
UFO 2004. Interactive System for Universal Functional Optimization

Lukšan, Ladislav
2004

Dostupný z http://www.nusl.cz/ntk/nusl-19930

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 10.04.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-19930
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

UFO 2004
Interactive System for Universal Functional
Optimization

L.Lukšan, M.Tůma, J.Vlček, N.Ramešová,
M.Šǐska, J.Hartman, C.Matonoha

Technical report No. 923

December 2004

Pod Vodárenskou věž́ı 2, 182 07 Prague 8 phone: +420 2 688 42 44, fax: +420 2 858 57 89,
e-mail:e-mail:ics@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

UFO 2004
Interactive System for Universal Functional
Optimization

L.Lukšan, M.Tůma, J.Vlček, N.Ramešová,
M.Šǐska, J.Hartman, C.Matonoha 1

Technical report No. 923

December 2004

Abstract:

This report contains a description of the interactive system for universal functional optimization UFO, version
2004.

Keywords:
Numerical optimization, nonlinear programming, nonlinear approximation, algorithms, software systems.

1This work was supported by the Grant Agency of the Czech Academy of Sciences, project code IAA1030405, L.Lukšan,
and M.Tůma are also from Technical University of Liberec, Hálkova 6, 461 17 Liberec.

Contents

1 Introduction to the UFO system 4
1.1 Philosophy of the UFO system . 4
1.2 Execution of the UFO system . 5
1.3 The UFO versions for PC computers . 6
1.4 The UFO versions for UNIX workstations . 7
1.5 Distribution of the UFO system . 7
1.6 Suggestions for beginners . 8
1.7 Authors of the UFO system . 8

2 Problems solved using the UFO system 10
2.1 Specification of variables . 13
2.2 Specification of the model function (dense problems) . 14
2.3 Specification of the model function (sparse problems) . 16
2.4 Objective functions for discrete approximation . 17
2.5 Specification of the approximating functions (dense problems) 18
2.6 Specification of the approximating functions (sparse problems) 21
2.7 Objective functions for optimization of dynamical systems 24
2.8 Specification of the state functions . 25
2.9 Specification of the initial functions . 26
2.10 Specification of the subintegral function . 28
2.11 Specification of the terminal function . 28
2.12 Optimization with general constraints . 29
2.13 Specification of the constraint functions (dense problems) 30
2.14 Specification of the constraint functions (sparse problems) 32
2.15 Solution of systems of nonlinear functional equations . 35
2.16 Solution of systems of ordinary differential equations . 36
2.17 Additional specifications concerning optimization problems 36
2.18 Conventional names of basic variables and arrays . 37
2.19 Automatic differentiation . 38

3 Optimization methods in the UFO system 40
3.1 Heuristic methods . 42
3.2 Conjugate direction methods . 42
3.3 Variable metric methods . 44
3.4 Variable metric methods with limited storage based on compact variable metric updates . . 47
3.5 Variable metric methods with limited storage based on shifted product-form variable metric

updates . 47
3.6 Variable metric methods with limited storage based on reduced Hessians 48
3.7 Modified Newton methods . 50
3.8 Truncated Newton methods . 51
3.9 Modified Gauss-Newton methods for nonlinear least squares and nonlinear equations 51
3.10 Quasi-Newton methods for nonlinear least squares and nonlinear equations 55
3.11 Quasi-Newton methods with limited storage for nonlinear equations 57
3.12 Truncated Newton methods for nonlinear equations . 58
3.13 Quasi-Newton and Brent methods for nonlinear equations 59
3.14 Simplex type methods for linear programming problems . 59
3.15 Interior point methods for linear programming problems . 59
3.16 Simplex type methods for quadratic programming problems 60
3.17 Interior point methods for quadratic programming problems 60
3.18 Proximal bundle methods for nonsmooth optimization . 61

1

3.19 Bundle-Newton methods for nonsmooth optimization . 62
3.20 Variable metric bundle methods for nonsmooth optimization 62
3.21 Variable metric bundle methods for large-scale sum of absolute values 63
3.22 Methods for minimax problems. 63
3.23 Recursive quadratic programming methods for dense general nonlinear programming problems 64
3.24 Recursive quadratic programming methods for sparse equality constrained nonlinear pro-

gramming problems . 65
3.25 Interior point methods for sparse equality and inequality constrained nonlinear programming

problems . 69
3.26 Nonsmooth equation methods for sparse equality and inequality constrained nonlinear pro-

gramming problems . 72
3.27 Methods for initial value problems for ordinary differential equations 74
3.28 Methods for direction determination . 75
3.29 Methods for stepsize selection . 77
3.30 Methods for numerical differentiation . 79
3.31 Methods for objective function evaluation in the case of dynamical systems optimization . . 79
3.32 Global optimization methods . 79

4 Input possibilities in the UFO system 82
4.1 The UFO control language . 82
4.2 The batch mode . 92
4.3 The text dialogue mode . 95
4.4 The graphic dialogue mode . 96

5 Output possibilities in the UFO system 99
5.1 Basic screen output . 99
5.2 Extended screen output . 100
5.3 Graphic screen output . 101
5.4 Text file output . 105
5.5 User supplied output . 108
5.6 Storing final results . 108
5.7 Other output files . 108
5.8 Error messages . 109

6 Special tools of the UFO system 112
6.1 Checking external subroutines . 112
6.2 Testing optimization methods . 113
6.3 Interface to the CUTE collection . 116

7 Application of the UFO system (examples) 117
7.1 Optimization with simple bounds . 117
7.2 Minimization of the sum of squares . 118
7.3 Minimax approximation . 120
7.4 Nonsmooth optimization . 121
7.5 Optimization with linear constraints . 122
7.6 Minimax approximation with linear constraints . 123
7.7 Optimization with nonlinear constraints (nonlinear programming) 124
7.8 Global optimization . 126
7.9 Large scale optimization (sparse Hessian matrix) . 127
7.10 Large-scale optimization (sparse Jacobian matrix) . 129
7.11 Large-scale sum of squares optimization (sparse Jacobian matrix) 131
7.12 Large-scale sum of absolute values optimization (sparse Jacobian matrix) 132

2

7.13 Large-scale nonlinear equations . 134
7.14 Large-scale linear programming . 135
7.15 Large-scale quadratic programming . 136
7.16 Large-scale optimization with linear constraints . 138
7.17 Large-scale optimization with nonlinear equality constraints 141
7.18 Large-scale optimization with nonlinear equality and inequality constraints 144
7.19 Optimization of dynamical systems - general integral criterion 146
7.20 Optimization of dynamical systems - special integral criterion 148
7.21 Initial value problem for ordinary differential equations . 149

8 Model examples for demonstration of graphic output 152
8.1 Nonlinear regression . 152
8.2 Nonlinear minimax optimization . 155
8.3 Transformer network design . 156
8.4 Global optimization . 156
8.5 Nonsmooth optimization . 157
8.6 The Rosenbrock function . 157
8.7 Ordinary differential equations . 157
8.8 The Lorenz attractor . 158

References 160

Index of macrovariables and directives 170

Appendix 173

A Demonstration of the text dialogue mode 173

B The BEL interpreter 186
B.1 General description . 186
B.2 List of instructions . 187
B.3 Special characters . 188
B.4 Description of instructions . 188
B.5 Error messages . 199
B.6 Organization and compilation of the UFO source modules 201
B.7 The UFO control language preprocessor . 203
B.8 Basic templates and the UFO source program generation 207

C Graphic screen output 210
C.1 Nonlinear regression . 210
C.2 Nonlinear minimax optimization . 213
C.3 Transformer network design . 216
C.4 Global optimization . 220
C.5 Nonsmooth optimization . 221
C.6 Rosenbrock function . 222
C.7 Ordinary differential equations . 223
C.8 The Lorenz attractor . 224

3

1 Introduction to the UFO system

The universal functional optimization (UFO) system is an interactive modular system for solving both
dense medium-size and sparse large-scale optimization problems. The UFO system can be used for the
following applications:

1. Formulation and solution of particular optimization problems that are described in Chapter 2.

2. Preparation of specialized optimization routines (or subroutines) based on methods described in
Chapter 3.

3. Designing and testing new optimization methods. The UFO system is a very useful tool for the
development of optimization algorithms.

The special realization of the UFO system described in the subsequent text makes this system portable
and extensible and we continue with its further development.

1.1 Philosophy of the UFO system

The UFO system is an open software system for solving a broad class of optimization problems. An
optimization problem solution is processed in three phases. In the first phase the optimization problem is
specified and an optimization method is selected. This can be done in three different ways:

1. The full dialogue mode: The problem specification and the method selection are realized by using a
conversation between the user and the UFO system.

2. The batch mode: The problem specification and the method selection are realized by using the UFO
control language, which is a generalization and enlargement of the batch editing language (BEL) (see
Appendix B). An input file written in the UFO control language has to be prepared and stored.

3. The combined mode: Only a part of the specification is written in the input file. The rest of the
specification is obtained as in the dialogue mode. This possibility is usually the best one since the
problem functions can be defined beforehand by using a convenient text editor.

The first phase is realized by using the UFO control language preprocessor (UFOCLP). This preprocessor
consists of the BEL interpreter controlled by input template UZDCLP.I (see Appendix B.7). The BEL
interpreter is written in Fortran 77 and its output is a Fortran 77 source program (P.FOR in the MS DOS
and Windows versions or P.F in the UNIX and LINUX systems). This conception is very advantageous
for the following reasons:

1. Fortran 77 (full ANSI norm) is a sufficiently high and portable programming language. Fortran
77 is very suitable for numerical computations, and a large number of subroutines realizing various
numerical methods is available in this language.

2. A source program, generated by the UFO control language preprocessor, calls for necessary modules
only and its specification is very easy. Moreover, its global declarations are determined by the
problem size, which decreases storage requirements. This overcomes an impossibility of dynamical
declarations in Fortran 77.

3. The UFO system is open. When a new class of optimization problems or optimization methods is
included, one only needs to change some system templates and prepare new modules. The UFO
source program is composed of individual modules by using specifications given by the user. This
fact allows us to create a great number of various optimization methods and their modifications.

4

In the second phase, the UFO source program P.FOR (or P.F) is compiled by using a suitable Fortran 77
compiler and a final executable program is linked by using library modules. In the third phase, the final
executable program is started and thus results which can be viewed by using extensive output means are
obtained.

The above conception is enabled by a special form of source modules. These modules usually consist of
two parts, the interface template and the Fortran 77 realization. The interface template is used by the UFO
preprocessor only and it serves for the UFO source program generation (the part of the source program
corresponding to a given module is coded in the template). These templates also contain knowledge bases
for automatic selection of the optimization method. If the UFO system is extended then usually only
templates, which do not need to be compiled, are changed. Besides interface templates, which are a part
of source modules, special templates controlling the UFO preprocessor exist. A batch input file written in
the UFO control language is the first of these special templates.

The UFO macroprocessor works in two passes. In the first pass, the file P.TMP is created. This file
is a predecessor of the UFO source program. It contains macroinstructions and macrovariables which are
processed in the second pass. The source program P.FOR (or P.F) is the result of the second pass.

1.2 Execution of the UFO system

The UFO system contains three basic procedures GENER, COMPIL and UFOGO. The UFO preprocessor is
called if the statement

GENER input name

is typed. Then the source program, written in Fortran 77, is obtained. Furthermore, the compilation of
the source program, followed by its loading and executing, is started if the statement

COMPIL output name

is typed. Finally, all the UFO system phases are performed if the statement

UFOGO problem name

is typed. Here input name is the first part of the batch file name input name.UFO that is used as a batch in-
put for the source program generation, output name is the first part of the text file name output name.OUT
that is used as a text output from the UFO system and problem name is the first part of both the batch
file name problem name.UFO and the text file name problem name.OUT. All these names have to be typed
with capital letters in the UNIX and LINUX versions. If GENER and UFOGO statements do not contain a
file name specification, then a full dialogue mode is considered (the batch file name is STANDARD.UFO in
this case) and the standard text file name is P.OUT. If COMPIL statement does not contain a file name
specification, then the standard text file name is P.OUT. The UFOGO statement has the same meaning as
two consecutive statements GENER and COMPIL.

First we show how the batch mode proceeds. We suppose that the model function has the form

fF (x) = 100(x2
1 − x2)2 + (x1 − 1)2

(the Rosenbrock function) and the starting point is x1 = −1.2 and x2 = 1.0. If we prepare the batch input
file P.UFO of the form

$REM : model specifications
$SET(INPUT)
X(1)=-1.2D0; X(2)= 1.0D0

$ENDSET
$SET(FMODELF)
FF=1.0D2*(X(1)**2-X(2))**2+(X(1)-1.0D0)**2

$ENDSET
$NF=2

5

$REM : the default method is used
$REM : print specifications
$MOUT=1
$NOUT=1
$REM : the batch mode is used
$BATCH
$REM : the standard form of the source program is used
$STANDARD

and type the statement UFOGO P, then the following results appear in the output file P.OUT

CLASS = VM - LI1 UPDATE = B MODEL = FF HESF = D NF = 2
0 NIT= 40 NFV= 138 NFG= 0 NDC= 0 NCG= 0 F= .504D-13 G= .828D-05

FF = .5038712822D-13
X = .1000000098D+01 .1000000177D+01

(in a PC computer). Batch files are written in the UFO control language. This language is described in
Section 4.1 and in Appendix B. Here we note that a certain experience with the UFO control language
can be obtained by using the demo-files PROB01.UFO,. . ., PROB20.UFO. These demo-files contain 20 test
problems described in Chapter 7. We can solve them by using the statements UFOGO PROB01,. . ., UFOGO
PROB20.

Besides the batch mode, we can use the full dialogue mode. The full dialogue mode is started if we use
the statement UFOGO (without a batch input file specification). Full dialogue modes (text and graphic) are
described in Sections 4.3 and 4.4. An example which demonstrates the text dialogue mode applied to the
Rosenbrock function is given in Appendix A.

