258	255	210	215	4705	-512	98,2	5469	-425	72,1
12.3.2016	268	256	217	215	4693	-524	100,4	5462	-432	73,3
19.5.2016	278	277	227	234	4662	-555	106,3	5433	-461	78,3
15.7.2016	Chybné měření									
23.9.2016	297	301	242	257	4619	-598	114,7	5395	-499	84,6

Tab. 4.7 Horizontální posuny bodů v konvergenčním profilu č.4

Konvergenční profil č. 4 je stabilizován na chodbě V3003 ve staničení 116 m za účelem sledování deformací monitorovaného pilíře V1. Za celou dobu sledování dosáhla změna šířky 1 -598 mm a změna šířky 2 -499 mm, což odpovídá hodnotě přetvoření 100,4 mm/m resp. 73,3 mm/m. I na tomto konvergenčním profilu deformační změny ve vztahu k sledovanému období se zřetelně zpomalují. Zatímco po prvním sledovaném měsíci přesáhla průměrná změna šířky 100 mm, v následujících třech měsících dosahovala už jen 50 mm, tak na konci sledovaného období (po devatenácti měsících) se již pohybovala kolem 10 mm. Měsíční přírůstky se za sledovaných devatenáct měsíců zmenšily víc jak desetinásobně. Nutno však podotknout, že i zde za poslední sledované období (4/2016-9/2016) nedošlo k výraznému zpomalení měsíčních přírustků deformací, neboť měsíční změny šířek se pohybovaly v rozmezí 9-15 mm.

Obr. 4.42 Sledování pohybů bodů na konvergenčním profilu č. 5 na díle V3004, st. 90 m

					1 101110	' genennin	<i>i pi ojitit c.</i>	2	~	
	Horiz	ontální	posun	bodu		zména			zména	
Datum		[m	ml		šířka 1	š.1	Přetvoření	šířka 2	š.2	Přetvoření
měření		[]		[mm]	[mm]	1	[cm]	[mm]	2
merem					5/1-		[mm/m]	5/2-		[mm/m]
	5/1	5/7	5/2	5/6	5/7	5/1+5/7		5/6	5/2+5/6	
4.2.2015	0	0	0	0	5152	0	0,0	5530	0	0,0
12.2.2015	17	28	18	57	5107	-45	8,7	5455	-75	13,6
18.2.2015	21	28	21	73	5103	-49	9,5	5436	-94	17,0
27.2.2015	30	70	32	100	5052	-100	19,4	5398	-132	23,9
6.3.2015	31	67	34	103	5054	-98	19,0	5393	-137	24,8
12.3.2015	36	88	40	115	5028	-124	24,1	5375	-155	28,0
20.3.2015	39	101	43	126	5012	-140	27,2	5361	-169	30,6
25.3.2015	43	97	47	130	5012	-140	27,2	5353	-177	32,0
1.4.2015	47	117	52	138	4988	-164	31,9	5340	-190	34,3
9.4.2015	47	129	52	147	4976	-176	34,2	5330	-200	36,1
17.4.2015	55	129	58	149	4968	-184	35,6	5323	-207	37,4
23.4.2015	56	139	61	156	4957	-195	37,8	5313	-217	39,3
27.4.2015	58	141	65	159	4953	-199	38,7	5307	-223	40,4
5.5.2015	59	155	65	171	4937	-215	41,7	5295	-235	42,5
14.5.2015	63	161	70	175	4928	-224	43,5	5284	-246	44,5
5.6.2015	70	177	78	190	4905	-247	47,9	5261	-269	48,6
17.6.2015	73	185	83	197	4895	-257	50,0	5250	-280	50,6

Tab. 4.8 Horizontální posuny bodů v konvergenčním profilu č. 5

	Horizontální posun bodu					změna			změna	
Datum		ontaini m	posun ml	bouu	šířka 1	š.1	Přetvoření	šířka 2	š.2	Přetvoření
Datum		[111			[mm]	[mm]	1	[cm]	[mm]	2
mereni					5/1-		[mm/m]	5/2-		[mm/m]
	5/1	5/7	5/2	5/6	5/7	5/1+5/7		5/6	5/2+5/6	
14.7.2015	83	201	96	210	4867	-285	55,3	5224	-306	55,4
11.8.2015	89	221	103	228	4842	-310	60,1	5199	-331	59,9
15.9.2015	98	239	114	244	4814	-338	65,6	5171	-359	64,8
7.10.2015	103	249	119	251	4800	-352	68,3	5159	-371	67,0
4.11.2015	110	259	128	259	4782	-370	71,7	5143	-387	70,0
10.12.2015	113	275	133	274	4764	-388	75,3	5123	-407	73,6
11.1.2016	118	276	136	283	4758	-394	76,5	5111	-419	75,8
18.2.2016	123	291	145	293	4738	-414	80,4	5092	-438	79,1
12.3.2016	126	299	146	299	4727	-425	82,6	5084	-446	80,6
19.5.2016	135	317	159	314	4700	-452	87,7	5057	-473	85,5
15.7.2016	140	334	165	323	4678	-474	91,9	5042	-488	88,2
23.9.2016	146	346	171	332	4660	-492	95,5	5027	-503	91,0

Konvergenční profil č. 5 je stabilizován na chodbě V3004 ve staničení 90 m za účelem sledování deformací monitorovaného pilíře V1. Deformace profilu jsou nerovnoměrné, větší deformace jsou zjištěny na bodech stabilizovaných v pravém boku díla. Za celou dobu sledování dosáhla změna šířky 1 -492 mm a změna šířky 2 -503 mm, což odpovídá hodnotě přetvoření 95,5 mm/m resp. 91,0 mm/m. Rychlost deformačních změn ve vztahu k sledovanému období má klesající tendenci. Zatímco po prvním sledovaném měsíci přesáhla průměrná změna šířky 115 mm, v následujících třech měsících dosahovala už necelých 50 mm, tak na konci sledovaného období (po devatenácti měsících) již dosahovala cca 10 mm. Měsíční přírůstky se za sledovaných devatenáct měsíců zmenšily víc jak desetinásobně. I na tomto sledovaném profilu se však za poslední sledované období (4/2016-9/2016) měsíční přírustky deformací výrazně nezpomalily a měsíční změny šířek se pohybovaly v rozmezí 8-13 mm.

Obr. 4.43 Sledování pohybů bodů na konvergenčním profilu č. 6 na díle V3005, st. 83 m

	10112,01	iiaiiii	positify	ooun	v nonve	' gententin	<i>i projita</i> e.	0		۰ ۱
	Hori	zontálni	ínosun	bodu		změna			změna	
Datum		[m]	ml		šířka 1	š.1	Přetvoření	šířka 2	š.2	Přetvoření
měření		[]	1	[mm]	[mm]	1	[cm]	[mm]	2
merem					6/1-		[mm/m]	6/2-		[mm/m]
	6/1	6/7	6/2	6/6	6/7	6/1+6/7		6/6	6/2+6/6	
27.2.2015	0	0	0	0	4891	0	0,0	4788	0	0,0
6.3.2015	5	11	7	9	4875	-16	3,3	4772	-16	3,3
12.3.2015	8	39	16	33	4844	-47	9,6	4739	-49	10,2
20.3.2015	17	59	18	51	4815	-76	15,5	4719	-69	14,4
25.3.2015	20	79	22	60	4792	-99	20,2	4706	-82	17,1
1.4.2015	23	87	24	76	4781	-110	22,5	4688	-100	20,9
9.4.2015	25	99	30	87	4766	-125	25,5	4671	-117	24,5
17.4.2015	31	107	30	98	4753	-138	28,3	4660	-128	26,8
23.4.2015	29	117	33	111	4745	-146	29,9	4644	-144	30,1
27.4.2015	29	118	35	120	4744	-147	30,1	4633	-155	32,4
5.5.2015	29	133	38	135	4729	-162	33,2	4614	-174	36,3
14.5.2015	35	147	43	146	4709	-182	37,2	4599	-189	39,5
5.6.2015	43	173	47	168	4675	-216	44,1	4573	-215	44,9
17.6.2015	43	189	54	183	4660	-231	47,3	4550	-238	49,7
14.7.2015	53	225	63	218	4613	-278	56,9	4508	-280	58,5
11.8.2015	51	253	68	243	4587	-304	62,2	4477	-311	64,9
15.9.2015	62	280	70	267	4549	-342	69,9	4451	-337	70,5

Tab. 4.9 Horizontální posuny bodů v konvergenčním profilu č. 6

	Horizontální posun bodu					změna			změna	
Datum	HOL	20main m	i posun	bouu	šířka 1	š.1	Přetvoření	šířka 2	š.2	Přetvoření
Datum		[11			[mm]	[mm]	1	[cm]	[mm]	2
merem					6/1-		[mm/m]	6/2-		[mm/m]
	6/1	6/7	6/2	6/6	6/7	6/1+6/7		6/6	6/2+6/6	
7.10.2015	66	303	76	292	4522	-369	75,3	4419	-369	77,0
4.11.2015	64	316	84	307	4511	-380	77,8	4397	-391	81,6
10.12.2015	72	333	85	324	4486	-405	82,9	4379	-409	85,4
11.1.2016	75	344	91	336	4471	-420	85,9	4361	-427	89,1
18.2.2016	79	359	91	350	4453	-438	89,5	4347	-441	92,1
12.3.2016	81	368	93	358	4442	-449	91,8	4337	-451	94,1
19.5.2016	85	386	97	378	4419	-472	96,5	4313	-475	99,2
15.7.2016	88	400	102	392	4403	-488	99,8	4295	-493	103,0
23.9.2016	91	415	104	407	4384	-507	103.6	4277	-511	106.6

Konvergenční profil č. 6 je stabilizován na chodbě V3005 ve staničení 83 m za účelem sledování deformací monitorovaného pilíře V2. Deformace profilu jsou nerovnoměrné, větší deformace jsou zjištěny na bodech stabilizovaných v pravém boku díla, což odpovídá deformacím menšího z monitorovaných pilířů V2. Za celou dobu sledování dosáhla změna šířky 1 -507 mm a změna šířky 2 -511 mm, což odpovídá hodnotě přetvoření 103,6 mm/m resp. 106,6 mm/m. I na tomto konvergenčním profilu má ryhlost deformačních změn ve vztahu k sledovanému období klesající tendenci. Zatímco po prvním sledovaném měsíci přesáhla průměrná změna šířky 90 mm, v následujících třech měsících se pohybovala kolem 60 mm, tak na konci sledovaného období (po devatenácti měsíců) již dosahovala cca 10 mm. Měsíční přírůstky se za sledovaných devatenáct měsíců zmenšily téměř desetinásobně. Nutno však podotknout, že i zde za poslední sledované období (4/2016-9/2016) nedošlo k výraznému zpomalení měsíčních přírustků deformací, neboť měsíční změny šířek se pohybovaly v rozmezí 8-12 mm.

Obr. 4.44 Sledování pohybů bodů na konvergenčním profilu č. 7 na díle V300401, st. 21 m

	Horiz	Horizontální posun bodu				změna			změna	
Datum	110112	[m]	ml	bouu	šířka 1	š.1	Přetvoření	šířka 2	š.2	Přetvoření
měření						[mm]	1	[cm]	[mm]	2
	7/1	7/7	7/2	7/6	7/1-	7/1+7/7	[mm/m]	7/2-	7/2+7/6	[mm/m]
27.2.2015	0	0	0	0	5222	0	0.0	5088	0	0.0
6.3.2015	6	9	4	7	5207	-15	2.9	5077	-11	2.2
12.3.2015	25	35	19	24	5162	-60	11,5	5045	-43	8,5
20.3.2015	42	50	34	36	5130	-92	17,6	5018	-70	13,8
25.3.2015	51	60	43	43	5111	-111	21,3	5002	-86	16,9
1.4.2015	61	71	52	53	5090	-132	25,4	4983	-105	20,7
9.4.2015	71	83	60	62	5068	-154	29,4	4966	-122	23,9
17.4.2015	79	95	67	103	5048	-174	33,4	4918	-170	33,3
23.4.2015	86	98	73	79	5038	-184	35,2	4936	-152	29,9
27.4.2015	91	117	78	89	5014	-208	39,8	4921	-167	32,8
5.5.2015	103	133	88	102	4986	-236	45,2	4899	-189	37,2
14.5.2015	112	144	95	110	4966	-256	49,0	4882	-206	40,4
5.6.2015	128	166	109	127	4928	-294	56,3	4852	-236	46,3
17.6.2015	138	182	118	142	4901	-321	61,4	4828	-260	51,1
14.7.2015	160	207	141	163	4855	-367	70,2	4784	-304	59,7
11.8.2015	178	231	154	182	4813	-409	78,4	4752	-336	66,1
15.9.2015	197	250	169	199	4775	-447	85,5	4720	-368	72,4
7.10.2015	209	265	179	209	4748	-474	90,8	4700	-388	76,3
4.11.2015	220	280	189	221	4722	-500	95,7	4678	-410	80,6
10.12.2015	235	296	204	233	4691	-531	101,6	4651	-437	85,9
11.1.2016	244	306	212	242	4671	-551	105,4	4634	-454	89,3
18.2.2016	261	315	227	250	4646	-576	110,2	4611	-477	93,7
12.3.2016	263	323	229	254	4636	-586	112,2	4606	-482	94,8
19.5.2016	278	340	241	267	4605	-617	118,2	4581	-507	99,7
15.7.2016	288	349	251	274	4585	-637	122,0	4563	-525	103,1
23.9.2016	298	361	259	283	4562	-660	126,4	4546	-542	106,6

Tab. 4.10 Horizontální posuny bodů v konvergenčním profilu č. 7

Konvergenční profil č. 7 je stabilizován na chodbě V300401 ve staničení 21 m za účelem sledování deformací monitorovaného pilíře V1. Za celou dobu sledování dosáhla změna šířky 1 -660 mm a změna šířky 2 -542 mm, což odpovídá hodnotě přetvoření 126,4 mm/m resp. 106,6 mm/m. Průměrné měsíční změny šířky se za sledovaných devatenáct měsíců zmenšily téměř desetinásobně, když po prvním měsíci dosahovaly téměř 100 mm a na konci sledovaného období 10 mm. Nutno však podotknout, že i zde za poslední sledované období (4/2016-9/2016) nedošlo k výraznému zpomalení měsíčních přírustků deformací, neboť měsíční změny šířek se pohybovaly v rozmezí 9-13 mm.

