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Technical report No. 1233

September 2016
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Abstract:

In this paper, we propose the new Broyden method for solving systems of nonlinear equations,
which uses the first derivatives, but it is more efficient than the Newton method (measured by
the computational time) for larger dense systems. The new method updates QR decomposi-
tions of nonsymmetric approximations of the Jacobian matrix, so it requires O(n2) arithmetic
operations per iteration in contrast with the Newton method, which requires O(n3) operations
per iteration. Computational experiments confirm the high efficiency of the new method.
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1 Introduction

Consider the system of nonlinear equations

f(x) = 0, (1)

where f : Rn → Rn is a nonlinear mapping, and denote J(x) the Jacobian matrix of f
at the point x. We suppose, that the Jacobian matrix is dense of a dimension which is
not small, so methods saving matrix operations are preferred. We will use the following
assumptions concerning mapping f .

Assumption J1. The mapping f : Rn → Rn is continuously differentiable on the level
set D(F ) = {x ∈ Rn : ∥f(x)∥ ≤ F}, where F is a suitable upper bound, and the Jacobian
matrix J is Lipschitz continuous on D(F ), i.e., there is a constant L > 0 such that

∥J(y)− J(x)∥ ≤ L∥y − x∥ ∀x, y ∈ D(F ). (2)

Assumption J2. There is a constant J > 0 such that

∥J(xi)s∥ ≤ J∥s∥ ∀i ∈ N ∀s ∈ Rn. (3)

Assumption J3. There is a constant J > 0 such that

∥J(xi)s∥ ≥ J∥s∥ ∀i ∈ N ∀s ∈ Rn. (4)

where xi ∈ Rn, i ∈ N , are points generated by a chosen solution method.

We restrict our attention on iterative methods of the form xi+1 = xi + αisi, i ∈ N ,
with Aisi + fi ≈ 0, fi = f(xi), Ai ≈ Ji = J(xi) and αi ≥ 0, which generate a monotone
non-increasing sequence of norms ∥f(xi)∥, i ∈ N . Since the norm ∥f(x)∥ is a non-smooth
function, we use the scaled squared norm F (x) = ∥f(x)∥2/2 as a merit function and as-
sume that its gradient ∇F (x) = J(x)Tf(x) is computed either analytically or by reverse
automatic differentiation. The Newton method, which is the most known and rapidly con-
vergent method of this type, uses matrices Ai = Ji, i ∈ N . Since the Jacobian matrix Ji
is completely recomputed in every iteration, the solution of linear system Jisi + fi = 0 re-
quires O(n3) arithmetic operations per iteration to obtain a matrix factorization. This fact
prolongs the computational time, so quasi-Newton methods, which update factorizations
of matrices Ai, i ∈ N , in O(n2) arithmetic operations, can be more efficient for larger n.

In this paper, we propose a new quasi-Newton method (31), which is a good appro-
ximation of the two-sided adjoint quasi-Newton method (26). Two-sided adjoint quasi-
Newton methods have sophisticated theoretical (Theorem 8) and excellent numerical pro-
perties. Surprisingly, the new method is numerically perfect as well, but, against the
method (26), it does not require additional computation of directional derivatives Ji+1di,
i ∈ N (the computation of gradients JT

i+1fi+1, i ∈ N , suffices, see Section 3).
The paper is organized as follows. In Section 2, we briefly describe the trust region ap-

proach used in the implementation of quasi-Newton methods. Section 3, which is devoted
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to quasi-Newton methods and their properties, introduces a new quasi-Newton method.
Section 4 contains results of computational experiments, which confirm the high efficiency
of the new method. We follow results introduced in [2], [3] and [13]–[14]. Further informa-
tion can be found in [7] and [9]–[10].