Besides basic output files, the UFO system produces additional files which can contain some useful
information. A list of the most important UFO files follows:

P.UFO - Batch input file.
P.TMP - Temporary file containing a source program ancestor generated in the first pass of the UFO

preprocessor.
P.FOR - UFO source program generated in the second pass of the UFO preprocessor (the UNIX

and LINUX versions use file P.F in this case).
P.OUT - Text output file.
P.DAT - Stored values of problem variables.
P.DIM - Dimensions of basic problem vectors and matrices.
P.SIF - Messages of the SIF decoder.
P.I - Template given by the SIF decoder.

1.3 The UFO versions for PC computers

There are four UFO versions for PC computers. The MS DOS version UFOD1 requires the Microsoft
Fortran Power Station compiler version 1 and it uses the DOS graphic system for the graphic dialogue
(Section 4.4) and the graphic screen output (Section 5.3). The Windows 2000 version UFOW4 (which can
be used also in other Windows systems) requires the Microsoft Visual Fortran compiler version 4 and it
uses the QuickWin graphic system with simplified control (the mouse cannot be used). The Windows 2000
version UFOW6 (which can be used also in other Windows systems) requires the Digital Visual Fortran
compiler version 6 and it uses the QuickWin graphic system with simplified control (the mouse cannot
be used). The LINUX version UFOL8 requires SUSE LINUX version 8.0 system with GNU Fortran 77
compiler, but it does not contain graphical possibilities at present. Of course, the UFO system can also
be used for PC computers with other compilers. In this case, the UNIX version of the UFO system can
be applied with procedures GENER, COMPIL and UFOGO modified for the compiler used.

6

The MS DOS and Windows 2000 versions are distributed by using the files UFOD1.ZIP, UFOW4.ZIP and
UFOW6.ZIP (page http://www.cs.cas.cz/~luksan/ufodis.html), which contain templates *.I, sam-
ple input files *.UFO, sample output files *.OUT, batch procedures *.BAT, programs *.EXE and other
important files together with the subdirectory LIB, which contains libraries *.LIB. The installation of
the UFO system is carried out by putting the *.ZIP file into the directory UFO and by using the rou-
tine PKUNZIP. Furthermore, paths and settings in procedures SET1.BAT, SET4.BAT and SET6.BAT have
to be arranged to correspond to directories used. More information concerning installation are given
in text files UFOD1.TXT, UFOW4.TXT and UFOW6.TXT. If connection to the CUTE test environment is re-
quired, then the subdirectory SIF has to be created and the *.SIF files from the CUTE collection (page
http://www.cse.clrc.ac.uk/nag/cuter/) have to be copied into this subdirectory.

The MS DOS and Windows 2000 versions of the UFO system are provided with the special UFO
environment, which makes the use of the UFO system easy. The UFO environment is called by using
the statement UFO (procedure UFO.BAT) and controlled by using the pull-down menu. The main menu is
activated by pressing key <F10>. The UFO environment contains a text editor whose control is similar to
commonly used text editors under the MS DOS system. All significant statements of the source program
editor are available from the UFO environment menu.

Since the UFO environment menu is clearly understandable we do not describe it (the description is
given in [167]). We only show the usual way for operating input files. When the batch mode input file is
prepared by using the text editor we press key <F10> and find the command Run! in the UFO environment
menu. This command starts the UFO preprocessor and its action corresponds to the statement UFOGO (with
the input file which is loaded in the text editor). An easier possibility is pressing keys <Alt-1>. Similarly,
pressing keys <Alt-9> has the same effect as the statement GENER (with the input file which is loaded
in the text editor). Furthermore, if the source program P.FOR is loaded in the text editor, pressing keys
<Alt-3> has the same effect as the statement COMPIL and pressing keys <Alt-5> causes an exit from the
UFO environment.

The PC LINUX version is distributed by using the file ufol8.tar.gz (page http://www.cs.cas.cz
/~luksan/ufodis.html), which contains source modules *.F, templates *.I, sample input files *.UFO,
sample output files *.OUT, library ufolib.a, batch procedures gener, compil, ufogo, program ufobel
and other important files. The installation of the UFO system is carried out by putting this file into the
directory ufo and typing gunzip *.gz and tar xvf *.tar. If connection to the CUTE test environment
is required, then the subdirectory ufo/sif has to be created and the *.SIF files from the CUTE collection
(page http://www.cse.clrc.ac.uk/nag/cuter/) have to be copied into this subdirectory.

1.4 The UFO versions for UNIX workstations

The UNIX versions of the UFO system will be distributed by the file ufo.tar.gz. The installation
of the UFO system is carried out by putting this file into the directory ufo, typing gunzip *.gz, tar
xvf *.tar and using the statements instal SGI, instal DIG, instal SUN and instal HP, for Silicon
Graphic, Digital Equipment, Sun and Hewlett Packard workstations with standard operation systems,
respectively (the Fortran 77 compiler is assumed). For other workstations or operation systems, the
procedure INSTAL.SGI should be changed to INSTAL.XXX containing relevant statements and the statement
instal XXX should be used. The UNIX versions of the UFO system do not contain graphical possibilities
at present.

1.5 Distribution of the UFO system

The UFO system is intended for the academic use. The full UNIX version of the UFO system (with
source modules) is not freely distributed at present. The following free versions of the UFO system can be
downloaded from page http://www.cs.cas.cz/~luksan/ufodis.html.

UFOD1.ZIP - DOS version of the UFO system.
UFOW4.ZIP - Windows 2000 version of the UFO system.

7

UFOW6.ZIP - Windows 2000 version of the UFO system.
ufol8.tar.gz - LINUX version of the UFO system.
ufosgi.tar.gz - UNIX version of the UFO system for Silicon Graphics workstations.

The installation of the UFO UNIX version ufosgi is carried out by the same way as the installation of
the UFO LINUX version ufol8.

1.6 Suggestions for beginners

If we want to solve a particular optimization problem, then the best way to understanding the UFO system
is to find a similar problem in the list of sample problems (Chapter 7). This sample problem can be solved
by typing UFOGO PROBxx (xx is the number of the sample problem). After solving the sample problem,
we can modify the batch input file PROBxx.UFO to describe our problem. Basic suggestions concerning
the description of optimization problems are given in Chapter 2 and the most important features of the
UFO control language are described in Chapter 4. Optimization methods need not be selected by the
user, the system automatically chooses a suitable method. On the other hand, if the user is familiar
with optimization methods, then the method can be selected by using suggestions given in Chapter 3.
Information about output possibilities can be found in Chapter 5 and special tools of the UFO system are
described in Chapter 6.

The following list refers to basic problems solved by the UFO system and to sections containing more
detailed description.

Minimization of a general objective function (Sections 2.2 – 2.3).
Minimization of a linear objective function (Section 2.2).
Minimization of a quadratic objective function (Section 2.2).
Minimization of the sum of squares (or powers) of approximating functions (Sections 2.4 – 2.6).
Minimization of the maximum of approximating functions (Sections 2.4 – 2.6).
Optimization of systems described by ordinary differential equations (Sections 2.7 – 2.11).
Solution of systems of nonlinear functional equations (Section 2.15).
Solution of systems of ordinary differential equations (Section 2.16).

Moreover, all optimization problems can contain box constraints (Section 2.1) and general linear or non-
linear constraints (Sections 2.12 – 2.14).

1.7 Authors of the UFO system

The UFO system was developed in the Institute of Computer Science, Czech Academy of Sciences, Prague.
In addition, the UFO system contains two direct solvers for sparse linear systems based on UMFPACK code
of T.A.Davis [36] and MA27 code of I.S.Duff [44]. Moreover, some modules for solving ordinary differential
equations are based on subroutines proposed in the book of E.Hairer, S.P.Norsett and G.Wanner [71] (they
were quite rewritten).

The following table contains names of individual authors, their letter codes introduced in source modules
and their contribution in percent.

8

Author code contribution
L.Lukšan LU 70.17
M.Tůma TU 11.23
J.Vlček VL 4.49
N.Ramešová RA 4.15
M.Šǐska SI 3.71
J.Hartman HA 2.14
C.Matonoha MA 0.74
T.A.Davis DA 2.08
I.S.Duff DU 1.29

9

2 Problems solved using the UFO system

The most general problem which can be solved by using the UFO system is a minimization of an objective
function F : Rn → R over a set X ⊂ Rn. The objective function can have several forms determined using
the macrovariable $MODEL:

$MODEL=’FF’ - General optimization. In this case

F (x) = ±fF (x)

where fF : Rn → R is a real valued, so-called model function

$MODEL=’FL’ - Linear optimization. In this case

F (x) = ± (fF +
n∑

i=1

gF
i xi)

where fF , gF
i , 1 ≤ i ≤ n, are real coefficients.

$MODEL=’FQ’ - Quadratic optimization. In this case

F (x) = ± (fF +
n∑

i=1

(gF
i +

1
2

n∑
j=1

hF
ijxj)xi)

where fF , gF
i , 1 ≤ i ≤ n, hF

ij , 1 ≤ i, j ≤ n, are real coefficients.

$MODEL=’AF’ - Sum of functions minimization. In this case

F (x) =
nA∑
k=1

fA
k (x)

where fA
k : Rn → R, 1 ≤ k ≤ nA, are real valued, so-called approximating functions.

$MODEL=’AQ’ - Sum of squares minimization. In this case

F (x) =
1
2

nA∑
k=1

|fA
k (x)|2

where fA
k : Rn → R, 1 ≤ k ≤ nA, are real valued, so-called approximating functions.

$MODEL=’AP’ - Sum of powers minimization. In this case

F (x) =
1
p

nA∑
k=1

|fA
k (x)|r

where fA
k : Rn → R, 1 ≤ k ≤ nA, are real valued, so-called approximating functions

and 1 < r <∞ is a real exponent.

$MODEL=’AA’ - Sum of absolute values minimization. In this case

F (x) =
nA∑
k=1

|fA
k (x)|

where fA
k : Rn → R, 1 ≤ k ≤ nA, are real valued, so-called approximating functions.

10

$MODEL=’AM’ - Minimization of maximum (minimax). In this case

F (x) = max
1≤k≤nA

|fA
k (x)|

where fA
k : Rn → R, 1 ≤ k ≤ nA, are real valued, so-called approximating functions.

$MODEL=’DF’ - Minimization of the general integral criterion with respect to the state equations. In
this case

F (x) =
∫ tmax

A

tmin
A

fA(x, yA(x, tA), tA) dtA + fF (x, yA(x, tmax
A), tmax

A)

and

dyA(x, tA)
dtA

= fE(x, yA(x, tA), tA), yA(x, tmin
A) = fY (x)

where fA : Rn+nE+1 → R is a real valued, smooth, so-called subintegral function, fF :
Rn+nE+1 → R is a real valued, smooth, so-called terminal function, fE : Rn+nE+1 →
RnE is a real valued, smooth, so-called state function and fY : Rn → RnE is a real
valued, smooth, so-called initial function.

$MODEL=’DQ’ - Minimization of the sum of square integral criterion with respect to the state equa-
tions. In this case

F (x) =
1
2

∫ tmax
A

tmin
A

nE∑
i=1

wE
i (tA)(yA

i (x, tA)− yE
i (tA))2 dtA +

1
2

nE∑
i=1

wE
i (yA

i (x, tmax
A)− yE

i)2

and

dyA(x, tA)
dtA

= fE(x, yA(x, tA), tA), yA(x, tmin
A) = fY (x)

where fE : Rn+nE+1 → RnE is a real valued, smooth, so-called state function and
fY : Rn → RnE is a real valued, smooth, so-called initial function.

$MODEL=’NE’ - Solving a system of nonlinear functional equations

fA
k (x) = 0, 1 ≤ k ≤ nA

where nA = n ($MODEL=’NE’ is equivalent to $MODEL=’AQ’ if nA = n).

$MODEL=’DE’ - Solving an initial value problem for a system of ordinary differential equations. In
this case

dyA(tA)
dtA

= fE(yA(tA), tA), yA(tmin
A) = ymin

A

where fE : RnE+1 → RnE is a real valued, smooth, so-called state function.

The model function fF : Rn → R can have several types of Hessian matrices specified by the macrovari-
able $HESF:

$HESF=’D’ - Dense Hessian matrix.
$HESF=’S’ - Sparse Hessian matrix with a general pattern.
$HESF=’N’ - Hessian matrix is not used.

The default option is $HESF=’D’. The approximating functions fA
k : Rn → R, 1 ≤ k ≤ nA, can have

11

several types of Jacobian matrices specified by the macrovariable $JACA:

$JACA=’D’ - Dense Jacobian matrix.
$JACA=’S’ - Sparse Jacobian matrix with a general pattern.
$JACA=’N’ - Jacobian matrix is not used.

If the approximating functions are used then we can choose several types of the Hessian matrix represen-
tation. These types are again specified by the macrovariable $HESF:

$HESF=’D’ - Dense Hessian matrix.
$HESF=’S’ - Sparse Hessian matrix with a general pattern.
$HESF=’B’ - Sparse Hessian matrix with a partitioned pattern.
$HESF=’N’ - Hessian matrix is not used.

If $JACA=’D’, then it must be either $HESF=’D’ or $HESF=’N’. If $JACA=’S’, then we can specify
all types of Hessian matrices ($HESF=’D’, $HESF=’S’, $HESF=’B’, $HESF=’N’). The representation
$HESF=’B’ usually leads to more expensive matrix operations. Therefore, we recommend to prefer the
choice $HESF=’S’ against the choice $HESF=’B’.

The subintegral function, the terminal function, the state function and the initial function, which
appear in the case of dynamical systems optimization, are considered to be dense. Therefore we cannot
use the specifications $HESF=’S’ or $HESF=’B’ in this case.