Obr. 4.45 Sledování pohybů bodů na konvergenčním profilu č. 8 na díle V300502, st. 24 m

1 av. 4.11	ab. 4.11 Horizoniaini posary boda v konvergenchim projita c. 8									
	Horiz	ontální	posun	bodu		změna			změna	
Datum		[m	m]		šířka 1	š.1	Přetvoření	šířka 2	š.2	Přetvoření
měření			-		[mm]	[mm]	1		[mm]	2
	0/1	0 /7	0/2	0/0	8/1-	0/1.0/7	[mm/m]	8/2-		[mm/m]
	8/1	8/7	8/2	8/0	8/7	8/1+8//		8/0		
27.2.2015	0	0	0	0	4902	0	0,0	4917	0	0,0
6.3.2015	0	1	27	3	4901	-1	0,2	4887	-30	6,1
12.3.2015	29	27	44	24	4846	-56	11,4	4849	-68	13,9
20.3.2015	54	59	44	52	4789	-113	23,1	4821	-96	19,5
25.3.2015	neměřeno									
1.4.2015	74	64	3	59	4764	-138	28,2	4855	-62	12,7
9.4.2015	79	81	9	73	4742	-160	32,7	4835	-82	16,7
17.4.2015	84	89	15	80	4729	-173	35,3	4822	-95	19,4
23.4.2015	121	98	47	89	4683	-219	44,7	4780	-137	27,8
27.4.2015	143	103	67	92	4656	-246	50,2	4759	-158	32,2
5.5.2015	163	116	85	103	4623	-279	57,0	4729	-188	38,2
14.5.2015	175	130	95	117	4597	-305	62,2	4705	-212	43,2
5.6.2015	209	150	126	134	4544	-358	73,1	4657	-260	52,9
17.6.2015	226	162	143	142	4514	-388	79,1	4631	-286	58,1
14.7.2015	280	182	191	159	4440	-462	94,2	4567	-350	71,2
11.8.2015	308	206	217	178	4389	-513	104,7	4522	-395	80,4
15.9.2015	298	221	243	171	4383	-519	105,9	4503	-414	84,2

Tab. 4.11 Horizontální posuny bodů v konvergenčním profilu č. 8

	Horizontální posun bodu					změna			změna	
Datum	[mm]			šířka 1	š.1	Přetvoření	šířka 2	š.2	Přetvoření	
Datum		[111]		[mm]	[mm]	1	[cm]	[mm]	2
mereni					8/1-		[mm/m]	8/2-		[mm/m]
	8/1	8/7	8/2	8/6	8/7	8/1+8/7		8/6		
7.10.2015	314	236	255	202	4352	-550	112,1	4460	-457	93,0
4.11.2015	329	246	266	210	4327	-575	117,2	4441	-476	96,8
10.12.2015	344	253	282	230	4305	-597	121,8	4405	-512	104,1
11.1.2016	359	261	296	251	4283	-619	126,3	4370	-547	111,3
18.2.2016	372	267	308	226	4262	-640	130,5	4383	-534	108,5
12.3.2016	418	254	342	214	4229	-673	137,2	4361	-556	113,1
19.5.2016	422	267	354	225	4213	-689	140,5	4339	-578	117,6
15.7.2016	438	273	368	227	4191	-711	145,1	4322	-595	121,0
23.9.2016	411	307	345	259	4184	-718	146,4	4313	-604	122,8

Konvergenční profil č. 8 je stabilizován na chodbě V300502 ve staničení 24 m za účelem sledování deformací monitorovaného pilíře V2. Deformace profilu jsou nerovnoměrné, větší deformace byly zaznamenány v levém boku díla. Za celou dobu sledování dosáhla změna šířky 1 -718 mm a změna šířky 2 -604 mm, což odpovídá hodnotě přetvoření 146,4 mm/m resp. 122,8 mm/m. Nutno však podotknout, že výsledky měření jsou ovlivněny poškozením stabilizovaného bodu 8/1 v levém boku konvergenčního profilu. Průměrné měsíční změny šířky se za sledovaných devatenáct měsíců zmenšily víc jak dvacetinásobně, když po prvním měsíci dosahovaly téměř 100 mm a na konci sledovaného období cca 4 mm. Pouze na tomto sledovaném profilu je zřetelné zpomalení měsíčních přírustků v posledním sledovaném období (4/2016-9/2016), když změny šířek v 5/2016 dosahovaly až 11 mm a na konci sledovaného období (9/2016) již dosáhly pouze 4 mm.

Datum	verti bo	kální p du [m	osun m]	výška 1 [mm]	výška 2 [mm]	výška 3 [mm]
měření				8/35-	[]	[]
	8/35	8/4S	8/5S	8/3	8/4S-8/4	8/5S-8/5
5.6.2015	0	0	0	2442	2023	2166
17.6.2015	3	26	7	2439	1997	2159
14.7.2015	13	103	25	2429	1920	2141
11.8.2015	21	164	38	2421	1859	2128
15.9.2015	22	207	nem.*	2420	1816	nem.*
7.10.2015	125	251	nem.*	2317	1772	nem.*
4.11.2015	149	283	nem.*	2293	1740	nem.*
10.12.2015	nem.*	309	nem.*	nem.*	1714	nem.*
11.1.2016	nem.*	335	nem.*	nem.*	1688	nem.*
18.2.2016	nem.*	355	nem.*	nem.*	1668	nem.*
12.3.2016	nem.*	369	nem.*	nem.*	1654	nem.*
19.5.2016	nem.*	400	nem.*	nem.*	1623	nem.*
15.7.2016	nem.*	417	nem.*	nem.*	1606	nem.*
23.9.2016	nem.*	446	nem.*	nem.*	1577	nem.*

Tab. 4.12 Vertikální posuny bodů v konvergenčním profilu č. 8

*neměřeno

Od začátku měsíce června započalo na konvergenčním profilu č. 8 také sledování vertikálních deformací (viz. tab. 4.12). Vertikální změny chodby jsou značně proměnlivé, což nepochybně souvisí s nerovnoměrným bubřením počvy.

Obr. 4.46 Sledování pohybů bodů na konvergenčním profilu č. 9 na díle V3006, st. 82 m

1	1	A		<i>,</i>	1				1	
	Hor	Horizontální posun bodu				změna			změna	
Datum	ног	izontann p	1	ouu	šířka 1	š.1	Přetvoření	šířka 2	š.2	Přetvoření
Datum		[11111]		[mm]	[mm]	1	[cm]	[mm]	2
mereni					9/1-		[mm/m]	9/2-		[mm/m]
	9/1	9/7	9/2	9/6	9/7	9/1+9/7		9/6	9/2+9/6	
4.2.2015	0	0	0	0	4801	0	0,0	4852	0	0,0
12.2.2015	8	7	9	10	4786	-15	3,1	4833	-19	3,9
18.2.2015	14	13	14	19	4774	-27	5,6	4819	-33	6,8
27.2.2015	85	38	84	56	4678	-123	25,6	4712	-140	28,9
6.3.2015	96	39	95	59	4666	-135	28,1	4698	-154	31,7
12.3.2015	116	45	114	68	4640	-161	33,5	4670	-182	37,5
20.3.2015	128	49	126	77	4624	-177	36,9	4649	-203	41,8
25.3.2015	137	53	133	84	4611	-190	39,6	4635	-217	44,7
1.4.2015	145	49	139	89	4608	-193	40,3	4624	-228	47,0
9.4.2015	154	56	149	96	4591	-210	43,7	4607	-245	50,6
17.4.2015	158	61	153	95	4581	-220	45,7	4603	-249	51,3
23.4.2015	167	67	162	111	4568	-233	48,6	4579	-273	56,3

Tab. 4.13 Horizontální posuny bodů v konvergenčním profilu č. 9

	Llaw			مان		změna			změna	
Deture	Hor	izontaini p	osun d 1	oau	šířka 1	š.1	Přetvoření	šířka 2	š.2	Přetvoření
Datum		Įmm]		[mm]	[mm]	1	[cm]	[mm]	2
mereni					9/1-		[mm/m]	9/2-		[mm/m]
	9/1	9/7	9/2	9/6	9/7	9/1+9/7		9/6	9/2+9/6	
27.4.2015	176	74	169	114	4552	-249	51,9	4568	-284	58,5
5.5.2015	185	76	180	127	4539	-262	54,5	4545	-307	63,2
14.5.2015	194	87	188	135	4520	-281	58,6	4528	-324	66,7
5.6.2015	207	90	201	148	4504	-297	61,9	4503	-349	72,0
17.6.2015	215	98	210	152	4488	-313	65,2	4489	-363	74,7
14.7.2015	233	104	232	177	4464	-337	70,3	4444	-408	84,1
11.8.2015	243	119	243	199	4440	-361	75,3	4410	-442	91,1
15.9.2015	261	154	260	210	4385	-416	86,5	4382	-470	96,8
7.10.2015	269	nem.*	267	219	nem.*	nem.*	nem.*	4365	-487	100,3
4.11.2015	276	nem.*	276	227	nem.*	nem.*	nem.*	4349	-503	103,7
10.12.2015	285	nem.*	286	230	nem.*	nem.*	nem.*	4336	-516	106,4
11.1.2016	290	nem.*	291	237	nem.*	nem.*	nem.*	4324	-528	108,8
18.2.2016	297	nem.*	295	247	nem.*	nem.*	nem.*	4310	-542	111,6
12.3.2016	299	nem.*	299	249	nem.*	nem.*	nem.*	4305	-547	112,8
19.5.2016	308	nem.*	307	256	nem.*	nem.*	nem.*	4288	-564	116,1
15.7.2016	314	nem.*	314	263	nem.*	nem.*	nem.*	4275	-577	118,8
23.9.2016	318	nem.*	319	272	nem.*	nem.*	nem.*	4261	-591	121,8

Konvergenční profil č. 9 je stabilizován na chodbě V3006 ve staničení 82 m za účelem sledování deformací monitorovaného pilíře V2. Deformace profilu jsou nerovnoměrné, větší deformace jsou zjištěny na bodech stabilizovaných v levém boku díla. Za celou dobu observace dosáhla změna šířky 1 -416 mm a změna šířky 2 -591 mm, což odpovídá hodnotě přetvoření 86,5 mm/m resp. 121,8 mm/m. Z důvodu poškození však svorník č. 9/7 není od 10/2015 zaměřován. I na tomto konvergenčním profilu má ryhlost deformačních změn ve vztahu k sledovanému období klesající tendenci. Zatímco po prvním sledovaném měsíci přesáhla průměrná změna šířky 130 mm, v následujících třech měsících se pohybovala v rozmezí 50 až 75 mm, na konci přechozího sledovaného období (9/15), dosahovala cca 35 mm a na konci psoledního sledovaného období (9/16) dosahuje pouze 7 mm. Měsíční přírůstky se za sledovaných devatenáct měsíců zmenšily téměř dvacetinásobně. I zde však je zřetelné, že za poslední sledované období (4/2016-9/2016) nedošlo k výraznému zpomalení měsíční ch přírustků deformací, neboť měsíční změny šířek se pohybovaly kolem 7 mm.

Datum	verti bc	kální p odu [m	osun m]	výška 1 [mm]	výška 2 [mm]	výška 3 [mm]
mereni	0/26	0/46	0/56	9/3S-	0/46 0/4	
	9/35	9/45	9/55	9/3	9/45-9/4	9/55-9/5
17.4.2015	0	0	0	2270	2313	2208
23.4.2015	-5	11	5	2275	2302	2203
27.4.2015	6	18	9	2264	2295	2199
5.5.2015	19	31	14	2251	2282	2194
14.5.2015	28	39	14	2242	2274	2194

Tab. 4.14 Vertikální posuny bodů v konvergenčním profilu č. 9

Datum	verti bo	kální p odu [m	osun m]	výška 1 [mm]	výška 2 [mm]	výška 3 [mm]
mereni	0/26	0/46	0/50	9/3S-	0/46 0/4	
	9/35	9/45	9/55	9/3	9/45-9/4	9/55-9/5
5.6.2015	41	53	19	2229	2260	2189
17.6.2015	49	62	26	2221	2251	2182
14.7.2015	69	83	40	2201	2230	2168
11.8.2015	84	98	48	2186	2215	2160
15.9.2015	97	113	55	2173	2200	2153
7.10.2015	106	123	62	2164	2190	2146
4.11.2015	113	130	65	2157	2183	2143
10.12.2015	120	139	nem.*	2150	2174	nem.*
11.1.2016	nem.*	144	nem.*	nem.*	2169	nem.*
18.2.2016	nem.*	151	nem.*	nem.*	2162	nem.*
12.3.2016	nem.*	156	nem.*	nem.*	2157	nem.*
19.5.2016	nem.*	166	nem.*	nem.*	2147	nem.*
15.7.2016	nem.*	172	nem.*	nem.*	2141	nem.*
23.9.2016	nem.*	179	nem.*	nem.*	2134	nem.*

Od poloviny měsíce dubna započalo na konvergenčním profilu č. 9 také sledování vertikálních deformací (viz. tab. 4.14). Vertikální změny chodby jsou značně proměnlivé, což nepochybně souvisí s nerovnoměrným bubřením počvy.

