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Abstract 

Iterated multi-step forecasts are usually constructed assuming the same model in each 
forecasting iteration. In this paper, the model coefficients are allowed to change across 
forecasting iterations according to the in-sample prediction performance at a particular 
forecasting horizon. The technique can thus be viewed as a combination of iterated and 
direct forecasting. The superior point and density forecasting performance of this 
approach is demonstrated on a standard medium-scale vector autoregression employing 
variables used in the Smets and Wouters (2007) model of the US economy. The 
estimation of the model and forecasting are carried out in a Bayesian way on data 
covering the period 1959Q1–2016Q1.  

 

Abstrakt 

Iterované predikce na vzdálenost více období se obvykle tvoří za pomoci stejného modelu 
pro každé období. V této práci se koeficienty modelu v jednotlivých iteracích mohou lišit 
podle predikční schopnosti na příslušném horizontu v rámci datového vzorku. Tento 
přístup tak může být chápán jako kombinace iterovaného a přímého predikování. 
Zlepšená bodová predikce i predikce hustot je demonstrována na standardní středně velké 
vektorové autoregresi postavené na stejných proměnných, které používá model americké 
ekonomiky z práce Smets a Wouters (2007). Odhad modelu a predikce jsou tvořeny 
bayesovským přístupem na datech pokrývajících období 1959Q1–2016Q1. 

 

JEL Codes:   C11, C32, C53. 

Keywords:  Bayesian estimation, direct forecasting, iterated forecasting, multi-
step forecasts, VAR.  

                                                           
* Michal Franta, Czech National Bank, e-mail: michal.franta@cnb.cz 

I would like to thank Jan Bruha, Andrea Carriero, Simona Malovana, Howell Tong, and seminar participants at 
the Czech National Bank for useful comments. The views expressed here are those of the author and not 
necessarily those of the Czech National Bank. 

  



2   Michal Franta  

Nontechnical Summary 

There are two basic techniques for constructing forecasts for forecasting horizons exceeding one 
period. One can either iterate one-step-ahead forecasts employing the same model in each 
iteration, or one can produce a forecast for several periods ahead drawing on a model estimated 
directly for that forecasting horizon. The first approach is called iterated forecasting and the 
alternative approach is referred to as direct forecasting. 

Iterated forecasts are more efficient in terms of parameter estimate efficiency if the model is 
correctly specified. On the other hand, direct forecasts are more robust because the potential bias 
of the model for a one-step-ahead forecast is not multiplied by iterating. This paper attempts to 
introduce a forecasting technique that combines the advantages of both approaches—the 
efficiency of iterated forecasting and the robustness of direct forecasting. This combination should 
lead to more accurate point and density forecasts.  

This new approach to forecasting is based on iterating one-step-ahead models. However, for each 
forecasting iteration the coefficients of the model for the one-step-ahead forecasts are adjusted for 
the in-sample prediction performance. More precisely, the one-step-ahead forecasts are based on 
model parameters obtained by a variant of maximum likelihood that can be interpreted as 
minimizing the one-step-ahead in-sample prediction errors. Analogously, the model coefficients 
in the second forecasting iteration minimize the two-step-ahead in-sample prediction error (i.e., 
the model is for one-step-ahead forecasts but it is used in the second forecasting iteration). 
Similarly, forecasts for longer forecasting horizons are set up given the results from previous 
forecasting iterations and the in-sample prediction performance at a particular horizon. This 
approach is reminiscent of direct forecasting, where the direct model for an m-step-ahead forecast 
draws on the m-step-ahead in-sample prediction errors if the model is estimated by maximum 
likelihood. 

The presented forecasting technique is examined empirically using the standard medium-scale 
vector autoregression, including the variables used by the Smets and Wouters (2007) model of the 
US economy. The data set covers the period 1959Q1–2016Q1. The empirical assessment focuses 
on the point and density forecasting performance on data observed over the period 1998Q4–
2016Q1. It turns out that both the point and density forecasts are superior to both standard iterated 
and direct forecasts. So, the adjusted iterated forecasts represent a technique that is able to deal 
with the trade-off between potentially biased iterated forecasting and inefficient direct forecasting.  
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1. Introduction 

Multi-step forecasting is one of the most important tasks in applied macroeconomics. Several 
approaches have emerged, and their relative accuracy often depends on the forecasting technique 
and the circumstances of the forecasting exercise. In this paper the focus is primarily on iterated 
multi-step forecasting, i.e., on a forecasting technique that combines one-step-ahead forecasts into 
forecasts for several periods ahead. Iterated forecasts are sometimes referred to as plug-in 
forecasts, reflecting the sequential nature of the forecasting process.  

Models used for forecasting are often estimated by means of the likelihood function. Maximum 
likelihood estimation effectively means that the parameter estimates minimize the one-step-ahead 
prediction errors within the data sample used for the estimation. If the model describes the data-
generating process correctly, then the maximum likelihood estimates are asymptotically efficient 
and a single-plug-in model that uses the same parameter estimates for all forecasting iterations is 
preferred. However, in practice models are not correct. In-sample prediction errors at longer 
horizons can then contain systematic information not included in the one-step-ahead errors, and it 
is desirable to incorporate such information into the estimation procedure. The literature 
discussing such procedures starts probably with Cox (1961), who provides explicit formulas for 
predictors that exploit information from in-sample prediction errors at longer horizons for a 
stationary AR(1) process. Tiao and Xu (1993) extend such considerations to ARIMA processes. 
Xia and Tong (2011) denote the family of approaches to model fit other than one-step-ahead 
prediction errors as feature matching.1 Recently, Schorfheide (2005) and Kapetanios et al. (2015) 
consider a vector of prediction errors for different horizons in estimation and forecasting in the 
VAR and DSGE model frameworks, respectively.  

