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Abstract:

In their seminal 1978 paper Hopcroft, Paul and Valiant have shown that for deterministic multitape Turing
machines TIME(T(n)) ⊆ SPACE(T(n)/ logT(n)), i.e., space is more powerful than time as a computational
resource. For a large class of nondeterministic computations we show a similar relation: NTIME(T(n)) ⊆
NSPACE(T(n)/ logT(n)). Moreover, the previous relation is inherent to any computation from that class
meaning that no simulation is needed in order to establish the previous relation between the respective time
and space complexity classes. Consequently, for any ε > 0 any nondeterministic Turing machine of time
complexity T (n) from the class under consideration can be simulated deterministically in time 2εT (n). The
main analytical tool for proving these results are crossing sequences generalized for the case of multitape
machines.
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1 Introduction

The contents of this paper is related to the seminal 1978 paper by Hopcroft, Paul and Valiant where the
authors have shown that every deterministic multitape Turing machine of time complexity T (n) can be
simulated by a deterministic Turing machine of space complexity T (n)/ log T (n) [5]. In this way they
showed, for the first time, that for deterministic multitape Turing machines space is more powerful
than time as a computational resource. In order to save space in a given deterministic computation
its portions are repeatedly re-computed thus avoiding the necessity of storing intermediate results.
Within this context the authors have noted: “It is an interesting open problem whether NTIME(t) ⊆
NSPACE(t/ log t). The difficulty here is that in going back and repeating a portion of a computation
we cannot be sure that the same sequence of choices is made the second time.”

For a large class of nondeterministic computations this paper shows that there is an intrin-
sic relation between these two measures of a similar type that holds for the deterministic case:
NTIME(T(n)) ⊆ NSPACE(T(n)/ logT(n)), for any ε > 0 and a sufficiently large n. This is achieved by
exploiting a classical analytical tool from computational complexity theory — viz crossing sequences
generalized for the case of multitape machines. Crossing sequences allow insight into the structure of
the flow of data in multitape computations and enable derivation of lower and upper bounds on their
time complexity.

Crossing sequences have been known since nineteen sixties when they have served as a tool for
investigation of single-tape computations — cf. the works by Hennie [4] and Hartmanis [3]. Subsequent
efforts for generalizing the definition of crossing sequences for the case of multitape computations
were futile. For a more detailed overview of the related developments cf. [8]. The next progress
occurred in 1979 when G. Wechsung [7] proposed a generalized definition of crossing sequences usable
in the framework of multitape Turing machine computations and introduced the notion of crossing
complexity measure for such machines. He showed that constant bounds on crossing complexity yield
an infinite hierarchy of complexity classes and remarked briefly that the new measure allows to prove
lower time bounds on multitape computations. More than thirty years later the latter idea has been
elaborated in [8]. Here, the original Wechsung’s definition of the crossing systems has been simplified
and the results concerning the relation between time complexity and the number of crossing systems
have been shown. Unfortunately, the results presented in that paper have not lead to a proof that
nondeterministic space is more powerful than nondeterministic time.

The present paper reports a further progress in the question of nondeterministic time-space re-
lation. Namely, we show that under a certain technical assumption concerning the computations
of the nondeterministic Turing machine at hand and relation between its space complexity and the
size of its crossing sequences there is no need at all to take some extra measures in order to achieve
a computation in a smaller space. This is because there is an inherent relation between time and
space of the respective computations: any such machine of time complexity T (n) is “automatically”
of space complexity T (n)/ log T (n). This result holds for both deterministic and nondeterministic two
tape Turing machines (and hence for all nondeterministic Turing machines thanks to the fact that
two tape nondeterministic machines can simulate any multitape Turing machine in linear time and
space [2]). The technical assumptions we have in mind are twofold. First, we only consider two-
tape nondeterministic Turing machines, without an extra input tape, which at each step perform a
move by both its heads. Second, we require that the space complexity S(n) of the machine under
consideration grows asymptotically faster than the product nC(n) where C(n) is a complexity mea-
sure (defined in the paper) related to the size of crossing sequences of the underlying computation:
limn→∞ nC(n)/S(n) = 0. Thus, within the previous restrictions this result solves the open problem
posed in [5].