Obr. 4.47 Dynamika deformací na konvergenčním profilu č. 3 na díle V300501

Na obr. 4.47 je jako příklad rychlosti změn deformací v čase (dynamika) uveden konvergenční profil č. 3, kde za celou dobu dobývání byly naměřeny největší deformace. Konvergenční měření potvrzují trend postupného zpomalování deformací chodeb, jež odrážejí deformace ponechaných pilířů, případně okrajových bariérových pilířů. Potvrzují tak trendy

zjištěné ostatními monitorovacími prvky (horizontální extenzometry). Za celé sledované období (cca 19 měsíců) se měsíční změny deformací zmenšily až 20-násobně, když změny šířek chodeb se po prvním měsíci pohybovaly kolem 100 mm (max. 160 mm) a na konci sledovaného období oscilují kolem 10 mm (max. 15 mm, min. 4 mm). Nutno však podotknout, že téměř na všech sledovaných konvergenčních profilech nedošlo za poslední sledované období (4/2016-9/2016) k výraznému zpomalení měsíčních přírustků deformací, což je také mimo jiné důvodem pro pokračování v geomechanickém monitoringu v lokalitě A.

5. Průběžné hodnocení monitorovaných veličin napěťovědeformačního monitoringu horninového masivu v monitorované lokalitě B

V rámci projektovaného monitoringu v lokalitě B byla instalována řada technických zařízení. Celkový přehled instalovaných monitorovacích zařízení v lokalitě B udává obr. 5.1. Obdobně jako v dobývce V, byla i zde veškerá instalovaná zařízení označena. První znakem označení zařízení je číslo dobývky, následuje označení typu monitorovacího zařízení a pořadové číslo. Například IIEh3 je extenzometr horizontální, pořadové číslo 3 umístěný v dobývce II. Monitorované pilíře v rámci lokality B jsou pro snadnější orientaci označeny II1, II2 a II3.

Obr. 5.1 *Pozice jednotlivých typů technických zařízení napěťodeformačního monitoringu v rámci monitorovaných pilířů II1, II2 a II3 v lokalitě B.*

Výsledky z monitorované lokality B byly rovněž průběžně vyhodnocovány a intepretace výsledků byla projednávána na pravidelném jednání komise odborníků scházející se v souvislosti se zkušebním provozem nové neschválené dobývací metody chodba-pilíř. Vzhledem ke krátké observaci jednotlivých monitorovacích prvků nelze v rámci předkládané zprávy provést veškeré potřebné analýzy a objektivní srovnání s monitorovanými daty v dobývce V.

Samotné hodnocení je na základě charakteru monitorovaných veličin případně monitorovaného prostředí členěno do následujících podkapitol:

- hodnocení deformací nadložních hornin chodeb,
- hodnocení napěťového stavu horninového masivu in situ,
- hodnocení deformometrie uhelného pilíře,
- měření konvergence chodeb.

5.1 Hodnocení deformací nadložních hornin - lokalita B

5.1.1 Extenzometry 3-ti stupňové lankové - lokalita B

Za účelem sledování deformací nadložních hornin chodeb byly instalovány tříúrovňové mechanické indikátory rozsazování nadloží, které jsou v rámci zkušebního provozu metody chodba-pilíř běžně instalovány (viz. Projekt samostatné svorníkové výztuže - Antoszyk 2012, 2013 a Sembol 2014). V rámci jedné pozice byly extenzometry instalovány s ukotvením kotev v polohách – **2.2**, **5.2**, **7.0 m**,

Monitoring nadložních hornin chodeb v lokalitě B je nezbytný, přestože v monitorovací lokalitě A nedošlo k výraznějšímu rozsazování nadloží. Vzhledem k tomu, že lokalita B se nachází v podložní kře přesmykového pásma "východního přesmyku", lze očekávat zhoršené stropní podmínky. Také rozměry monitorovaných pilířů jsou menší, což se nepochybně odrazí v jejich větší deformaci. Přesná lokalizace a označení jednotlivých extenzometrů je zřejmá z tab. 5.1 a obr. 5.2.

Označení	Důlní dílo	Staničení	Datum instalace	Poznámka
extenzometru	Baimano	[m]	Dutum instalace	r oznanika
IIE1	113002	206,0	14.6.2016	II 3002 x II 300204
IIE2	113002	191,0	11.6.2016	
IIE3	113002	176,0	10.6.2016	II 3002 x II 300203
IIE4	11300303	16,0	24.7.2016	
IIE5	113003	193,0	2.7.2016	II 3003 x II300303
IIE6	113003	208,0	7.7.2016	
IIE7	113003	223,0	9.7.2016	II 3003 x II300304
IIE8	11300304	16,0	7.8.2016	
IIE9	11300403	19,0	21.7.2016	
IIE10	113004	133,0	16.7.2016	II 3004 x II 300403
IIE11	113004	150,0	28.7.2016	II 3004 x II 300503
IIE12	113004	166,0	29.7.2016	II 3004 x II 300404
IIE13	11300404	19,0	4.8.2016	
IIE14	II300503	16,0	3.9.2016	
IIE15	113005	58,0	27.6.2016	II 3005 x II 300503

 Tab. 5.1
 Lokalizace 3 stupňových vertikálních extenzometrů v lokalitě B

IIE16	113005	72,0	28.6.2016	
IIE17	113005	88,0	6.9.2016	II 3005 x II 300504
IIE18	11300504	16,0	22.9.2016	
IIE19	113004	181,0	19.9.2016	II 3004 // II 300504

Obr. 5.2 Rozmístění třístupňových extenzometrů v monitorovací lokalitě B.

V tabulce 5.2 jsou shrnuty naměřené hodnoty rozvrstvení nadložních hornin indikovaných na jednotlivých extenzometrech, v jednotlivých kotvených polohách. Jsou zde uvedeny hodnoty z konce hodnotícího období k **30.9. 2016** a hodnoty rozvrstvení v prvních měsících observace.

Z naměřených hodnot indikovaných na vertikálních extenzometrech je zřejmé, že rozvrstvení hornin v nadloží vyražených chodeb monitorovaných pilířů II1, II2 a II3 jsou minimální. Maximálních hodnot rozvrstvení bylo dosaženo na extenzometrech IIE2 (6 mm), IIE6 (4mm), IIE7 (4mm), IIE12 (3mm) a IIE15 (4mm).

Tab. 5.2 Celkové hodnoty rozvrstvení nadložních hornin indikovaných na 3-ti stupňových vertikálních extenzometrech v lokalitě B

Označoní	Datum-Poloha	А	В	С
Oznacem	kotvy	2,2	5,2	7,0
	014.6.2016	0	0	0
	1. měsíc	1	0	1
IIE 1	2.měsíc	1	0	2
IIEI	3.měsíc	1	0	2
	I30.9.2016	1	0	2
	Rozdíl OI.	1	0	2
	011.6.2016	0	0	0
	1. měsíc	1	0	2
	2.měsíc	1	0	4
$\Pi E Z$	3.měsíc	1	0	5
	I30.9.2016	1	0	6
	Rozdíl 0I.	1	0	6
	010.6.2016	0	0	0
	1. měsíc	0	0	1
IIE3	2.měsíc	0	1	1
IIL'S	3.měsíc	1	2	1
	I30.9.2016	1	2	1
	Rozdíl OI.	1	2	1 1 1 1 1 1 0 0
	024.7.2016	0	0	0
	1. měsíc	0	0	0
IIE4	2.měsíc	0	0	0
	I30.9.2016	0	0	0
	Rozdíl OI.	0	0	0
	02.7.2016	0	0	0
	1. měsíc	0	1	1
IIE5	2.měsíc	0	1	1
	I30.9.2016	0	1	1
	Rozdíl OI.	0	1	1
	07.7.2016	0	0	0
	1. měsíc	0	4	0
IIE6	2.měsíc	0	4	0
	I30.9.2016	0	4	0
	Rozdíl OI.	0	4	0
	09.7.2016	0	0	0
	1. měsíc	0	3	0
IIE7	2.měsíc	0	4	0
	I30.9.2016	0	4	1
	Rozdíl 0I.	0	4	1
	07.8.2016	0	0	0
IILO	1. měsíc	0	0	0

Οτηρζοηί	Datum-Poloha	А	В	С
Oznacem	kotvy	2,2	5,2	7,0
	2.měsíc	0	0	0
	I30.9.2016	0	0	0
	Rozdíl OI.	0	0	0
	021.7.2016	0	0	0
	1. měsíc	0	0	1
IIE9	2.měsíc	0	0	2
	I30.9.2016	0	0	2
	Rozdíl 0I.	0	0	2
	016.7.2016	0	0	0
	1. měsíc	0	1	0
IIE10	2.měsíc	0	1	0
	I30.9.2016	0	1	0
	Rozdíl 0I.	0	1	0
	028.7.2016	0	0	0
	1. měsíc	0	1	0
IIE11	2.měsíc	1	1	2
	I30.9.2016	1	1	2
I. měsíc 0 1 IIE11 2.měsíc 1 1 I30.9.2016 1 1 1 <i>Rozdíl 0l.</i> 1 1 1 029.7.2016 0 0 0	2			
	029.7.2016	0	0	0
11510	1.měsíc	1	1	0
IIE12	I30.9.2016	3	3	0
	Rozdíl 0I.	3	3	0
	04.8.2016	0	0	0
11510	1. měsíc	0	0	0
IIE13	I30.9.2016	0	1	0
	Rozdíl 0I.	0	1	0
	03.9.2016	0	0	0
IIE14	I30.9.2016	0	0	0
	Rozdíl 0I.	0	0	0
	027.6.2016	0	0	0
	1. měsíc	4	0	1
	2.měsíc	4	0	1
IIE15	3.měsíc	4	1	1
	I30.9.2016	4	1	1
	Rozdíl 0I.	4	1	1
	028.6.2016	0	0	0
	1. měsíc	0	0	0
IIE16	2.měsíc	0	0	0
	3.měsíc	0	0	0
	I30.9.2016	0	0	0

Označoní	Datum-Poloha	А	В	С	
Oznaceni	kotvy	2,2	5,2	7,0	
	Rozdíl OI.	0	0	0	
	06.9.2016	0	0	0	
IIE17	I30.9.2016	0	0	0	
	Rozdíl OI.	0	0	0	
	022.9.2016	0	0	0	
IIE18	I30.9.2016	0	0	0	
	Rozdíl OI.	0	0	0	
	019.9.2016	0	0	0	
IIE19	I30.9.2016	0	2	0	
	Rozdíl OI.	0	2	0	

Na základě výše uvedeného lze tedy konstatovat, že v nadloží chodeb ve výškovém rozsahu použitých extenzometrů 0 až 7 m, za celé sledované období, v oblasti monitorovaných pilířů II1, II2 a II3, je vertikální rozvrstvení hornin zanedbatelné. Vzhledem k tomu, že délka observace na vertikálních extenzometrech v dobývce II je poměrně krátká a na některých instalovaných vertikálních extenzometrech ani nedosáhla jednoho měsíce, nelze v této fázi hodnocení provést relevantní posouzení deformací v nadloží sledovaných chodeb.

Podobně jako v dobývce V i v dobývce II jsou největší deformace chodeb evidovány v bocích a počvě chodeb (viz. deformometrie uhelného pilíře kap. 5.3). Již v této fázi monitoringu (maximální délka observace cca 4 měsíce) však boční deformace monitorovaných pilířů II1, II2 a II3 (max. 630 mm - konvergence, 393 mm-horizontální extenzometry) přesahují sledované boční deformace v dobývce V (max. 450 mm - konvergence, 260 mm-horizontální extenzometry), kde již délka observace dosáhla až devatenáct měsíců. Pro objektivní srovnání příčin těchto evidentních rozdílů však bude potřeba delší observace na jednotlivých sledovaných prvcích monitoringu v lokalitě B.

5.2. Sledování napětí in situ - lokalita B

5.2.1 Sledování napětí v nadloží monitorovaných pilířů - lokalita B

Pro stanovení napětí v horninovém masivu v době instalace sondy (počátečního napětí) byly v lokalitě B instalovány dvě sondy CCBO (Staš et al. 2005) v nadložních horninách pilířů II1 a II3. V obr. 5.3 je v půdoryse zobrazeno umístění obou sond. Sondami bylo metodou "overcoring" odečteno a interpretováno počáteční napětí. Po realizaci CCBO měření byly do téměř stejných pozic ve sledovacích vrtech instalovány monitorovací CCBM sondy, vyjma monitorovaného pilíře II2, kde byla instalována pouze sonda CCBM. Těmi jsou průběžně monitorovány změny napětí nad sledovanými pilíři.

Obr. 5.3 Lokalizace sond CCBO, CCBM určených k monitorování napěťového pole v nadloží ponechaných pilířů, s vyznačením vrtů v lokalitě B

V nadloží monitorovaného pilíře II1 byla instalována sonda s označením IICCBO1 a následně IICCBM1. Byla zalepena v poloze jemnozrnného pískovce v hloubce 19,4 m. Jak je zřejmé z obr. 5.3, je v půdoryse umístěna zhruba uprostřed pilíře II1 a odhadem 13 m nad stropem sloje. Hloubka zalepení sondy byla ovlivněna navrtáním přesmykové plochy ve vzdálenosti cca 6 metrů nad stropem sloje. Z důvodu porušení stěn instalačního vrtu byla sonda IICCBO1 instalována až nad uvedenou přesmykovou plochu.

Sonda č.	Monitorovaný pilíř	Chodba	Staničení	Směr vrtu	Úklon vrtu	Hloubka sondy
IICCBO1	II1	II3002	184 m	90° L.B.	+43°	19,4 m
IICCBM1	II1	II3002	184 m	90° L.B.	+43°	19,8 m
IICCBM2	II2	II3003	200 m	90° L.B.	+30°	23 m
IICCBO2	II3	II3005	64 m	90° P.B.	+30°	11,9 m
IICCBM3	II3	II3005	64 m	90° P.B.	+30°	12,5 m

Tab. 5.3 Lokalizace sond CCBO, CCBM instalovaných nad ponechanými uhelnými pilíři, parametry vrtů v monitorované lokalitě B.