2 Trust region methods

We restrict our attention on trust region methods, which have shown more successful
than line-search methods in our numerical experiments. In the description of trust region
methods, we utilize the knowledge of gradients gi = ∇F (xi), i ∈ N , and denote

Qi(s) =
1

2
sTAT

i Ais+ gTi s

for the predicted decrease and

ρi(s) =
F (xi + s)− Fi(xi)

Qi(s)

for the ratio of both the actual and the predicted decreases of the merit function. De-
tailed desctiption of trust region methods is introduced in [2], where also Definition 1 and
Theorem 1 can be found.

Definition 1 We say that an iterative method xi+1 = xi+αisi, i ∈ N , for solving a system
of nonlinear equations f(x) = 0, is a trust region method, if the following conditions hold.

(T1) Direction vectors si ∈ Rn, i ∈ N , are determined in such a way that

∥si∥ ≤ ∆i, (5)

∥si∥ < ∆i ⇒ Aisi + fi = 0, (6)

Qi(si) ≤ σ min
α∥gi∥≤∆i

Qi(−αgi), (7)

where 0 < σ < 1.

(T2) Step-sizes αi ≥ 0, i ∈ N , are selected so that

ρi(si) ≤ 0 ⇒ αi = 0, (8)

ρi(si) > 0 ⇒ αi = 1. (9)

(T3) Trust region radii 0 < ∆i ≤ ∆, i ∈ N , are chosen by the rule

ρi(si) < ρ ⇒ β∥si∥ ≤ ∆i+1 ≤ β∥si∥, (10)

ρ ≤ ρi(si) ≤ ρ ⇒ ∆i+1 = ∆i, (11)

ρi(si) > ρ ⇒ ∆i ≤ ∆i+1 ≤ min(γ∆i,∆), (12)

where 0 < β ≤ β < 1 < γ and 0 < ρ < ρ < 1.
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Direction vector si ∈ Rn satisfying conditions (5)–(7) can be computed by various ways.
We have chosen the dog-leg strategy, introduced in [11], which uses the following formulas

si = − ∆i

∥gi∥
, ∥sCi ∥ ≥ ∆i, (13)

si = sCi + λi(s
N
i − sCi ), ∥sCi ∥ < ∆i < ∥sNi ∥, (14)

si = sNi , ∥sNi ∥ ≤ ∆i, (15)

where

sCi = − ∥gi∥2

∥Aigi∥2
gi, sNi = −A−1

i fi (16)

and λi is a number selected in such a way that ∥si∥ = ∆i. It is known (see [2]) that
direction vector si computed by (13)–(16) satisfies conditions (5)–(7) with σ = 1/2.

The following assertion follows from the theorem introduced in [12].

Theorem 1 Let the mapping f : Rn → Rn satisfy assumptions J1 – J3 and matrices Ai,
i ∈ N , have bounded norms. Let xi ∈ Rn, i ∈ N , be a sequence generated by the trust
region method (T1)–(T3). Then f(xi) → 0.

Notice that the sequence generated by the trust-region method (T1)–(T3) can converge
to a stationary point of function F (x), which is not a solution of the system f(x) = 0,
when Assumption J3 is not satisfied.

In the subsequent considerations, we assume that matrices Ai ≈ Ji, i ∈ N , used in
Definition 1, are obtained by quasi-Newton updates described in the next section. In this
case, a safeguard against the loss of convergence is necessary. In our implementation of
the trust region method, we use restarts, which consist in setting Ai = Ji and repeating
the computation of si by (T1), when Ai ̸= Ji and ρi(si) ≤ 0.