The approach to multi-step forecasting introduced in this paper follows this line of research and 
exploits information from in-sample prediction errors at longer horizons. The model coefficients 
are thus allowed to change in the direction of minimizing the m-step-ahead prediction errors. So, 
for the first forecasting iteration (the one-step-ahead forecast) the estimation method is basically 
maximum likelihood, except that some prior information on the model parameters is imposed. 
Other forecasting iterations then take into account both the estimation results from the previous 
forecasting iterations and the in-sample prediction errors for the respective horizon. The approach 
is reminiscent of the direct forecasting method, in which the estimation of a horizon-specific 
model is related to the prediction errors at the corresponding horizon. The presented procedure 
thus in a way represents a combination of iterated and direct forecasting. The weights of the 
forecasting techniques are determined according to how close the resulting models are to the true 
data-generating process.  

The combination of direct and iterated forecasting could be an answer to the trade-off between 
estimation bias and estimation variance that is an inherent feature of comparisons of the two basic 
forecasting techniques (Findley, 1983). The bias resulting from possible misspecification of the 
benchmark model multiplied by the iterating one-step-ahead forecasts can be corrected by taking 
into account the systematic relations between two distant data points beyond what can be inferred 

                                                           
1 There can be other motivations for using m-step-ahead prediction errors when fitting a model different from the 
forecasting performance of the model. For example, Tonner and Bruha (2014) use the eight-step-ahead 
prediction error reflecting the length of monetary policy horizon.  
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from the relations between adjacent data points. On the other hand, the inefficiency of direct 
forecasting can be diminished by the iterative nature of the procedure and by the fact that the 
iterated approach produces more efficient parameter estimates.2 

The presented approach is close to Kapetanios et al. (2015). In contrast to that paper, the approach 
in this paper introduces a fully fledged Bayesian perspective and allows for different model 
coefficients for different forecasting horizons when iterating one-step-ahead forecasts. On the 
other hand, the possibility of changing coefficients in each iteration precludes joint estimation of 
all the parameters appearing in the forecasting procedure because of the size of the parameter 
vector. Therefore, the trade-off between the forecasting performances at two different horizons 
and their potential optimization across forecasting iterations is not a subject of the estimation 
procedure. 

The forecasting performance of the proposed methodology is examined on a medium-scale vector 
autoregression that includes the same variables as the DSGE model of the US economy in Smets 
and Wouters (2007). More precisely, the data sample starts in 1959Q1 and the forecasting 
performance is examined on the data observed during the period 1998Q4–2016Q1. Both point and 
density forecasts are discussed. For point forecasts it turns out that adjusted iterated forecasts 
outperform both standard iterated and direct forecasts. The result is even more clear-cut for 
density forecasts. Adjusted iterated forecasts thus represent a technique for dealing with the trade-
off between potentially biased iterated forecasting and inefficient direct forecasting. 

The rest of the paper is organized as follows. Section 2 presents the model and the standard 
iterated forecasting procedure. Section 3 describes how the model coefficients are adjusted to 
minimize the m-step-ahead prediction errors and how the adjusted iterated forecasts are 
constructed. Section 4 presents the dataset and describes the specification of priors and the set-up 
of the forecasting performance exercise. Section 5 discusses the results and offers some 
robustness checks. Finally, Section 6 concludes and Appendix A provides a brief description of 
the data. 

2. Model and Iterated Forecasting 

To demonstrate the general principle for the adjustment of model coefficients in an iterated 
forecasting process, a standard VAR model is considered: 

 ,,0~

...11



 

N

yByBCy

t

tptptt




 (1) 

 
where ty  is an 1n  vector of endogenous variables, t  is an 1n  vector of exogenous shocks, 

C , 1B ,…, pB  are an 1n  vector and nn  matrices of constants and AR parameters, 

respectively, and   is an nn  matrix of error covariances. Model (1) is the model for the vector 

of data  T
T yyy ,...,1 . 

System (1) can be rewritten as follows: 

                                                           
2 A detailed empirical comparison of direct and iterated forecasts can be found in Marcellino et al. (2006). 
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Xy
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ttt


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 (2) 

 
where tnt xIX   , ],,,1[ 1 pttt yyx    , and ],,,[ 1  pBBCvec  . 

The one-step-ahead forecast (or predictive density) is then: 

 
1 1 1

1 ~ 0, .
T T T

T

y X

N

 


  



 


 (3) 

 
Note that 1Ty  is an 1n  vector of random variables with a distribution given by the distribution 

of the estimated model parameters   and  .  

Iterating (3) forward, forecasts for other forecasting horizons, Hh ,...,2 , can be generated. For 
example, the two-step-ahead forecast is as follows:  

 
2 2 2

2 ~ 0,
T T T

T

y X

N

 


  



 


 (4) 

 
where the matrix ],,,ˆ,1[ 112 pTTTnT yyyIX     contains the observed data and the results 

from the first forecasting iteration. The iterated forecasts are usually based on the same estimated 

model parameters ̂  and ̂  for each forecasting iteration. 

Model (2) is estimated employing the Normal inverse Wishart prior: 
 

 
 

| ~ ,

~ , .