V nadloží monitorovaného pilíře II3 byla instalována sonda s označením IICCBO2 a následně IICCBM3. Byla zalepena v poloze jemnozrnného pískovce v hloubce 11,9 m. Jak je zřejmé z obr. 5.3, je v půdoryse umístěna zhruba uprostřed pilíře II3 a odhadem 5 m nad stropem sloje. O umístění sondy do této polohy bylo rozhodnuto na základě ověření přesmykové plochy a litologického vývoje v nadloží monitorovaných pilířů v průběhu instalace předchozích sond (IICCBO1, IICCBM1 a IICCBM2).

Prvním krokem napěťového monitoringu bylo zjištění iniciačního stavu tenzoru napětí a jeho hlavních složek. Výsledky jsou uvedeny v následujících tabulkách 5.4 a 5.5. V tabulkách jsou pro každou složku tenzoru napětí uvedeny velikost (magnitudo), a prostorová orientace napěťových os. Z tabulek je zřejmé, že větší maximální napětí 19,2 MPa bylo zjištěno v pilíři II3 (IICCBO2) a směr jeho osy je odkloněn od svislice cca 20°. V případě maximální složky napětí v pilíři II1 (IICCBO1) je hodnota maximální složky pouze necelých 11,3 MPa. Relativně nízké hodnoty napětí neodpovídají hloubce pod povrchem. Máme za to, že je to způsobeno celkovým regionálním porušením horninového masivu v okolí dobývané sloje, ale i v oblasti širšího okolí. Roli hrála určitě také přítomnost přesmykové plochy v nadloží monitorovaných pilířů, tedy v blízkosti instalovaných sond. Jak již bylo zmíněno výše, přesmyková plocha byla ověřena v průběhu instalačních prací ve dvou vrtech. Vzdálenost přesmykové plochy v nadloží monitorovaných pilířů od stropu sloje činí 6 až 15 m. O lokálním ovlivnění napěťového pole v blízkosti přesmyku svědčí i směr maximálního horizontálního napětí S_H zjištěného sondami CCBO, které je oproti generelnímu trendu SSZ-JJV rotováno o cca 40° do směru SSV-JJZ. Ovlivnění napěťového pole a jeho změn vlivem tektonického porušení bude předmětem dalšího sledování a porovnávání.

Last et l ife and the store in a feften prostore in entendee (in e e b e 1)								
Maximální	Úklon	Směr	Střední	Úklon	Směr	Minimální	Úklon	Směr
Napětí	osy	úklonu	Napětí	osy[°]	úklonu	Napětí	osy[°]	úklonu
[MPa]	[°]	osy[°]	[MPa]	-	osy[°]	[MPa]	-	osy[°]
11,3	-70	126	4,3	-6	18	1,8	-19	286

 Tab. 5.4 Hodnoty hlavních složek napětí a jejich prostorová orientace (IICCBO1)

Tab. 5.5 Hodnoty	hlavních slože	k napětí a jejich	prostorová orientace	(IICCBO2)
------------------	----------------	-------------------	----------------------	-----------

Maximální	Úklon	Směr	Střední	Úklon	Směr	Minimální	Úklon	Směr
Napětí	osy	úklonu	Napětí	osy[°]	úklonu	Napětí	osy[°]	úklonu
[MPa]	[°]	osy[°]	[MPa]		osy[°]	[MPa]		osy[°]
Do nadloží monitorovaného pilíře II1 byla instalována sonda s označením IICCBM1, která je osazena elektronikou evidovanou pod číslem 82. Sonda byla zalepena do polohy kompaktního pískovce v hloubce 19,8 m. Uvedená hloubka odpovídá výškové úrovni cca 13 m nad stropem sloje a sonda je umístěná nad přesmykovou plochou, ověřenou při instalaci sond. Grafický vývoj jednotlivých složek napětí na sondě IICCBM1 je znázorněn na obr. 5.4.

Od počátku sledování (instalace 29. 6. 2016) hodnoty složek napětí na sondě IICCBM1, tedy v nadloží pilíře II1, prudce vzrůstaly. K stabilizaci hodnot změn zatížení došlo až po 11.8. 2016, kdy se hodnoty maximální složky napětí S1 pohybovaly kolem 12 MPa. Tento nárůst napětí lze dobře korelovat s jednotlivými fázemi formování pilíře II1 (viz. kap. 5.2.3). Prudký nárůst změn zatížení od počátku sledování do 25.7. lze tak korelovat s vytváření druhé strany (chodba II3003) pilíře. Skokovou anomálii ve dnech 25.7 až 27.7. 2016 lze pak korelovat s dokončením třetí (chodba II300303) strany pilíře a anomálii ve dnech 5.8. až 11.8. pak s dokončením poslední strany (chodba II300304) pilíře II1. V závěrečné fázi monitoringu lze již sledovat stabilizaci hodnot zatížení resp. trendový pokles všech komponent napětí.

Obr. 5.4 Grafický vývoj hlavních složek tenzoru napětí na měřicí sondě IICCBM1

Do nadloží monitorovaného pilíře II2 byla instalována sonda s označením IICCBM2, která je osazena elektronikou evidovanou pod číslem 89. Sonda byla zalepena do polohy kompaktního prachovce v hloubce 23,0 m. Uvedená hloubka odpovídá výškové úrovni cca 13 m nad stropem sloje a sonda je umístěná nad přesmykovou plochou, ověřenou při instalaci sond. Grafický vývoj jednotlivých složek napětí na sondě IICCBM2 je znázorněn na obr. 5.5.

Obr. 5.5 Grafický vývoj hlavních složek tenzoru napětí na měřicí sondě IICCBM2

Obr. 5.6 Grafický vývoj hlavních složek tenzoru napětí na měřicí sondě IICCBM3

Od počátku sledování (instalace 19. 7. 2016) hodnoty složek napětí na sondě IICCBM2, tedy v nadloží pilíře II2 prudce vzrůstaly. K stabilizaci hodnot změny zatížení došlo až po 30.7. 2016, kdy se změna maximální složky napětí S1 pohybovaly kolem 34 MPa. Podobně i zde lze tento nárůst napětí dobře korelovat s jednotlivými fázemi formováním pilíře. Prudký nárůst změn zatížení ihned od počátku sledování lze korelovat s vytváření druhé strany (chodba II300403) pilíře, jejíž ražba započala 19.7. 2016, tedy v době instalace sondy. K stabilizaci hodnot změny zatížení dochází po 30.7. 2016, tedy těsně před zformování celého pilíře II2 doražením čtvrté strany pilíře II2 (chodba 300 404 dne 4.8. 2016). V závěrečné fázi monitoringu lze již sledovat stabilizaci hodnot zatížení resp. mírný trendový pokles všech komponent napětí.

Do nadloží monitorovaného pilíře II3 byla instalována sonda s označením IICCBM3, která je osazena elektronikou evidovanou pod číslem 87. Sonda byla zalepena do polohy kompaktního pískovce v hloubce 12,5 m. Uvedená hloubka odpovídá výškové úrovni cca 5 m nad stropem sloje a sonda je umístěná pod přesmykovou plochou, ověřenou při instalaci sond. Grafický vývoj jednotlivých složek napětí na sondě IICCBM3 je znázorněn na obr. 5.6.

Od počátku sledování (instalace 3. 8. 2016) změny hodnot složek napětí na sondě IICCBM3, tedy v nadloží pilíře II3, byly minimální. K prvnímu prudkému nárůstu napětí dochází v období 28.8. až 2.9. 2016, kdy se změna maximální složky napětí S1 zvýšila až na 24 MPa. Tento prudký nárůst lze zřetelně korelovat s ražbou třetí strany pilíře (chodba II300503), když chodba byla doražena dne 1.9. 2016. Dvě strany pilíře (chodba II3005 a II3004) byly v té době vyraženy částečně. K druhému prudkému nárůstu dochází v období 14.9. až 17.9., kdy se změna maximální složky napětí S1 zvýšila až na maximální hodnotu 32 MPa. Tento prudký nárůst lze zřetelně korelovat s dokončením západní strany pilíře (chodba II3003) a započetím ražby poslední strany pilíře (chodba II300504) dne 17.9. 2016. K stabilizaci hodnot změny zatížení dochází po 20.9. 2016, tedy těsně před zformování celého pilíře II3 doražením čtvrté strany pilíře (chodba 300 504 dne 21.9. 2016). V závěrečné fázi monitoringu lze již sledovat stabilizaci hodnot zatížení resp. mírný trendový pokles komponent napětí.

Z monitoringu napěťové stavu ponechaných uhelných pilířů, jenž je monitorován pomocí sond CCBM instalovaných do nadloží pilířů, je možno konstatovat, že všechny tři monitorované pilíře v lokalitě B, respektive jejich napěťová pole spolu souvisí. Zřetelné (významné) změny napětí lze dobře korelovat s jednotlivými fázemi formování monitorovaných pilířů II1, II2 a II3 v lokalitě B. Ve fázi před zformováním pilíře významně vzrůstaly změny hodnot složek napětí ve všech monitorovaných pilířích. Maximálních změn napětí bylo dosaženo nad pilířem II2, kde maximální změna složky S1 dosáhla 34 MPa. Ve fázi po zformování jednotlivých pilířů, dochází ve všech případech k stabilizaci hodnot komponent napětí. V závěrečné fázi monitoringu již hodnoty zatížení oscilují jen nepatrně resp. je zřetelný mírný trendový pokles komponent napětí.

5.2.3 Sledování zatěžování monitorovaných uhelných pilířů - lokalita B

Změny zatížení uhelného pilíře byly monitorovány pomocí zátěžových buněk (stress cell). Dle preferencí OKD, a.s. byly zakoupeny a instalovány jednoosé hydraulické zátěžové buňky (borehole hydraulic stress cell) výrobce HMA, Austrálie, s měřícím rozsahem do 60 MPa, Do monitorovaného pilíře II1 budou instalovány 3 zátěžové buňky a do monitorovaných pilířů II2 a II3 pak po jedné zátěžové buňce. Celkem v rámci monitorované lokality B bylo instalováno 5 zátěžových buněk. Rozmístění jednotlivých zátěžových buněk je zřejmé z obr. 5.7.

Obr. 5.7 Lokalizace zátěžových buněk HMA instalovaných ve sloji v lokalitě B.

Zátěžové buňky HMA byly instalovány v souladu s níže uvedeným postupem:

- navrtání vrtu požadovaného průměru, pro borehole hydraulic stress cell výrobce HMA, Austrálie průměr 51 mm,
- vyčistění vrtu vodou, případně vyfoukáním stlačeným vzduchem,
- orientovaná instalace zátěžové buňky dle návodu dodaného výrobcem, pomocí dodaného příslušenství zaváděcí tyče,
- natlakování sondy na doporučené inicializační napětí (doporučené hodnota 10 MPa) pomocí dodané hydraulické pumpy.

Sonda č.	Pilíř	Chodba	Stan. [m]	Směr vrtu	Instalovaná hloubka [m]	Inicializační tlak [MPa]	Datum instalace
				[m]			
IISC1	II1	II3002	182,0	90°L.B.	7	10	15.6.2016
IISC2	II1	II3002	183,0	90°L.B.	9	10	15.6.2016
IISC3	II1	II3002	184,0	90°L.B.	12	10	16.6.2016
IISC4	II2	II3003	200,0	90°L.B.	15	10	20.7.2016
IISC5	II3	II3005	65,0	90°P.B.	12	10	9.7.2016

Tab. 5.6 Parametry zátěžových buněk HMA v monitorované lokalitě B.

Vývoj napětí na zátěžových buňkách HMA instalovaných v monitorovaných pilířích II1, II2 a II3 je znázorněn na obr. 5.8, 5.9 a 5.10. Osa x reprezentuje časový průběh a osa y změny zatížení monitorované na jednotlivých zátěžových buňkách IISC 1 až IISC5. V uvedených grafech je napětí na jednotlivých zátěžových buňkách sníženo o inicializační napětí, které bylo v tomto případě shodné a činilo, dle doporučení dodavatele 10MPa.

Obr. 5.8 Vývoj napětí na zátěžových buňkách IISC1-3 instalovaných ve sloji v monitorovaném pilíři II1 v lokalitě B.

Obr. 5.9 Vývoj napětí na zátěžové buňce IISC4 instalované ve sloji v monitorovaném pilíři II2 v lokalitě B.

Obr. 5.10 Vývoj napětí na zátěžové buňce IISC5 instalované ve sloji v monitorovaném pilíři II3 v lokalitě B.

Jak již bylo uvedeno výše, byly v rámci monitorovaného pilíře II1 instalovány tři zátěžové buňky IISC1-IISC3. Z prezentovaného grafu na obr. 5.8 je zřejmé, že u zátěžové buňky IISC 3, která byla instalována v hloubce 12 m od hrany pilíře, nedošlo po celou dobu observace k aktivizaci zatížení buňky. Příčinou je pravděpodobně porušení uhelné hmoty v místě instalace buňky. Na zátěžové buňce IISC2, instalované v hloubce 9 m, začalo napětí narůstat prakticky ihned po instalaci a posléze oscilovalo kolem 10 MPa. Od 7.7. 2016 byl zaznamenán prudký nárůst hodnot zatížení až na maximální hodnotu 39 MPa (25.7. 2016), což lze korelovat s vytváření druhé (chodba II3003) a třetí (chodba II300303) strany pilíře II1 (druhá a třetí fáze formování pilíře II1). Posléze dochází k prudkému poklesu zatížení buňky a

od 5.8., tedy v době kdy byla již částečně vytvořena poslední strana pilíře (chodba II300304), je buňka bez zatížení (klesá na 0 MPa). V této fázi došlo pravděpodobně k porušení uhelné hmoty v okolí instalované zátěžové buňky. Na zátěžové buňce IISC1, instalované v hloubce 7 m, napětí postupně narůstalo bez zřetelných anomálií až na hodnotu kolem 16 MPa na konci sledovaného období (9-/2016).

