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Abstract:

Sparse approximation of a covariance in spectral space is an actual topic in data assimilation because

it significantly reduces the computational cost arising from the big dimension of data. In this paper we

focused on a situation when the covariance matrix in the spectral space is diagonal and we estimated its

diagonal entries by the maximum likelihood method. Further we assumed a special parametric structure

of the diagonal and computed the maximum likelihood estimator for this situation. The bottom line of

this paper is a computation and comparison of variances of these two estimators. In accordance with our

intuition, the estimate computed under the correct parametric assumption has smaller variance than the

estimate computed without any additional assumptions.
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1 Introduction

Sparse approximation of covariance in spectral domain have been used in data assimilation
for some time. One motivation is the fact that a random field in cartesian geometry is second
order stationary (that is, the covariance between the values at two points depends only on
their distance vector) if and only if its covariance in the Fourier space is diagonal e.g., [11]. On
a sphere, an isotropic random field has diagonal covariance in the basis of spherical harmonics
[3]. For wavelets, the effect of the diagonal spectral approximation is equivalent to a weighted
spatial averaging of local covariance functions [11].

Thus, diagonal, and, more generally, sparse covariance models in a spectral basis are
useful in applications. The optimal statistical interpolation system from [12] was based on a
diagonal approximation in spherical harmonics. already used as horizontal basis functions in
the model, and a change of state variables into physically balanced analysis variables. The
ECMWF 3DVAR system [5] also used diagonal covariance in spherical harmonics. Diagonal
approximation in the Fourier space for homogeneous 2D error fields, with physically balanced
crosscovariances, was proposed in [2]. The Fourier diagonalization approach was extended
by [11] to sparse wavelet representation of the background covariance, and into a combined
spatial and spectral localization by [4]. Restricting sample covariance to its diagnal in spectral
space was in the ensemble Kalman filter has an effect similar to localization and it allows the
successful use of very small ensembles [1, 7, 9].

Therefore, error estimates for spectral diagonal models are of interest. In [7], it was
proved that if the covariance is diagonal in the spectral space, then setting all off-diagonal
terms of the sample covariance in the spectral basis to zero improves the sampling error
of the covariance in the Frobenius norm, generalizing a similar estimate in [6]. However,
the diagonal still has considerable sampling error, which can be reduced by exploiting prior
knowledge about the behavior of the diagonal entries, such as the known rate of decay.
Therefore, it was suggested in [13] to fit the diagonal entries of the covariance to a model
with a small number of parameters determined by maximum likelihood.

In this paper, we use the theory of maximum likelihood estimation to prove that if the true
covariance is in fact in the form assumed by the model, then maximum likelihood estimation
will improve the estimation asymptotically. The abstract result can be used hierarchically:
sample covariance is the maximum likelihood estimate when nothing is known; the diagonal
covariance is the maximum from the maximum likelihood estimate in the space of diagonal
matrices; and diagonal covariance with the diagonal entries dependent on a small parameter is
obtained from maximum likelihood estimation in the space of such parametric representation.
In each case, the more specific model results in a smaller variance, if the covariance is indeed
of the assumed form. The theory applies to the more general case of nested parametric models
or nested sparse covariance models as well.
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2 Maximum likelihood estimates of diagonal entries

Assume e(k) ∼ Nn(0,D) for k = 1, . . . , N , where D = diag(d1, . . . , dn) = diag( 1
ϕ1
, . . . , 1

ϕn
).

Denote by g the density of Nn(0,D) distribution. The likelihood function for D with a given
random sample E =

[
e(1), . . . , e(N)

]
has the form

L(D|E) =

N∏
k=1

g(e(k))

= [(2π)n|D|]−N/2 exp

(
−1

2

N∑
k=1

(
e(k)

)>
D−1e(k)

)

=

[
(2π)n

n∏
i=1

1

ϕi

]−N/2
exp

(
−1

2

N∑
k=1

n∑
i=1

(
e
(k)
i

)2
ϕi

)

=

[
(2π)n

n∏
i=1

1

ϕi

]−N/2
exp

(
−1

2

n∑
i=1

ϕiS
2
i

)
,

where S2
i =

∑N
k=1

(
e
(k)
i

)2
is a sufficient statistic for variance.

The log-likelihood function is equal to

`(D|E) = logL(D|e(1), . . . , e(N))

= −N
2
n log(2π) +

N

2

n∑
i=1

logϕi −
1

2

n∑
i=1

ϕiS
2
i . (1)

Partial derivatives of ` with respect to ϕj are

∂`

∂ϕj
=

N

2ϕj
−
S2
j

2
.