3 Quasi-Newton methods

Quasi-Newton methods, which are surveyed in [3], use matrices Ai, i ∈ N , which are
computed recursively by the formula Ai+1 = Ai+uiv

T
i to satisfy the quasi-Newton condition

Ai+1di = yi, where di = xi+1−xi and yi = fi+1− fi. It can be easily shown that the quasi-
Newton condition holds if vTi di ̸= 0 and ui = (yi − Aidi)/v

T
i di. To simplify the notation,

we frequently omit index i and replace i+ 1 by symbol +. Thus we can write

A+ = A+
(y − Ad)vT

vTd
, (17)

where vector v is a free parameter. Setting v = d we obtain an efficient and broadly
used Broyden’s good method [1]. Further efficient methods can be obtained by minimizing
condition number κ(M) = ∥M∥∥M−1∥ or number ∥I −M∥∥I −M−1∥, where

M = A−1A+ = I − (d− A−1y)vT

vTd
= I − (d− w)vT

vTd
(18)

(with w = A−1y). The following theorem is proved in [6].
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Theorem 2 Let A+ be the matrix determined by formula (17), so (18) holds. Assume
that vectors d and w are linearly independent and denote a = dTd, b = dTw, c = wTw,
so that a > 0, b > 0 and ac > b2. Then ∥I − M∥∥I − M−1∥ is minimized if and only if
v = ϑd− w = ϑd− A−1y, where

ϑ =
√
c/a, if b ≤ 0,

ϑ = −
√
c/a, if b > 0.

Quasi-Newton methods find the solution of a linear system after a finite number of
steps. The following theorem is proved in [4].

Theorem 3 Let xi, i ∈ N , be a sequence generated by a quasi-Newton method of the form
(17) with Aisi + fi = 0 and αi = 1 (so di = si), i ∈ N , applied to the system of linear
equations J(x− x∗) = 0 with nonsingular matrix J . Let fi = J(xi − x∗) ̸= 0, 1 ≤ i ≤ 2n.
Then f2n+1 = J(x2n+1 − x∗) = 0 and x2n+1 = x∗.

Quasi-Newton methods can be derived variationally by the following theorem [3].

Theorem 4 Let W be a square nonsingular matrix of order n. Then matrix A+, which is
a solution of the variational problem

∥(A+ − A)W−1∥F = min
Ã

∥(Ã− A)W−1∥F s.t. Ãd = y, (19)

can be expressed in the form (17), where v = W TWd.

Setting W = I in (19), we obtain the Broyden’s good update, which corresponds to the
orthogonal projection of A into the linear manifold defined by the quasi-Newton condition
A+d = y. Such update satisfies the bounded deterioration principle: there exists a constant
c such that

∥Ai+1 − Ji+1∥ ≤ ∥Ai − Ji∥+ c∥di∥, i ∈ N . (20)

The bounded deterioration principle can be used for proving the following local convergence
theorem [3].

Theorem 5 Let x∗ ∈ Rn be a point such that f(x∗) = 0 and the Jacobian matrix J(x∗)
is regular. Then there are numbers δ > 0 and ϑ > 0 such that if ∥x1 − x∗∥ ≤ δ and
∥A1 − J1∥ ≤ ϑ, the sequence xi, i ∈ N , generated by Broyden’s good quasi-Newton method
with the unit step-sizes (αi = 1, i ∈ N ), converges Q-superlinearly to the point x∗.

If the first derivatives are available, the standard quasi-Newton condition can be
replaced by a stronger condition Ai+1di = Ji+1di. Alternatively, the adjoint quasi-Newton
condition AT

i+1wi = JT
i+1wi can be used (if wi = fi+1, then gi+1 = JT

i+1fi+1 = AT
i+1fi+1). In

this way, we obtain adjoint quasi-Newton methods, where matrices Ai, i ∈ N , are chosen
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recursively by the formula Ai+1 = Ai+uiv
T
i and satisfy the adjoint quasi-Newton condition

AT
i+1wi = JT

i+1wi. It can be easily shown that the adjoint quasi-Newton condition holds if
wT

i ui ̸= 0 and vi = (Ji+1 − Ai)
Twi/w

T
i ui. Thus we can write

A+ = A+
uwT (J+ − A)

wTu
. (21)

Adjoint quasi-Newton methods can be derived variationally by the following theorem.

Theorem 6 Let W be a square nonsingular matrix of order n. Then matrix A+, which is
a solution of the variational problem

∥(A+ − A)TW−1∥F = min
Ã

∥(Ã− A)TW−1∥F s.t. ÃTw = JT
+w, (22)

can be expressed in the form (21), where u = W TWw.

