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Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).
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Technical report No. 1220

Jun 25 2015

Abstract:

The paper focuses on measures which can be applied to evaluation of classification results. Objects with
known assignment to certain groups are used for evaluation. Using a classification method the user obtains
the assignment of objects to groups. Many coefficients have been proposed for evaluation of the success rate
of classification. Most of them is determined for classification to two groups. Possibilities for classification
to more groups are limited. The aim of this paper is to summarize different measures, discuss their origin
and relationships. For classification to three or more groups we propose two novel measures which are
more suitable. The first of them takes a variability of diagonal frequencies of the confusion matrix into
account. The second one is based on the sum of squared differences between the maximum correctly
assigned objects and real correctly assigned objects in each group.
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1 Introduction

If a new method for object classification is developed or a model of object classification is estimated,
evaluation of classification results is very useful and necessary. Many coefficients have been proposed
for evaluation of the success rate of classification. Most of them is determined for classification to
two groups. Possibilities for classification to more groups are limited. The aim of this paper is to
summarize different measures, discuss their origin and relationships. For classification to three and
more groups two novel measures, which better evaluate obtained results, are proposed. The first of
them takes a variability of diagonal frequencies of the confusion matrix into account. The second one
is based on the sum of squared differences between the maximum correctly assigned objects and real
correctly assigned objects for each group. Measures evaluating classification are based on the confusion
matrix including the frequencies nij . Each value nij expresses the number of objects observed in the
i-th groups and classified in the j-th group.

2 Classification to two groups

In case of classification to two groups, more approaches are available to the users in comparison
with classification to more than two groups. The confusion matrix includes four frequencies nij , see
Table 2.1, where n is the total number of objects, n1+ = n11+n12, n2+ = n21+n22, n+1 = n11+n21,
and n+2 = n12 + n22 are the marginal frequencies.

Classified (Predicted)
Group (Class) 1 Group (Class) 2

Observed (Actual)
Group (Class) 1 n11 n12 n1+

Group (Class) 2 n21 n22 n2+

n+1 n+2 n

Table 2.1: Scheme of confusion matrix for two groups.

Let us suppose that group 1 expresses a positive situation (a patient is cured, a client repaid the
installments, a document contains relevant information) and group 2 expresses a negative situation.
In the process of classification evaluation, the number of objects from group 1 which are classified
correctly is usually denoted TP (true positive), i.e. n11 = TP. The number of objects from group 1
which are not classified correctly is usually denoted FN (false negative), i.e. n12 =FN. Similarly, the
number of objects from group 2 which are classified correctly is usually denoted TN (true negative),
i.e. n22 =TN, and the number of objects from group 2 which are not classified correctly is usually
denoted FP (false positive), i.e. n21 =FP.

The basic characteristics of classification to two groups are sensitivity (true positive rate or recall)
and specificity (true negative rate). The former is defined as n11/n1+, the latter is expressed as
n22/n2+. Further, the precision (positive predictive value) is defined as n11/n+1 and the false positive
rate is expressed as (1 – specificity), i.e. n21/n2+. The list of characteristics based on the frequencies
in the confusion matrix and usually used for classification evaluation is shown in Table 2.2. Some
terms comes from the area of information retrieval.

The confusion matrix is a contingency table in which different kinds of frequencies can be displayed,
e.g. relative frequencies within the total table (pij = nij/n) with the marginal relative frequencies
, p1+ = p11 + p12, p2+ = p21 + p22, p+1 = p11 + p21, and p+2 = p12 + p22 (see Table 2.3), the
row relative frequencies (see Table 2.4) or column relative frequencies (see Table 2.5) which provide
different views on the relationships between observed and suggested assignment of objects to groups.

The rates, predictive values, accuracy and F1 score have values from the interval [0; 1]. The true
rates (TPR and TNR), predictive values (PPV and NPV ), accuracy and F1 score should be close 1,
false rates should be close 0.