N b

iW k

  

 
 (5) 

 
The prior materializes the prior belief that the variables follow a process close to a random walk. 
Combining prior (5) with the likelihood function yields the posteriors of the model parameters. 
The likelihood function (conditional on the initial p observations) can be expressed as a product of 
the conditional probability densities: 

   


 
T

pt

t
t

T yypyp
1

1 ,,|,|  . (6) 

 
Equation (6) can be interpreted such that the likelihood is the value of the probability density in 
the case where the model produces a one-step-ahead in-sample prediction equal to the observed 
values. Equivalently, it represents the value of the probability density that the one-step-ahead 
prediction errors are zero. So, maximizing the likelihood means minimizing the in-sample one-
step-ahead prediction errors. If the prior distributions are flat, the posteriors are proportional to the 
likelihood and the above-mentioned interpretation of likelihood also applies to the posteriors. 
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The Normal inverse Wishart prior belongs to the family of natural conjugate priors and thus the 
posteriors follow the same distributions. Moreover, the formulas for the posterior distributions of 
the model parameters can be expressed in closed form: 

 
 

ˆ ˆ| , ~ ,

ˆ| ~ ,

T

T

y N

y iW d

  

 
 (7) 

 

where   11ˆ  xx  and   1'ˆˆ yx . Next,    Tp xxx ,...,1 ,    Tp yyy ,...,1 , and  

  is constructed such that the columns are created from the prior coefficients for the parameters 
in  each equation.  Finally, the scale  parameter of the  posterior for the  error covariance  matrix 

equals     1ˆ ˆ ˆSSR 
      , where the  term SSR  denotes  the sum of the squared 

residuals from the regression with the posterior of the AR coefficients. The degrees of freedom 
parameter d k T p   . 

The full distribution of the one-step-ahead forecast 1Ty  is matricvariate-t:  

   1 1 1 1
ˆ ˆ ˆ| ~ , 1 , ,T

T T T Ty y MT X X X k T p        . (8) 

 
The distributions of the iterated forecasts for other forecasting horizons Hh ,...,2  do not have 
an analytical form and are simulated. 

3. Adjusted Iterated Forecasting 

In this section, we show how the forecasting iteration process is adjusted to take into account the 
in-sample prediction errors for higher forecasting horizons. In the first forecasting iteration, i.e., 
for the forecasts for one period ahead ( 1h ), we stick to the original formula (3) and the original 
parameter estimates, which are now indexed by the forecasting iteration, i.e., )1(̂  and )1(̂ . Such 
estimates take into account the one-step-ahead prediction performance within the data sample, as 
the likelihood function reflecting the probability of zero forecasting errors is combined with the 
prior distributions in (5). 

Analogously, we can discuss the two-step-ahead prediction errors for the observed data given the 
estimation results from the first forecasting iteration. More precisely, instead of the probability 
density of the one-step-ahead forecast  )1()1(1 ,,|  t

t yyp  our focus moves to the probability of 
zero two-step-ahead forecast errors in period t: 

 )2()2()1()1(2 ,,ˆ,ˆ,|  t
t yyp , (9) 

 

which can be reformulated using the fitted values from the first forecasting iteration 
)1(

1
)1(
1

ˆˆ   tt Xy  as follows: 
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t
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t
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Put differently, the likelihood of the observed data given the model parameters for the model of 
two-step-ahead iterated forecasts: 

 )2(
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can be expressed as follows:  
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t
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pt
t
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

 

 

 

(12) 

Formula (12) suggests that the likelihood of model (11) expresses the probability density of zero 
two-step-ahead forecast errors conditional on the first forecasting iteration. The likelihood can be 
combined with the prior on the model parameters, yielding the posterior of the model parameters 
for the second forecasting iteration: )2(  and )2( . 

When estimating model (11) the important point is that fitted values )1(
1ˆ ty  need to be treated as a 

random variable. This fact affects both the specification of the priors for the second forecasting 
iteration and the Bayesian inference itself.  

For the  second  forecasting  iteration we  retain our  prior belief  that  the process  ty  follows a 

random walk in the form of the Normal inverse Wishart prior. In addition, the uncertainty related 
to the fitted values needs to be accounted for. Given the estimation results from the first 
forecasting iteration, the fitted values used in the second iteration are distributed normally with 
the following moments:  

 
    ,ˆvarˆvar

ˆˆ

1
)1(

1
)1(
1

)1(
1

)1(
1









ttt

tt

XXy

XyE




 

 

where .1,...,2  Tpt  

(13) 

The fitted value )1(
1ˆ ty  includes estimation uncertainty related to )1(̂  but not uncertainty related to 

the shock realized at time t-1. The fitted value )1(
1ˆ ty  and the observed value 1ty  differ in the 

realized shock 1t  for  which we have f ormulated a  prior in the  first  forecasting iteration. The 
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shock becomes a part of the disturbance term at time t in the model for the second forecasting 
iteration (11). The sum of two i.i.d. normally distributed variables has the same mean and double 
the variance. Therefore, consistency of the priors on the error covariance implies doubled prior 
error covariance for the second forecasting iteration. 

Next, given that the prior from the first forecasting iteration holds exactly, the distribution of the 
fitted value (1)

1ˆty   is centered on 2ty   with a variance proportional to the prior variance of the AR 

parameters. Model (11) is then ‘close’ to the model 
(2) (2) (2) (2)
1 2 2 2 3 3...t t t t p t p ty C B y B y B y B y          . The random walk prior belief implies that 

(2)
1B  should be centered on unity, because if  ty  follows a random walk, then it holds that 

1 2 1
RW RW RW

t t t t t ty y y         . (14) 

The prior variance for the AR parameter (2)
1B  should be lowered in comparison to the prior 

variance of the coefficient from the first forecasting iteration )1(
1B  because the presence of random 

variable (1)
1ˆty   already imposes a degree of uncertainty that (2)

1B  is centered on unity. So, the 
tightness of the prior variance of the AR parameter at the first lag is half of the assumed prior 
variance from the first forecasting iteration. This choice is discussed in detail in the section 
describing prior specifications. 

Finally, the Kronecker structure of the prior variance on the AR terms in the Normal inverse 
Wishart distribution implies that multiplying the scale of the prior on the error covariance matrix 
proportionally affects the prior on the variance on the AR parameters. Such multiplication is 
compensated for by multiplying the overall tightness by  1/ 2 .  