V rámci monitorovaného pilíře II2 byla instalována jedna zátěžová buňka IICS4. Z prezentovaného grafu na obr. 5.9 je zřejmé, že po instalaci zátěžové buňky IISC 4 byly změny v zatížení buňky minimální. Počínaje dnem 28.7. však hodnoty začaly prudce stoupat až na maximální hodnotu 16 MPa dne 2.8. 2016. Posléze dochází k prudkému poklesu a od 3.8. je zátěžová buňka prakticky bez zatížení. Podobně jako v případě pilíře II1, i zde lze prudký nárůst zatížení korelovat s vytvořením druhé strany (chodba II 300403) a třetí strany pilíře II2 (chodba II3004). I zde dochází k deaktivizaci zatížení buňky v době, kdy byla již částečně vytvořena poslední strana (chodba II300404) monitorovaného pilíře II2.

V rámci monitorovaného pilíře II3 byla instalována jedna zátěžová buňka IICS5. Z prezentovaného grafu na obr. 5.10 je zřejmé, že po instalaci zátěžové buňky IISC5 (9.7. 2016) byly změny v zatížení buňky poměrně dlouhou dobu minimální. Až od 1.9. začíná zatížení buňky postupně vzrůstat až na maximální hodnotu 14 MPa dne 24.9. 2016 a od 29.9. je zátěžová buňka prakticky bez zatížení. Prudký nárůst zatížení lze korelovat s vytvořením třetí strany (chodba II300503), i když první (chodba II3005) a druhá strana pilíře II2 (chodba II3004) jsou v této době vyraženy jen částečně. K deaktivizaci zatížení buňky zde došlo v době, kdy byl monitorovaný pilíř II3 již dokončen.

V prezentovaných grafech jsou barevnými šipkami vyznačeny fáze vytváření uhelných pilířů II1, II2 a II3. Jednotlivé fáze dobývání jsou prezentovány na obr. 5.11 a byly definovány následovně:

- 1. fáze do 30.6. 2016 barevné označení ČERVENÁ. Na konci této fáze byla vytvořena první strana uhelného pilíře II1 (chodba II3002) a bylo tak zpřístupněno instalační místo pro zátěžové buňky IISC1 až IISC3, které byly instalovány ve dnech 15. až 16.6. 2016. Zároveň byla v této fázi vytvořena část první strany uhelného pilíře II3 (chodba II3005) a bylo tak zpřístupněno instalační místo pro zátěžovou buňku IISC5, která byla instalována dne 9.7. 2016.
- 2. fáze do 14.7. 2016 barevné označení MODRÁ. V této fázi byla vytvořena druhá strana uhelného pilíře II1 a zároveň první strana uhelného pilíře II2 (chodba II3003). Bylo tak zpřístupněno instalační místo pro zátěžovou buňku IISC4, která byla instalována dne 20.7. 2016. V této fázi dále pokračovalo ražení chodeb II3004 a II300502 ve východní části dobývky II, mimo monitorované pilíře.
- 3. fáze do 25.7. 2016 barevné označení ZELENÁ. V této fázi byla vytvořena druhá strana uhelného pilíře II2 (chodba II300403) a následně třetí strana uhelného pilíře II1 (chodba II300303).
- 4. fáze do 11.8. 2016 barevné označení FIALOVÁ. Ve čtvrté fázi byla vytvořena třetí (chodba II3004) a následně čtvrtá (chodba II 300404) strana pilíře II2 a tento pilíř tak byl kompletně obfárán. Následným vyražením chody II 300304 byl také dokončen monitorovaný pilíř II1.
- 5. fáze do 24.9. 2016 barevné označení TYRKYSOVÁ. V této poslední fázi vytváření monitorovaných pilířů byl postupným vyražením chodeb II300503, II 3005, II3004 a II300504 dokončen poslední z monitorovaných pilířů II3. V této fázi také bylo pokračováno v ražení chodeb II 3002 a II3003 do předpolí dobývky II.

Obr. 5.11 Fáze dobývání charakterizující vytváření monitorovaných pilířů II1, II2 a II3 v monitorované lokalitě B. 1. fáze – červená, 2. fáze – modrá, 3. fáze – zelená, 4. fáze – fialová, 5. fáze - tyrkysová

Výsledky zatížení jednotlivých zátěžových buněk poukazují na specifické podmínky v lokalitě B. Ve většině případů dochází k reaktivizaci zatížení sondy, tedy k pravděpodobnému porušení uhelné hmoty v okolí sondy, ve fázi kdy monitorovaný uhelný pilíř není zcela obfárán. Také hodnoty maximálního zatížení zátěžových buněk, tedy těsně před porušením uhelné hmoty v okolí sondy, je relativně nízké (IISC2 - 38 MPa, IISC4 - 16 MPa, IISC5 – 14 MPa). Poměrně nízké maximální zatížení na zátěžových buňkách, tedy pravděpodobně před porušením uhelné hmoty v okolí buňky, a v porovnání s lokalitou A relativně brzká reaktivizace zatížení sond, poukazují na rychlejší postup porušování pilíře směrem do hloubky. Větší porušení monitorovaných pilířů jak v absolutních hodnotách, tak v hloubkovém dosahu porušení, také potvrzují dosavadní výsledky monitorování rozvolnění pomocí horizontálních extenzometrů. Pro objektivní srovnání výsledků z lokality A a B je však potřebná delší observace tohoto monitorovacího prvku, neboť observace na některých horizontálních extenzometrech nepřesahuje na konci hodnoceného období (9/2016) jeden měsíc. Je otázkou do jaké míry výsledky ovlivňuje fakt, že v přímém nadloží monitorovaných pilířů v lokalitě B, ve vzdálenosti cca 6-15 m od stropu sloje, probíhá výrazná přesmyková plocha. Charakter a průběh přesmyku patrně ovlivnil a ovlivňuje charakter porušování uhelných pilířů a tedy i výsledky monitoringu napěťo-deformačního stavu pilířů v lokalitě B.

5.3 Deformometrie uhelného pilíře - lokalita B

V lokalitě B – dobývka V bylo nainstalováno postupně 12 horizontálních extenzometrů délky 10 m (pilíř II2) a 12 m v polovině chodeb tvořící monitorované pilíře II1, II2 a II3. V rámci jedné pozice byly extenzometri instalovány s ukotvením kotev v polohách – **1.5, 3.0, 5.0, 8.5, 10 m**, v případě extenzometrů délky 10 m a v polohách **1.5, 3.0, 5.0, 8.5, 12 m**, v případě extenzometrů délky 12 m. Rozmístění jednotlivých horizontálních extenzometrů a jejich parametry jsou zřejmé z obr. 5.12 a tab. 5.7.

Obr. 5.12 Lokalizace horizontálních extenzometrů v lokalitě B.

1ab. 5. <i>T</i> arametry nonzontalitich extenzionetra v monitorovane tokatile D .							
Označení	Monitorovaný	Chodba	Délka	Staničení	Datum instalace		
extenzometru	pilíř		extenzometru [m]	[m]			
IIEh1	II 1	II3002	12	191,0	13.6. 2016		
IIEh2	II 1	II300303	12	15,0	28.7.2016		
IIEh3	II1	II3003	12	210,0	13.7. 2016.		

Tab. 5.7 Parametry horizontálních extenzometrů v monitorované lokalitě B.

IIEh4	II1	II300304	12	15,0	17.8. 2016.
IIEh5	II2	II3003	10	207,0	12.7. 2016
IIEh6	II2	II300403	10	17,0	28.7. 2016.
IIEh7	II2	II3004	10	150,0	1.8. 2016
IIEh8	II2	II300404	10	17,0	16.8. 2016
IIEh9	II3	II3004	12	166,0	18.8. 2016.
IIEh10	II3	II300503	12	15,0	5.9. 2016
IIEh11	II3	II3005	10,5	72,0	8.7. 2016
IIEh12	II3	II300504	12	15,0	23.9. 2016

Podobně jako v lokalitě A i zde je pro možnost komplexního hodnocené rozvolnění pilíře nutné vycházet z grafů, které znázorňují pohyb uhelné hmoty od největší kotvené úrovně, tj. od 12 m, případně 10 m, přičemž tuto úroveň chápeme jako fixní bod.

5.3.1 Výsledky monitoringu horizontálních extenzometrů (denní odečet)

Grafy v této podkapitole vyjadřují hodnoty získané denním odečtem bez přepočtu ke kotveným úrovním, výsledky tak prezentuje součtový vývoj hodnot bez bližšího zdůvodnění vyvolaných změn. Přesto tento typ grafu odhaluje jakékoliv vzniklé nesoulady a problémy související s instalací a provozem horizontálních extenzometrů, což lze pokládat za největší přínos tohoto grafu. Pro interpretační účely je již méně vhodný, a proto zde nebude hodnoceno rozvolnění uhelného pilíře, ale bude uvedena stručná diagnostika chyb při instalaci.

5.3.1.1 Monitoring pilíře II1

Kotvy v úrovních 8,5 a 12 m extenzometru IIEh1 (obr. 5.13) byly při instalaci patrně zaměněny kotvené úrovně, případně došlo k proklouznutí dané kotvičky ve vrtu. Navíc došlo k zaseknutí v kotvených polohách 3 a 5 metrů. K odstranění tohoto stavu nepomohla ani následná rekalibrace dne 1.10. 2016.

Obr. 5.13 Graf rozvolnění uhelného pilíře – extenzometr IIEh1

Z grafu pro extenzometr IIEh2 je patrné (obr. 5.14), že byly při instalaci patrně zaměněny kotvené úrovně, případně došlo k proklouznutí dané kotvičky ve vrtu.

Obr. 5.14 *Graf rozvolnění uhelného pilíře – extenzometr IIEh2.*

Z grafu pro extenzometr IIEh3 je patrné (obr. 5.15), že byly při instalaci patrně zaměněny kotvené úrovně, případně došlo k proklouznutí dané kotvičky ve vrtu. Navíc došlo k zaseknutí v kotvené poloze 8,5 metrů.

Obr. 5.15 Graf rozvolnění uhelného pilíře – extenzometr IIEh3.

Z grafu pro extenzometr IIEh4 je patrné (obr. 5.16), že byly při instalaci zaměněny kotvené úrovně. Navíc došlo několikrát k zaseknutí v kotvené poloze 12 metrů.

Obr. 5.16 *Graf rozvolnění uhelného pilíře – extenzometr IIEh4.*

5.3.1.2 Monitoring pilíře II2

Na obr. 5.17 je znázorněn průběh rozvolnění uhelného pilíře zachyceném extenzometrem IIEh5. Vyjma kotvené polohy v 10 m extenzometr vykazuje relevantní hodnoty. Díky nevhodné úpravě kotvených lanek při instalaci, jejich zkrácením, však kotvená poloha 10 m již není funkční a dle nových informací od 20.10. 2016 ze stejné důvodu není funkční i kotvená poloha 7 m.

Obr. 5.17 Graf rozvolnění uhelného pilíře – extenzometr IIEh5.

Z grafu pro extenzometr IIEh6 je patrné (obr. 5.18), že byly při instalaci patrně zaměněny kotvené úrovně, případně došlo k proklouznutí dané kotvičky ve vrtu. Navíc došlo k zaseknutí v kotvené poloze 10 metrů.

Obr. 5.18 *Graf rozvolnění uhelného pilíře – extenzometr IIEh6.*

Obr. 5.19 *Graf rozvolnění uhelného pilíře – extenzometr IIEh7.*

Z grafu pro extenzometr IIEh6 je patrné (obr. 5.19), že byly při instalaci patrně zaměněny kotvené úrovně, případně došlo k proklouznutí dané kotvičky ve vrtu, což by mohla indikovat skoková změna na kotvené poloze 10 metrů.

Obr. 5.20 Graf rozvolnění uhelného pilíře – extenzometr IIEh8.

Z grafu pro extenzometr IIEh8 je patrné (obr. 5.20), že byly při instalaci zaměněny kotvené úrovně. Navíc došlo k zaseknutí v kotvené poloze 7 metrů.

5.3.1.3 Monitoring pilíře II3

Z grafu pro extenzometr IIEh9 je patrné (obr. 5.21), že u kotvené polohy 12 m patrně došlo k proklouznutí kotvičky ve vrtu.

Obr. 5.21 Graf rozvolnění uhelného pilíře – extenzometr IIEh9.

Průběh grafu horizontálního extenzometru IIEH10 (obr. 5.22) poskytuje relevantní údaje ve všech kotvených polohách.

Obr. 5.22 *Graf rozvolnění uhelného pilíře – extenzometr IIEh10.*

Obr. 5.23 *Graf rozvolnění uhelného pilíře – extenzometr IIEh11.*

Z grafu pro extenzometr IIEh11 je patrné (obr. 5.23), že pravděpodobně došlo k proklouznutí dané kotvičky ve vrtu.

Obr. 5.24 *Graf rozvolnění uhelného pilíře – extenzometr IIEh12.*

Extenzometr IIEh12 (obr. 5.24) doposud funguje správně, nejsou zde patrny chyby měření či anomálie.

5.3.2 Výsledky monitoringu horizontálních extenzometrů přepočtené ke kotvené úrovni 10 m

5.3.2.1 Monitoring pilíře II1

V pilíři II1 byly instalovány extenzometry IIEh1, IIEh2, IIEh3 a IIEh4, přičemž již ze základního grafu (kap. 5.3.1.1) bylo možné diagnostikovat nestandartní chování jednotlivých kotvených poloh způsobených pravděpodobně chybami při instalacích, případně došlo k proklouznutí dané kotvičky ve vrtu. Z tohoto důvodu byly původní hodnoty verifikovány a přepočteny do prezentovaných hodnot.

Z důvodu zachování přehlednosti grafů bylo nutné přistoupit k redukci časových řad a prezentované grafy jsou zobrazeny v časovém intervalu jednoho týdne.