The accuracy is known as the simple matching coefficient (SMC ) in the area of similarity measures
for binary variables, applied e.g. in hierarchical cluster analysis. (The authors of this coefficient are
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Name 1 Name 2 etc. Equation
true positive rate (TPR) sensitivity, recall n11/n1+

true negative rate (TNR) specificity (SPC ) n22/n2+

positive predictive value (PPV ) precision n11/n+1

negative predictive value (NPV ) n22/n+2

false positive rate (FPR) fall-out n21/n2+

false negative rate (FNR) miss rate n12/n1+

false discovery rate (FDR) n21/n+1

false omission rate (FOR) n12/n+2

accuracy (ACC ) (n11 + n22)/n
prevalence n+1/n
F1 score 2n11/(n1+ + n+1)

Matthews correlation coef. (MCC )
n11n22 − n12n21√
n1+n2+n+1n+2

Table 2.2: Definitions of classification characteristics.

Classified
Group 1 Group 2

Observed
Group 1 p11 p12 p1+
Group 2 p21 p22 p2+

p+1 p+2 1

Table 2.3: Scheme of confusion matrix for two groups with total relative frequencies.

Classified
Group 1 Group 2

Observed
Group 1 TPR = n11/n1+ FNR = n12/n1+ 1
Group 2 FPR = n21/n2+ TNR = n22/n2+ 1

Table 2.4: Scheme of confusion matrix for two groups with row relative frequencies.

Classified
Group 1 Group 2

Observed
Group 1 PPV = n11/n+1 FOR = n12/n+2

Group 2 FDR = n21/n+1 NPV = n22/n+2

1 1

Table 2.5: Scheme of confusion matrix for two groups with column relative frequencies.

Sokal and Michener, who significantly affected research in the area of classification, see e.g. [16] or
[22].) It is the weighted arithmetic average of sensitivity and specificity:

SMC =

n11

n1+
n1+ + n22

n2+
n2+

n1+ + n2+
=

n11 + n22

n
. (2.1)

The F1 score is a harmonic mean of sensitivity and precision. It is well known similarity measure
for two asymmetric dichotomous variables, called Dice [6] or Czekanowski [5] or Sorensen [24]. Usually,
it is expressed in the form

DICE =
2n11

2n11 + n12 + n21
. (2.2)
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The weighted harmonic mean of sensitivity and precision is the F-measure:

Fα =
(1 + α) · n11

n+1
· n11

n1+

α · n11

n+1
+ n11

n1+

=
(1 + α) · n11

(1 + α) · n11 + αn12 + n21
, (2.3)

where α may be varied between 0 and 1. It is the significance level, see [1]. The arithmetic average of
sensitivity and precision gives the Kulczynski similarity measure 2, i.e.

K2 =

n11

n1+
+ n11

n+1

2
. (2.4)

The geometric mean of sensitivity and precision gives the Ochiai similarity measure [17] in the form

OCHIAI =

√
n11

n1+

n11

n+1
. (2.5)

It is the special equation for the cosine similarity measure determined for quantitative variables.
The average of TPR, TNR, PPV and NPV is called Sokal and Sneath similarity measure 4, i.e.

SS4 =

n11

n1+
+ n11

n+1
+ n22

n2+
+ n22

n+2

4
. (2.6)

The average of the values from the interval [0; 1] is the value from the same interval.
The ratio of the true positive rate and the false positive rate is called as the positive likelihood

ratio (LR+):

LR+ =

n11

n1+

n21

n2+

. (2.7)

The ratio of the false negative rate and the true negative rate is called as the negative likelihood
ratio (LR):

LR+ =

n12

n1+

n22

n2+

. (2.8)

The ratio of the positive likelihood ratio and the negative likelihood ratio is called as the diagnostic
odds ratio (OR):

OR =
frac n11

n1+

n21

n2+

frac n12

n1+

n22

n2+

=
n11n22

n12n21
=

TPR · TNR

FNR · FPR
=

PPV ·NPV

FOR · FDR
. (2.9)

Some suitable measures of association known from the contingency table analysis can be used for
evaluation of classification. Further, some similarity measures for binary variables used in hierarchical
cluster analysis can be also applied.

The Matthews correlation coefficient [14], see Table 2.2, is the classical Pearson correlation coeffi-
cient [18] expressed for two binary variables by frequencies from the contingency tables. In a case of
two binary variables, the equation for the Pearson correlation coefficient is the same as the formulas
for the Spearman and Kendall rank correlation coefficients (Kendall’s tau-b). That means there is
only one correlation coefficient for measurement of association of two dichotomous variable which can
be used for classification evaluation. This coefficient has values from the interval [−1; 1]. Three exam-
ples of frequencies which give values 1, 0 and −1 are shown in Tables 2.6–2.8. The absolute values of
the correlation coefficient are the same as the values of the phi coefficient of association based on the
Pearson chi-squared statistic.