The presence of the random variable in the set of RHS variables in model (11) also affects the 
Bayesian inference. Analytical formulas are not available and the marginal posteriors of the model 
parameters for the second forecasting iteration are simulated using MC sampling with the 
following steps:  

1) Initialize the values of (2)  and )2( . 

2) Given the sample from the posterior distributions of (1)  estimated in the first forecasting 

iteration, take a random draw (1)
1ˆty   according to (13) for .1,...,2  Tpt  

3) Given the observed data Ty  and the draw (1)
1ˆty  , take a random draw of )2( , )2(  

following the standard formulas for the Normal inverse Wishart conjugate priors.3 
4) Repeat steps 2 and 3 many times and take summary statistics of the draws of the model 

parameter subsets. 

                                                           
3 The implementation is such that the means of the posterior distributions for )2( and )2(  are taken. 

Knowledge of the analytical form of the posterior distributions is thus exploited. As a robustness check, ten 

random draws of )2( , )2(  are taken instead of a value equal to the posterior mean. This change results in 

slightly more imprecise estimates of )2( and )2( . 
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Iterated forecasts for horizon 2h   are simulated by using the draws of (1)  and (1)  from the 
first forecasting iteration and then by taking draws (2)  and )2(  from the second forecasting 
iteration.  

For other forecasting iterations, the procedures for the adjustment of model coefficients and the 
simulation of forecasts are analogous to the case 2h . 

4. Data, Priors, and Set-up of Forecasting Exercise 

 The data set includes real GDP (RGDP), the GDP deflator (PGDP), consumption (Cons), 
investment (GDPInv), hours worked (Emp. Hours), wages (Real Comp/Hour), and the federal 
funds rate (FedFunds). The variables are of quarterly frequency covering the period 1959Q1–
2016Q1.4 A list of variables can be found in Appendix A. All variables are in annualized log 
levels except for the federal funds rate, which is in levels divided by 100. Figure 1 presents the 
data set. It can be seen that both trending variables and time series that are presumably stationary 
are included. Such diversity can indicate whether or not the effect of the proposed methodology 
on forecasting performance is dependent on the basic properties of the time series.  

Figure 1: Endogenous Variables Entering the Model Estimation 

 
 
 
The parameters of the inverse Wishart prior assumed for the error covariance matrix   are set so 
that the degrees of freedom parameter 2 nd , which is the minimum value that guarantees the 
existence of a mean of the distribution. The scale matrix,  , is a diagonal matrix with the 
estimated error variances of the AR(1) regressions of the respective LHS variable on its first own 
lag. 
                                                           
4 Source: Federal Reserve Bank of St. Louis Database (FRED). 
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The specification of the prior distributions of the AR parameters   is such that in all equations 
the mean of the coefficient on the first own lag of the LHS variable is one and that for the rest of 
the coefficients is zero. The prior mean on the intercepts is zero as well. The variance of the prior 
distribution for the AR parameters conditional on   is such that its elements are defined in the 
following way: the coefficient in the i-th equation for the s-th lag of the j-th variable is the 
following: 

 
2

2 1
ii

jjs d n

 
  

 , (15) 

 

where parameter   represents the overall tightness of the prior variance. The prior variance on 
the coefficient at the intercept is 410 . 

As discussed above, the priors change with the forecasting iteration h . First, the scale matrix 
from the inverse Wishart prior is multiplied by  ph,min  to account for the inclusion of fitted 
values in the models for higher forecasting iterations. To filter out the effect of such rescaling on 

the prior variance of the AR parameters, the overall tightness   is multiplied by  ph,min . 

 Finally, to account for the uncertainty imposed by the uncertain fitted values in the regression, the 
overall tightness of the prior variance of the AR parameters at the fitted values is divided by 2. 
The value of the tightness parameter for the first forecasting iteration is set equal to 0.2, which is a 
standard value in the literature. The prior variance on the intercept does not change across 
forecasting iterations. 

The intuition behind tightening the prior on the AR parameters at fitted values is captured in 
Figure 2. In the second forecasting iteration two distributions are combined in the form of their 
product—the distribution of fitted values from the first forecasting iteration ( )1(

1ˆ ty ) and the prior 
on the respective parameter at the fitted value ( )2(

1B ). The product cannot be expressed 
analytically and Figure 2, panel c, shows its simulation. If one compares the simulated product 
and prior imposed in the first forecasting iteration ( )1(

1B ) they are very similar. And this is the 
purpose of prior tightening—to ensure that the prior uncertainty related to independent variables 
is similar in all forecasting iterations (because we try to model the same dependent variable in all 
forecasting iterations). 
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Figure 2: Prior Tightening in the Second Forecasting Iteration 

 
 

Note: The simulated fitted value of real GDP from the first forecasting iteration (panel a), the prior on the 
coefficient at the first lag of real GDP in the equation for real GDP in the second forecasting 
iteration (panel b), and the simulated product of the two (panel c). Panel d shows the prior on the 
coefficient at the first lag of real GDP in the equation for real GDP in the first forecasting iteration. 
The estimation is done on the full sample. 

 
Following Giannone et al. (2015), the number of lags in (1) is set to five. The sampler contains 
5,000 iterations. Convergence is tested using standard measures: the autocorrelation of parameter 
draws produced by the sampler, the inefficiency factor, and the measure of the number of draws 
needed to get a stationary distribution from the sampler (Raftery and Lewis, 1992). All measures 
suggest convergence of the sampler. The results are available upon request.  