Obr. 5.25 Graf rozvolnění uhelného pilíře x hloubka kotvy – extenzometr IIEh1.

U extenzometru IIEh1 jsou z důvodu nekorektní instalace, případně prokluzu kotvičky ve vrtu, kotvené úrovně v pořadí 1-2-3-5-4 namísto 1-2-3-4-5, proto došlo k úpravě hodnot a následně změnám v grafu. Jak je z obr. 5.25 patrné, celkové rozvolnění v místě IIEh1 na konci monitorovaného období (09/2016) činí 380mm.

Obr. 5.26 Graf rozvolnění uhelného pilíře x hloubka kotvy – extenzometr IIEh2.

Jak je z obr. 5.26 patrné, celkové rozvolnění v místě IIEh2 na konci monitorovaného období (09/2016) činí 148 mm. I zde byly původní hodnoty upraveny a korigováno pořadí kotvených úrovní.

Obr. 5.27 Graf rozvolnění uhelného pilíře x hloubka kotvy – extenzometr IIEh3.

Jak je z obr. 5.27 patrné, celkové rozvolnění v místě IIEh3 na konci monitorovaného období (09/2016) činí 307 mm. I zde byly původní hodnoty upraveny a korigováno pořadí kotvených úrovní.

Obr. 5.28 Graf rozvolnění uhelného pilíře x hloubka kotvy – extenzometr IIEh4.

Jak je z obr. 5.28 patrné, celkové rozvolnění v místě IIEh4 na konci monitorovaného období (09/2016) činí 49 mm. I zde byly původní hodnoty upraveny a korigováno pořadí kotvených úrovní.

5.3.2.2 Monitoring pilíře II2

V pilíři II2 byly instalovány extenzometry IIEh5, IIEh6, IIEh7 a IIEh8, přičemž již ze základního grafu (kap. 5.3.1.2) bylo i zde možné diagnostikovat nestandartní chování jednotlivých kotvených poloh způsobených pravděpodobně chybami při instalacích, případně došlo k proklouznutí dané kotvičky ve vrtu. Z tohoto důvodu byly původní hodnoty verifikovány a přepočteny do prezentovaných hodnot.

Z důvodu zachování přehlednosti grafů bylo nutné přistoupit k redukci časových řad a prezentované grafy jsou zobrazeny v časovém intervalu jednoho týdne.

U extenzometru IIEh5 jsou z důvodu nekorektní instalace, případně prokluzu kotvičky ve vrtu, kotvené úrovně v pořadí 1-2-4-5-3 namísto 1-2-3-4-5, proto došlo k úpravě hodnot a následně změnám v grafu. Jak je z obr. 5.29 patrné, celkové rozvolnění v místě IIEh5 na konci monitorovaného období (09/2016) činí 393mm. Díky nevhodné úpravě kotvených lanek při instalaci, jejich zkrácením, však jedna kotvená poloha již není funkční (viz přerušení grafu).

Obr. 5.29 Graf rozvolnění uhelného pilíře x hloubka kotvy – extenzometr IIEh5.

Obr. 5.30 Graf rozvolnění uhelného pilíře x hloubka kotvy – extenzometr IIEh6.

Jak je z obr. 5.30 patrné, celkové rozvolnění v místě IIEh6 na konci monitorovaného období (09/2016) činí 213 mm. I zde byly původní hodnoty upraveny a korigováno pořadí kotvených úrovní.

Obr. 5.31 Graf rozvolnění uhelného pilíře x hloubka kotvy – extenzometr IIEh7.

Jak je z obr. 5.31 patrné, celkové rozvolnění v místě IIEh7 na konci monitorovaného období (09/2016) činí 161 mm. I zde byly původní hodnoty upraveny a korigováno pořadí kotev.

Obr. 5.32 Graf rozvolnění uhelného pilíře x hloubka kotvy – extenzometr IIEh8.

Jak je z obr. 5.32 patrné, celkové rozvolnění v místě IIEh8 na konci monitorovaného období (09/2016) činí 72 mm. I zde byly původní hodnoty upraveny a korigováno pořadí kotvených úrovní.

5.3.2.3 Monitoring pilíře II3

V pilíři II2 byly instalovány extenzometry IIEh9, IIEh10, IIEh11 a IIEh12, přičemž již ze základního grafu (kap. 5.3.1.4) bylo i zde možné diagnostikovat nestandartní chování jednotlivých kotvených poloh způsobených pravděpodobně chybami při instalacích, případně došlo k proklouznutí dané kotvičky ve vrtu. Z tohoto důvodu byly původní hodnoty verifikovány a přepočteny do prezentovaných hodnot.

Z důvodu zachování přehlednosti grafů bylo nutné přistoupit k redukci časových řad a prezentované grafy jsou zobrazeny v časovém intervalu jednoho týdne.

U extenzometru IIEh9 jsou z důvodu nekorektní instalace, případně prokluzu kotvičky ve vrtu, kotvené úrovně v pořadí 1-2-3-5-4 namísto 1-2-3-4-5, proto došlo k úpravě hodnot a následně změnám v grafu. Jak je z obr. 5.33 patrné, celkové rozvolnění v místě IIEh9 na konci monitorovaného období (09/2016) činí 253 mm.

Obr. 5.33 *Graf rozvolnění uhelného pilíře x hloubka kotvy – extenzometr IIEh9.*

Jak je z obr. 5.34 patrné, celkové rozvolnění v místě IIEh10 na konci monitorovaného období (09/2016) činí 104 mm. V tomto případě byly původní hodnoty korektní a pořadí kotvených úrovní bylo zachováno.

Obr. 5.34 Graf rozvolnění uhelného pilíře x hloubka kotvy – extenzometr IIEh10.

Jak je z obr. 5.35 patrné, celkové rozvolnění v místě IIEh11 na konci monitorovaného období (09/2016) činí 274 mm. I zde byly původní hodnoty upraveny a korigováno pořadí kotvených úrovní.

Obr. 5.35 Graf rozvolnění uhelného pilíře x hloubka kotvy – extenzometr IIEh11.

Jak je z obr. 5.36 patrné, celkové rozvolnění v místě IIEh12 na konci monitorovaného období (09/2016) činí 53 mm. V tomto případě byly původní hodnoty korektní a pořadí kotvených úrovní bylo zachováno.

Obr. 5.36 *Graf rozvolnění uhelného pilíře x hloubka kotvy – extenzometr IIEh12.*

Z výsledků poskytnutých horizontálními extenzometry v lokalitě B vyplývá, že maximální rozvolnění uhelné hmoty činí 393 mm (IIEH5) v monitorovaném pilíři II2. Také v monitorovaném pilíři II1 dosahuje rozvolnění relativně vyšších hodnot (380 mm - IIEH1, 307 mm - IIEH3). I v monitorovaném pilíři II3, který byl formován jako poslední, dosahují hodnoty rozvolnění hodnot kolem 250 mm (IIEH9 – 253 mm, IIEH11 – 274 mm).

Již v této fázi monitoringu (maximální délka observace cca 4 měsíce) horizontální rozvolnění monitorovaných pilířů II1, II2 a II3 přesahují sledované rozvolnění v dobývce V (max. 260 mm), kde již délka observace přesáhla devatenáct měsíců. Dosavadní výsledky monitorování rozvolnění pomocí horizontálních extenzometrů také indikují větší porušení pilířů do hloubky, když významnější hodnoty rozvolnění byly zaznamenány i v hloubce 5 až 8,5 m (např. IIEH1, IIEH3, IIEH9). Oproti tomu byly v lokalitě A (dobývka V) významnější hodnoty rozvolnění zaznamenány do hloubky 5 m (viz kap. 4.3.3).

Pro objektivní srovnání příčin těchto evidentních rozdílů však bude potřeba delší observace v lokalitě B, neboť observace na některých horizontálních extenzometrech nepřesahuje na konci hodnoceného období (9/2016) jeden měsíc. Je otázkou do jaké míry výsledky ovlivňuje fakt, že v přímém nadloží monitorovaných pilířů v lokalitě B, ve vzdálenosti cca 6-15 m od stropu sloje, probíhá výrazná přesmyková plocha. Charakter a průběh přesmyku patrně ovlivnil a ovlivňuje charakter porušování uhelných pilířů a tedy i výsledky monitoringu napěťo-deformačního stavu pilířů v lokalitě B.

5.4 Měření deformací chodeb - lokalita B

5.4.1 Konvergenční měření - lokalita B

Na chodbách v monitorovací lokalitě B bylo instalováno 12 pozorovacích konvergenčních stanic (viz obr. 5.37) Konvergenční stanice (profily) jsou umístěny přibližně v polovině ponechaných monitorovaných pilířů a ve dvou případech na kříži chodeb (IIP3 a IIP5). Pro účely měření konvergence je využito stabilně instalovaných ocelových svorníků ve stropě díla a v bocích chodby o délce 2,4 m. Konvergenční stanice (profily) sestávají z 3 svorníků ve stropě a dvou dvojic svorníků v bocích díla. Jednotlivé konvergenční profily zaměřují odborní pracovníci OMG pomocí totální stanice. Od začátku konvergenční profily sledovány pouze pohyby bočních svorníků. Od sledování pohybů svorníků stabilizovaných v počvě díla bylo na základě negativních zkušeností v dobývce V upuštěno. Nerovnoměrné bubření počvy neumožňovalo dlouhodobé sledování instalovaných svorníků z důvodu jejich poškození. Z tohoto důvodů je zaměřována v jednotlivých etapách výšková úroveň počvy (profil) bez stabilizovaných svorníků.

Obr. 5.37 Umístění konvergenčních profilů v lokalitě B.

Níže uvedené konvergenční profily byly poskytnuty OMG Důlního závodu 2. Při měření se nepředpokládá výraznější pohyb bodů stabilizovaných ve stropě díla. Minimální pohyby stropu chodeb potvrzují měření na vertikálních extenzometrech, které doposud zaznamenaly pohyby stropu v řádech prvních milimetrů.

Vzhledem ke krátké observaci na konvergenčních profilech, když na některých sledovaných profilech observace nepřesáhlá první měsíc (např. IIP9, IIP11, IIP12), není možné v současné době provést objektivní zhodnocení rychlosti (dynamiky) deformačních změn v monitorované lokalitě B. Toto zhodnocení, včetně srovnání z první monitorovanou lokalitou A bude provedeno v dalším sledovaném období.

Obr. 5.38 Sledování pohybů bodů na konvergenčním profilu č. IIP1 na díle II3002, st. 192 m

Konvergenční profil č. IIP1 je stabilizován na chodbě II3002 ve staničení 192 m. Deformace profilu jsou nerovnoměrné, když až dvakrát větší deformace byly zaznamenány na levé straně chodby, tj. ze strany monitorovaného pilíře II1. Za celou dobu sledování (téměř 4. měsíce) dosáhla maximální změna 631 mm. Jedná se o maximální deformaci zaznamenanou v lokalitě B. Tyto velké změny poměrně dobře korelují s vyššími hodnotami na horizontálním extenzometru IIEh1, když celkové rozvolnění na IIEh1 činilo na konci sledovaného období (9/2016) 380 mm.

Obr. 5.39 Sledování pohybů bodů na konvergenčním profilu č. IIP2 na díle V300303, st. 16 m

Konvergenční profil č. IIP2 je stabilizován na chodbě II300303 ve staničení 16 m. Deformace profilu jsou poměrně rovnoměrné. Za celou dobu sledování (cca 2. měsíce) dosáhla maximální změna 222 mm.

Obr. 5.40 *Sledování pohybů bodů na konvergenčním profilu č.IIP3 na kříži děl II3003xII300403*

Konvergenční profil č. IIP3 je stabilizován na kříži děl II3003xII300403. Deformace profilu jsou nerovnoměrné, když až dvakrát větší deformace byly zaznamenány v horní části kříže. Za celou dobu sledování dosáhla maximální změna 284 mm.

Obr. 5.41 Sledování pohybů bodů na konvergenčním profilu č. IIP4 na díle II3003, st. 208 m

Konvergenční profil č. IIP4 je stabilizován na chodbě II3003 ve staničení 208 m. Deformace profilu jsou poměrně rovnoměrné. Za celou dobu sledování (cca 2. měsíce) dosáhla maximální změna 188 mm.

Obr. 5.42 Sledování pohybů bodů na konvergenčním profilu č. IIP5 na kříži děl II3003xII300404

Konvergenční profil č. IIP3 je stabilizován na kříži děl II3003xII300404. Deformace profilu jsou nerovnoměrné, když až dvakrát větší deformace byly zaznamenány v horní části kříže. Za celou dobu sledování dosáhla maximální změna 220 mm.

Obr. 5.43 Sledování pohybů bodů na konvergenčním profilu č. IIP6 na díle II300304, st. 15 m

Konvergenční profil č. IIP6 je stabilizován na chodbě II300304 ve staničení 15 m. Deformace profilu jsou poměrně rovnoměrné. Za celou dobu sledování (cca 2. měsíce) dosáhla maximální změna 303 mm.

Obr. 5.44 Sledování pohybů bodů na konvergenčním profilu č. IIP7 na díle V300403, st.18 m

Konvergenční profil č. IIP7 je stabilizován na chodbě II300403 ve staničení 18 m. Deformace profilu jsou poměrně rovnoměrné. Za celou dobu sledování (cca 2,5 měsíce) dosáhla maximální změna 470 mm.

Obr. 5.45 Sledování pohybů bodů na konvergenčním profilu č. IIP8 na díle II300404, st. 19 m

Konvergenční profil č. IIP8 je stabilizován na chodbě II300404 ve staničení 19 m. Deformace profilu jsou nerovnoměrné, když více jak dvakrát větší deformace byly zaznamenány na levé straně chodby. Za celou dobu sledování (2. měsíce) dosáhla maximální změna 479 mm. Jedná se o druhou největší deformaci zaznamenanou v lokalitě B.