As a consequence, under the same assumptions we get that for any ε > 0 a nondeterministic
Turing machine of time complexity T (n) can be simulated by a deterministic Turing machine in time
O(2εT (n)). Within the given restrictions this again answers positively the question raised recently in
[6].
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The present paper can be seen as a follow-up of the previous paper [8] from which it differs in
some important aspects since it at least partially resolves the general question of time versus space in
nondeterministic multitape Turing machines computations. The current paper also brings a significant
simplification of the basic definitions and arguments.

The structure of the paper is as follows. Section 2 describes the main framework for considering
crossing sequences and a special case of Turing machines under consideration — the so-called diagonal
Turing machine. Section 3 recalls the fundamental notion of crossing systems and crossing sequences
and proves an important theorem stating that in any diagonal computation no crossing sequence can
occur more than once. Section 4 presents the main result concerning the separation of time and space
for a large class of nondeterministic computations. As a consequence a solution to the open problem
from [6] — an improved upper bound on the time complexity of exhaustive search algorithms — is
given. Section 5 contains the conclusions.

Every effort has been made in order to make the paper self-contained, independent from the
previous papers [7] or [8]. It contains all the necessary definitions and facts needed for the exposition
of the main results of the paper.

2 Preliminaries

In the sequel we consider a standard model of a k-tape nondeterministic Turing machine M, k ≥ 1,
with set of states Q, alphabet Σ, transition relation δ and input w of length n initially written on
one of the tapes. That is, the first n cells on this tape are used to store the input and this space is
counted in the space complexity of the respective machine. However, in what follows we will only deal
with 2-tape machines since it is known that the latter machines can simulate any k-tape machines
in linear time and space (cf. [2]). The notions of the head configuration, of the configuration, of the
computation, of the acceptance, and those of time and space complexity are defined in a usual way
(cf. [1]).

Any computation of a two tape machine can be captured in a three dimensional computational
diagram. In it, the x-axis (the y-axis) corresponds to the working head position on the first (second)
tape, while the t-axis represents the flow of time (in discrete steps). A point [x, y, t] in such a diagram
corresponds to the situation when the first (second) head scans cell number x (y) at time t.

In such a computational diagram the movement of working heads in any computation can be
captured by a computational trajectory, or computational curve c. It is an oriented curve starting
in point [1, 1, 1] connecting, in chronological order, the centers of those cells in the diagram (which
are three-dimensional cubes) that correspond to the tape-cells visited during a computation. For
definitiveness, in the three-dimensional space we will always imagine that the axes x, y, and t are
oriented as usually in such cases; i.e., axis y goes left to right from the coordinate origin, axis x goes
“towards us”, and axis t goes up.

The smallest three-dimensional block (rectangular parallelepiped) enclosing the computational
curve is called the computational space.

In the computational diagram we will consider the so-called grid-planes. Grid-planes are two-
dimensional planes that are parallel with either the (x, t)-plane (such grid-planes are called sagittal
grid-planes) or the (y, t)-plane (frontal grid-planes) and go through the centers of the grid cells they
intersect. Obviously, sagittal planes are perpendicular to the frontal planes. For any tape, grid-
plane number i goes through the centers of cells corresponding to tape position i on that tape. For
definiteness, let tape one correspond to x-axis and tape two to y-axis. The cells on each tape are
numbered from 1 onwards.

In the sequel for simplification of our considerations we will require that no part of length greater
or equal 1 of the computational curve will be parallel with any axis. Such a curve can either diagonally
cross a grid-plane or it can “touch” it in a single point (making a “v turn” at that point). Technically,
this means that in each step each working head of the machine must perform a move. Such machines
will be called diagonal machines. In [8] it has been shown that any deterministic machine can be
simulated by a diagonal machine of the same type in linear time and space. Thus, the result also
holds for nondeterministic machines. Computations of any diagonal Turing machine are called diagonal
computations.
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3 Basic Notions: Crossing Systems and Crossing Sequences

Now we proceed to the definition of crossing sequences. Our approach is inspired by that of G.
Wechsung [7]. In order to understand the rest of the paper it is necessary to introduce all formal
definitions related to the notion of crossing sequences. First we will define the so-called crossing
system as a certain set of grid-planes crossed by the computational curve in a diagonal computation.
The cut-points of the curve with these grid-planes correspond to those tape-cells whose contents
are mutually dependent in the given computation (cf. Fig. 3.1 and 3.2, and Proposition 3.3). The
consideration of diagonal computations has allowed a simplified definition of a crossing system than
that in [7] because in diagonal computations the head moves within the grid-planes need not be
considered. Moreover, our approach differs from that given in [7] and [8] since it explicitly considers
the time dimension of computations.