The correlation coefficient is a measure of linear dependence. There are two other coefficients
proposed for linear dependence measurement of two ordinal variables which can be applied to binary
variables – symmetric Somers’s d and Goodman and Kruskal’s gamma. Somers’s d is a harmonic
mean of two asymmetric coefficients. For the 2× 2 contingency table it is defined as

3



Classified
Group 1 Group 2

Observed
Group 1 90 0 90
Group 2 0 90 90

90 90 180

Table 2.6: Example of frequencies which give the value 1 of the correlation coefficient.

Classified
Group 1 Group 2

Observed
Group 1 45 45 90
Group 2 45 45 90

90 90 180

Table 2.7: Example of frequencies which give the value 0 of the correlation coefficient.

Classified
Group 1 Group 2

Observed
Group 1 0 90 90
Group 2 90 0 90

90 90 180

Table 2.8: Example of frequencies which give the value −1 of the correlation coefficient.

d =
2(n11n22 − n12n21)

n1+n2+ + n+1n+2
. (2.10)

Its values are very close to values of the correlation coefficient, because generally Kendall’s tau-b can
be expressed as a geometric mean of two asymmetric Somers’s coefficients. For classification we can
consider a directional measure, it means if classification (C) with frequencies placed in columns of the
confusion matrix is dependent on observed assignment of objects to groups placed in rows (R) or not.
In this case

dC|R =
n11n22 − n12n21

n11n22 + n12n21 + n11n21 + n12n22
. (2.11)

If the confusion matrix is symmetric, then the values of all three Somers’s coefficients are the same.
Goodman and Kruskal’s gamma is called as Yule’s Q [26] for the 2 × 2 contingency table. It is

defined by the equation

Q =
n11n22 − n12n21

n11n22 + n12n21
. (2.12)

This coefficient has also values from the interval [−1; 1]. Values 1, 0 and −1 correspond with situations
in which correlation coefficient has the same values, see Tables 2.6–2.8. Yule’s Q is used as a similarity
measure in multivariate statistical methods. It is a function of the odds ratio:

Q =
OR− 1

OR+ 1
. (2.13)

Another coefficient with similar properties is Yule’s coefficient of colligation. It can be expressed
by the formula

Y =

√
n11n22 −

√
n12n21√

n11n22 +
√
n12n21

. (2.14)
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Yule’s coefficients assess the association between items as the predictability of one given the other. It
is a function of the odds ratio:

Y =

√
OR− 1√
OR+ 1

. (2.15)

The example in Table 2.6 is an ideal situation and the best classification. Beside of the measures
mentioned above there are some different measure with this property, e.g. measures of agreement.
One of them is Kohen’s kappa which can be used for any square contingency table (two variables have
the same number of categories which correspond with their senses). For the 2×2 table it is calculated
according to the formula

κ =
(n11 + n22)−

(n1+n+1

n + n2+n+2

n

)
n−

(n1+n+1

n + n2+n+2

n

) . (2.16)

This coefficient has values from the interval [−1; 1]. The value 0 means that the frequencies in the
table are the same as the frequencies expected under the hypothesis of independence. The value −1
can be achieve only for the symmetric confusion matrix.

If all non-zero values are in the diagonal (see Table 2.6) then n11 + n22 = n and κ = 1. If frequencies
in the contingency table correspond to independence (see Table 2.7), then κ = 0. If the value in the
diagonal are zero (see Table 2.8), then n12 = n1+ = n+2 and n21 = n2+ = n+1, i.e.

κ =
−
(n1+n+1

n + n2+n+2

n

)
n−

(n1+n+1

n + n2+n+2

n

) =
−
(n1+n+1

n + n2+n+2

n

)(n1+n+2

n + n2+n+1

n

) = − 2n12n21

n12n12 + n21n21
. (2.17)

If n12 = n21 then κ = −1.
The special measure of agreement proposed for the 2 × 2 table is Hamann’s coefficient (HC ) [8]

defined by the equation

HC =
(n11 + n22)− (n12 + n21)

n
. (2.18)

This coefficient has values from the interval [−1; 1]. It is applied as a similarity measure in multivariate
methods. The examples of frequencies which give the values 1, 0 and −1 are in Tables 2.6–2.8.