Obr. 5.46 Sledování pohybů bodů na konvergenčním profilu č.IIP9 na díle II300503, st. 17 m

Konvergenční profil č. IIP9 je stabilizován na chodbě II300503 ve staničení 17 m. Vzhledem ke krátké observaci (10 dní) na tomto konvergenční profilu jsou deformační změny minimální (max 23 mm).

Obr. 5.47 Sledování pohybů bodů na konvergenčním profilu č.IIP10 na díle II3005, st. 72 m

Konvergenční profil č. IIP10 je stabilizován na chodbě II3005 ve staničení 72 m. Deformace profilu jsou poměrně rovnoměrné. Za celou dobu sledování (cca 2,5 měsíce) dosáhla maximální změna 451 mm.

Obr. 5.48 Sledování pohybů bodů na konvergenčním profilu č. IIP11 na díle II300504, st. 16 m

Konvergenční profil č. IIP11 je stabilizován na chodbě II300504 ve staničení 16 m. Vzhledem ke krátké observaci (10 dní) na tomto konvergenční profilu jsou deformační změny minimální (max 59 mm).

Obr. 5.49 *Sledování pohybů bodů na konvergenčním profilu č. IIP12 na díle II3004, st. 156 m*

Konvergenční profil č. IIP12 je stabilizován na chodbě II3004 ve staničení 156 m. Vzhledem ke krátké observaci (10 dní) na tomto konvergenční profilu jsou deformační změny minimální (max 35 mm).

Z výsledků konvergenčních měření v monitorované lokalitě B jsou zřejmé výrazné rozdíly v naměřených deformacích jak v rámci jednotlivých konvergenčních profilů rozmístěných kolem všech tří monitorovaných pilířů, tak i v rámci konkrétních konvergenčních stanic. Podobně jako v dobývce V i v dobývce II jsou největší deformace chodeb evidovány v bocích a počvě chodeb. Již v této fázi monitoringu (maximální délka observace cca 4 měsíce) však boční deformace monitorovaných pilířů II1, II2 a II3 (max. 630 mm - konvergence, 393 mm-horizontální extenzometry) přesahují sledované boční deformace v dobývce V (max. 450 mm - konvergence, 260 mm-horizontální extenzometry), kde již délka observace dosáhla až dvacet měsíců. V porovnání s tím, byly na některých konvergenčních profilech v lokalitě B evidovány pouze minimální deformace. Nutno však zdůraznit, že délka pozorování na jednotlivých konvergenčních profilech je velice rozdílná a pohybuje se v řádech několika měsíců až po několik dní. Z tohoto důvodu bude pro objektivní srovnání deformací nejen v rámci lokality B potřeba delší observace na jednotlivých konvergenčních stanicích.

6. Vztah monitorovaných veličin k dobývání dobývek V a II

6.1 Monitorované veličiny ve vztahu k vývoji deformačních zón v ponechaných uhelných pilířích

Vzhledem k tomu, že monitoring změn napětí v uhelných pilířích pomocí zátěžových buněk v lokalitě A (dobývka V) byl již ukončen, platí pro vývoj deformačních zón v ponechaných uhelných pilířích závěry uvedené v etapové zprávě z října 2015 (viz Waclawik et al. 2015b). Vzhledem k tomu, že v lokalitě B byly zátěžové buňky z finančních důvodů instalovány

Vzhledem k tomu, že v lokalitě B byly zátěžové buňky z finančních důvodů instalovány pouze omezeně (dvě zátěžové buňky v pilíři II1 a po jedné zátěžové buňce v pilířích II2 a II3), bude možné provést vyhodnocení deformačních zón v lokalitě B až na základě výsledků poskytnutých horizontálními extenzometry. Pro objektivní hodnocení však bude potřeba delší observace v lokalitě B, neboť observace na některých horizontálních extenzometrech nepřesahuje na konci hodnoceného období (9/2016) jeden měsíc.

6.2 Zhodnocení dynamiky deformací uhelného pilíře V2 v lokalitě A

Rozvolnění uhelného pilíře je v rámci zkušebního provozu chodba-pilíř na lokalitě Dolu ČSM sledováno pomocí horizontálních extenzometrů a konvergometrických měření na vytipovaných svornících a měřičských profilech. V rámci této kapitoly je dynamika, tj. rychlost rozvolnění ponechaných pilířů, hodnocena na základě dat získaných z horizontálních extenzometrů instalovaných v pilíři V2 - VeH2, VeH6, VeH7 a VeH8.

Aby bylo možné komplexně zhodnotit dynamiku rozvolnění pilíře, je nutné vycházet z grafů, které znázorňují pohyb uhelné hmoty od nejvyšší kotvené úrovně, tj. od 10 m, přičemž tuto úroveň chápeme jako fixní bod. Tento typ grafů je vhodný pro posouzení dynamiky rozvolnění uhelného pilíře, neboť je již na první pohled dynamika patrná, řídnutím, resp. zahušťováním grafu.

Jelikož bylo vyhodnocení horizontálních extenzometrů předmětem kapitoly 4.3, nebudou již v této kapitole grafy jednotlivých extenzometrů komentovány, neboť závěry by byly identické. Předmětem kapitoly bude celkové zhodnocení rozvolnění uhelného pilíře a jeho relaxace, a to jak v grafickém, tak numerickém vyjádření.

V tab. 6.1 jsou zobrazeny celkové měsíční přírůstky. Přestože u extenzometrů VeH2 a VeH8 registrujeme v 9. měsíci náhlý, skokový nárůst hodnot, nemají tyto hodnoty vliv na trendovou složku, viz. obr. 6.1. Tyto změny patrně souvisí se znovuzahájením prací v dobývce I po ukončení dobývky V a přestěhování technologie.

	Měsíční přírůstky [mm]					
	VeH2	VeH6	VeH7	VeH8		
1. měsíc	74	48	69,5	49,6		
2. měsíc	44,7	16,7	51,6	35,4		
3. měsíc	29,1	7,1	27,8	31,1		
4. měsíc	29	24,4	28,4	19,2		
5. měsíc	15,6	17,6	8,3	18,5		
6. měsíc	15,6	13,6	13,7	9,1		
7. měsíc	10,5	13,7	6,9	14,3		
8. měsíc	7,9	7,9	12,3	2,9		
9. měsíc	15,2	8	8,9	15,2		

Tab. 6.1 Celkové měsíční přírůstky rozvolnění.

	Měsíční přírůstky [mm]					
	VeH2	VeH6	VeH7	VeH8		
10. měsíc	6,3	5,1	5	8,1		
11. měsíc	4,1	2,9	3,8	5,4		
12. měsíc	3,2	4,7	3,9	6,7		
13. měsíc	3,9	3,3	2,6	0,5		
14. měsíc	3	4,4	0,8	3		
15. měsíc	2,3	3,1	0,4	3,8		
16. měsíc	2	4,1	-0,1	3,2		
17. měsíc	0,7	3,2	0	3,2		
18. měsíc	2	2,7	0,9	3,2		
19. měsíc	2,2	3,3	0,2	2,4		
20. měsíc	2,4			2,9		

Na základě výše uvedené tabulky byl vyhotoven graf znázorňující míru rozvolnění uhelného pilíře v závislosti na čase, přičemž součástí grafu je i analýza trendu, potvrzující nebo vyvracející postupnou relaxaci uhelného pilíře.

Obr. 6.1 *Míra celkového rozvolnění uhelného pilíře v závislosti na čase včetně trendové složky*

Jak je z grafu patrné, dochází k postupnému zpomalování měsíčních přírůstků rozvolnění sledované pomocí horizontálních extenzometrů, což ukazuje na relaxaci uhelného pilíře. Měsíční přírůstky celkového rozvolnění pilíře se za sledovaných devatenáct až dvacet měsíců zmenšily několikanásobně, v případě VEh6 a VEh8 cca 16-násobně a v případě extenzometrů VEh2 a VEh7 víc jak 25-násobně. Lze říci, že se ve sledovaném období 04/2016-9/2016 se

měsíční přírůstek na jednotlivých extenzometrech pohyboval kolem 2 až 3 mm/měsíc. Dynamika rozvolnění pilíře tak dobře koreluje se závěry v rámci konvergenčního měření (viz kap. 4.51). Nutno však podotknout, že jak sledovaných konvergenčních profilech tak na sledovaných horizontálních extenzometrech nedošlo za poslední sledované období (4/2016-9/2016) k výraznému zpomalení měsíčních přírustků, což je také mimo jiné důvodem pro pokračování v geomechanickém monitoringu v lokalitě A.

6.3 Zhodnocení dynamiky deformací uhelných pilířů v lokalitě B

Pro objektivní zhodnocení dynamiky deformací ponechaných uhelných pilířů v lokalitě B bude potřeba delšího časového intervalu deformometrických měřeních, neboť observace na některých horizontálních extenzometrech, podobně jak délka sledování na některých konvergenčních profilech, nepřesahuje na konci hodnoceného období (9/2016) jeden měsíc.

7. Závěr

Předložená zpráva navazuje na vyhodnocení zpracované v rámci předchozí dílčí zprávy I/2015 z dubna, II/2015 z října loňského roku a III/2016 z dubna letošního roku. Obsahem zprávy je detailní zhodnocení naměřených hodnot jednotlivých monitorovacích prvků a jejich vzájemná vazba.

Na základě analýz a interpretací výsledků poskytnutých jednotlivými monitorovacími zařízeními a postupy lze pro monitorovanou lokalitu A v dobývce V formulovat následující dílčí závěry:

- Z analýzy výsledků poskytnutých vertikálními extenzometry lze interpretovat, že v nadloží chodeb, ve výškovém rozsahu použitých extenzometrů 0 až 8 m, za celé sledované období, v oblasti monitorovaných pilířů V1 a V2, je vertikální rozvolnění nadložních hornin zanedbatelné. Za poslední hodnotící období nebyly na vertikálních extenzometrech zaznamenány téměř žádné změny, respektive se hodnoty rozvolnění pohybovaly kolem hranice výrobcem garantované přesnosti měření ±0,5 mm.
- Zatížení instalovaných tenzometrických svorníků se pohybuje v rozmezí +45 kN (tj. cca • 10 % maximálního zatížení na mezi pevnosti použité svorníkové výztuže - 350 kN) až -20 kN. Nejvyšší zatížení svorníků bylo zaznamenáno v jejich střední části, nejčastěji na čidlech č. 6 a 7 umístěných v hloubce 0,95 m resp. 0,7 m od úrovně stropu ražené chodby. Zjištěné maximální osové zatížení na tenzometrických svornících jsou v porovnání s jmenovitou tahovou únosnosti použitých svorníků zanedbatelné. Trendy osového zatížení tenzometrických svorníků jsou dobře korelovatelné s charakterem porušování monitorovaných pilířů a dobře také odrážejí deformační procesy zachycené jednotlivými monitorovacími prvky (extenzometry, konvergenční měření, CCBM). Prakticky u všech svorníků bylo zachyceno zvyšování osového zatížení až do 9/2015. Posléze (10/2015) dochází k znatelnému poklesu osového zatížení, což může souviset s přírůstkem měsíčních deformací monitorovaných pilířů vlivem započetí dobývacích prací v dobývce I. Poté v období 10/2015-4/2016 jsou změny hodnot zatížení minimální, což dobře koreluje s celkovým snížením dynamiky deformací pilíře V2, potvrzených měřeními na horizontálních extenzometrech, konvergenčních profilech aj. Od 5/2016 až do konce posledního sledovaného období (9/2016) byl však zaznamenán trendový nárůst tahového zatížení na všech instalovaných tenzometrických svornících. Přestože velikosti změn tahového zatížení v uvedeném období jsou relativně malé (cca 8 kN) a měsíční přírůstky deformací monitorovaného pilíře jsou minimální, může nárůst zatížení souviset s pokračujícím, byť minimálním, porušováním pilíře.
- Za poslední hodnocené období neposkytl již monitoring napěťového stavu v lokalitě A nové významnější poznatky týkající napěťových polí a jejich změn v okolí monitorovaných pilířů V1 a V2. Lze jen podotknout, že změny hodnot složek napětí zaznamenaných sondami instalovanými nad chodbami a nad monitorovanými pilíři jsou za sledované období (4/2016-9/2016) minimální. Dílčí závěry z předchozí etapové zprávy hodnocení monitoringu z dubna 2016 tak zůstávají nadále v platnosti.
- Vzhledem k tomu, že v rámci hodnoceného období (4/2016 9/2016) nejsou funkční, resp. neposkytují relevantní data, žádné zátěžové buňky instalované v monitorovací lokalitě A, nebyl tento monitorovací prvek již dále hodnocen. Veškerá hodnocení a závěry související s monitoringem pomocí zátěžových buněk byly uvedeny v předchozí etapové zprávě hodnocení monitoringu.
- Rozvolnění uhelného pilíře zaznamenané horizontálními extenzometry je v rámci monitorovaných pilířů v lokalitě A rozdílné. Větší rozvolnění uhelného pilíře bylo evidováno na extenzometrech instalovaných v monitorovaném pilíři V2. Za celé
sledované období dosáhly hodnoty rozvolnění v menším pilíři V2 hodnot 192 mm až 264 mm, v monitorovaném pilíři V1 pak 57 mm až 202 mm. Rozvolnění pilíře V2 je však v současné době hodnoceno na základě dvou horizontálních extenzometrů z důvodů poškození dvou extenzometrů. Uvedené hodnoty logicky uvozují na větší rozvolnění pilíře V2, způsobené pravděpodobně větším plošným zatížením. Kromě absolutních hodnot rozvolnění pilíře poskytly hodnocená data důležitou informaci o dynamice porušování uhelného pilíře. Za poslední hodnotící období se měsíční přírůstky rozvolnění v hodnoceném pilíři V2 pohybovaly kolem 2 až 3 mm.