Imposing them equal to zero we get the maximum likelihood estimates for eigenvalues

1

ϕ̂j
= d̂j =

1

N
S2
j , j = 1, . . . , n,

i.e. maximum likelihood estimates of variances.

3 Error of the MLE in Frobenius norm

The Frobenius norm of the error matrix is

E||D̂−D||2F =

n∑
i=1

E(d̂i − di)2 =
n∑
i=1

(
E(d̂i)

2 − 2diE(d̂i) + d2i

)
=

n∑
i=1

(
1

N2
E(S2

i )2 − 2

N
diE(S2

i ) + d2i

)

=

n∑
i=1

(
2

N
d2i + d2i − 2d2i + d2i

)
=

2

N

n∑
i=1

d2i

where we used the fact that e
(k)
i /
√
di ∼ N (0, 1), so S2

i ∼ diχ2
N and therefore
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• E(S2
i ) = diN

• E(S2
i )2 = VarS2

i + (E(S2
i ))2 = d2i 2N +N2d2i .

The error of the diagonal of sample covariance matrix has the Frobenius norm equal to
2

N−1
∑n

j=1 d
2
j , so it is evident that the maximum likelihood estimate of the diagonal terms

has smaller error (provided that the Frobenius norm is the criterion of optimality).

4 Parametric model of diagonal elements

Now we assume that the diagonan entries of the covariance are of the form

ϕj = cfj(α)

(e.g. ceαλj , c
α+j1.5

etc.) and compute the maximum likelihood estimates for this case.

Partial derivatives of ϕj with respect to the parameters (c, α) are

∂ϕj
∂c

= fj(α),
∂ϕj
∂α

= c
∂fj
∂α

.

Using the chain rule, we get

∂`

∂c
=

n∑
i=1

∂`

∂ϕi

∂ϕi
∂c

=
n∑
i=1

(
N

2ϕi
− S2

i

2

)
∂ϕi
∂c

=
N

2

n∑
i=1

(
1

cfi(α)
− 1

N
S2
i

)
fi(α).

Setting this derivative equal to zero we get

1

c
=

1

n

n∑
i=1

1

N
S2
i fi(α). (2)

Similarly,

∂`

∂α
=

n∑
i=1

∂`

∂ϕi

∂ϕi
∂α

=
n∑
i=1

(
N

2ϕi
− S2

i

2

)
∂ϕi
∂α

=
N

2

n∑
i=1

(
1

cfi(α)
− 1

N
S2
i

)
c
∂fi
∂α

=
N

2

n∑
i=1

(
1

fi(α)
− 1

N
S2
i c

)
∂fi
∂α

.

and setting the deriative to zero, we get

1

c

n∑
i=1

1

fi(α)

∂fi
∂α

=
1

N

n∑
i=1

S2
i

∂fi
∂α

.

Using (2) it implies

1

n

n∑
i=1

1

N
S2
i fi(α)

n∑
j=1

1

fj(α)

∂fj
∂α

=
1

N

n∑
i=1

S2
i

∂fi
∂α

,
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which can be rearranged to

n∑
i=1

S2
i f

2
i (α)

 1

fi(α)

∂fi
∂α
− 1

n

n∑
j=1

1

fj(α)

∂fj
∂α

 = 0. (3)

The expression (3) is an implicit formula for estimating α.

5 Comparison of variances

The asymptotic distribution of the maximum likelihood estimate θ̂ is normal with mean equal
to the estimating parameter θ and variance equal to the inverse of the Fisher information
matrix [10, p. 2146, Theorem 3.3],

√
N(θ̂ − θ)

d−→ N
(
0, J(θ)−1

)
. (4)

Denote ϕ = (ϕ1, . . . , ϕn)>. According to this law, the asymptotic distribution of maximum
likelihood estimate ϕ̂ = (ϕ̂1, . . . , ϕ̂n)> is

√
N(ϕ̂−ϕ)

d−→ N
(
0, J(ϕ)−1

)
,

where J(ϕ) = diag

{
N
2

1
ϕ2
j

}
, i.e. it is the Fisher information matrix for general ϕ without

assuming any particular structure.
This fact can be verified by a straightforward computation. Recall the definition of the

Fisher information matrix

Jkl(ϕ) = Eϕ

[
−∂

2`(ϕ|e)

∂ϕk∂ϕl

]
, k, l = 1, . . . , n.

Providing (1), it is evident that for k 6= l it holds Jkl = 0. For k = l, we have

Jkk(ϕ) = Eϕ

[
−∂

2`(ϕ|e)

∂ϕ2
k

]
= Eϕ

[
− ∂

∂ϕk

(
N

2

1

ϕk
− 1

2
S2
k

)]
= Eϕ

[
N

2

1

ϕ2
k

]
=
N

2

1

ϕ2
k

.