Proof The assertion follows from Theorem 4 after replacing A, A+, d and y by AT , AT
+,

w and JT
+w. 2

Formula (21) contains two optional vectors u a w. Setting u = (J+ − A)d, we obtain
two-sided (or tangent) quasi-Newton methods

A+ = A+
(J+ − A)dwT (J+ − A)

w(J+ − A)d
, (23)

satisfying conditions AT
+w = JT

+w and A+d = J+d. Setting u = y+ −Ad, we obtain secant
quasi-Newton methods

A+ = A+
(y − Ad)wT (J+ − A)

wT (y − Ad)
. (24)

Setting w = f+, we obtain residual quasi-Newton methods

A+ = A+
u fT

+(J+ − A)

fT
+u

. (25)

This class contains very important two-sided residual quasi-Newton method, which uses
the update

A+ = A+
(J+ − A)d fT

+(J+ − A)

fT
+(J+ − A)d

. (26)

Setting u = w (or w = u), we obtain variationally derived adjoint quasi-Newton methods
(Theorem 6) with W = I.

IfW = I in (22), we get the update which is an orthogonal projection of A into the linear
manifold defined by the adjoint quasi-Newton condition AT

+w = JT
+w. Such update satisfies

the bounded deterioration principle (20), so the following local convergence theorem holds
[13].
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Theorem 7 Let x∗ ∈ Rn be a point such that f(x∗) = 0 and the Jacobian matrix J(x∗)
is regular. Then there are numbers δ > 0 and ϑ > 0 such that if ∥x1 − x∗∥ ≤ δ and
∥A1 − J1∥ ≤ ϑ, the sequence xi, i ∈ N , generated by the tangent (23) or the secant (24)
or the residual (30) adjoint quasi-Newton method with wi = ui, i ∈ N , and with the unit
step-sizes (αi = 1, i ∈ N ), converges Q-superlinearly to the point x∗ ∈ Rn.

Two-sided quasi-Newton methods have excellent properties expressed by the following
theorem.

Theorem 8 Let xi, i ∈ N , be a sequence generated by the two-sided quasi-Newton method
with Aisi+ fi = 0 and αi = 1 (so di = si), i ∈ N , applied to the system of linear equations
J(x − x∗) = 0 with nonsingular matrix J . Let fi = J(xi − x∗) ̸= 0, 1 ≤ i ≤ n + 1. Then
fn+2 = J(xn+2 − x∗) = 0 and xn+2 = x∗.

Proof Assume that fi ̸= 0, 1 ≤ i ≤ n + 1. We prove by induction that, for 1 ≤ i ≤ n,
the vector di ̸= 0 is not a linear combination of vectors dj, 1 ≤ j < i, and that, for
1 ≤ j < i ≤ n+ 1, the equalities

(Ai − J) dj = 0, (27)

wT
j (Ai − J) = 0 (28)

hold (these equalities are mentioned in [13] without proof). Let i = 1. Since A1d1 =
A1s1 = −f1, f1 ̸= 0, and the matrix A1 is nonsingular, we can write d1 ̸= 0. The induction
step:

(a) Let 1 < i ≤ n. Since Aidi = Aisi = −fi, fi ̸= 0, and the matrix Ai is nonsingular, we
can write di ̸= 0. Since

fi+1 = J(xi + di − x∗) = fi + Jdi ̸= 0

by assumption, we obtain

(Ai − J)di = Aisi + fi − Jdi − fi = −(fi + Jdi) ̸= 0,

so vector di is not a linear combination of vectors dj, 1 ≤ j < i.