In what follows we will say that a computational curve of a diagonal computation cuts a grid-plane
(or that a grid-plane cuts the curve) if and only if the curve crosses the grid-plane in a diagonal manner
at some point. That is, we do not say that a curve crosses a grid-plane when, making a v-turn, it only
touches the grid-plane at some point.

Definition 3.1 (Crossing system) Let c be a computational curve of a diagonal computation, let
f be a grid-plane cutting c.

A crossing system S on c is a set of grid-planes that is constructed recursively as follows:

• f ∈ S;

• if some g already in S crosses c in one or more points (so-called cut-points), then all frontal
and sagittal grid-planes incidental with such cut-points are added to S.

The construction of S terminates when no further grid-planes can be added to it in accordance with
the previous rule.

Note that there must be two perpendicular grid-planes incidental with each cut-point thanks to
the fact that we consider diagonal computations. Also note that in the case when c only touches a
grid-plane f there is no grid-plane perpendicular to f at that point (unless it is generated by some
cut point from a different part of c).

For a given computation there can be many different crossing systems. For a given computational
trajectory each crossing system is uniquely determined by any of its grid-planes. This means that no
grid-plane can belong to two different crossing systems. This has an important consequence:

Proposition 3.2 For a given diagonal computation all crossing systems are disjoint.

Point [i, j, t] on computational curve c is called the crossing point for grid-plane g if and only if c
cuts g at time t. Note that there can be crossing points [i, j, t1] and [i, j, t2] on g with t1 ̸= t2.

Obviously, for any diagonal computation c of a machine M a concrete crossing system S can also
be defined with the help of its crossing points. If C1, C2, . . . , Cs are all crossing points of S listed in
a chronological order w.r.t. their crossing times of grid-planes within S, then the respective crossing
system will be denoted as Sc[C1, C2, . . . , Cs].

In fact, such a view of a crossing system gives a motivation for its definition capturing the inter-
dependence of values stored in tape cells pertinent to that crossing system. This is illustrated by the
following proposition.

Proposition 3.3 Let Sc[C1, C2, . . . , Cs] be a crossing system defined via its crossing points, let Ci,
with 1 ≤ i ≤ s be any crossing point of S pertinent to time t and tape cells S1 and S2, respectively.

Then in addition to the current state of the machine the value stored at S1 at that time depends
only on the value stored at that cell at time when this cell was visited by the respective head for the
last time before time t (if ever), and similarly for the cell S2. This information can be inferred from
Sc[C1, C2, . . . , Cs].

3



c1 
c’2 

c3 

c’4 

c5 

c7 

c’6 

a) 

S2 
C3 

t3 

h 

C2 

t2 

C1 

t1 

tape1 

ta
p

e
2

 

b) 

S1 

f g 

h 

Figure 3.1: a) Interdependence of values pertinent to the crossing points b) Mixing the computations
from Fig. 3.2.

The proof follows from the definition of a crossing system and the respective crossing points.
For instance (cf. Fig. 3.1 a)), let C3 be a crossing point in the intersection of two grid-planes f

and g, respectively, pertinent to time t3, C2 at time t2 be a crossing point on g, and finally C1 at t1
be a crossing point at f. Let there be no crossing points on g and f corresponding to times between
t2 and t3, and t1 and t3, respectively, with t1 < t2 < t3.

Then the value in cells S1 and S2, respectively, at time t3 depends only on the values stored at S2

at time t2 and S1 at time t1, respectively (and, of course, on the state of the machine at time t3).
2

Similar claims can also be formulated for any other configurations of crossing points.
For our further purposes we will want to abstract from the concrete crossing systems given by the

enumeration of their crossing points. We will be interested only in their general properties that can
be defined without referring to the concrete position of grid-planes and concrete crossing times.