If ϕj , j = 1, . . . , n, are functions of the parameter (c, α)> (i.e. ϕj = fj(c, α)) then
according to the behaviour of the Fisher information matrix under reparametrization [8,
p. 125, eq. (6.16)], the Fisher information matrix for the parameter (c, α)> is

J(c, α) = (∇ϕ(c, α))>J(ϕ)∇ϕ(c, α). (5)

From (4) we know that

√
N

((
ĉ
α̂

)
−
(
c
α

))
d−→ N2

((
0
0

)
, J(c, α)−1

)
. (6)

How this distribution change if we compute a function of (c, α)>? This question can be
answered by the Delta method.
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Theorem 1 (Multivariate delta method [8, p. 61, Theorem 8.22] ) Suppose that YN =
(YN1, . . . , YNk)

>, is a random vector. If g : Rk → Rl is a real-valued function which is contin-
uously differentiable in a neighbourhood of the parameter point a and which has a non-singular
derivative ∇g(a) at a ∈ Rk, where

∇g(a) =


∂g1
∂a1

. . . ∂g1
∂al

...
...

∂gk
∂a1

. . . ∂gk
∂al


and if it holds √

N(YN − a)
d−→ Nk(0,Σ),

then √
N(g(YN )− g(a))

d−→ Nl
(
0,∇g(a)Σ (∇g(a))>

)
. (7)

Assume that ∇ϕ(c, α) exists. By using the Multivariate delta method (7) on relation (6)
we get √

N(ϕ(ĉ, α̂)−ϕ(c, α))
d−→ Nn

(
0,∇ϕ(c, α)J(c, α)−1(∇ϕ(c, α))>

)
. (8)

The covariance matrix in (8) can be denoted by J(ϕ(c, α))−1 in order to refer to its
dependence on c and α. Moreover, according to the Zehna’s invariance principle [14], ϕ(ĉ, α̂)
is a maximum likelihood estimate of ϕ(c, α). Hence, its covariance matrix should be an
inversion of some Fisher information matrix, which justifies the use of the letter J here.

Replacing the matrix J(c, α) in (8) by (5) gives us the relationship between the covariance
matrix for the estimates of inverse entries of the diagonal matrix D with some general struc-
ture and the covariance matrix of the estimates in the case that these entries are assumed to
be dependent on the parameter (c, α)>. This relationship has the form

J(ϕ(c, α))−1 = ∇ϕ(c, α)
(

(∇ϕ(c, α))>J(ϕ)∇ϕ(c, α)
)−1

(∇ϕ(c, α))>.

It can be expected that covariance matrix for ϕ(ĉ, α̂) is smaller than the covariance matrix
of ϕ̂ because it corresponds to an estimate found in a smaller (but correct) subspace. We
prove that it is indeed the case. The inequality is meant in the way that the difference matrix
is non-negative definite.

Theorem 2 It holds that

∇ϕ(c, α)
(

(∇ϕ(c, α))>J(ϕ)∇ϕ(c, α)
)−1

(∇ϕ(c, α))> ≤ J(ϕ)−1. (9)

Proof. Denote A := J(ϕ) and B := ∇ϕ(c, α). Then the equation has the form

B(B>AB)−1B> ≤ A−1.

After multiplying this equation by A1/2 from the right and from the left we get

A1/2B(B>AB)−1B>A1/2 ≤ I.
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Matrix P = A1/2B(B>AB)−1B>A1/2 is a projection since P 2 = P. Moreover, it is an orthog-
onal projection. To see this just recall that matrix B(B>AB)−1B> is a covariance matrix,
so it is symmetric, and matrix A1/2 is diagonal. Therefore, matrix P is symmetric as well,
which implies P to be an orthogonal projection.

It remains to show that I − P is a non-negative definite matrix, i.e.

v>(I − P )v ≥ 0 ∀v ∈ Rn.

This can be shown easily by the following computation

v>(I − P )v = v>(I − P )(I − P )v = v>(I − P )>(I − P )v

= 〈(I − P )v, (I − P )v〉 = ||(I − P )v||2 ≥ 0.

where we used the fact that I − P is also a projection and that it is also symmetric. Note
that 〈·, ·〉 is the standard inner product in Rn and || · || is the associated (Euclidean) norm.

Therefore, a maximum likelihood estimate computed in the correct subspace has smaller
variance than an estimate computed in the whole space. Further notice, that in the whole
derivation we have not used the assumption of normal distribution, so this statements is
valid for general maximum likelihood estimates. Moreover, it can be easily extended to
higher-dimensional parameters.
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