(b) Using (26), we can write

Ai+1 − J = Ai − J +
(J − Ai)diw

T
i (J − Ai)

wT
i (J − Ai)di

. (29)

Equalities (27), which hold by the inductive assumption, and the relation (29) imply that
(Ai+1 − J)dj = 0 for 1 ≤ j < i. Furthermore,

(Ai+1 − J)di = (Ai − J)di + (J − Ai)di = 0,

so (Ai+1 − J)dj = 0 for 1 ≤ j ≤ i.
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(c) Equalities (28), which hold by the inductive assumption, and the relation (29) imply
that wT

j (Ai+1 − J) = 0 for 1 ≤ j < i. Furthermore

wT
i (Ai+1 − J) = wT

i (Ai − J) + wT
i (J − Ai) = 0,

so wT
j (Ai+1 − J) = 0 for 1 ≤ j ≤ i.

The induction step is finished. Since vectors di, 1 ≤ i ≤ n, are linearly independent and
(27) implies (An+1 − J)di = 0, 1 ≤ i ≤ n, we can write An+1 = J and, therefore

f(xn+2) = J(xn+2 − x∗) = J(xn+1 + dn+1 − x∗) = fn+1 + Jdn+1 = fn+1 + An+1sn+1 = 0.

2

Theorem 8 is very strong, since it guarantees that the two-sided quasi-Newton method
terminates in at most n + 1 steps, if the system is linear and certain assumptions are
satisfied. Note that quasi-Newton methods of the form (17) terminates in at most 2n steps
under the same assumptions (Theorem 3).

Adjoint quasi-Newton methods use vector JT
+w, which can be computed by backward

automatic differentiation [5]. Two-sided quasi-Newton methods use vector J+d as well,
which can be computed by forward automatic differentiation [5] or by numerical differen-
tiation. It can be also successfully approximated by vector y = f+ − f .

If the residual quasi-Newton method is used, then JT
+w = JT

+f+ = g+, where g+ is the
gradient of function F (x) = ∥f(x)∥2/2 at the point x+. Thus (25) with u = w = f+ can
be rewritten in the form

A+ = A+
f+(g+ − h+)

T

fT
+f+

, (30)

where h+ = ATf+.
The update of two-sided residual quasi-Newton method (26) can be approximated by

the expression

A+ = A+
(y − Ad)(g+ − h+)

T

(g+ − h+)Td
(31)

(the directional derivative J+d is replaced by vector y). This new method is not a two
sided quasi-Newton method, since usually y ̸= J+d, but its properties are similar to the
properties of the residual two-sided quasi-Newton method (26), since y ≈ J+d. Notice that
the method (31) has the form (17), where v = g+ − h+.

Changing denominator in (31) in such a way that

A+ = A+
(y − Ad)(g+ − h+)

T

fT
+(y − Ad)

, (32)

we obtain the residual secant quasi-Newton method (24) with w = f+, which is also a
good approximation of two-sided residual quasi-Newton method (26). Methods (30)–(32)
require the computation of the gradient g+ = JT

+f+, but the computation of the full
Jacobian matrix J+ or the vector J+d is not necessary.
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According to (6), quasi-Newton methods determine direction vector s by solving the
system of linear equations As + f = 0, where A is a regular square matrix. Therefore
it is advantageous to work with the orthogonal decomposition A = QR, where Q is an
orthogonal matrix and R is an upper triangular matrix (this orthogonal decomposition
can be obtained by the Householder method). Then the solution of system of nonlinear
equations QRs + f = 0 requires O(n2) arithmetic operations. The following theorem,
introduced, e.g., in [3], demonstrates the way for determining the orthogonal decomposition
of matrix Ā = A + uvT from the orthogonal decomposition of matrix A using O(n2)
arithmetic operations.

Theorem 9 Let Ā = A + uvT , where A = QR, Q is an orthogonal matrix and R is
a upper triangular matrix. Let ũ = QTu and Q̃T be an orthogonal matrix (the product of
Givens elementary rotation matrices) such that Q̃T ũ = ∥ũ∥e1, and matrix R̃ = Q̃R is upper
Hessenberg. Let Q̂T be an orthogonal matrix (the product of Givens elementary rotation
matrices) such that matrix R̄ = Q̂T (R̃ + ∥ũ∥e1vT ) is upper triangular. Then Ā = Q̄R̄,
where Q̄ = QQ̃Q̂.