The set X ⊂ Rn can be the whole Rn (unconstrained case) or defined by box constraints

xL
i ≤ xi if i ∈ I1

xi ≤ xU
i if i ∈ I2

xL
i ≤ xi ≤ xU

i if i ∈ I3

xL
i = xi if i ∈ I5

where I1 ∪ I2 ∪ I3 ∪ I5 ⊂ {i ∈ N : 1 ≤ i ≤ n}, or by general linear constraints

cL
k ≤

n∑
i=1

gC
kixi if k ∈ L1

n∑
i=1

gC
kixi ≤ cU

k if k ∈ L2

cL
k ≤

n∑
i=1

gC
kixi ≤ cU

k if k ∈ L3

cL
k =

n∑
i=1

gC
kixi if k ∈ L5

where gC
ki, 1 ≤ k ≤ nC , 1 ≤ i ≤ n, are real coefficients and L1 ∪ L2 ∪ L3 ∪ L5 ⊂ {k ∈ N : 1 ≤ k ≤ nC}, or

by general nonlinear constraints

cL
k ≤ fC

k (x) if k ∈ N1

fC
k (x) ≤ cU

k if k ∈ N2

cL
k ≤ fC

k (x) ≤ cU
k if k ∈ N3

cL
k = fC

k (x) if k ∈ N5

12

where fC
k : Rn → R, 1 ≤ k ≤ nC , are real valued, smooth, so-called constraint functions and N1 ∪N2 ∪

N3 ∪N5 ⊂ {k ∈ N : 1 ≤ k ≤ nC}. The constraint functions fC
k : Rn → R, 1 ≤ k ≤ nC , can have several

types of Jacobian matrices specified by the macrovariable $JACC:

$JACC=’D’ - Dense Jacobian matrix.
$JACC=’S’ - Sparse Jacobian matrix with a general pattern.

If $JACC=’D’, then it must be $HESF=’D’ or $HESF=’N’. If $JACC=’S’, then it must be $HESF=’S’
or $HESF=’N’.

There are several limitations in the current version of the UFO system:

1. Minimization of maximum (minimax) and nonsmooth optimization are not implemented in the sparse
case.

2. Minimization of dynamical systems is not implemented in the sparse case.

3. Usually the UFO system serves for local optimization. Global optimization can be used only for
small-size (n ≤ 100) dense problems that are unconstrained or contain box constraints.

These limitations will be consecutively removed in subsequent versions of the UFO system.
In the rest of this report we will use the notation NF, NA, NC instead of n, nA, nC and X, F(X),

FF(X), GF(X), HF(X), FA(KA;X), GA(KA;X), FC(KC;X), GC(KC;X) instead of x, F (x), fF (x), gF (x),
hF (x), fA

k (x), gA
k (x), fC

k (x), gC
k (x). This notation corresponds to names of variables and fields in the UFO

system, which is listed in Section 2.16.

2.1 Specification of variables

First we must specify the number of variables using the statement $NF=number of variables. If there are
no box constraints we set $KBF=0. In the opposite case we set $KBF=1 or $KBF=2. If $KBF=1 or
$KBF=2, then

X(I) - unbounded , if IX(I) = 0
XL(I) ≤ X(I) , if IX(I) = 1

X(I) ≤ XU(I) , if IX(I) = 2
XL(I) ≤ X(I) ≤ XU(I) , if IX(I) = 3
X(I) - constant , if IX(I) = 5

where 1≤I≤NF. The option $KBF=2 must be chosen if IX(I)=3 for at least one index 1≤I≤NF. Then two
different fields XL(I) and XU(I), 1≤I≤NF are declared. In the opposite case we set $KBF=1 and only one
common field XL(I)=XU(I), 1≤I≤NF is declared.

The initial values of variables X(I), 1≤I≤NF, types of box constraints IX(I), 1≤I≤NF, and lower and
upper bounds XL(I) and XU(I), 1≤I≤NF, can be specified using macrovariable $INPUT. The default
values are IX(I)=0 and XL(I)=XU(I)=0, 1≤I≤NF. For example:

$KBF=2; $NF=4
$SET(INPUT)

X(1)=x1

X(2)=x2; IX(2)=1; XL(2)=xL
2

X(3)=x3; IX(3)=3; XL(3)=xL
3 ; XU(3)=xU

3

X(4)=x4; IX(4)=5
$ENDSET

The UFO system allows us to use a scaling of variables (for instance if the values of variables differ
very much in their magnitude). We set the option $NORMF:

13

$NORMF=1 - Scaling parameters XN(I), 1≤I≤NF, are determined automatically so that
X(I)/XN(I)=1, 1≤I≤NF, for the initial values of variables.

$NORMF=2 - Scaling parameters must be specified by the user by means of the macrovariable
$INPUT.

The scaling of variables is recommended only in exceptional cases since it increases the computational time
and storage requirements. The scaling of variables is suppressed if $NORMF=0 (this value is default).
The scaling of variables is not permitted in the case of general constraints (if $KBC>0).

2.2 Specification of the model function (dense problems)

If the macrovariable $MODEL is not specified or if $MODEL=’FF’, then the objective function is defined
by the formula

F(X) = + FF(X) if $IEXT = 0 (minimization)
or

F(X) = − FF(X) if $IEXT = 1 (maximization)

Option $IEXT=0 is default.
The model function FF(X) must be defined by the user either directly in the full dialogue mode, or

by using corresponding macrovariables in the batch (or mixed) mode. The value of the model function is
specified by using the macrovariable $FMODELF:

$SET(FMODELF)
FF = value FF(X)
(for given values of variables X(I), 1≤I≤NF)

$ENDSET

The first derivatives of the model function are specified by using the macrovariable $GMODELF:

$SET(GMODELF)
GF(1) = derivative ∂FF(X)/∂X(1)
GF(2) = derivative ∂FF(X)/∂X(2)
—–
GF(NF) = derivative ∂FF(X)/∂X(NF)
(for given values of variables X(I), 1≤I≤NF)

$ENDSET
The second derivatives of the model function are specified by using the macrovariable $HMODELF. If
$HESF=’D’, the Hessian matrix is assumed to be dense and we specify only its upper half:

$SET(HMODELF)
HF(1) = derivative ∂2FF(X)/∂X(1)2

HF(2) = derivative ∂2FF(X)/∂X(1)∂X(2)
HF(3) = derivative ∂2FF(X)/∂X(2)2

HF(4) = derivative ∂2FF(X)/∂X(1)∂X(3)
HF(5) = derivative ∂2FF(X)/∂X(2)∂X(3)
HF(6) = derivative ∂2FF(X)/∂X(3)2

—–
HF(NF∗(NF+1)/2) = derivative ∂2FF(X)/∂X(NF)2

(for given values of variables X(I), 1≤I≤NF)
$ENDSET

If the macrovariables $GMODELF or $HMODELF are not defined, we suppose that the first or the
second derivatives of the model function are not given analytically. In this case, they are computed nu-
merically by using the UFO system routines whenever it is required. If it is advantageous to compute the
first derivatives of model function FF(X) together with its value, we can replace the set of macrovariables

14

$FMODELF, $GMODELF by the common macrovariable $FGMODELF. Similarly we can replace the set
of macrovariables $FMODELF, $GMODELF, $HMODELF by the common macrovariable $FGHMOD-
ELF.

To improve the efficiency of the computation, we can specify additional information about the model
function FF(X). The first piece of information, useful for an automatic choice of the optimization method,
is the computational complexity specified by the macrovariable $KCF:

$KCF=1 - Evaluation of the model function FF(X) is very easy (it requires O(n) simple oper-
ations at most).

$KCF=2 - Evaluation of the model function FF(X) is of medium complexity (it requires O(n)
complicated operations at least and O(n2) simple operations at most).

$KCF=3 - Evaluation of the model function FF(X) is extremely difficult (it requires O(n2)
complicated or O(n3) simple operations at least).

The option $KCF=2 is default. An additional useful piece of information is the analytical complexity
(differentiability and conditioning), which is specified by the macrovariable $KSF:

$KSF=1 - The model function FF(X) is smooth and well-conditioned.
$KSF=2 - The model function FF(X) is smooth but ill-conditioned.
$KSF=3 - The model function FF(X) is nonsmooth.

The option $KSF=1 is default. Other specifications which can improve the computational efficiency and
robustness of optimization methods are a lower bound of the objective function values and an upper
bound of the stepsize. Both these values depend on the definition of the objective function and can be
specified by the statements $FMIN=lower bound (for the objective function) and $XMAX=upper bound
(for the stepsize). We recommend a definition of $FMIN whenever it is possible and a definition of $XMAX
whenever the objective function contains exponentials.

If $MODEL=’FL’, we suppose the model function to be linear of the form

FF(X) = FF +
NF∑
I=1

GF(I) ∗X(I)

In this case we need not specify the value and the first derivatives of the model function by the macrovari-
ables $FMODELF and $GMODELF as in the general case. Instead, we must specify the coefficients FF
(constant value) and GF(I), 1≤I≤NF, (constant gradient) by using the macrovariable $INPUT:

$ADD(INPUT)
FF = constant value
GF(1) = constant derivative ∂FF(X)/∂X(1)
GF(2) = constant derivative ∂FF(X)/∂X(2)
—–
GF(NF) = constant derivative ∂FF(X)/∂X(NF)

$ENDADD

If $MODEL=’FL’, we usually assume that either box constraints or general linear constraints are given.
In this case the optimization problem is the linear programming problem.

If $MODEL=’FQ’, we suppose the model function to be quadratic of the form

FF(X) = FF +
NF∑
I=1

GF(I) ∗X(I) +
1
2

NF∑
I=1

NF∑
J=1

HF(K) ∗X(I) ∗X(J)

where K=MAX(I,J)∗(MAX(I,J)-1)/2+MIN(I,J). In this case we need not specify the value, the first and
second derivatives of the model function by the macrovariables $FMODELF, $GMODELF and $HMOD-
ELF as in the general case. The coefficients FF (constant value) and GF(I), 1≤I≤NF, (constant gradient)

15

are specified in the same way as in the linear case. The coefficients HF(K), 1≤K≤NF∗(NF+1)/2, (the con-
stant Hessian matrix) must be specified by using the macrovariable $INPUT. If $HESF=’D’, the Hessian
matrix is assumed to be dense and we specify only its upper half:

$ADD(INPUT)
HF(1) = constant derivative ∂2FF(X)/∂X(1)2

HF(2) = constant derivative ∂2FF(X)/∂X(1)∂X(2)
HF(3) = constant derivative ∂2FF(X)/∂X(2)2

HF(4) = constant derivative ∂2FF(X)/∂X(1)∂X(3)
HF(5) = constant derivative ∂2FF(X)/∂X(2)∂X(3)
HF(6) = constant derivative ∂2FF(X)/∂X(3)2

—
HF(NF*(NF+1)/2) = constant derivative ∂2FF(X)/∂X(NF)2

$ENDADD

If $MODEL=’FQ’, we usually assume that either box constraints or general constraints are given. In this
case the optimization problem is the quadratic programming problem.

If the model function is linear or quadratic, then the options $KCF and $KSF need not be defined
since they are not used.

2.3 Specification of the model function (sparse problems)

The UFO system contains optimization methods which take into account the sparsity pattern of the
Hessian matrix HF. This possibility decreases the computational time and storage requirements for large-
scale optimization problems. In this case we use the option $HESF=’S’ which means that the sparsity
pattern is specified. All other specifications remain the same as in the case of dense problems. The sparsity
pattern of the Hessian matrix is specified by using the macrovariable $INPUT. Two integer vectors IH and
JH are used where IH(I), 1≤I≤NF+1, are pointers and JH(K), 1≤K≤M, are indices of nonzero elements.
Only the upper half of the Hessian matrix is assumed and the nonzero elements are ordered in rows. The
number of nonzero elements must be specified using the statement $M=number of elements. The number
of nonzero elements could be greater than is required (twice say) since it is used for the declaration of
working fields. For example, if we have the Hessian matrix

HF =

⎛
⎜⎜⎜⎝

hF
11, hF

12, hF
13, 0, hF

15

hF
21, hF

22, 0, hF
24, 0

hF
31, 0, hF

33, 0, hF
35,

0, hF
42, 0, hF

44, 0,
hF

51, 0, hF
53, 0, hF

55

⎞
⎟⎟⎟⎠

then we have to set:

$NF=5
$M=20 (the minimum required value is M=10)
$ADD(INPUT)

IH(1)=1; IH(2)=5; IH(3)=7
IH(4)=9; IH(5)=10; IH(6)=11
JH(1)=1; JH(2)=2; JH(3)=3; JH(4)=5; JH(5)=2
JH(6)=4; JH(7)=3; JH(8)=5; JH(9)=4; JH(10)=5

$ENDADD

All diagonal elements of the sparse Hessian matrix are assumed to be nonzero.
As in the case of the dense problem, the second derivatives of the model function can be specified by

using the macrovariable $HMODELF. If $HESF=’S’, only nonzero elements of the upper half (including
the diagonal) of the Hessian matrix are specified. For the above example the specification has the form:

16

$SET(HMODELF)
HF(1)=hF

11; HF(2)=hF
12; HF(3)=hF

13; HF(4)=hF
15

HF(5)=hF
22; HF(6)=hF

24; HF(7)=hF
33; HF(8)=hF

35

HF(9)=hF
44; HF(10)=hF

55

$ENDSET

If the model function is quadratic (i.e. if $MODEL=’FQ’) and if $HESF=’S’, then the coefficients
HF(K), 1≤K≤M, (constant sparse Hessian matrix) must be specified by using the macrovariable $INPUT.
If the matrix given in the above example is the constant sparse Hessian matrix, we use the following
specification:

$ADD(INPUT)
HF(1)=hF

11; HF(2)=hF
12; HF(3)=hF

13; HF(4)=hF
15

HF(5)=hF
22; HF(6)=hF

24; HF(7)=hF
33; HF(8)=hF

35

HF(9)=hF
44; HF(10)=hF

55

$ENDADD

2.4 Objective functions for discrete approximation

If we set $MODEL=’AF’, then we suppose that the objective function F(X) has this form:

F(X) =
NA∑

KA=1

FA(KA;X) if $KBA = 0

or

F(X) =
NA∑

KA=1

AW(KA) ∗ (FA(KA;X)−AM(KA)) if $KBA = 1

where FA(KA;X), 1≤KA≤NA, are approximating functions. This form of the objective function is very
useful in large-scale optimization when the approximating functions FA(KA;X), 1≤KA≤NA, are assumed
to have sparse gradients.