First we define the so-called crossing pattern. For a given crossing system it defines the chrono-
logical order in which trajectory c visits the respective crossing points.

Definition 3.4 (Crossing pattern) Let S = {h1, . . . , hk, v1, . . . , vℓ} be a crossing system for a di-
agonal computation c, with the frontal grid-planes h1, . . . , hk and the sagittal grid-planes v1, . . . , vℓ,
for some k ≥ 1 and ℓ ≥ 1. Then the sequence τS = (p1, . . . , ps) is called the crossing pattern of S if
and only if

• c crosses S exactly s times, and

• for all 1 ≤ k ≤ s it holds: if the k-th crossing point of c with S lays on the grid-planes hi

and vj then pk = (i, j) (the crossing points are ordered chronologically along the direction of the
trajectory c).

Note that in the notion of the crossing pattern there is neither information on the location of
the grid-planes in the computational diagram nor on the crossing times when the trajectory passes
through the grid-planes.

Our next notion will be that of the crossing sequence.

Definition 3.5 (Crossing sequence) Let S be a crossing system and τS = (p1, . . . , ps) its crossing
pattern, both pertinent to a diagonal computation c of machine M. Let δi ∈ δ for i = 1, 2, . . . , s be the
instructions from the instruction set of M that was used by M when leaving the i-th crossing point.

Then ΓS,c = (p1, δ1), (p2, δ2), . . . , (ps, δs) is called the crossing sequence of c on S. Items (pi, δi)
are called the elements of ΓS,c. Number s is called the length of the crossing sequence ΓS,c.

Now we are ready to state and prove the following theorem dealing with the case when in a diagonal
computation we have two crossing systems with the same crossing sequences.

2All figures in this paper depict a two-dimensional projection of a computational curve into plane (x, y).
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Figure 3.2: A computation with two identical crossing sequences. The computation without the
redundant part is depicted in Fig. 3.1 b).

Theorem 3.6 Let c be a diagonal computation of a two-tape deterministic or nondeterministic Turing
machine M and let there exist two different crossing systems on c, Sc[C1, C2, . . . , Cs] and
S ′

c[C
′
1, C

′
2, . . . , C

′
s], respectively, such that neither crossing system is incidental with the input and

their crossing sequences are identical: ΓS,c = ΓS′,c.
Then there is an equivalent diagonal computation c′ of M with only one crossing system with the

crossing sequence ΓS,c.

Sketch of the proof: Let s = c1, c2, . . . be a segmentation of c induced by the crossing points
C1, C2, . . . of the crossing system S for computation c (cf. Fig. 3.2 a)) and analogously, let s′ =
c′1, c

′
2, . . . be a segmentation of c induced by the crossing points C ′

1, C
′
2, . . . of the crossing system S ′

(Fig. 3.2 b)). Note that each segment finds itself in a “box” bounded by the corresponding grid-planes
or by the boundary of the computational space.

The next observation is that in both crossing systems the odd or even indexed segments, respec-
tively, can be colored by the same color (black or white, respectively) and that the equally colored
segments lay in the same vertical or horizontal strips (cf. Fig. 3.2). This holds because a segment
changes its color at each occasion when it diagonally passes a cut point proceeding from one box to
the next one. (Note that a diagonal crossing is the only possibility for a curve to move between boxes.)
At each such occasion, the curve changes both its vertical and its horizontal strip. It follows that in
each strip the segments must be of the same color.

An other important observation is that the computational trajectory in the equally colored seg-
ments can be computed independently of the computations in segments colored by the other color.
This is due to the fact that the computations in segments of one color depend only on the data in
the corresponding parts of tapes (called sectors hereafter) that are disjoint with the data pertinent to
computations of the other color and on the state of the machine when entering a segment.

That is, the computation in the chronologically first segment is performed over the empty tape
sectors. Subsequently, when computing chronologically the next segment of the same color in the same
strip, it is always computed over the tape contents left by the lastly performed computation over these
sectors in the equally colored segments. Upon entering a new segment the initial head configuration
is always given by the corresponding member of the crossing sequence ΓS,c. The interface between the
differently colored segments is also provided by the elements of the respective crossing sequence.