Beside of the simple matching coefficient with a range from 0 to 1, some other similarity measures
with this range can be applied. We can mention Sokal and Sneath similarity measure 5 calculated as

SS5 =
n11n22√

n1+n2+n+1n+2
. (2.19)

Some similarity measures favor the correct classification. The example are the Sokal and Sneath
similarity measure 1

SS1 =
2(n11 + n22)

2(n11 + n22) + n12 + n21
. (2.20)

and the Rogers and Tanimoto similarity measure [19]

RT =
n11 + n22

n11 + n22 + 2(n12 + n21)
. (2.21)

These coefficients have also values from the interval [0; 1]. It is a special case of the Tversky index
[25] which has a form

TV =
n11 + n22

n11 + n22 + α · n12 + β · n21
. (2.22)

If α = β = 2, then we get the Rogers and Tanimoto coefficient. If α = β = 0.5, we get the Sokal and
Sneath similarity measure 1. There are also similarity measures which have not values either from the
interval [0; 1] nor [−1; 1]. These measures have a minimum value of 0 and have no upper limit. We
will not evaluate them in this study.
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Moreover, there are several coefficients which represent only the proportion of correct classification
to the first group as the F1 score (or the Dice similarity measure) or the K2 or Ochiai similarity
measures express. They have values from the interval [0; 1]. There are Russel and Rao (RR, also
support), Jaccard (JACC ), and Sokal and Sneath (SS2 ) similarity measures. The Russel and Rao
similarity measure [20] is defined as

RR =
n11

n
, (2.23)

the Jaccard coefficient [9],[10], [11]:

JACC =
n11

n11 + n12 + n21
=

n11

n− n22
, (2.24)

and the Sokal and Sneath similarity measure 2 as

SS2 =
n11

n11 + 2(n12 + n21)
. (2.25)

Some publications summarize and compare similarity coefficients, e.g. [23], [3], [12], [21], [15], [2],
[4].

In Table 2.9, there are examples of frequencies and corresponding values of coefficients. Different
frequencies for all marginal frequencies equal 90 are considered (as in Tables 2.6–2.8). It means that
the confusion matrix is symmetric. For the reason that given marginal frequencies and the frequencies
in one cell determine frequencies in three other cells, only the value of n11 is included in the table. The
coefficients are ordered according their values (from higher to lower values in the group of a certain
coefficient type). We can see that for the symmetric confusion matrix some coefficients give the same
results. Graphical representation of coefficient values is shown in Figures 2.1 and 2.2. Some other
examples are shown in Figures 2.3 and 2.4.

 

 

Figure 1  Dependence of coefficient values on selected frequencies in the first cell of 
Figure 2.1: Dependence of coefficient values on selected frequencies in the first cell of the confusion
matrix with marginal frequencies 90, 90, 90 90 (coefficients with range from 0).

3 Classification to three and more groups

If we consider more than two groups, then the number of possibilities for evaluation of classification
is considerably less. We can evaluate classification to individual groups separately (assignment to
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Figure 2  Dependence of coefficient values on selected frequencies in the first cell of the 
Figure 2.2: Dependence of coefficient values on selected frequencies in the first cell of the confusion
matrix with marginal frequencies 90, 90, 90 90 (coefficients with range [−1; 1]).