- Za celou dobu monitorování nedosáhla změna osového zatížení kotev, na kterých jsou instalovány hydraulické dynamometry významnějších hodnot. Na dynamometrech VD5, VD6 dokonce změna osového zatížení kotev nepřesáhla původní (inicializační) napětí. I na ostatních dynamometrech (VD1, VD2, VD3, VD4 a VD7) je změna osového zatížení zanedbatelná a vzhledem k manuálnímu způsobu odečtu, rozpětí měřícího manometru (0-500 KN) a umístění manometru u stropu chodby, jsou zaznamenané změny na hranici přesnosti odečtu. Největší změny (10-15 KN) byly zaznamenány v prvním hodnotícím období (do 30.3. 2015), tedy v době formování uhelných pilířů, kdy byly taky zaznamenány deformační změny s největší dynamikou. Přesto lze tyto změny v zatížení považovat za zanedbatelné. Za poslední hodnotící období nebyly na dynamometrech zaznamenány žádné změny v zatížení kotev.
- Z výsledků konvergenčních měření jsou zřejmé výrazné rozdíly v naměřených • deformacích jak v rámci jednotlivých konvergenčních profilů rozmístěných kolem obou monitorovaných pilířů, tak i v rámci konkrétních konvergenčních stanic. Za celé sledované období tak maximální deformace v horizontálním směru dosáhla téměř 455 mm v konvergenčním profilu č. 3 (bodě 3/1) podobně také v konvergenčním profilu č. 8 (bodě 8/1) a v porovnání s tím minimální deformace v horizontálním směru dosáhla pouze 40 mm na konvergenční stanici č. 2 (bod 2/7). Nejmenší horizontální deformace jsou soustředěny na přilehlém okraji monitorovaných pilířů k bariérovým pilířům a kolem centrální chodby V3005. Největší horizontální deformace jsou soustředěny na bocích chodeb lemující monitorované pilíře. Vzhledem k tomu, že sledování vertikálních deformací bylo prováděno pouze omezeně a v omezeném časovém období, nelze z těchto měření učinit komplexnější závěry. Konvergenční měření potvrzují trend postupného zpomalování deformací chodeb, jež odrážejí deformace ponechaných pilířů, případně okrajových bariérových pilířů. Potvrzují tak trendy zjištěné ostatními monitorovacími prvky (horizontální extenzometry). Za celé sledované období (cca 19 měsíců) se měsíční změny deformací zmenšily až 20-násobně, když změny šířek chodeb se po prvním měsíci pohybovaly kolem 100 mm (max. 160 mm) a na konci sledovaného období oscilují kolem 10 mm (max. 15 mm, min. 4). Nutno však podotknout, že téměř na všech sledovaných konvergenčních profilech nedošlo za poslední sledované období (4/2016-9/2016) k výraznému zpomalení měsíčních přírustků deformací, což je také mimo jiné důvodem pro pokračování v geomechanickém monitoringu v lokalitě A.
- Za poslední hodnocené období neposkytl již monitoring v lokalitě A nové poznatky týkající se charakteru porušování pilíře a definice deformačních zón v pilíři V2. Dílčí závěry z předchozí etapové zprávy hodnocení monitoringu z dubna 2016 tak zůstávají nadále v platnosti.
- Z analýzy dynamiky rozvolňování pilířů vyplývá, že dochází k postupnému zpomalování měsíčních přírůstků rozvolnění sledované pomocí horizontálních extenzometrů, což ukazuje na relaxaci uhelného pilíře. Měsíční přírůstky celkového rozvolnění pilíře se za sledovaných devatenáct až dvacet měsíců zmenšily několikanásobně, v případě VEh6 a VEh8 cca 16-násobně a v případě extenzometrů

VEh2 a VEh7 víc jak 25-násobně. Lze říci, že se ve sledovaném období 04/2016-9/2016 se měsíční přírůstek na jednotlivých extenzometrech pohyboval kolem 2 až 3 mm/měsíc. Dynamika rozvolnění pilíře tak dobře koreluje se závěry v rámci konvergenčního měření (viz kap. 4.51). Nutno však podotknout, že obdobně jak na sledovaných konvergenčních profilech, tak i na sledovaných horizontálních extenzometrech nedošlo za poslední sledované období (4/2016-9/2016) k výraznému zpomalení měsíčních přírůstků, což je také mimo jiné důvodem pro pokračování v geomechanickém monitoringu v lokalitě A.

Na základě analýz a interpretací výsledků poskytnutých jednotlivými monitorovacími zařízeními a postupy lze pro monitorovanou lokalitu B v dobývce II formulovat následující dílčí závěry:

- Z analýzy výsledků poskytnutých vertikálními extenzometry lze interpretovat, že v nadloží chodeb ve výškovém rozsahu použitých extenzometrů 0 až 7 m, za celé sledované období, v oblasti monitorovaných pilířů II1, II2 a II3, je vertikální rozvolnění hornin zanedbatelné. Vzhledem k tomu, že délka observace na vertikálních extenzometrech v dobývce II je poměrně krátká a na některých instalovaných vertikálních extenzometrech ani nedosáhla jednoho měsíce, nelze v této fázi hodnocení provést relevantní posouzení deformací v nadloží sledovaných chodeb.
- Z monitoringu napěťové stavu ponechaných uhelných pilířů, jenž je monitorován pomocí sond CCBM instalovaných do nadloží pilířů, je možno konstatovat, že všechny tři monitorované pilíře v lokalitě B, respektive jejich napěťová pole spolu souvisí. Zřetelné (významné) změny napětí lze dobře korelovat s jednotlivými fázemi formování monitorovaných pilířů II1, II2 a II3 v lokalitě B. Ve fázi před zformováním pilíře významně vzrůstaly změny hodnot složek napětí ve všech monitorovaných pilířích. Maximálních změn napětí bylo dosaženo nad pilířem II2, kde maximální změna složky S1 dosáhla 34 MPa. Ve fázi po zformování jednotlivých pilířů, dochází ve všech případech k stabilizaci hodnot komponent napětí. V závěrečné fázi monitoringu již hodnoty zatížení oscilují jen nepatrně resp. je zřetelný mírný trendový pokles komponent napětí.
- Výsledky zatížení jednotlivých zátěžových buněk poukazují na specifické podmínky v lokalitě B. Ve většině případů dochází k reaktivizaci zatížení sondy, tedy k pravděpodobnému porušení uhelné hmoty v okolí sondy, ve fázi kdy monitorovaný uhelný pilíř není zcela obfárán. Také hodnoty maximálního zatížení zátěžových buněk, tedy těsně před porušením uhelné hmoty v okolí sondy, je relativně nízké (IISC2 - 38 MPa, IISC4 – 16 MPa, IISC5 – 14 MPa). Poměrně nízké maximální zatížení na zátěžových buňkách, tedy pravděpodobně před porušením uhelné hmoty v okolí buňky, a v porovnání s lokalitou A relativně brzká reaktivizace zatížení sond, poukazují na rychlejší postup porušování pilíře směrem do hloubky. Větší porušení monitorovaných pilířů jak v absolutních hodnotách, tak v hloubkovém dosahu porušení, také potvrzují dosavadní výsledky monitorování rozvolnění pomocí horizontálních extenzometrů. Pro objektivní srovnání výsledků z lokality A a B je však potřebná delší observace tohoto monitorovacího prvku, neboť observace na některých horizontálních extenzometrech nepřesahuje na konci hodnoceného období (9/2016) jeden měsíc. Je otázkou do jaké míry výsledky ovlivňuje fakt, že v přímém nadloží monitorovaných pilířů v lokalitě B, ve vzdálenosti cca 6-15 m od stropu sloje, probíhá výrazná přesmyková plocha. Charakter a průběh přesmyku patrně ovlivnil a ovlivňuje charakter porušování uhelných pilířů a tedy i výsledky monitoringu napěťo-deformačního stavu pilířů v lokalitě B.

- Z výsledků poskytnutých horizontálními extenzometry v lokalitě B vyplývá, že maximální rozvolnění uhelné hmoty činí 393 mm (IIEH5) v monitorovaném pilíři II2. Také v monitorovaném pilíři II1 dosahuje rozvolnění relativně vyšších hodnot (380 mm IIEH1, 307 mm IIEH3). I v monitorovaném pilíř II3, který byl formován jako poslední, dosahují hodnoty rozvolnění hodnot kolem 250 mm (IIEH9 253 mm, IIEH11 274 mm). Již v této fázi monitoringu (maximální délka observace cca 4 měsíce) horizontální rozvolnění monitorovaných pilířů II1, II2 a II3 přesahují sledované rozvolnění v dobývce V (max. 260 mm), kde již délka observace přesáhla devatenáct měsíců. Dosavadní výsledky monitorování rozvolnění pomocí horizontálních extenzometrů také indikují větší porušení pilířů do hloubky, když významnější hodnoty rozvolnění byly zaznamenány i v hloubce 5 až 8,5 m (např. IIEH1, IIEH3, IIEH9). Oproti tomu byly v lokalitě A (dobývka V) významnější hodnoty rozvolnění zaznamenány do hloubky 5 m.
- Z výsledků konvergenčních měření v monitorované lokalitě B jsou zřejmé výrazné rozdíly v naměřených deformacích jak v rámci jednotlivých konvergenčních profilů rozmístěných kolem všech tří monitorovaných pilířů, tak i v rámci konkrétních konvergenčních stanic. Podobně jako v dobývce V i v dobývce II jsou největší deformace chodeb evidovány v bocích a počvě chodeb. Již v této fázi monitoringu (maximální délka observace cca 4 měsíce) však boční deformace monitorovaných pilířů II1, II2 a II3 (max. 630 mm) přesahují sledované boční deformace v dobývce V (max. 450 mm), kde již délka observace dosáhla až dvacet měsíců. V porovnání s tím, byly na některých konvergenčních profilech v lokalitě B evidovány pouze minimální deformace. Nutno však zdůraznit, že délka pozorování na jednotlivých konvergenčních profilech je velice rozdílná a pohybuje se v řádech několika měsíců až po několik dní. Z tohoto důvodu bude pro objektivní srovnání deformací nejen v rámci lokality B potřeba delší observace na jednotlivých konvergenčních stanicích.
- Vzhledem k tomu, že v lokalitě B byly zátěžové buňky z finančních důvodů instalovány pouze omezeně (dvě zátěžové buňky v pilíři II1 a po jedné zátěžové buňce v pilířích II2 a II3), bude možné provést vyhodnocení deformačních zón v lokalitě B až na základě výsledků poskytnutých horizontálními extenzometry. Pro objektivní vyhodnocení vývoje deformačních zón a zhodnocení dynamiky deformací ponechaných uhelných pilířů v lokalitě B bude však potřeba delšího časového intervalu deformometrických měřeních, neboť observace na některých horizontálních extenzometrech, podobně jak délka sledování na některých konvergenčních profilech, nepřesahuje na konci hodnoceného období (9/2016) jeden měsíc.

Literatura:

- Antoszyk P. (2012): Projekt samostatné svorníkové výztuže pro zajišťování nadloží při dobývání metodou RP ve 30. Sloji 2a kry na závodě Sever Dolu ČSM. OKD, a.s., Důl ČSM Stonava
- Antoszyk P. (2013): Doplněk k Projektu samostatné svorníkové výztuže pro zajišťování nadloží při dobývání metodou RP ve 30. Sloji 2a kry na lokalitě Sever Dolu ČSM. OKD, a.s., Důl ČSM Stonava
- Staš L, Knejzlík J, Rambouský Z. (2005): Conical strain gauge probes for stress measurement. In: Proc. Eurock 2005; Impact of Human Activity on the Geological Environment. Leiden: A.A.Balkema Publishers, p. 587-592.
- Sembol Z. (2014): Doplněk č. 2 Projektu samostatné svorníkové výztuže pro zajišťování nadloží při dobývání metodou RP ve 30. Sloji 2a kry na závodě Sever Dolu ČSM. OKD, a.s., Důl ČSM Stonava
- Šňupárek R. et al. (2012): Odborné posouzení výpočtu stability pilířů při dobývání sloje 30 (634) v ochranném pilíři jam Dolu ČSM, závodu Sever a odborné vyjádření k možnosti universálního použití metodiky výpočtu stabilních mezichodbových pilířů (ARPMS verze 10) i v jiných slojích v podmínkách české části hornoslezské uhelné pánve, Závěrečná zpráva ÚGN Ostrava.
- Waclawik et al. (2016a): Hodnocení monitoringu napěťo-deformačního stavu horninového masivu při dobývání sloje 30 (634) v rámci zkušebního provozu dobývací metody chodba-pilíř v OPJ Dolu ČSM – Sever. Dílčí zpráva III/2016, ÚGN Ostrava.
- Waclawik P. et al. (2016b): Projekt monitoringu napěťodeformačního stavu horninového masivu při dobývání sloje 30 (634) v rámci zkušebního provozu dobývací metody chodba-pilíř v OPJ Dolu ČSM Sever – Dobývka II. Ústav Geoniky AV ČR, v.v.i., Ostrava
- Waclawik et al. (2015a): Hodnocení monitoringu napěťo-deformačního stavu horninového masivu při dobývání sloje 30 (634) v rámci zkušebního provozu dobývací metody chodba-pilíř v OPJ Dolu ČSM Sever. Dílčí zpráva I/2015, ÚGN Ostrava.
- Waclawik et al. (2015b): Hodnocení monitoringu napěťo-deformačního stavu horninového masivu při dobývání sloje 30 (634) v rámci zkušebního provozu dobývací metody chodba-pilíř v OPJ Dolu ČSM – Sever. Dílčí zpráva II/2015, ÚGN Ostrava.
- Waclawik P. et al. (2013): Projekt monitoringu napěťo-deformačního stavu horninového masivu a návrh ověření možnosti použití metod protiotřesové prevence při v rámci zkušebního ve sloji 30 v OPJ Dole ČSM Sever. Ústav Geoniky AV ČR, v.v.i., Ostrava