Finally, note that thanks to our assumption the interface between the black and white segments
in both crossing systems S and S ′ is the same. This means that we can combine segments with the
same interface from both crossing systems. W.l.o.g. we can assume that segment c1 is the prefix of
the segment c′1. Then c′ = c1, c

′
2, c3, c

′
4, . . . is a possible computational curve of M. In this “combined”

computation the ends of the respective segments are separated by a crossing system with the crossing
sequence ΓS,c. The resulting combined computation is depicted in Fig. 3.1 b).

Remark: if on c there exist more than two different crossing systems with the same crossing
sequences, then the previous process of eliminating redundant parts in a computation can be repeated.

2
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The previous theorem reveals the main sense of the former tedious definitions since it offers a
tool for eliminating redundant parts in nondeterministic computations. Note that in the case of
deterministic computations an occurrence of two crossing systems with the same crossing sequence
would mean that there is an infinite loop in such a computation.

Corollary 3.7 To any diagonal accepting computation of a two-tape nondeterministic Turing ma-
chine M there exists an equivalent accepting computation in which each crossing sequence not inci-
dental with the input occurs at most once.

The reason why we have only considered the crossing sequences not incidental with the input
is that the parts of computations incidental with the input cannot be eliminated since this would
effectively mean that we have omitted some parts of the input.

4 Time Versus Space in Nondeterministic Computations

For diagonal computations we define a new complexity measure related to the notion of crossing
sequences.

Definition 4.1 Let M be a diagonal two-tape nondeterministic Turing machine. The crossing com-
plexity C(n) of M is the minimum of the maximal lengths of all crossing sequences taken over all
possible inputs to M of length n and all possible accepting computations on these inputs.

It is straightforward that for a diagonal deterministic or nondeterministic two-tape Turing machine
of time complexity T (n), space complexity S(n) and crossing complexity C(n) it holds n ≤ S(n) ≤
T (n) ≤ S(n)C(n) and 1 ≤ C(n) ≤ T (n).

In order to prove non-trivial relations among the crossing complexity and time and space com-
plexity we will need the following lemma estimating the number of different crossing sequences of a
given size.

Lemma 4.2 There exists a constant b > 0 such that for any s ≥ 1 the number D(s) of different
crossing sequences of size s is at most D(s) ≤ bs.

Proof: We start with the upper bound on D(S). In accordance with Definition 3.5 consider a compu-
tational curve c generating a crossing sequence ΓS,c. Reaching a crossing point Ci on that curve which
is not chronologically the last one on c, the curve proceeds towards the next crossing point. Doing so,
the curve cannot cross any of the grid-planes in S in a point that is not the cut-point of the grid-planes
in S since this would generate a new crossing point not included in ΓS,c. Thus, the next crossing point
Ci+1 can find itself in one of the upper corners of the adjacent hyper-rectangles, or immediately above
the Ci (seen in the 3D computational diagram). In general, there are 4 hyper-rectangles adjacent to
Ci and therefore c can proceed to an upper corner of any of them, or “right up”, toward a point lying
above the current point. That is, in general c has 9 possible choices to proceed.

It follows that when starting from the initial (i.e., chronologically the first) crossing point, the
curve has at each time at most 9 possible choices how to proceed, and this holds for any crossing point
until the last, the s-th crossing point is reached. Therefore, each possible sequence of crossing points
visited by a computational curve in crossing system S can be seen as a path of length s in an 9-ary
tree having in its vertices the cut-points of c with the respective grid-planes from S. Obviously, there
are 9s different paths of length s in such a tree and each of them corresponds to a possible crossing
sequence of length s in the crossing system at hand.

Next, the above mentioned crossing sequences can differ by the assignment of instructions into
the respective crossing points. An instruction in an element of a crossing sequence can be chosen in
d = 4r2|Σ|4 different ways where 4 is the number of possible combinations of moves of both heads
(stationary moves are excluded), factor r2 corresponds to the number of different pairs of the current
and the new states, and |Σ|4 corresponds to the number of possible ways of rewriting the pair of the
currently scanned symbols by the new symbols. Thus, there are at most ds different sequences of
instructions of length s each of which can be assigned to a possible arrangement of crossing points as
estimated above.
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Altogether, the final upper estimate of the number of different crossing sequences of length s ≥ 1
is D(s) ≤ s9sds ≤ bs, for some constant b > 0.