Frequencies – examples
1 2 3 4 5 6 7 8 9

n11 0 10 20 30 45 60 70 80 90
Values of coefficients

Measures for symmetric binary variables with range [0; 1]
SS1 0 0.20 0.36 0.50 0.67 0.80 0.88 0.94 1
SS4 0 0.11 0.22 0.33 0.50 0.67 0.78 0.89 1
ACC (SMC ) 0 0.11 0.22 0.33 0.50 0.67 0.78 0.89 1
RT 0 0.06 0.13 0.20 0.33 0.50 0.64 0.80 1
SS5 0 0.01 0.05 0.11 0.25 0.44 0.60 0.79 1
Measures for asymmetric binary variables
F1 score (Dice) 0 0.11 0.22 0.33 0.50 0.67 0.78 0.89 1
F-0.7 0 0.11 0.22 0.33 0.50 0.67 0.78 0.89 1
K2 0 0.11 0.22 0.33 0.50 0.67 0.78 0.89 1
Ochiai 0 0.11 0.22 0.33 0.50 0.67 0.78 0.89 1
JACC 0 0.06 0.13 0.20 0.33 0.50 0.64 0.80 1
SS2 0 0.03 0.07 0.11 0.20 0.33 0.47 0.67 1
RR 0 0.06 0.11 0.17 0.25 0.33 0.39 0.44 0.5
Measure with range [–1; 1]
Q –1 –0.97 –0.85 –0.60 0 0.60 0.85 0.97 1
Y –1 –0.78 –0.56 –0.33 0 0.33 0.56 0.78 1
MCC (r) –1 –0.78 –0.56 –0.33 0 0.33 0.56 0.78 1
Som. d –1 –0.78 –0.56 –0.33 0 0.33 0.56 0.78 1
HC –1 –0.78 –0.56 –0.33 0 0.33 0.56 0.78 1
kappa –1 –0.78 –0.56 –0.33 0 0.33 0.56 0.78 1

Table 2.9: Examples of frequencies and corresponding values of coefficients.

a certain groups and to all other groups) and use the approaches mentioned above. However, for
evaluation of assignment to all groups simultaneously only the simple matching coefficient and the
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Figure 2.3: Dependence of coefficient values on selected frequencies in the first cell of the confusion
matrix with marginal frequencies 90, 90, 60, 120 (coefficients with range [0; 1])

                

Figure 2.4: Dependence of coefficient values on selected frequencies in the first cell of the confusion
matrix with marginal frequencies 90, 90, 60 120 (coefficients with range [−1; 1]).

kappa coefficient are usually applied. The simple matching coefficient is defined as

SMC =

K∑
i=1

nii

n
, (3.1)

whereK is the number of groups. This coefficient has values from the interval [0; 1]. The SMC measure
is a weighted arithmetic average of individual sensitivities for each group:
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SMC =
K∑
i=1

nii

ni+
· ni+

n
=

K∑
i=1

nii

n
=

K∑
i=1

nii

n
. (3.2)

This coefficient does not distinguish variability of diagonal frequencies.
For K groups the kappa coefficient is expressed as

κ =

K∑
i=1

nii −
K∑
i=1

ni+n+i

n

n−
K∑
i=1

ni+n+i

n

. (3.3)

It has values from the interval [−1; 1]. If the frequencies in the confusion matrix are the same as the
frequencies expected under the hypothesis of independence, then the value of kappa is 0. However, if
the value is 0, then random frequencies are only one from several possibilities. For this reason, the
kappa coefficient is the suitable measure of agreement, but it is not a suitable measure for evaluation
of classification results.

The modified Hamann’s coefficient for K groups can be applied for evaluation of classification
results in the form

HC =

K∑
i=1

nii −
K∑
i=1

K∑
j=1;j ̸=i

nij

n
. (3.4)

This coefficient has values from the interval [−1; 1]. The value 0 means that the number of correct
assigned objects and the number of incorrect assigned objects are the same. However, we obtain
similar information as using the SMC measure, only in the different interval. The comparison of three
mentioned coefficients applied for the symmetric confusion matrix for 90 objects is shown in Figure
3.1.

           
Figure 3.1: Dependence of coefficient values on selected diagonal frequencies.

For the reason that the coefficients mentioned above do not express a success rate of classification
in a suitable way, we propose a new coefficient including variability of frequencies. Sensitivities are
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relative frequencies. However, the sum of them usually is not 1. If these relative frequencies are
recalculated for the sum equal 1, then we can express variability of corrected classification.

We suggest to apply nominal variance (i.e. mutability) proposed by [7], reviewed in [13], as a
variability measure. So each sensitivity is divided by the sum of sensitivities and then the normal-
ized nominal variance of these proportions are calculated. The SMC coefficient is multiplied by the
obtained value, i.e.