If we set $MODEL=’AP’, then we suppose that the objective function F(X) has this form:

F(X) =
1
R

NA∑
KA=1

|FA(KA;X)| ∗ ∗R if $KBA = 0

or

F(X) =
1
R

NA∑
KA=1

|AW(KA) ∗ (FA(KA;X)−AM(KA))| ∗ ∗R if $KBA = 1

where FA(KA;X), 1≤KA≤NA, are approximating functions, and R>1 is a real exponent. The value of the
exponent is specified by the choice $REXP=R (default value is $REXP=2). Since the most used value of
the exponent is R=2, and since the computations are the simplest and the most efficient for such a choice,
we can use the specification $MODEL=’AQ’ in this case (minimization of the sum of squares). Moreover,
$MODEL=’AQ’ is formally set whenever we choose $MODEL=’AP’ and $REXP=2.

If we set $MODEL=’AA’, then we suppose that the objective function F(X) has this form:

F(X) =
NA∑

KA=1

|FA(KA;X)| if $KBA = 0

or

17

F(X) =
NA∑

KA=1

|AW(KA) ∗ (FA(KA;X)−AM(KA))| if $KBA = 1

where FA(KA;X), 1≤KA≤NA, are approximating functions.
If we set $MODEL=’AM’, then we suppose that the objective function F(X) has the form:

F(X) = max
1≤KA≤NA

(+FA(KA;X)) if $IEXT = −1

F(X) = max
1≤KA≤NA

(|FA(KA;X)|) if $IEXT = 0

F(X) = max
1≤KA≤NA

(−FA(KA;X)) if $IEXT = +1

for $KBA=0, or

F(X) = max
1≤KA≤NA

(+AW(KA) ∗ (FA(KA;X)−AM(KA))) if $IEXT = −1

F(X) = max
1≤KA≤NA

(|AW(KA) ∗ (FA(KA;X)−AM(KA))|) if $IEXT = 0

F(X) = max
1≤KA≤NA

(−AW(KA) ∗ (FA(KA;X)−AM(KA))) if $IEXT = +1

for $KBA=1, where FA(KA;X), 1≤KA≤NA, are approximating functions. The default value is $IEXT=0
(the minimax or the Chebyshev approximation).

The option $KBA serves as a decision between a simple objective function and a more complicated
one. The simple objective function uses no additional fields while the more complicated one uses two
additional fields at most, AM and AW. Vector AM usually contains frequently used observations which
can be included into the functions FA(KA;X), 1≤KA≤NA, in the case of the simple objective function.
Observations AM(KA), 1≤KA≤NA, are specified by using the macrovariable $INPUT. Their default values
are AM(KA)=0, 1≤KA≤NA. Vector AW serves for possible scaling specified by the option $NORMA:

$NORMA=0 - No scaling is performed. In this case AW(KA)=1, 1≤KA≤NA.
$NORMA=1 - Scaling parameters are determined automatically so that AW(KA)=|AM(KA)|,

1≤KA≤NA.
$NORMA=2 - Scaling parameters must be specified by the user by means of the macrovariable

$INPUT.
The number of approximating functions NA must be specified, in all the above cases, by using the

statement $NA=number of functions.

2.5 Specification of the approximating functions (dense problems)

The approximating functions FA(KA;X), 1≤KA≤NA, must be defined by the user either directly in the
full dialogue mode or by using corresponding macrovariables in the batch (or mixed) mode. The values of
the approximating functions are specified by using the macrovariables $FMODELA or $FMODELAS:

$SET(FMODELA)
FA = value FA(KA;X)
(for a given index KA and given values of variables X(I), 1≤I≤NF)

$ENDSET

or

$SET(FMODELAS)
AF(1) = value FA(1;X)

18

AF(2) = value FA(2;X)
—–
AF(NA) = value FA(NA;X)

$ENDSET

The first derivatives of the approximating functions are specified by using the macrovariables $GMODELA
or $GMODELAS:

$SET(GMODELA)
GA(1) = derivative ∂FA(KA;X)/∂X(1)
GA(2) = derivative ∂FA(KA;X)/∂X(2)
—–
GA(NF) = derivative ∂FA(KA;X)/∂X(NF)
(for a given index KA and given values of variables X(I), 1≤I≤NF)

$ENDSET

or

$SET(GMODELAS)
AG(1) = derivative ∂FA(1;X)/∂X(1)
AG(2) = derivative ∂FA(1;X)/∂X(2)
—–
AG(NF) = derivative ∂FA(1;X)/∂X(NF)
AG(NF+1) = derivative ∂FA(2;X)/∂X(1)
AG(NF+2) = derivative ∂FA(2;X)/∂X(2)
—–
AG(NA∗NF) = derivative ∂FA(NA;X)/∂X(NF)

$ENDSET

The second derivatives of the approximating functions are specified by using the macrovariables $HMOD-
ELA or $HMODELAS. If $JACA=’D’, the Hessian matrices are assumed to be dense and we specify only
their upper half:

$SET(HMODELA)
HA(1) = derivative ∂2FA(KA;X)/∂X(1)2

HA(2) = derivative ∂2FA(KA;X)/∂X(1)∂X(2)
HA(3) = derivative ∂2FA(KA;X)/∂X(2)2

HA(4) = derivative ∂2FA(KA;X)/∂X(1)∂X(3)
HA(5) = derivative ∂2FA(KA;X)/∂X(2)∂X(3)
HA(6) = derivative ∂2FA(KA;X)/∂X(3)2

—–
HA(NF∗(NF+1)/2) = derivative ∂2FA(KA;X)/∂X(NF)2

(for a given index KA and given values of variables X(I), 1≤I≤NF)
$ENDSET

or

$SET(HMODELAS)
AH(1) = derivative ∂2FA(1;X)/∂X(1)2

AH(2) = derivative ∂2FA(1;X)/∂X(1)∂X(2)
AH(3) = derivative ∂2FA(1;X)/∂X(2)2

AH(4) = derivative ∂2FA(1;X)/∂X(1)∂X(3)
AH(5) = derivative ∂2FA(1;X)/∂X(2)∂X(3)
AH(6) = derivative ∂2FA(1;X)/∂X(3)2

19

—–
AH(NF∗(NF+1)/2) = derivative ∂2FA(1;X)/∂X(NF)2

AH(NF∗(NF+1)/2+1) = derivative ∂2FA(2;X)/∂X(1)2

AH(NF∗(NF+1)/2+2) = derivative ∂2FA(2;X)/∂X(1)∂X(2)
AH(NF∗(NF+1)/2+3) = derivative ∂2FA(2;X)/∂X(2)2

—–
AH(NA∗NF∗(NF+1)/2) = derivative ∂2FA(NA;X)/∂X(NF)2

$ENDSET

If the macrovariables $GMODELA and $GMODELAS or $HMODELA and $HMODELAS are not
defined, we suppose that the first or the second derivatives of the approximating functions are not given
analytically. In this case, they are computed numerically by using the UFO system routines, whenever they
are required. If it is advantageous to compute the first derivatives of approximating functions FA(KA;X),
1≤KA≤NA, together with their values, we can replace the set of macrovariables $FMODELA, $GMOD-
ELA by the common macrovariable $FGMODELA and the set of macrovariables $FMODELAS, $GMOD-
ELAS by the common macrovariable $FGMODELAS. Similarly we can replace the set of macrovariables
$FMODELA, $GMODELA, $HMODELA by the common macrovariable $FGHMODELA and the set of
macrovariables $FMODELAS, $GMODELAS, $HMODELAS by the common macrovariable $FGHMOD-
ELAS.

To improve the efficiency of the computation, we can specify additional information about the approx-
imating functions FA(KA;X), 1≤KA≤NA. The first piece of information, useful for an automatic choice
of the optimization method, is the computational complexity specified by the macrovariable $KCA:

$KCA=1 - Evaluations of the approximating functions FA(KA;X), 1≤KA≤NA, are very easy (they
require O(n) simple operations at most).

$KCA=2 - Evaluations of the approximating functions FA(KA;X), 1≤KA≤NA, are of medium
complexity (they at least require O(n) complicated operations and O(n2) simple opera-
tions at most).

$KCA=3 - Evaluations of the approximating functions FA(KA;X), 1≤KA≤NA, are extremely dif-
ficult (they at least require O(n2) complicated or O(n3) simple operations).

The option $KCA=2 is default. An additional useful piece of information is the analytical complexity
(conditioning) which is specified by the macrovariable $KSA:

$KSA=1 - The approximating functions FA(KA;X), 1≤KA≤NA, are smooth and well-conditioned.
$KSA=2 - The approximating functions FA(KA;X), 1≤KA≤NA, are smooth but ill-conditioned.
$KSA=3 - The approximating functions FA(KA;X), 1≤KA≤NA, are nonsmooth.

The option $KSA=1 is default.
If some of the approximating functions are linear and have the form

FA(KA;X) =
NF∑
I=1

AG((KA− 1) ∗NF + I) ∗X(I)

we can specify them separately. Then the number of linear approximating functions must be specified
by using the statement $NAL=number of linear functions (default value is $NAL=0). We always sup-
pose that the first NAL approximating functions are linear. Then the coefficients AG((KA-1)∗NF+I),
1≤KA≤NAL, 1≤I≤NF, are specified by using the macrovariable $INPUT, and the macrovariables $FMOD-
ELA or $FMODELAS, $GMODELA or $GMODELAS, $HMODELA or $HMODELAS are used only for
the specification of the nonlinear approximating functions FA(KA;X), NAL<KA≤NA.

20

2.6 Specification of the approximating functions (sparse problems)

The UFO system contains optimization methods which take into account the sparsity pattern of the
Jacobian matrix AG. This possibility decreases the computational time and storage requirements for large-
scale optimization problems. In this case we use the option $JACA=’S’ which means that the sparsity
pattern is specified. All other specifications remain the same as in the case of dense problems. The sparsity
pattern of the Jacobian matrix is specified by using the macrovariable $INPUT. Two integer vectors IAG
and JAG are used where IAG(KA), 1≤KA≤NA+1, are pointers and JAG(K), 1≤K≤IAG(NA+1)-1, are
indices of nonzero elements. Nonzero elements are ordered by the gradients of the approximating functions.
The number of nonzero elements must be specified by using the statement $MA=number of elements. For
example, if we have the gradients

GA(1;X) = [gA
11, 0 , 0 , gA

14],

GA(2;X) = [0 , gA
22, 0 , gA

24],

GA(3;X) = [0 , 0 , gA
33, 0],

GA(4;X) = [gA
41, g

A
42, g

A
43, 0],

GA(5;X) = [0 , 0 , gA
53, g

A
54],

and the Jacobian matrix

AG(X) =

⎛
⎜⎜⎜⎝

gA
11 , 0 , 0 , gA

14

0 , gA
22 , 0 , gA

24

0 , 0 , gA
33 , 0

gA
41 , gA

42 , gA
43 , 0

0 , 0 , gA
53 , gA

54

⎞
⎟⎟⎟⎠

then we have to set:

$NA=5
$MA=10
$ADD(INPUT)

IAG(1)=1; IAG(2)=3; IAG(3)=5
IAG(4)=6; IAG(5)=9; IAG(6)=11
JAG(1)=1; JAG(2)=4; JAG(3)=2; JAG(4)=4; JAG(5)=3
JAG(6)=1; JAG(7)=2; JAG(8)=3; JAG(9)=3; JAG(10)=4

$ENDADD

As in the case of the dense problem, the first derivatives of the approximating functions can be specified
by using the macrovariables $GMODELA or $GMODELAS. If $JACA=’S’, only nonzero elements of the
gradients are specified. For the above example the specifications have the form

$SET(GMODELA)
IF (KA.EQ.1) THEN

GA(1) = ∂FA(1;X)/∂X(1)
GA(4) = ∂FA(1;X)/∂X(4)

ELSE IF (KA.EQ.2) THEN
GA(2) = ∂FA(2;X)/∂X(2)
GA(4) = ∂FA(2;X)/∂X(4)

ELSE IF (KA.EQ.3) THEN

21

GA(3) = ∂FA(3;X)/∂X(3)
ELSE IF (KA.EQ.4) THEN

GA(1) = ∂FA(4;X)/∂X(1)
GA(2) = ∂FA(4;X)/∂X(2)
GA(3) = ∂FA(4;X)/∂X(3)

ELSE
GA(3) = ∂FA(5;X)/∂X(3)
GA(4) = ∂FA(5;X)/∂X(4)

ENDIF
$ENDSET

or

$SET(GMODELAS)
AG(1) = ∂FA(1;X)/∂X(1)
AG(2) = ∂FA(1;X)/∂X(4)
AG(3) = ∂FA(2;X)/∂X(2)
AG(4) = ∂FA(2;X)/∂X(4)
AG(5) = ∂FA(3;X)/∂X(3)
AG(6) = ∂FA(4;X)/∂X(1)
AG(7) = ∂FA(4;X)/∂X(2)
AG(8) = ∂FA(4;X)/∂X(3)
AG(9) = ∂FA(5;X)/∂X(3)
AG(10) = ∂FA(5;X)/∂X(4)

$ENDSET

As in the case of the dense problem, the second derivatives of the approximating functions can be
specified by using the macrovariables $HMODELA or $HMODELAS. If $JACA=’S’, only nonzero elements
of the Hessian matrices are specified. For the above example the specifications have the form