2

Lemma 4.3 There exists at least ds = (4r2|Σ|4)s different crossing sequences of length s.

Proof: In the previous lemma we have estimated that there are ds = (4r2|Σ|4)s ways of assigning an
instruction to the elements of a crossing sequence of length s. This number can be taken as a lower
bound on the number of different crossing sequences of length s.

2

Theorem 4.4 Let M be a diagonal deterministic or nondeterministic two-tape Turing machine of
time complexity T (n), space complexity S(n) and crossing complexity C(n) with input w, |w| = n.

If limn→∞ nC(n)/S(n) = 0 then

(i) C(n) = Ω(logS(n))

(ii) T (n) = Ω(S(n) logS(n))

(iii) S(n) = O(T (n)/ log T (n)).

Proof: In order to prove i) we will have to get an upper bound on S(n) in terms of C(n). Clearly,
S(n) is not greater than the sum of the number of cells occupied by all crossing sequences of length
at most C(n) since each element of a crossing sequence occupies one cell at any tape and the crossing
sequences pertinent to different crossing systems are disjoint (cf. Proposition 3.2).

However, there is a complication with the crossing systems incidental with that part of a tape
where input w is written. Namely, we cannot claim that all corresponding crossing sequences must
be different because in a computation we cannot skip a part of the input what may happen when
applying Theorem 3.7. Therefore, we can only assume that solely sequences whose crossing points are
not incidental with the input must be different. There are at most n crossing systems incidental with
the input. The respective sequences thus occupy space of size at most n(C(n) + 1). The sequences
incidental with the remaining part of space must all be different. Thanks to our assumption on the
asymptotic growth of S(n) such sequences exist.

Thus, S(n) equals at most the sum of space occupied by n crossing sequences (which need not
all be different) incidental with the input elements plus the sum of all different crossing sequences of
length 1, 2, . . . , C(n).

According to Lemma 4.2 for each s the number of the latter crossing sequences of length s is
upper-bounded by bs, for some constant b > 0.

In the worst case a crossing sequence of length s can occupy up to s + 1 cells on two tapes —
namely in the case when the crossing system consists of a single grid-plane cut by s perpendicular
grid-planes.

Using this upper-bound we eventually reach our final estimate of S(n): S(n) ≤ nC(n)+
∑C(n)

s=1 (s+
1)bs < nC(n) + C(n)(C(n) + 1)bC(n) Since for a sufficiently large n, nC(n) ≤ S(n)/2 we get

S(n)/2 ≤ bC(n)+logb 2C2(n) < qC(n) (∗)

for a suitable constant q > 0.
Taking base q logarithm of both sides we finally obtain C(n) = Ω(logS(n)).
Remark: A computation corresponding to space utilization estimated above need not exist at all.

This, however, does not matter since we were merely interested in an upper bound on the space
complexity.

As far as (ii) is concerned, consider an infinite sequence σ1 in shortlex order of all crossing sequences
of length s, for s = 1, 2, . . . . Let σ2 be the finite sequence of different crossing sequences used in
computation c of M which are not incidental with the input and let this sequnce be in shortlex order.
Now substitute the i-th sequence in σ2 by the i-th member of σ1, for i = 1, 2, . . . . By this we get
a finite sequence σ3 which is a prefix of σ1. Note that σ2 and σ3 have the same number of crossing

7



sequences and in σ3 no crossing sequence is longer than the corresponding crossing sequence in σ2.
Hence the sum of the lengths of the crossing sequences of σ3 is not greater than the sum of the lengths
of the crossing sequences of σ2.

Now, for each n the computational time T (n) is not less than the sum of the lengths of the crossing
sequences in σ3. Let r be the maximal number such that σ3 contains all crossing sequences of length
s = 1, 2, . . . , r. Then, using the lower bound from Lemma 4.4 the number r in computation c of length
T (n) must satisfy the inequality T (n) ≥

∑r
s=0 sd

s ≥ rdr and, at the same time, the inequality (∗)
(with r = C(n)). From the latter inequality we have r ≥ logq(S(n)/2) and therefore, using (i), we get
our final estimate T (n) = Ω(rS(n)) = Ω(S(n) logS(n)).