RH =
1

n

K∑
i=1

nii ·

 K

K − 1

K∑
i=1

nii

ni+

K∑
i=1

nii

ni+

1−
nii

ni+

K∑
i=1

nii

ni+


. (3.5)

If all proportions are the same, then the normalized nominal variance is 1 and RH = SMC. If only
one class is classified correctly, then variance is 0 and RH = 0.

If there are the same numbers of objects in all groups, then variability of diagonal frequencies
instead variability of sensitivities can be calculated. Then the RH coefficient can be expressed as

RH =
1

n

K∑
i=1

nii ·

 K

K − 1

K∑
i=1

nii

K∑
i=1

nii

1− nii

K∑
i=1

nii


. (3.6)

We can illustrate taking variability into account with the following example. Let us suppose that
there are 3 groups and 9 objects. In each group there are 3 objects correctly. The values of the SMC
and RH coefficients are in Table 3.1.

Another way to take into account different sensitivities in individual groups is to compute the sum
of squared differences between the maximum correctly assigned objects and real correctly assigned
objects for each group:

Dif2 =
K∑
i=1

(ni+ − nii)
2
. (3.7)

For obtaining values from the interval from 0 to 1, the Dif2Norm measure can be expressed in the
form

Dif2Norm =

K∑
i=1

n2
i+ −Dif2

K∑
i=1

n2
i+

. (3.8)

The values of Dif2 and Dif2Norm for the example mentioned above are in Table 3.1. In this table
the rows are ordered according to values of the RH and Dif2Norm measures. We can see that both
measures give the same order for the given marginal frequencies. Both measures give for two cases of
frequencies the same values but the pairs of frequencies are different.

According to our opinion the RH and Dif2Norm measures are more suitable for evaluation of
classification results than usually used measures because the successful classification to all groups is
preferred over the total number of correctly classified objects.

4 Conclusion

Many different measures have been proposed for evaluation of classification results. For classification
to two groups, the possibilities are varied. If the numbers of objects observed in two groups are
the same and the numbers of objects predicted to two groups are also the same, then the obtained
values of some coefficients are the same. In this paper we point out which coefficients have the same
dependence on the frequencies in the confusion matrix.
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Diagonal SMC Normalized RH Dif2 Dif2Norm
frequencies mutability
0,0,0, 0 0 0 27 0
1,0,0 0.111 0 0 23 0.148
2,0,0 0.222 0 0 19 0.296
3,0,0, 0.333 0 0 18 0.333
1,1,0 0.222 0.750 0.167 17 0.370
2,1,0 0.333 0.667 0.222 14 0.481
3,1,0 0.444 0.563 0.250 13 0.519
1,1,1 0.333 1.000 0.333 12 0.556
2,2,0 0.444 0.750 0.333 11 0.593
3,2,0 0.556 0.720 0.400 10 0.630
2,1,1 0.444 0.938 0.417 9 0.667
3,3,0 0.667 0.750 0.500 9 0.667
2,2,1 0.556 0.960 0.533 6 0.778
3,2,1 0.667 0.917 0.611 5 0.815
2,2,2 0.667 1.000 0.667 3 0.889
3,2,2 0.778 0.980 0.762 2 0.926
3,3,2 0.889 0.984 0.875 1 0.963
3,3,3 1 1.000 1 0 1

Table 3.1: Examples of diagonal frequencies and values of SMC, RH and Dif2Norm measures.

For evaluation of assignment to three or more groups simultaneously, only the simple matching
coefficient and the kappa coefficient are usually applied. If the value of the kappa coefficient is zero, it
can mean that the frequencies in the confusion matrix are the same as the frequencies expected under
the hypothesis of independence, however it is only one from many possibilities. The simple matching
coefficient, which is a weighted arithmetic average of individual sensitivities for each group, does not
distinguish variability of diagonal frequencies.

For this reason we proposed two novel coefficients, the HR and Dif2Norm coefficients. The former
takes a variability of diagonal frequencies into account. The normalized nominal variance is used as
a variability measure in this case. The HR coefficient is a product of the simple matching coefficient
and the normalized nominal variance. The Dif2Norm coefficient is based on the sum of squared
differences between the maximum correctly assigned objects and real correctly assigned objects for
each group. The obtained value is normalized to the interval [0; 1]. We believe that the proposed
coefficients evaluate the results of classification suitably.
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