$SET(HMODELA)
IF (KA.EQ.1) THEN

HA(1) = ∂2FA(1;X)/∂X(1)2

HA(2) = ∂2FA(1;X)/∂X(1)∂X(4)
HA(3) = ∂2FA(1;X)/∂X(4)2

ELSE IF (KA.EQ.2) THEN
HA(1) = ∂2FA(2;X)/∂X(2)2

HA(2) = ∂2FA(2;X)/∂X(2)∂X(4)
HA(3) = ∂2FA(2;X)/∂X(4)2

ELSE IF (KA.EQ.3) THEN
HA(1) = ∂2FA(3;X)/∂X(3)2

ELSE IF (KA.EQ.4) THEN
HA(1) = ∂2FA(4;X)/∂X(1)2

HA(2) = ∂2FA(4;X)/∂X(1)∂X(2)
HA(3) = ∂2FA(4;X)/∂X(2)2

HA(4) = ∂2FA(4;X)/∂X(1)∂X(3)
HA(5) = ∂2FA(4;X)/∂X(2)∂X(3)
HA(6) = ∂2FA(4;X)/∂X(3)2

ELSE
HA(1) = ∂2FA(5;X)/∂X(3)2

HA(2) = ∂2FA(5;X)/∂X(3)∂X(4)
HA(3) = ∂2FA(5;X)/∂X(4)2

ENDIF

22

$ENDSET

or

$SET(HMODELAS)
AH(1) = ∂2FA(1;X)/∂X(1)2

AH(2) = ∂2FA(1;X)/∂X(1)∂X(4)
AH(3) = ∂2FA(1;X)/∂X(4)2

AH(4) = ∂2FA(2;X)/∂X(2)2

AH(5) = ∂2FA(2;X)/∂X(2)∂X(4)
AH(6) = ∂2FA(2;X)/∂X(4)2

AH(7) = ∂2FA(3;X)/∂X(3)2

AH(8) = ∂2FA(4;X)/∂X(1)2

AH(9) = ∂2FA(4;X)/∂X(1)∂X(2)
AH(10) = ∂2FA(4;X)/∂X(2)2

AH(11) = ∂2FA(4;X)/∂X(1)∂X(3)
AH(12) = ∂2FA(4;X)/∂X(2)∂X(3)
AH(13) = ∂2FA(4;X)/∂X(3)2

AH(14) = ∂2FA(5;X)/∂X(3)2

AH(15) = ∂2FA(5;X)/∂X(3)∂X(4)
AH(16) = ∂2FA(5;X)/∂X(4)2

$ENDSET

Note that the dimensions of arrays HA or AH must be specified by the statement $MHA=dimension of HA
or $MAH=dimension of AH.

If some of the approximating functions are linear (i.e. if $NAL>0) and if $JACA=’S’, then the coeffi-
cients AG(K), 1≤K≤IAG(NAL+1)−1 (constant part of the sparse Jacobian matrix), must be specified by
using the macrovariable $INPUT. If the matrix given in the above example is the constant sparse Jacobian
matrix, we use this specification:

$ADD(INPUT)
AG(1)=gA

11; AG(2)=gA
14; AG(3)=gA

22; AG(4)=gA
24

AG(5)=gA
33; AG(6)=gA

41; AG(7)=gA
42; AG(8)=gA

43

AG(9)=gA
53; AG(10)=gA

54

$ENDADD

There is another possibility which can be useful when all approximating functions are linear. It is based
on the usage of special procedure UKMAI1 which serves for a direct input of individual Jacobian matrix
elements. The procedure UKMAI1 is formally called by using the statement

CALL $UKMAI1(K,I,GAKI) or $SETAG(K,I,GAKI)

where K is an index of a given approximating function (a row of the Jacobian matrix), I is an index
of a given variable (a column of the Jacobian matrix), and GAKI is the numerical value of the element
∂FA(K;X)/∂X(I). For the example given above we can write:

$ADD(INPUT)
$SETAG(1,1,gA

11)
$SETAG(1,4,gA

14)
$SETAG(2,2,gA

22)
$SETAG(2,4,gA

24)
$SETAG(3,3,gA

33)
$SETAG(4,1,gA

41)

23

$SETAG(4,2,gA
42)

$SETAG(4,3,gA
43)

$SETAG(5,3,gA
53)

$SETAG(5,4,gA
54)

$ENDADD

The main advantage of the last possibility is the fact that it is not necessary to specify the fields IAG and
JAG beforehand.

If we use the option $JACA=’S’, then we can specify a form of the objective function sparse Hessian
matrix. There are four possibilities:

$HESF=’D’ - Dense Hessian matrix.
$HESF=’B’ - Partitioned sparse Hessian matrix. This matrix is a sum of simple Hessian matrices

which correspond to the individual approximating functions. Only nonzero blocks are
stored.

$HESF=’S’ - General sparse Hessian matrix (the same as the model function Hessian matrix
corresponding to the option $HESF=’S’).

$HESF=’N’ - Hessian matrix is not used.

This specification only serves for an internal realization of optimization methods and has no influence on
the user’s input. The default option is $HESF=’D’.

2.7 Objective functions for optimization of dynamical systems

If we set $MODEL=’DF’, then we suppose that the objective function F(X) has this form:

F(X) =
∫ TAMAX

TAMIN

FA(X,YA(TA),TA) dTA + FF(X,YA(TAMAX),TAMAX)

where FA(X,YA(TA),TA) is a smooth subintegral function and FF(X,YA(TAMAX),TAMAX) is a smooth
terminal function. At the same time

dYA(KE;TA)
dTA

= FE(KE;X,YA(TA),TA), YA(KE;TAMIN) = FY(KE;X)

where FE(KE;X,YA(TA),TA), 1≤KE≤NE, are smooth state functions and FY(KE;X), 1≤KE≤NE, are
smooth initial functions.

If we set $MODEL=’DQ’, then we suppose the objective function F(X) has the form:

F(X) =
1
2

∫ TAMAX

TAMIN

NE∑
KE=1

WE(KE;TA) ∗ (YA(KE;TA)−YE(KE;TA))2 dTA

+
1
2

NE∑
KE=1

EW(KE) ∗ (YA(KE;TAMAX)− EY(KE))2

At the same time

dYA(KE;TA)
dTA

= FE(KE;X,YA(TA),TA), YA(KE;TAMIN) = FY(KE;X)

where FE(KE;X,YA(TA),TA), 1≤KE≤NE, are smooth state functions and FY(KE;X), 1≤KE≤NE, are
smooth initial functions.

24

In all the above cases, the statement $NE=number of differential equations must be used for the speci-
fication of number of differential equations NE. Moreover, values TAMIN and TAMAX have to be specified
by using the macrovariable $INPUT.

$ADD(INPUT)
TA = initial (minimum) value of the independent variable (TA = TAMIN)
TAMAX = maximum value of the independent variable

$ENDADD

2.8 Specification of the state functions

The state functions FE(KE;X,YA(TA),TA), 1≤KE≤NE, must be defined by the user either directly in the
full dialogue mode or by using corresponding macrovariables in the batch (or mixed) mode. The values of
the state functions are specified by using the macrovariables $FMODELE or $FMODELES:

$SET(FMODELE)
FE = value FE(KE;X,YA(TA),TA)
(for a given index KE, a given vector of variables X,
a given vector of state variables YA(TA) and a given time TA)

$ENDSET

or

$SET(FMODELES)
EF(1) = value FE(1;X,YA(TA),TA)
EF(2) = value FE(2;X,YA(TA),TA)
—–
EF(NE) = value FE(NE;X,YA(TA),TA)

$ENDSET

The first derivatives of the state functions according to the variables are specified by using the macrovari-
ables $GMODELE or $GMODELES:

$SET(GMODELE)
GE(1) = derivative ∂FE(KE;X,YA(TA),TA)/∂X(1)
GE(2) = derivative ∂FE(KE;X,YA(TA),TA)/∂X(2)
—–
GE(NF) = derivative ∂FE(KE;X,YA(TA),TA)/∂X(NF)
(for a given index KE, a given vector of variables X,
a given vector of state variables YA(TA) and a given time TA)

$ENDSET

or

$SET(GMODELES)
EG(1) = derivative ∂FE(1;X,YA(TA),TA)/∂X(1)
EG(2) = derivative ∂FE(1;X,YA(TA),TA)/∂X(2)
—–
EG(NF) = derivative ∂FE(1;X,YA(TA),TA)/∂X(NF)
EG(NF+1) = derivative ∂FE(2;X,YA(TA),TA)/∂X(1)
EG(NF+2) = derivative ∂FE(2;X,YA(TA),TA)/∂X(2)
—–
EG(NE∗NF) = derivative ∂FE(NE;X,YA(TA),TA)/∂X(NF)

$ENDSET

25

The first derivatives of the state functions according to the state variables are specified by using the
macrovariables $DMODELE or $DMODELES:

$SET(DMODELE)
DE(1) = derivative ∂FE(KE;X,YA(TA),TA)/∂YA(1)
DE(2) = derivative ∂FE(KE;X,YA(TA),TA)/∂YA(2)
—–
DE(NE) = derivative ∂FE(KE;X,YA(TA),TA)/∂YA(NE)
(for a given index KE, a given vector of variables X,
a given vector of state variables YA(TA) and a given time TA)

$ENDSET

or

$SET(DMODELES)
ED(1) = derivative ∂FE(1;X,YA(TA),TA)/∂YA(1)
ED(2) = derivative ∂FE(1;X,YA(TA),TA)/∂YA(2)
—–
ED(NE) = derivative ∂FE(1;X,YA(TA),TA)/∂YA(NE)
ED(NE+1) = derivative ∂FE(2;X,YA(TA),TA)/∂YA(1)
ED(NE+2) = derivative ∂FE(2;X,YA(TA),TA)/∂YA(2)
—–
ED(NE∗NE) = derivative ∂FE(NE;X,YA(TA),TA)/∂YA(NE)

$ENDSET

If it is advantageous to compute the first derivatives of the state functions FE(KE;X,YA(TA),TA),
1≤KE≤NE, together with their values, we can replace the set of macrovariables $FMODELE, $GMOD-
ELE, $DMODELE by the common macrovariable $FGDMODELE and the set of macrovariables $FMOD-
ELES, $GMODELES, $DMODELES by the common macrovariable $FGDMODELES. Partially we can
replace the macrovariables $FMODELE, $GMODELE or $FMODELE, $DMODELE or $GMODELE,
$DMODELE by the common macrovariables $FGMODELE or $FDMODELE or $GDMODELE, re-
spectively. Similarly we can replace the macrovariables $FMODELES, $GMODELES or $FMODELES,
$DMODELES or $GMODELES, $DMODELES by the common macrovariables $FGMODELES or $FD-
MODELES or $GDMODELES, respectively.

If $MODEL=’DQ’, we have to define the functions WE(KE;TA) and YE(KE;TA), 1≤KE≤NE, for
a given index KE and a given time TA. These functions can be specified by using the macrovariable
$FMODELE together with the state function FE(KE;X,YA(TA),TA):

$SET(FMODELE)
FE = value FE(KE;X,YA(TA),TA)
WE = value WE(KE;TA)
YE = value YE(KE;TA)
(for a given index KE, a given vector of variables X,
a given vector of state variables YA(TA) and a given time TA)

$ENDSET

The default values WE(KE;TA)=1 and YE(KE;TA)=0 cannot be specified, they are supposed automati-
cally.

2.9 Specification of the initial functions

The initial functions FY(KE;X), 1≤KE≤NE, must be defined by the user either directly in the full dialogue
mode or by using corresponding macrovariables in the batch (or mixed) mode. The values of the initial

26

functions are specified by using the macrovariables $FMODELY or $FMODELYS:

$SET(FMODELY)
FE = value FY(KE;X)
(for a given index KE and a given vector of variables X)

$ENDSET

or

$SET(FMODELYS)
EF(1) = value FY(1;X)
EF(2) = value FY(2;X)
—–
EF(NE) = value FY(NE;X)

$ENDSET

The first derivatives of the initial functions according to the variables are specified by using the macrovari-
ables $GMODELY or $GMODELYS:

$SET(GMODELY)
GE(1) = derivative ∂FY(KE;X)/∂X(1)
GE(2) = derivative ∂FY(KE;X)/∂X(2)
—–
GE(NF) = derivative ∂FY(KE;X)/∂X(NF)
(for a given index KE and a given vector of variables X)

$ENDSET

or

$SET(GMODELYS)
EG(1) = derivative ∂FY(1;X)/∂X(1)
EG(2) = derivative ∂FY(1;X)/∂X(2)
—–
EG(NF) = derivative ∂FY(1;X)/∂X(NF)
EG(NF+1) = derivative ∂FY(2;X)/∂X(1)
EG(NF+2) = derivative ∂FY(2;X)/∂X(2)
—–
EG(NE∗NF) = derivative ∂FY(NE;X)/∂X(NF)

$ENDSET

If it is advantageous to compute the first derivatives of initial functions FY(KE;X), 1≤KE≤NE, together
with their values, we can replace the set of macrovariables $FMODELY, $GMODELY by the common
macrovariable $FGMODELY and the set of macrovariables $FMODELYS, $GMODELYS by the common
macrovariable $FGMODELYS.