Finally, in order to prove (iii) we show that the asymptotic growth of S(n) = O(T (n)/ log T (n))
is a maximal one such that T (n) = Ω(S(n) logS(n)) still holds.

If S(n) = O(T (n)/ log T (n)) then T (n) = Ω(S(n) logS(n)) since T (n) ≥ S(n). This means that
iii) holds.

Now suppose that S(n) grows asymptotically faster than T (n)/ log T (n). We show that then iii)
cannot hold.

To that end assume limn→∞ T (n)/(S(n) log T (n)) = 0. Then for any ε > 0 there exists an n0 such
that for all n > n0, T (n)/(S(n) log T (n)) < ε. Therefore

T (n) = Ω(S(n) logS(n)) = Ω

(
T (n)

ε log T (n)
log

T (n)

ε log T (n)

)
=

= Ω

(
T (n)

ε

[
1− log(ε log T (n))

log T (n)

])
For a fixed ε and growing n the second expression in the square brackets tends to 0. Therefore,

choosing a sufficiently small ε and considering a sufficiently large n the last Ω-expression cannot
be made smaller than T (n) and therefore the last relation cannot hold. Thus, S(n) cannot grow
asymptotically faster than T (n)/ log T (n).

The above mentioned results hold for both deterministic and nondeterministic two-tape machines
since in their derivation no specific properties of either type of machines have been used. 2

A remark concerning the assumption on the asymptotic growth of S(n) in the previous theorem
is in order. The assumption that limn→∞ nC(n)/S(n) = 0 was chosen in order to ensure that in
computations at hand there exist crossing systems not incidental with the input. This assumption
mirrors the one needed for proving a similar theorem in the case of single tape computation [3]. For
single tape computations the respective assumption is of form limn→∞ n/S(n) = 0. Note that this is
a special form of our assumption since in the single-tape case a crossing system always consumes one
unit of space whereas in the two-tape case it can consume up to C(n) units of space.

Theorem 4.4 gives a partial answer to an open problem concerning efficient deterministic simulation
of nondeterministic computations. Namely, in [6] the authors have asked whether for any ε > 0,
NTIME(T (n)) ⊆DTIME(2εT (n)). It appears that if the assumptions of Theorem 4.4 are satisfied then
the above mentioned relation holds:

Theorem 4.5 Let M be a diagonal nondeterministic two-tape Turing machine of time complexity
T (n), space complexity S(n) and crossing complexity C(n).

If limn→∞ nC(n)/S(n) = 0 then for any ε > 0 M can be simulated by a deterministic Turing
machine M′ in time O(2εT (n)).

Proof: Under the assumption on the growth of S(n) from Theorem 4.4 it follows that for machine M
it holds S(n) = O(T (n)/ log T (n))). This machine can be simulated by machine M′ using the standard
breadth-first simulation technique in time 2O(S(n)) (cf. [1]). Now, for any ε > 0 and a sufficiently
large n we have cT (n)/ log T (n) ≤ εT (n) for any constant c > 0. The claim of the theorem follows.

2
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5 Conclusions

In this paper we have systematically applied the concept of crossing sequences to computations of
nondeterministic multitape Turing machines. With the help of these novel techniques we were able to
give positive answers to two open problems, albeit not in their full generality. The first open problem,
from nineteen seventies [5], asked whether space is more powerful than time for nondeterministic
computations. The second one recently asked whether one can improve, at least slightly, upper bounds
on the standard exhaustive search [6]. For answering these problems we needed additional assumptions
concerning the simultaneous movements of Turing machine heads and the relation between space and
crossing complexity of the underlaying machines. Whether these problems can be answered positively
under milder assumptions remains to be seen.

Both results illustrate the power and usefulness of crossing sequences for obtaining non-trivial
results concerning the complexity of multitape Turing machine computations. For instance, in [8] we
showed that nondeterministic multitape computations with crossing complexity C(n) can be nonde-
terministically simulated in space O(C(n) log T (n)).

By focusing to the information transfer among the tapes within multitape computations the con-
cept of crossing sequences brings new insights into the nature of general Turing machine computations.
It opens new paths towards obtaining lower and upper bounds on the respective computations. Our
approach might present a first step for further and more significant results.
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