The pseudo-out-of-sample forecasting exercise is based on 70 observations between 1998Q4 and 
2016Q1. So, in the first round the models are estimated on the period 1959Q1–1998Q3 and 
forecasts for up to 12 quarters ahead are simulated. The iterated forecasts, the adjusted iterated 
forecasts, and the direct forecasts are then compared in terms of point and density forecasting 
accuracy. The second round then uses data covering the period 1959Q1–1998Q4, etc.  

The point forecasting accuracy is computed using the standard mean squared forecast error 
(MSFE). The Diebold-Mariano test of equal forecasting accuracy is carried out, correcting for 
autocorrelation of the residuals. The density forecasting accuracy is assessed using the Kullback-
Leibler Information Criterion. Minimization of the criterion can be rewritten as maximization of 
the expected logarithmic score, which is estimated by the average logarithmic score: 

  , ,

1
ln t h t i t h

t A

f y
N  


 , (16) 
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where ,i t hy   is the ex-post realization of the variable and thtf ,  is the simulated posterior density 

of that variable computed at time t at forecasting horizon h. 

5. Results 

Table 1 demonstrates how the in-sample fit of models that take into account prediction errors for 
longer forecasting horizons improves. The in-sample fit is measured as the mean squared error of 
the fitted values constructed for a particular horizon. The fits of models with coefficients adjusted 
for higher-period prediction errors and the standard model are compared. The positive values in 
the table suggest that the in-sample fit of the model with adjusted coefficients is superior for all 
horizons (exhibiting lower mean square errors). This is not surprising, as simply a higher number 
of parameters is used to explain the observed data. However, the increase in fit demonstrates that 
the original model is not correctly specified. If the model for the first forecasting period described 
the data generating process correctly, the improvement in data fit would not be observed. 

 

Table 1: The Mean Difference of the In-sample Fit of Models Used for Iterated and 
Adjusted Iterated Forecasting 

RGDP PGDP Cons GDPInv Emp. Hours Real Comp FedFunds 

/Hour 

Horizon: 

1 0 0 0 0 0 0 0 

2 0.0001 0.0000 0.0000 0.0005 0.0001 0.0000 0.0000 

3 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 

4 0.0001 0.0000 0.0001 0.0012 0.0001 0.0001 0.0000 

5 0.0002 0.0000 0.0001 0.0028 0.0002 0.0001 0.0000 

6 0.0003 0.0001 0.0002 0.0051 0.0003 0.0002 0.0000 

7 0.0007 0.0003 0.0004 0.0096 0.0007 0.0003 0.0000 

8 0.0012 0.0007 0.0008 0.0168 0.0014 0.0006 0.0001 

9 0.0023 0.0017 0.0015 0.0290 0.0025 0.0010 0.0001 

10 0.0042 0.0037 0.0029 0.0502 0.0044 0.0018 0.0002 

11 0.0077 0.0081 0.0056 0.0886 0.0078 0.0033 0.0004 

12 0.0144 0.0173 0.0105 0.1596 0.0139 0.0059 0.0007 

Notes: The in-sample fit is estimated using the squared differences between the fitted and observed 
values. The models are estimated on the full sample. 

 
 

Next, the point forecasting performance is examined. Figure 3 reports the MSFEs of the forecasts 
produced by standard iterated forecasting (black solid line) and by adjusted iterated forecasting 
(red dashed line). The model which allows for changes in coefficients exhibits lower MSFEs for 
almost all variables and horizons. The MSFEs are expressed in units of the respective variable, so 
they are not directly comparable across variables. However, Figure 3 suggests that for some 
variables, the adjusted forecasting procedure can lower the MSFE to half of the MSFE of iterated 
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forecasts. The differences in MSFEs between the two approaches are reported in Table 2. The 
table also contains the results of the Diebold-Mariano test of equal forecasting accuracy of the two 
forecasting techniques. 

 

Figure 3: Mean Square Forecast Errors at a Particular Forecasting Horizon for the Adjusted 
Iterated Forecasts and Iterated Forecasts 

 
 

 

Table 2: The Difference between the MSFEs of Iterated and Adjusted Iterated Forecasts  

RGDP PGDP Cons GDPInv Emp. Hours Real Comp FedFunds 

Horizon: /Hour 

1 0 0 0 0 0 0 0 

2 0.0001 0.0000 0.0000 -0.0024 -0.0001* 0.0002* 0.0000 

3 0.0002 0.0000 0.0000 -0.0039 -0.0003 0.0005*** 0.0000 

4 0.0006 0.0000 0.0002 0.0024 -0.0001 0.0008*** 0.0000* 

5 0.0017* 0.0000 0.0006 0.0209* 0.0010* 0.0012*** 0.0001** 

6 0.0032** 0.0003 0.0010 0.0437** 0.0029*** 0.0013* 0.0001*** 

7 0.0048** 0.0006 0.0017 0.0656** 0.0061*** 0.0014 0.0001*** 

8 0.0061* 0.0003 0.0024 0.0829*** 0.0089*** 0.0016 0.0002*** 

9 0.0079** 0.0008 0.0034 0.1011*** 0.0122*** 0.0018 0.0002*** 

10 0.0093* 0.0014 0.0044 0.1216*** 0.0152*** 0.0020 0.0003** 

11 0.0120** 0.0027 0.0059 0.1496*** 0.0202*** 0.0017 0.0003** 

12 0.0141* 0.0041 0.0086 0.1623*** 0.0245*** 0.0030 0.0004** 

Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels of confidence for the Diebold-
Mariano test of equal forecasting accuracy. 
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Table 2 shows that all except one of the statistically significant differences in forecasting 
performance are observed only for the case where adjusted iterated forecasting is more accurate 
than standard iterated forecasting. Moreover, the magnitude of the difference is substantial and in 
some cases is close to the average difference in the variable between two adjacent periods. 
Finally, the improvement in forecasting accuracy is observed regardless of whether the variables 
exhibit trends or not.  