If the initial values YA(KE;TAMIN), 1≤KE≤NE, do not depend on the variables X(I), 1≤I≤NF, they
can be specified by using the macrovariable $INPUT:

$ADD(INPUT)
YA(1) = initial value YA(1,TAMIN)
YA(2) = initial value YA(2,TAMIN)
—–
YA(NE) = initial value YA(NE,TAMIN)

$ENDADD

27

2.10 Specification of the subintegral function

If $MODEL=’DF’, the subintegral function FA(X,YA(TA),TA) must be defined by the user either directly
in the full dialogue mode, or by using corresponding macrovariables in the batch (or mixed) mode. The
value of the subintegral function is specified by using the macrovariable $FMODELA:

$SET(FMODELA)
FA = value FA(X,YA(TA),TA)
(for a given vector of variables X, a given vector of state variables YA(TA)
and a given time TA)

$ENDSET

The first derivatives of the subintegral function according to the variables are specified by using the
macrovariable $GMODELA:

$SET(GMODELA)
GA(1) = derivative ∂FA(X,YA(TA),TA)/∂X(1)
GA(2) = derivative ∂FA(X,YA(TA),TA)/∂X(2)
—–
GA(NF) = derivative ∂FA(X,YA(TA),TA)/∂X(NF)
(for a given vector of variables X, a given vector of state variables YA(TA)
and a given time TA)

$ENDSET

The first derivatives of the subintegral function according to the state variables are specified by using the
macrovariable $DMODELA:

$SET(DMODELA)
DA(1) = derivative ∂FA(X,YA(TA),TA)/∂YA(1)
DA(2) = derivative ∂FA(X,YA(TA),TA)/∂YA(2)
—–
DA(NE) = derivative ∂FA(X,YA(TA),TA)/∂YA(NE)
(for a given vector of variables X, a given vector of state variables YA(TA)
and a given time TA)

$ENDSET

If it is advantageous to compute the first derivatives of subintegral function FA(X,YA(TA),TA) together
with its value, we can replace the set of macrovariables $FMODELA, $GMODELA, $DMODELA by
the common macrovariable $FGDMODELA. Partially we can replace the macrovariables $FMODELA,
$GMODELA or $FMODELA, $DMODELA or $GMODELA, $DMODELA by the common macrovariables
$FGMODELA or $FDMODELA or $GDMODELA, respectively.

If $MODEL=’DQ’ and the objective function contains an integral part, then we have to set $MOD-
ELA=’YES’ and define the functions WE(KE;TA) and YE(KE;TA), 1≤KE≤NE, by using the macrovari-
able $FMODELE.

2.11 Specification of the terminal function

If $MODEL=’DF’, the terminal function FF(X,YA(TAMAX),TAMAX) must be defined by the user either
directly in the full dialogue mode, or by using corresponding macrovariables in the batch (or mixed) mode.
The value of the terminal function is specified by using the macrovariable $FMODELF:

$SET(FMODELF)
FF = value FF(X,YA(TAMAX),TAMAX)

28

(for a given vector of variables X, a given vector of state variables YA(TAMAX)
and a given time TAMAX)

$ENDSET

The first derivatives of the terminal function according to the variables are specified by using the macrovari-
able $GMODELF:

$SET(GMODELF)
GF(1) = derivative ∂FF(X,YA(TAMAX),TAMAX)/∂X(1)
GF(2) = derivative ∂FF(X,YA(TAMAX),TAMAX)/∂X(2)
—–
GF(NF) = derivative ∂FF(X,YA(TAMAX),TAMAX)/∂X(NF)
(for a given vector of variables X, a given vector of state variables YA(TAMAX)
and a given time TAMAX)

$ENDSET

The first derivatives of the terminal function according to the state variables are specified by using the
macrovariable $DMODELF:

$SET(DMODELF)
DF(1) = derivative ∂FF(X,YA(TAMAX),TAMAX)/∂YA(1)
DF(2) = derivative ∂FF(X,YA(TAMAX),TAMAX)/∂YA(2)
—–
DF(NE) = derivative ∂FF(X,YA(TAMAX),TAMAX)/∂YA(NE)
(for a given vector of variables X, a given vector of state variables YA(TAMAX)
and a given time TAMAX)

$ENDSET

If it is advantageous to compute the first derivatives of terminal function FF(X,YA(TAMAX),TAMAX)
together with its value, we can replace the set of macrovariables $FMODELF, $GMODELF, $DMODELF
by the common macrovariable $FGDMODELF. Partially we can replace the macrovariables $FMODELF,
$GMODELF or $FMODELF, $DMODELF or $GMODELF, $DMODELF by the common macrovariables
$FGMODELF or $FDMODELF or $GDMODELF, respectively.

If $MODEL=’DQ’ and the objective function contains a terminal part, then we have to set $MOD-
ELF=’YES’ and define the coefficients EW(KE) and EY(KE), 1≤KE≤NE, by using the macrovariable
$INPUT:

$ADD(INPUT)
EW(1) = value EW(1); EY(1) = value EY(1)
EW(2) = value EW(2); EY(2) = value EY(2)
—–
EW(NE) = value EW(NE); EY(NE) = value EY(NE)

$ENDADD

2.12 Optimization with general constraints

If there are no general constraints we set $KBC=0. In the opposite case we set $KBC=1 or $KBC=2. If
$KBC=1 or $KBC=2, then

FC(KC;X) - unbounded , if IC(KC) = 0
CL(KC) ≤ FC(KC;X) , if IC(KC) = 1

FC(KC;X) ≤ CU(KC) , if IC(KC) = 2

29

CL(KC) ≤ FC(KC;X) ≤ CU(KC) , if IC(KC) = 3
CL(KC) = FC(KC;X) = CU(KC) , if IC(KC) = 5

where 1≤KC≤NC. The option $KBC=2 must be chosen if IC(KC)=3 for at least one index 1≤KC≤NC.
Then two different fields CL(K) and CU(KC), 1≤KC≤NC are declared. In the opposite case we set
$KBC=1 and only one common field CL(KC)=CU(KC), 1≤KC≤NC is declared. The number of constraints
NC must be specified by using the statement $NC=number of functions.

The types of general constraints IC(KC), 1≤KC≤NC, and lower and upper bounds CL(KC) and
CU(KC), 1≤KC≤NC, can be specified by using the macrovariable $INPUT. The default values are
IC(KC)=3 and CL(KC)=CU(KC)=0, 1≤KC≤NC. For example:

$KBC=2; $NC=3
$ADD(INPUT)

IC(1)=1; CL(1)=cL
1

IC(2)=1; CL(2)=cL
2

IC(3)=3; CL(3)=cL
3 ; CU(3)=cL

3

$ENDADD

2.13 Specification of the constraint functions (dense problems)

The constraint functions FC(KC;X), 1≤KC≤NC, must be defined by the user either directly in the full
dialogue mode, or by using corresponding macrovariables in the batch (or mixed) mode. The values of the
constraint functions are specified by using the macrovariables $FMODELC or $FMODELCS:

$SET(FMODELC)
FC = value FC(KC;X)
(for a given index KC and given values of variables X(I), 1≤I≤NF)

$ENDSET

or

$SET(FMODELCS)
CF(1) = value FC(1;X)
CF(2) = value FC(2;X)
—–
CF(NC) = value FC(NC;X)

$ENDSET

The first derivatives of the constraint functions are specified by using the macrovariables $GMODELC or
$GMODELCS:

$SET(GMODELC)
GC(1) = derivative ∂FC(KC;X)/∂X(1)
GC(2) = derivative ∂FC(KC;X)/∂X(2)
—–
GC(NF) = derivative ∂FC(KC;X)/∂X(NF)
(for a given index KC and given values of variables X(I), 1≤I≤NF)

$ENDSET

or

$SET(GMODELCS)
CG(1) = derivative ∂FC(1;X)/∂X(1)
CG(2) = derivative ∂FC(1;X)/∂X(2)

30

—–
CG(NF) = derivative ∂FC(1;X)/∂X(NF)
CG(NF+1) = derivative ∂FC(2;X)/∂X(1)
CG(NF+2) = derivative ∂FC(2;X)/∂X(2)
—–
CG(NC∗NF) = derivative ∂FC(NC;X)/∂X(NF)

$ENDSET

The second derivatives of the constraint functions are specified by using the macrovariables $HMODELC
or $HMODELCS. If $JACC=’D’, the Hessian matrices are assumed to be dense and we only specify their
upper half:

$SET(HMODELC)
HC(1) = derivative ∂2FC(KC;X)/∂X(1)2

HC(2) = derivative ∂2FC(KC;X)/∂X(1)∂X(2)
HC(3) = derivative ∂2FC(KC;X)/∂X(2)2

HC(4) = derivative ∂2FC(KC;X)/∂X(1)∂X(3)
HC(5) = derivative ∂2FC(KC;X)/∂X(2)∂X(3)
HC(6) = derivative ∂2FC(KC;X)/∂X(3)2

—–
HC(NF∗(NF+1)/2) = derivative ∂2FC(KC;X)/∂X(NF)2

(for a given index KC and given values of variables X(I), 1≤I≤NF)
$ENDSET

or

$SET(HMODELCS)
CH(1) = derivative ∂2FC(1;X)/∂X(1)2

CH(2) = derivative ∂2FC(1;X)/∂X(1)∂X(2)
CH(3) = derivative ∂2FC(1;X)/∂X(2)2

CH(4) = derivative ∂2FC(1;X)/∂X(1)∂X(3)
CH(5) = derivative ∂2FC(1;X)/∂X(2)∂X(3)
CH(6) = derivative ∂2FC(1;X)/∂X(3)2

—–
CH(NF∗(NF+1)/2) = derivative ∂2FC(1;X)/∂X(NF)2

CH(NF∗(NF+1)/2+1) = derivative ∂2FC(2;X)/∂X(1)2

CH(NF∗(NF+1)/2+2) = derivative ∂2FC(2;X)/∂X(1)∂X(2)
CH(NF∗(NF+1)/2+3) = derivative ∂2FC(2;X)/∂X(2)2

—–
CH(NC∗NF∗(NF+1)/2) = derivative ∂2FC(NC;X)/∂X(NF)2

$ENDSET

If the macrovariables $GMODELC and $GMODELCS or $HMODELC and $HMODELCS are not
defined, we suppose that the first or the second derivatives of the constraint functions are not given ana-
lytically. In this case, they are computed numerically, by using the UFO system routines whenever they
are required. If it is advantageous to compute the first derivatives of constraint functions FC(KC;X),
1≤KC≤NC, together with their values, we can replace the set of macrovariables $FMODELC, $GMOD-
ELC by the common macrovariable $FGMODELC and the set of macrovariables $FMODELCS, $GMOD-
ELCS by the common macrovariable $FGMODELCS. Similarly we can replace the set of macrovariables
$FMODELC, $GMODELC, $HMODELC by the common macrovariable $FGHMODELC and the set of
macrovariables $FMODELCS, $GMODELCS, $HMODELCS by the common macrovariable $FGHMOD-
ELCS.

31

To improve the efficiency of the computation, we can specify some additional information about the
constraint functions FC(KC;X), 1≤KC≤NC. The first piece of information, useful for an automatic choice
of the optimization method, is the computational complexity specified by the macrovariable $KCC:

$KCC= 1 - Evaluations of the constraint functions FC(KC;X), 1≤KC≤NC, are very easy (they
require O(n) simple operations at most).

$KCC= 2 - Evaluations of the constraint functions FC(KC;X), 1≤KC≤NC, are of medium com-
plexity (they at least require O(n) complicated operations and O(n2) simple opera-
tions at most).

$KCC= 3 - Evaluations of the constraint functions FC(KC;X), 1≤KC≤NC, are extremely diffi-
cult (they at least require O(n2) complicated or O(n3) simple operations).

The option $KCC=2 is default. An additional useful piece of information is the analytical complexity
(conditioning) which is specified by the macrovariable $KSC:

$KSC=1 - The constraint functions FC(KC;X), 1≤KC≤NC, are smooth and well-conditioned.
$KSC=2 - The constraint functions FC(KC;X), 1≤KC≤NC, are smooth but ill-conditioned.
$KSC=3 - The constraint functions FC(KC;X), 1≤KC≤NC, are nonsmooth.

The option $KSC=1 is default.
If some of the constraint functions are linear and have the form

FC(KC;X) =
NF∑
I=1

CG((KC− 1) ∗NF + I) ∗X(I)

we can specify them separately. Then the number of linear constraint functions must be specified by using
the statement $NCL=number of linear functions (default value is $NCL=0). We always suppose that the
first NCL constraint functions are linear. Then the coefficients CG((KC-1)∗NF+I), 1≤KC≤NCL, 1≤I≤NF,
are specified by using the macrovariable $INPUT and the macrovariables $FMODELC or $FMODELCS,
$GMODELC or $GMODELCS, $HMODELC or $HMODELCS are used only for the specification of the
nonlinear constraint functions FC(KC;X), NCL<KC≤NC.