4 Computational experiments

Methods for solving systems of nonlinear equations were tested on 62 problems with se-
lected dimensions taken from the collection TEST37 contained in the software system
for universal functional optimization UFO [8]. Table 1 contains results obtained by the
following methods:

TRNM - Newton’s method,

TRBG - Broyden’s good method,

TRIT - the method of Ip and Todd (Theorem 2),

TRRB - residual basic adjoint quasi-Newton method (30),

TRRT - residual tangent adjoint quasi-Newton method (23),

TRRS - residual secant adjoint quasi-Newton method (32),

TRNB - new quasi-Newton method (31).

The above methods were implemented as dog-leg trust-region methods (5)–(16) with pa-
rameters ρ = 0.1, ρ = 0.9, β = 0.05, β = 0.75, γ = 2, termination criterion ∥fi∥ ≤ 10−8

and the restart strategy described in Section 2. All methods solve linear systems by using
orthogonal decompositions of nonsymmetric matrices. Quasi-Newton methods use updates
described in Theorem 9.

Table 1 proposes results obtained by solving 62 problems with 100 equations, 62 prob-
lems with 200 equations, 60 problems with 400 equations and contains the total numbers
of iterations NIT, function evaluations NFV, Jacobian (or gradient) evaluations NFJ, matrix
decompositions NDC, the total number of failures (number od unsolved problems) and the
total computational time.
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n = 100 NIT NFV NFJ NDC fails time
TRNM 910 1019 910 837 2 1.46
TRBG 2305 2623 241 237 - 1.03
TRIT 2112 2487 261 257 - 1.02
TRRB 3505 3967 4396 485 - 1.98
TRRT 1553 1769 1918 207 - 0.87
TRRS 2230 2419 2547 186 1 1.01
TRNB 1500 1696 1823 186 - 0.79

n = 200 NIT NFV NFJ NDC fails time
TRNM 1383 1486 1383 1279 - 17.39
TRBG 2651 3038 292 288 - 6.56
TRIT 2591 3015 294 294 - 6.73
TRRB 4454 4773 5049 336 - 9.96
TRRT 1736 1923 2049 186 - 4.69
TRRS 2253 2413 2518 167 - 5.17
TRNB 1643 1826 1934 168 - 4.39

n = 400 NIT NFV NFJ NDC fails time
TRNM 1039 1136 1039 830 1 194.03
TRBG 2207 2525 210 206 - 59.07
TRIT 2076 2349 199 194 - 56.11
TRRB 3264 3646 3945 357 - 98.81
TRRT 2198 2373 2483 168 1 52.10
TRRS 1401 1557 1652 155 - 43.64
TRNB 1496 1680 1768 146 - 42.69

Table 1: TEST37

Results introduced in Table 1 imply several conclusions.

• If elements of the Jacobian matrix are given analytically, the Newton method con-
verges rapidly and requires lowest number of iterations and function evaluations.
However, this method consumes O(n3) arithmetic operations per iteration, which
prolongs the computational time for larger n.

• Quasi-Newton methods of the form (17) require more iterations and function eva-
luations in comparison with the Newton method, but they use O(n2) arithmetic
operations in a greater part (≈ 90%) of iterations.

• Adjoint quasi-Newton methods (23) and (32) converge faster than standard quasi-
Newton methods and use O(n2) arithmetic operations in a greater part of iterations
as well.

• The new method (31), which is of the form (17), is surprisingly competitive with the
Newton method, measured by the number of iterations and function evaluations. Its
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properties are similar to properties of residual adjoint quasi-Newton methods (23)
and (32), but directional derivatives Ji+1di, i ∈ N , need not be computed. The new
method gives the best results in comparisons introduced in Table 1.
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