Turning to the density forecasting performance, Table 3 suggests that adjusting the coefficients 
improves the accuracy of the density forecasts in all cases (i.e., the average logarithmic score for 
adjusted iterated density forecasts is higher than that for standard iterated density forecasts). 
While the median iterated forecasts are in some cases comparable to the median adjusted 
forecasts, the comparison of whole densities suggests a clear preference for adjusting model 
coefficients in iterated forecasting. 

Table 3: The Difference between the Average Logarithmic Scores of Adjusted iterated and 
Iterated Forecasts 

RGDP PGDP Cons GDPInv Emp. Hours Real Comp FedFunds 

Horizon: /Hour 

1 0 0 0 0 0 0 0 

2 0.08 0.12 0.07 0.02 0.07 0.20 0.00 

3 0.12 0.18 0.18 0.10 0.15 0.31 0.03 

4 0.24 0.23 0.28 0.23 0.31 0.36 0.07 

5 0.37 0.29 0.39 0.37 0.49 0.41 0.13 

6 0.44 0.37 0.45 0.46 0.65 0.41 0.22 

7 0.52 0.44 0.53 0.56 0.82 0.42 0.28 

8 0.57 0.49 0.61 0.66 0.94 0.43 0.33 

9 0.66 0.60 0.68 0.75 1.09 0.47 0.41 

10 0.73 0.71 0.77 0.91 1.24 0.52 0.49 

11 0.84 0.81 0.85 1.06 1.41 0.55 0.55 

12 0.92 0.93 0.93 1.21 1.59 0.64 0.62 
 
In producing adjusted iterated multi-step forecasts, a model with different coefficients is used in 
each iteration. As an example, Figure 4 shows the evolution of the estimates of the selected AR 
parameters in the equation for real GDP. It reports the evolution of the intercept ( 1C ), the 
coefficient on the first lag of real GDP ( 11B ), and the coefficients on the first lags of the GDP 
deflator and consumption ( 12B  and 13B ). From the second forecasting iteration, the coefficient on 
the own lag of real GDP moves close to unity from its original value (denoted by the red dashed 
line). Similarly, after three forecasting iterations, the coefficients on the first lag of the other 
reported variables are close to zero. The value of the intercept converges to a positive figure. Not 
surprisingly, it turns out that the best prediction at longer horizons is obtained by taking the 
previous period fitted value and adding the mean of real growth, which is estimated by the 
intercept. Note that real GDP enters the model in log-level form. The purpose of the estimation 
procedure is to choose the most accurate way of moving from the information included in the 
observed variables when forecasting short horizons to longer horizons, where the estimated long-
run value dominates. Put differently, maximum likelihood represents a high-pass filter, whereas 
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the procedure for adjusting the coefficients for longer forecasting horizons represents a low-pass 
filter.  

A slightly different picture can be seen when one looks at the evolution of the coefficients in the 
equation for the federal funds (FF) rate—see Figure 5. The interest rate enters the analysis in 
levels, but does not exhibit clear trending behavior like the rest of the variables. The intercept 
approaches zero and the evolution of the parameters at their own lag is such that their tilting 
enables the model to accelerate towards the sample mean of the FF rate. 

 

Figure 4: Evolution of the Coefficients in the Equation for Real GDP 

 

 

Note: Panels indicate evolution of the intercept ( 1C ), the first lag of real GDP ( 11B ), the first lag of the 

GDP deflator ( 12B ), and consumption ( 13B ). The red dashed line indicates the median estimate for 

the first forecasting iteration.  
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Figure 5: Evolution of the Coefficients in the Equation for the Federal Funds Rate 

 

 

Note: Panels indicate evolution of the intercept ( 7C ), the first lag of the federal funds rate ( 77B ), the first 

lag of real wages ( 76B ), and hours worked ( 75B ). The red dashed line indicates the median estimate 

for the first forecasting iteration. The estimation is done on the full sample. 
 

 

Figure 6: Evolution of Selected Elements of the Error Covariance Matrix 

 

 

Note: Panels indicate evolution of the median of the error variance in the real GDP equation ( 11 ) and the 

federal funds equation ( 22 ) and the covariances between the two. The estimation is done on the full 

sample. 
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Finally, Figure 6 shows the evolution of selected coefficients of the error covariance matrix over 
the forecasting iterations. The presented diagonal elements increase, reflecting the increasing prior 
on the error variances. As discussed above, the prior is rescaled to reflect the fact that higher 
forecasting horizons contain higher uncertainty stemming from shocks. 

 

5.1 Robustness Issues 

The specification of priors follows standard values from the literature. The only exception is the 
parameter  , representing the overall tightness. For the first forecasting iteration it equals 0.2, 
which is a standard value. However, for other forecasting iterations no standard values are 
available. The only clue follows from the fact that the fitted values used in the other forecasting 
iterations are uncertain and the overall tightness should reflect this fact by forcing the priors 
towards their prior means. A robustness check regarding the overall tightness is, however, 
necessary. 

The robustness exercise consists of two extremes. The first exercise assumes that the overall 
tightness ignores the uncertainty in the fitted values in the sense that it does not decrease for 
coefficients at fitted values and the prior on the error variance is not re-scaled by 2. On the other 
hand, the second exercise assumes a more profound drop in the overall tightness of the priors for 
parameters at fitted values. The overall tightness is not ½ of that from the first forecasting 
iteration, but 1/3. The specific values of the overall tightness for parameters at fitted values for 
different forecasting iterations are reported in Table 4. 