2.14 Specification of the constraint functions (sparse problems)

The UFO system contains optimization methods which take into account the sparsity pattern of the
Jacobian matrix CG. This possibility decreases the computational time and storage requirements for
large-scale optimization problems. In this case, we use option $JACC=’S’ which means that the sparsity
pattern is specified. All other specifications remain the same as in the case of dense problems. The sparsity
pattern of the Jacobian matrix is specified by using the macrovariable $INPUT. Two integer vectors ICG
and JCG are used where ICG(KC), 1≤KC≤NC+1, are pointers and JCG(K), 1≤K≤ICG(NC+1)-1, are
indices of nonzero elements. Nonzero elements are ordered by the gradients of the constraint functions.
The number of nonzero elements must be specified by using the statement $MC=number of elements. The
number of nonzero elements could be greater than is needed (twice say) since it is used for the declaration
of working fields. For example, if we have the gradients

GC(1;X) = [gC
11, 0 , 0 , gC

14],

GC(2;X) = [0 , gC
22, 0 , gC

24],

GC(3;X) = [0 , 0 , gC
33, 0],

GC(4;X) = [gC
41, g

C
42, g

C
43, 0],

32

GC(5;X) = [0 , 0 , gC
53, g

C
54],

and the Jacobian matrix

CG(X) =

⎛
⎜⎜⎜⎝

gC
11 , 0 , 0 , gC

14

0 , gC
22 , 0 , gC

24

0 , 0 , gC
33 , 0

gC
41 , gC

42 , gC
43 , 0

0 , 0 , gC
53 , gC

54

⎞
⎟⎟⎟⎠

then we have to set:

$NC=5
$MC=20 (the minimum required value is MC=10)
$ADD(INPUT)

ICG(1)=1; ICG(2)=3; ICG(3)=5
ICG(4)=6; ICG(5)=9; ICG(6)=11
JCG(1)=1; JCG(2)=4; JCG(3)=2; JCG(4)=4; JCG(5)=3
JCG(6)=1; JCG(7)=2; JCG(8)=3; JCG(9)=3; JCG(10)=4

$ENDADD

As in the case of the dense problem, the first derivatives of the constraint functions can be specified by
using the macrovariables $GMODELC or $GMODELCS. If $JACC=’S’, only the nonzero elements of the
gradients are specified. For the above example the specification has the form:

$SET(GMODELC)
IF (KC.EQ.1) THEN

GC(1) = ∂FC(1;X)/∂X(1)
GC(4) = ∂FC(1;X)/∂X(4)

ELSE IF (KC.EQ.2) THEN
GC(2) = ∂FC(2;X)/∂X(2)
GC(4) = ∂FC(2;X)/∂X(4)

ELSE IF (KC.EQ.3) THEN
GC(3) = ∂FC(3;X)/∂X(3)

ELSE IF (KC.EQ.4) THEN
GC(1) = ∂FC(4;X)/∂X(1)
GC(2) = ∂FC(4;X)/∂X(2)
GC(3) = ∂FC(4;X)/∂X(3)

ELSE
GC(3) = ∂FC(5;X)/∂X(3)
GC(4) = ∂FC(5;X)/∂X(4)

ENDIF
$ENDSET

or

$SET(GMODELCS)
CG(1) = ∂FC(1;X)/∂X(1)
CG(2) = ∂FC(1;X)/∂X(4)
CG(3) = ∂FC(2;X)/∂X(2)
CG(4) = ∂FC(2;X)/∂X(4)
CG(5) = ∂FC(3;X)/∂X(3)
CG(6) = ∂FC(4;X)/∂X(1)
CG(7) = ∂FC(4;X)/∂X(2)

33

CG(8) = ∂FC(4;X)/∂X(3)
CG(9) = ∂FC(5;X)/∂X(3)
CG(10) = ∂FC(5;X)/∂X(4)

$ENDSET

As in the case of the dense problem, the second derivatives of the approximating functions can be
specified by using the macrovariables $HMODELC or $HMODELCS. If $JACC=’S’, only nonzero elements
of the Hessian matrices are specified. For the above example the specifications have the form

$SET(HMODELC)
IF (KC.EQ.1) THEN

HC(1) = ∂2FC(1;X)/∂X(1)2

HC(2) = ∂2FC(1;X)/∂X(1)∂X(4)
HC(3) = ∂2FC(1;X)/∂X(4)2

ELSE IF (KC.EQ.2) THEN
HC(1) = ∂2FC(2;X)/∂X(2)2

HC(2) = ∂2FC(2;X)/∂X(2)∂X(4)
HC(3) = ∂2FC(2;X)/∂X(4)2

ELSE IF (KC.EQ.3) THEN
HC(1) = ∂2FC(3;X)/∂X(3)2

ELSE IF (KC.EQ.4) THEN
HC(1) = ∂2FC(4;X)/∂X(1)2

HC(2) = ∂2FC(4;X)/∂X(1)∂X(2)
HC(3) = ∂2FC(4;X)/∂X(2)2

HC(4) = ∂2FC(4;X)/∂X(1)∂X(3)
HC(5) = ∂2FC(4;X)/∂X(2)∂X(3)
HC(6) = ∂2FC(4;X)/∂X(3)2

ELSE
HC(1) = ∂2FC(5;X)/∂X(3)2

HC(2) = ∂2FC(5;X)/∂X(3)∂X(4)
HC(3) = ∂2FC(5;X)/∂X(4)2

ENDIF
$ENDSET

or

$SET(HMODELCS)
CH(1) = ∂2FC(1;X)/∂X(1)2

CH(2) = ∂2FC(1;X)/∂X(1)∂X(4)
CH(3) = ∂2FC(1;X)/∂X(4)2

CH(4) = ∂2FC(2;X)/∂X(2)2

CH(5) = ∂2FC(2;X)/∂X(2)∂X(4)
CH(6) = ∂2FC(2;X)/∂X(4)2

CH(7) = ∂2FC(3;X)/∂X(3)2

CH(8) = ∂2FC(4;X)/∂X(1)2

CH(9) = ∂2FC(4;X)/∂X(1)∂X(2)
CH(10) = ∂2FC(4;X)/∂X(2)2

CH(11) = ∂2FC(4;X)/∂X(1)∂X(3)
CH(12) = ∂2FC(4;X)/∂X(2)∂X(3)
CH(13) = ∂2FC(4;X)/∂X(3)2

CH(14) = ∂2FC(5;X)/∂X(3)2

CH(15) = ∂2FC(5;X)/∂X(3)∂X(4)
CH(16) = ∂2FC(5;X)/∂X(4)2

34

$ENDSET

Note that the dimensions of arrays HC or CH must be specified by the statement $MHC=dimension of HC
or $MCH=dimension of CH.

If some of the constraint functions are linear (i.e. if $NCL>0) and if $JACC=’S’, then the coefficients
CG(K), 1≤K≤ICG(NCL+1)−1 (constant part of the sparse Jacobian matrix), must be specified by using
the macrovariable $INPUT. If the matrix given in the above example is the constant sparse Jacobian
matrix, we use this specification:

$ADD(INPUT)
CG(1)=gC

11; CG(2)=gC
14; CG(3)=gC

22; CG(4)=gC
24

CG(5)=gC
33; CG(6)=gC

41; CG(7)=gC
42; CG(8)=gC

43

CG(9)=gC
53; CG(10)=gC

54

$ENDADD

There is another possibility which can be useful when all constraint functions are linear. It is based on
the usage of a special procedure UKMCI1 which serves for a direct input of individual Jacobian matrix
elements. The procedure UKMCI1 is formally called by using the statement

CALL $UKMCI1(K,I,GCKI) or $SETCG(K,I,GCKI)

where K is an index of a given constraint function (a row of the Jacobian matrix), I is an index of a given
variable (a column of the Jacobian matrix), and GCKI is a numerical value of the element ∂FC(K;X)/∂X(I).
For the example given above we can write:

$ADD(INPUT)
$SETCG(1,1,gC

11)
$SETCG(1,4,gC

14)
$SETCG(2,2,gC

22)
$SETCG(2,4,gC

24)
$SETCG(3,3,gC

33)
$SETCG(4,1,gC

41)
$SETCG(4,2,gC

42)
$SETCG(4,3,gC

43)
$SETCG(5,3,gC

53)
$SETCG(5,4,gC

54)
$ENDADD

The main advantage of the last possibility is the fact that it is not necessary to specify the fields ICG
and JCG beforehand. If the number of the constraints is very large, then we can use a slightly more
complicated procedure UKMCI2 which uses dynamic structures and therefore works more quickly. The
procedure UKMCI2 is formally called by using the statement

CALL $UKMCI2(K,I,GCKI)

where K is an index of a given constraint function (a row of the Jacobian matrix), I is an index of a given
variable (a column of the Jacobian matrix), GCKI is the numerical value of the element ∂FC(K;X)/∂X(I).

2.15 Solution of systems of nonlinear functional equations

If we set $MODEL=’NE’, then we suppose that the system of nonlinear functional equations

FA(KA;X) = 0, 1 ≤ KA ≤ NF

35

is solved. This possibility is equivalent to minimization of sum of squares when $MODEL=’AQ’, but
now NA=NF so that special methods for solving systems of nonlinear functional equations can be used.
Functions FA(KA;X), 1 ≤ KA ≤ NF, are in fact approximating functions. Their specification is described
in Sections 2.5 – 2.6.

2.16 Solution of systems of ordinary differential equations

If we set $MODEL=’DE’, then we suppose that the system of ordinary differential equations

dYA(KE;TA)
dTA

= FE(KE;YA(TA),TA), YA(KE;TAMIN) = FY(KE) 1 ≤ KE ≤ NE

is solved in the interval TAMIN ≤ TA ≤ TAMAX, where FE(KE;YA(TA),TA), 1≤KE≤NE, are smooth
state functions and FY(KE), 1≤KE≤NE, are smooth initial functions. In this case, the statement
$NE=number of differential equations must be used for the specification of number of differential equations
NE. Moreover, values TAMIN and TAMAX have to be specified by using the macrovariable $INPUT.

$ADD(INPUT)
TA = initial (minimum) value of the independent variable (TA = TAMIN)
TAMAX = maximum value of the independent variable

$ENDADD

Specification of state functions is described in Section 2.8. Specification of initial functions is described
in Section 2.9. The resulting state variables (solution of system of ordinary differential equations) can be
stored in all integration steps (if $MED=1) or in prescribed mesh points (if $MED=2). In the second
case, the macrovariable $NA specifies the number of mesh points equidistantly distributed in the interval
TAMIN ≤ TA ≤ TAMAX.

2.17 Additional specifications concerning optimization problems

Useful specifications, which can improve the computational efficiency and robustness of the optimization
methods, are a lower bound for the objective function value and an upper bound for the stepsize. Both
of these values depend on the definition of the objective function and can be specified by the statements
$FMIN=lower bound (for the objective function value) and $XMAX=upper bound (for the stepsize).
We recommend a definition of $FMIN whenever it is possible, and a definition of $XMAX whenever the
objective function contains the exponential functions. If the objective function is a sum of powers (or a sum
of squares), then automatically $FMIN=0. The default option for the maximum stepsize is $XMAX=1000.

If there are no general constraints and if the number of variables is not greater than 100, then we can
use global optimization methods. A decision between local and global optimization is effected by means
of macrovariable $EXTREM:

$EXTREM=’L’ - A local extremum is found, which usually contains the starting point in its basin of
attraction.

$EXTREM=’G’ - All extremum points in the given region are found and a global extremum is determined.

The default option is $EXTREM=’L’. If $EXTREM=’G’, we cannot use the common macrovariables
$FGMODELF and $FGHMODELF for a common specification of the value, the gradient and the Hessian
matrix of the model function. Similarly we cannot use the macrovariables $FGMODELA or $FGMODE-
LAS and $FGHMODELA or $FGHMODELAS for a common specification of the approximating functions.

The global optimization is performed over a bounded region specified by lower and upper bounds XL(I)
and XU(I), 1≤I≤NF. If these bounds are not specified (using the macrovariable $INPUT), they are com-
puted from initial values of variables and from the given maximum stepsize, so that XL(I)=X(I)−XMAX
and XU(I)=X(I)+XMAX, 1≤I≤NF. The maximum stepsize is specified, as in the case given above, using
the statement $XMAX=maximum stepsize. The default option is again $XMAX=1000.

36

Additional useful specifications, concerning the solution precision, are bounds used in termination
criteria. These bounds can be specified by the macrovariables $TOLX, $TOLF, $TOLB, $TOLG, $TOLC
and $MIT, $MFV, $MFG:

$TOLX - lower bound for a relative change of variables
$TOLF - lower bound for a relative change of function values
$TOLB - lower bound for the objective function value
$TOLG - lower bound for the objective function gradient norm
$TOLC - lower bound for the violated constraint functions

$MIT - maximum number of iterations
$MFV - maximum number of function evaluations
$MFG - maximum number of gradient evaluations

The default values are $TOLX=’1.0D-8’, $TOLF=’1.0D-16’, $TOLB=’−1.0D60’, $TOLG=’1.0D-6’,
$TOLC=’1.0D-6’ and $MIT=500, $MFV=1000, $MFG=10000.

If a direct solver ($NUMBER=1) is used for direction determination in methods for sparse constrained
problems, the statement $MMAX=space for sparse factor should be given. The default value $MMAX=M
can be insufficient in these cases.

2.18 Conventional names of basic variables and arrays

Basic variables and arrays of optimization problems solved by the UFO system require the use of the
following prescribed names.

NF - Number of variables.
X - Vector of variables.
XN - Scaling coefficients.
XL - Lower bounds of variables.
XU - Upper bounds of variables.
IX - Types of box constraints.
NX - Number of box constraints.
FF - Value of the objective function.
GF - Gradient of the objective function.
HF - Hessian matrix of the objective function (only the upper half is stored).
IH - Pointers of diagonal elements of sparse matrix HF.
JH - Column indices of nonzero elements of sparse matrix HF.
NA - Number of approximating functions.
KA - Index of the approximating function.
FA - Value of the KA-th approximating function.
AF - Vector containing values of all approximating functions.
GA - Gradient of the KA-th approximating function.
AG - Jacobian matrix containing gradients of all approximating functions.
IAG - Pointers of row-start elements of sparse matrix AG.
JAG - Column indices of nonzero elements of sparse matrix AG.
MA - Number of nonzero elements of sparse matrix AG.
HA - Hessian matrix of the KA-th approximating function (only the upper half is stored).
AH - Tensor containing Hessian matrices of all approximating functions.
AM - Vector containing fitted values of all approximating functions.
AW - Vector containing weights of all approximating functions.
NC - Number of constraint functions.
KC - Index of the constraint function.
FC - Value of the KC-th constraint function.

37

CF - Vector containing values of all constraint functions.
GC - Gradient of the KC-th constraint function.
CG - Jacobian matrix containing gradients of all constraint functions.
ICG - Pointers of row-start elements of sparse matrix CG.
JCG - Column indices of nonzero elements of sparse matrix CG.
MC - Number of nonzero elements of sparse matrix CG.
HC - Hessian matrix of the KC-th constraint function (only the upper half is stored).
CH - Tensor containing Hessian matrices of all constraint functions.
CL - Lower bounds of constraint functions.
CU - Upper bounds of constraint functions.
IC - Types of general constraints.
CW - Vector containing weights of all constraint functions.
NE - Number of state variables and state functions (number of differential equations).
KE - Index of the state function.
FE - Value of the KE-th state function.
EF - Vector containing values of all state functions.
GE - Gradient of the KE-th state function.
EG - Jacobian matrix containing gradients of all state functions.
DE - Matrix containing derivatives of the KE-th state function with respect to state variables.
ED - Tensor containing derivatives of all state functions with respect to state variables.