  

Table 4: Alternative Values of the Overall Tightness of the Prior 
on AR Parameters at Fitted Values 

horizon: 1 2 3 4 5 

Initial calibration 0.2 0.0707 0.0577 0.0500 0.0447 

Loose lambda 0.2 0.2000 0.2000 0.2000 0.2000 

Tight lambda 0.2 0.0471 0.0385 0.0333 0.0298 
 
 
 
Figure 7 shows MSFEs for the standard iterated forecasts and adjusted iterated forecasts with 
different overall tightness   for the prior on parameters at fitted values. Ignoring the uncertainty 
related to fitted values often leads to worse forecasting performance in comparison to both 
standard iterated forecasts and adjusted iterated forecasts with the initial calibration of  . On the 
other hand, more intensive tightening of prior variances results in very similar results to the initial 
calibration of  . 
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Figure 7: Mean Square Forecast Errors of Iterated Forecasts and Adjusted Forecasts with 
Different Values of the Overall Tightness Parameter 

 

 
 
 

Finally, restricting the data set for the evaluation of forecasting accuracy to the period 1998Q4–
2016Q1 to examine the role of the Great Recession suggests that the Great Recession does not 
affect the conclusions about the superior forecasting performance of adjusted iterated forecasts. 
The detailed results are available upon request. 

 

5.1 Adjusted Iterated, Iterated, and Direct Forecasting  

This subsection focuses on comparing iterated forecasts, iterated forecasts adjusted according to 
the m-step-ahead in-sample prediction error performance, and direct forecasts. For direct 
forecasts, the same prior as for standard iterated forecasts is assumed. Figure 8 compares the 
MSFEs of the three forecasting techniques. Regarding the performance of iterated and direct 
forecasts, it turns out that no clear-cut conclusion can be drawn. The GDP deflator is forecasted 
more accurately by iterated forecasts for all horizons, but for other variables direct forecasts often 
outperform iterated forecasts. Interestingly, for short horizons of up to two quarters, the majority 
of the variables are better forecasted using iterated forecasts. Long horizons are almost 
exclusively better forecasted using the direct forecasting technique (the only exception being the 
GDP deflator). This result suggests the presence of bias, which is multiplied by iterating forecasts 
in the iterated forecasting technique. 
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Figure 8: Mean Square Forecast Errors at a Particular Forecasting Horizon for the Adjusted 

Iterated Forecasts, Iterated forecasts, and Direct Forecasts 

 

 
 
Focusing on the comparison of adjusted iterated forecasts and direct forecasts, it can be concluded 
that in the vast majority of statistically significant cases, adjusted iterated forecasts outperform 
direct forecasts—see Table 5. 

 

Table 5: The Difference between the MSFEs of Direct and Adjusted Iterated Forecasts  

RGDP PGDP Cons GDPInv Emp. Hours Real Comp FedFunds 

Horizon: /Hour 

1 0 0 0 0 0 0 0 

2 0.0001 0.0001** 0.0000 0.0042 0.0002** 0.0000 0.0000 

3 0.0005* 0.0003** 0.0002 0.0105 0.0009** -0.0001** 0.0000 

4 0.0009 0.0006** 0.0005 0.0150 0.0019* -0.0001* 0.0000 

5 0.0013* 0.0013** 0.0007 0.0186 0.0029* -0.0003 0.0000 

6 0.0019 0.0027** 0.0010 0.0244 0.0041 -0.0005 0.0000 

7 0.0027 0.0044** 0.0013 0.0304 0.0052 -0.0007 0.0001 

8 0.0034 0.0069** 0.0017 0.0271 0.0057 -0.0009 0.0001 

9 0.0043 0.0107** 0.0021 0.0256 0.0055 -0.0011 0.0001 

10 0.0057 0.0161** 0.0026 0.0273 0.0055 -0.0013 0.0002 

11 0.0078 0.0230*** 0.0032 0.0295 0.0065 -0.0014* 0.0003 

12 0.0089** 0.0320*** 0.0034 0.0191 0.0066 -0.0016** 0.0005 

Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels of confidence. 
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So, adjusted iterated forecasts are superior in almost all cases to iterated forecasts and in the 
majority of cases also to direct forecasts. A similar conclusion can be drawn for density 
forecasts—see Table 6. Adjusted iterated density forecasts are more accurate than direct density 
forecasts in all cases. The accuracy of the density forecasts suggests efficiency of the model 
parameter estimates.  

Table 6: The Difference between the Average Logarithmic Scores of Direct and Adjusted 
Iterated Forecasts  

RGDP PGDP Cons GDPInv Emp. Hours Real Comp FedFunds 

Horizon: /Hour 

1 0 0 0 0 0 0 0 

2 -0.12 -0.10 -0.10 -0.10 -0.12 -0.15 -0.07 

3 -0.23 -0.22 -0.23 -0.22 -0.29 -0.22 -0.19 

4 -0.36 -0.37 -0.31 -0.33 -0.47 -0.27 -0.33 

5 -0.48 -0.52 -0.42 -0.46 -0.66 -0.25 -0.46 

6 -0.58 -0.71 -0.50 -0.53 -0.84 -0.21 -0.61 

7 -0.70 -0.90 -0.55 -0.62 -1.03 -0.18 -0.77 

8 -0.81 -1.12 -0.61 -0.73 -1.14 -0.16 -0.95 

9 -0.93 -1.45 -0.70 -0.80 -1.22 -0.13 -1.16 

10 -0.99 -1.73 -0.78 -0.87 -1.33 -0.10 -1.33 

11 -1.09 -2.06 -0.88 -0.94 -1.47 -0.09 -1.53 

12 -1.16 -2.40 -0.93 -1.03 -1.61 -0.09 -1.75 
 
 
Figure 9 reports the evolution of selected estimated AR parameters in the equation for the FF rate 
for direct forecasting. When we compare it to Figure 5, it turns out that the model for adjusted 
iterated forecasting produces more efficient parameter estimates (as measured by the distance 
between the 16th and 84th percentiles of the posterior distribution of selected parameters). 
Adjusted iterated forecasts thus seem to enjoy the advantage of efficiency of parameter estimates 
in comparison to direct forecasts. Furthermore, adjusted iterated forecasts also share the advantage 
of direct forecasts in terms of forecasting robustness. 
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Figure 9: Evolution of the Coefficients in Direct Forecasting in the Equation for the Federal 

Funds Rate 

 

 

Note: Panels indicate evolution of the intercept ( 7C ), the first lag of the federal funds rate ( 77B ), the first 

lag of real wages ( 76B ), and hours worked ( 75B ). The estimation is done on the full sample. 
 

6. Conclusions 

The paper demonstrates how to adjust traditional iterated multi-step forecasts to get more accurate 
point and density forecasts. The adjustment draws on in-sample prediction errors for higher 
forecasting horizons. So, the approach extends forecasting based on one-step-ahead in-sample 
prediction errors. The point and density forecasting accuracy is demonstrated on a standard VAR 
model mimicking the Smets and Wouters (2007) DSGE model.  

The model employed is a medium-scale VAR. For small-scale VARs the problem of 
misspecification is more profound and the improvement in accuracy would probably be greater. 
Similarly, DSGE models impose cross-coefficient restrictions, resulting in possible 
misspecification. So, the gain in forecasting performance discussed in this paper would 
presumably be higher for DSGE models than it is for their VAR counterparts. 

The suggested approach can be viewed as a combination of iterated and direct forecasting. 
Iterated forecasting is represented by using one-step-ahead forecasts to get multi-step forecasts. 
Direct forecasting is present in taking into account the in-sample prediction error at a particular 
forecasting horizon. The combination of the two techniques is viable, as it could represent a 
response to the famous trade-off between bias and efficiency involved in the theoretical 
comparison of the two forecasting techniques. The results in the paper suggest that this is so. First, 
adjusted iterated forecasts are more precise in terms of mean squared forecasting errors. The bias 
is therefore lower. In addition, the density forecasting performance exercise suggests that adjusted 
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iterated forecasting produces more accurate density forecasts, i.e., forecasts that are closer to the 
true densities of macroeconomic variables. Inefficient model parameter estimates would lead to 
less accurate density forecasts and thus the efficiency of iterated forecasting seems to carry over 
to adjusted iterated forecasting.  

  



   Iterated Multi-Step Forecasting with Model Coefficients Changing Across Iterations    23  
 
 
References 

COX, D. R. (1961): “Prediction by Exponentially Weighted Moving Averages and Related 
Methods.” Journal of the Royal Statistical Society: Series B, 23, pp. 414-422. 

FINDLEY, D. (1983): “On the Use of Multiple Models of Multi-Period Forecasting.” Proceedings 
of the Business and Statistics Section, American Statistical Association, pp. 528-531. 

GIANNONE, D., M. LENZA, AND G. E. PRIMICERI (2015): “Prior Selection for Vector 
Autoregression.” Review of Economics and Statistics 97(2), pp. 436-451. 

KAPETANIOS, G., S. PRICE, AND K. THEODORIDIS (2015): “A New Approach to Multi-Step 
Forecasting Using Dynamic Stochastic General Equilibrium Models.” Economics Letters 
136(C), pp. 237-342. 

MARCELLINO, M., J. H. STOCK, AND M. W. WATSON (2006): “A Comparison of Direct and 
Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series.” Journal of 
Econometrics 135, pp. 499-526. 

RAFTERY, A. E. AND S. LEWIS (1992): “How Many Iterations in the Gibbs Sampler?” In J. 
Bernardo, J. Berger, A. P. Dawid, and A. F. M. Smith (eds.), Bayesian Statistics, pp. 763–
773, Oxford University Press. 

SCHORFHEIDE, F. (2005): “VAR Forecasting Under Misspecification.” Journal of Econometrics 
128, pp. 99-136. 

SMETS, F. AND R. WOUTERS (2007): “Shocks and Frictions in US Business Cycles: A Bayesian 
DSGE Approach.” American Economic Review 97, pp. 586-606. 

TIAO G. C. AND D. XU (1993): “Robustness of Maximum Likelihood Estimates for Multi-step 
Predictions: The Exponential Smoothing Case.” Biometrika 80(3), pp. 623-644.  

TONNER, J. AND J. BRUHA (2014): “The Czech Housing Market Through the Lens of a DSGE 
Model Containing Collateral-Constrained Households.” Czech National Bank Working 
Paper 9/2014. 

XIA, Y. AND H. TONG (2011): “Feature Matching in Time Series Modeling.” Statistical Science 
26(1), pp. 21-46. 

 



24   Michal Franta  
 

Appendix A: Data 

Table A1: List of Variables 

Variable Description Units Seasonal adjustment 

RGDP Real Gross Domestic Product Index 2000:Q1=100 SAAR 

PGDP Gross Domestic Product: Implicit Price Deflator Index 2000:Q1=100 SA 

Cons Real Personal Consumption Expenditures Index 2000:Q1=100 SAAR 

GDPInv Real Gross Private Domestic Investment Index 2000:Q1=100 SAAR 

Emp. Hours Nonfarm Business Sector: Hours of All Persons Index 1982:Q1=100 SA 

Real Comp/Hour Nonfarm Business Sector: Real Compensation Per Hour Index 1982:Q1=100 SA 

FedFunds Effective Federal Funds Rate %, quarterly average NSA 

Note: SAAR – seasonally adjusted annual rate, SA – seasonally adjusted, NSA – not seasonally adjusted. 
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