Note that the names of arrays given above can be changed by the user using statement $NAME1=’NAME2’
in the macrovariable $INPUT. However, the same names cannot be used for different objects, i.e., NAME2
cannot be taken from the above list. For instance, the example demonstrated in Section 1.2 can be
rewritten in the form

$SET(INPUT)
$X=’U’
U(1)=-1.2D0; U(2)= 1.0D0

$ENDSET
$SET(FMODELF)
FF=1.0D2*(U(1)**2-U(2))**2+(U(1)-1.0D0)**2

$ENDSET
$NF=2
$MOUT=1
$NOUT=1
$BATCH
$STANDARD

2.19 Automatic differentiation

If derivatives of the model function FF are not given, i.e., if only macrovariable $FMODELF is defined,
then either numerical or automatic differentiation is used if it is necessary. The choice of the kind of
differentiation is specified by the macrovariable $IADF:

$IADF=0 - Derivatives of the model function are computed by numerical differentiation.
$IADF=1 - The first order derivatives of the model function are computed by using the reverse mode

of automatic differentiation. New macrovariable $FGMODELF, which defines the value
FF and the gradient GF of the model function is created and the original macrovariable
$FMODELF is cancelled. The second order derivatives are computed numerically if they
are required.

38

$IADF=2 - The first order derivatives of the model function are computed by using the reverse mode
of automatic differentiation. New macrovariable $FGMODELF, which defines the value
FF and the gradient GF of the model function is created. The reverse mode is followed
by the forward mode for computation of the second order derivatives. New macrovariable
$HMODELF, which defines the Hessian matrix HF of the model function is created. Finally,
the original macrovariable $FMODELF is cancelled.

Automatic differentiation is realized in the first phase by the UFO control language preprocessor. All
variables contained in macrovariable $FMODELF are redefined and all expressions are transformed in the
way that also the sequence of elementary operations and their parameters are stored. The list of elementary
operations is used in the reverse mode of automatic differentiation by the subroutine RVRSWP (if $IADF=1)
or RVRSWPH (if $IADF=2). The subroutines, which realize elementary operations are included to the UFO
source program.

If the automatic differentiation is chosen ($IADF>0), there are limitations concerning Fortran 77
expressions in the macrovariable $FMODELF:

• If an expression contains array $FLOAT W(100), say, with elements depending on the vector of
variables, then the user has to declare corresponding array INTEGER IAD W(100) in the input file
*.UFO (before statements $GLOBAL or $STANDARD).

• Calls of functions and subroutines (with exceptions of intrinsic Fortran 77 functions) are not permit-
ted.

• Names of variables cannot contain digits.

• Statements containing scalar variables, e.g., W = W * X(I), cannot be used in a cycle. It is necessary
to declare array W(*) and write W(I+1) = W(I) * X(I) instead.

• Blanks cannot be used in WRITE statement. Arguments of functions are not replaced by transformed
variables in WRITE statement.

• Blanks cannot be used in IF and ELSE IF statements. Only comparisons of numbers and variables
are permitted (expressions are forbidden). Arguments of functions and indices of arrays are not
replaced by transformed variables in IF and ELSE IF statements.

• Computed GO TO statement cannot be used.

Automatic differentiation can also be used for computation of derivatives of approximating functions
and constraint functions described by macrovariables $FMODELA and $FMODELC, respectively. In these
cases, the kind of differentiation is specified by macrovariables $IADA and $IADC. The meaning of these
macrovariables and the limitations concerning Fortran 77 expressions in macrovariables $FMODELA and
$FMODELC are the same as those for macrovariables $IADF and $FMODELF described above.

Automatic differentiation can be used for dense problems at present, i.e., it does not work if $JACA=’S’,
$JACC=’S’, $HESF=’S’, $HESF=’B’.

39

3 Optimization methods in the UFO system

The UFO system has a modular structure. All optimization methods can be set up using the individual sim-
ple modules. For example, the sequential quadratic programming variable metric methods for nonlinearly
constrained optimization problems are set up by using the modules for an objective function evaluation,
penalty function definition, direction determination, quadratic programming solution, stepsize selection,
and variable metric update. The optimization methods contained in the UFO system can be roughly
divided into two groups. The first group contains methods for unconstrained and linearly constrained
optimization problems, while the second group contains methods for general nonlinear programming prob-
lems. Methods for general nonlinear programming problems, i.e. for problems with nonlinear constraints,
are classified by their realization form which is determined by using the macrovariable $FORM:

$FORM=’SQ’ - Sequential (or recursive) quadratic programming methods for general dense prob-
lems.

$FORM=’SE’ - Inexact sequential (or recursive) quadratic programming methods for sparse equality
constrained problems.

$FORM=’SI’ - Inexact interior point methods for sparse equality and inequality constrained prob-
lems.

$FORM=’SF’ - Inexact nonsmooth equation methods for sparse equality and inequality constrained
problems.

Sections 3.1 – 3.22 concern methods for unconstrained and linearly constrained problems. These methods
do not use the macrovariable $FORM for a classification. Methods for general nonlinear programming
problems are described in Sections 3.23 – 3.26. The basic parts of optimization methods are described in
Sections 3.27 – 3.31. Section 3.32 is devoted to global optimization methods.

Methods for unconstrained and linearly constrained problems contained in the UFO system can be
partitioned into several classes which are specified by using the macrovariable $CLASS:

$CLASS=’HM’ - Heuristic methods for small-size problems. This class contains the pattern search
method and the simplex method.

$CLASS=’CD’ - Conjugate direction methods which use no matrices. This class contains conjugate
direction methods and variable metric methods with limited storage based on the
Strang recursions.

$CLASS=’VM’ - Variable metric methods which use an approximation of the Hessian matrix which
is updated in each iteration.

$CLASS=’VL’ - Variable metric methods with limited storage based on compact variable metric
updates.

$CLASS=’VP’ - Variable metric methods with limited storage based on shifted product-form variable
metric updates.

$CLASS=’VR’ - Variable metric methods with limited storage based on reduced Hessians.
$CLASS=’MN’ - Modified Newton methods which use the Hessian matrix computed either analyti-

cally or numerically.
$CLASS=’TN’ - Truncated Newton methods based on the difference approximation of directional

derivatives.
$CLASS=’GN’ - Modified Gauss-Newton methods for nonlinear least squares problems which use the

normal equation matrix as an approximation of the Hessian matrix. These methods
are also realized by using the Jacobian matrix representation.

$CLASS=’QN’ - Quasi-Newton methods for nonlinear least squares problems and nonlinear equations.
$CLASS=’QL’ - Quasi-Newton methods with limited storage for sparse nonlinear least squares prob-

lems and sparse nonlinear equations.
$CLASS=’QB’ - Quasi-Newton and Brent methods for nonlinear equations.
$CLASS=’LP’ - Simplex type methods for linear programming problems.
$CLASS=’LI’ - Interior point methods for linear programming problems.
$CLASS=’QP’ - Simplex type methods for quadratic programming problems.
$CLASS=’QI’ - Interior point methods for quadratic programming problems.

40

$CLASS=’BM’ - Proximal bundle methods for nonsmooth optimization.
$CLASS=’BN’ - Bundle-Newton methods for nonsmooth optimization.
$CLASS=’VB’ - Variable metric bundle methods for nonsmooth optimization.

The individual methods from the above classes can be chosen by using additional specifications. The
most important ones, concerning direction determination and stepsize selection, are the type of the method,
the kind of the matrix decomposition and the number of the method. The type of the method is specified
by the macrovariable $TYPE:

$TYPE=’L’ - Line search methods.
$TYPE=’G’ - General trust region methods.
$TYPE=’T’ - Special trust region methods for nonlinear least squares problems.
$TYPE=’M’ - Modified Marquardt methods for nonlinear least squares problems.
$TYPE=’F’ - SQP filter methods for nonlinear programming problems.
$TYPE=’P’ - Pattern search method of Hooke and Jeeves.
$TYPE=’S’ - Simplex method of Nelder and Mead.

The kind of the matrix decomposition is specified by the macrovariable $DECOMP:

$DECOMP=’M’ - The symmetric matrix is used as an input for the direction determination.
$DECOMP=’G’ - The LDLT decomposition without permutations is used as an input for the direction

determination. This decomposition is usually obtained by the Gill-Murray algorithm
[62].

$DECOMP=’S’ - The LDLT decomposition with permutations is used as an input for the direc-
tion determination. This decomposition is usually obtained by the Schnabel-Eskow
algorithm [154].

$DECOMP=’B’ - The block LDLT decomposition with permutations is used as an input for the
direction determination. This decomposition is usually obtained by the Bunch-Parlett
algorithm [17].

$DECOMP=’I’ - The inverse of a symmetric matrix is used as an input for the direction determination.
$DECOMP=’R’ - the RT R decomposition without permutations is used as an input for the direction

determination. This decomposition is usually obtained by the recursive QR factor-
ization [84].

$DECOMP=’C’ - The RT R decomposition with permutations is used as an input for the direction
determination. This decomposition is usually obtained by an application of the rank
revealing algorithm [24].

$DECOMP=’A’ - The rectangular matrix is used as an input for the direction determination.
$DECOMP=’Q’ - The QR decomposition of a rectangular matrix without permutations is used as

an input for the direction determination. This decomposition is usually obtained by
using the Householder reflection with the explicitly stored orthogonal matrix Q.

$DECOMP=’E’ - The general square matrix is used as an input for the direction determination in the
case NA=NF (system of nonlinear equations).

If $FORM=’SE’, we have additional possibilities for a representation of matrices in the direction determi-
nation:

$DECOMP=’K’ - The indefinite Karush-Kuhn-Tucker matrix is used as an input for the direction
determination.

$DECOMP=’Z’ - The null space representation based on orthogonal projection is used as an input for
the direction determination.

$DECOMP=’G’ - The range space representation based on the Schur complement is used as an input
for the direction determination.

41

If $FORM=’SI’, then the following possibility for a representation of matrices in the direction determination
is used implicitly:

$DECOMP=’I’ - The interior point Karush-Kuhn-Tucker matrix is used as an input for the direction
determination.

If $FORM=’SF’, then the following possibility for a representation of matrices in the direction determina-
tion is used implicitly:

$DECOMP=’F’ - The nonsmooth equation Karush-Kuhn-Tucker matrix is used as an input for the
direction determination.

Macrovariable $DECOMP is also used for the selection of conjugate direction methods. In this case it
does not concern the kind of matrix decomposition.

The serial number of the method is specified by the macrovariable $NUMBER. It determines an indi-
vidual realization of the direction determination.

Additional information about specifications $TYPE, $DECOMP, $NUMBER is given in Section 3.26.
All options used for the method selection have default values, which follow from the knowledge bases

coded in the individual templates. Therefore they need not be specified by the user. The possibilities we
describe can be of service to users who are familiar with optimization methods.

Almost all optimization methods have different realizations for the three different representations of the
objective function. If $HESF=’D’, dense variants can be used for either unconstrained problems or box con-
strained problems or linearly constrained problems (with dense linear constraints specified by $JACC=’D’).
If $HESF=’S’, sparse variants can be used for either unconstrained problems or box constrained problems
or linearly constrained problems (with sparse linear constraints specified by $JACC=’S’). If $JACA=’S’
and $HESF=’B’, partitioned variants can be used for either unconstrained problems or box constrained
problems. Partitioned variants of optimization methods are usually less efficient due to the more expensive
matrix operations. Therefore we recommend preferring sparse variants to the partitioned ones.

3.1 Heuristic methods

Heuristic (or comparative) methods are specified by the statement $CLASS=’HM’. These methods should
be used only for small-size problems (with 10 variables at most). The main advantage of heuristic methods
is that they do not require continuity of the objective function.

The individual heuristic methods are specified by the macrovariable $TYPE:

$TYPE=’P’ - Pattern search method of Hooke and Jeeves [75].
$TYPE=’S’ - Simplex method of Nelder and Mead [137].

The default value is $TYPE=’P’.

3.2 Conjugate direction methods

Conjugate direction methods are specified by the statement $CLASS=’CD’. These methods are very ef-
ficient for large problems with computationally simple objective functions ($KCF=1 or $KCA=1). The
main advantage of conjugate direction methods is that no matrices are used (implicitly $HESF=’N’). This
fact highly decreases storage requirements.

The individual conjugate direction methods are specified by the macrovariable $DECOMP:

$DECOMP=’C’ - Conjugate gradient methods. These methods are the simplest ones of all conju-
gate direction methods and they require the fewest storage requirements. However,
they usually consume a greater number of function evaluations then other conjugate
direction methods.

42

$DECOMP=’V’ - Variable metric methods with limited storage based on the Strang recursions. These
methods allow us to prescribe storage requirements using the number of VM steps
(the number of necessary used vectors is approximately twice as great a number of
VM steps). The number of VM steps is specified by the macrovariable $MF. Variable
metric methods with limited storage usually consume fewer function evaluations then
conjugate gradient methods.

There are two families of conjugate gradient methods implemented in the UFO system:

$NUMBER=1 - Basic conjugate gradient methods described in [93]. The individual methods are
specified by using the macrovariables $MET, $MET1 and $MET2.

$NUMBER=2 - Generalized conjugate gradient methods introduced in [78]. The individual methods
are specified by using the macrovariable $MET1.

Macrovariable $MET determines the conjugate gradient method:

$MET=0 - The steepest descent method is used.
$MET=1 - The Fletcher-Reeves method [54] is used.
$MET=2 - The Polak-Ribiere method [143] is used.
$MET=3 - The Hestenes-Stiefel method [73] is used.
$MET=4 - The Dai-Yuan method [32] is used.
$MET=5 - The Liu-Storey method [89] is used.
$MET=6 - The conjugate descent method [50] is used.
$MET=7 - The hybrid Hu-Storey method [79] is used.
$MET=8 - The hybrid Dai-Yuan method [33] is used.
$MET=9 - The hybrid Dai-Liao method [31] is used.

The default value is $MET=3.
Macrovariable $MET1 specifies the restart procedure as it is described in [93].

$MET1=1 - A restarted CG method is used.
$MET1=2 - A restarted CG method with a positive parameter is used.
$MET1=3 - A bounded CG method with a positive parameter is used.
$MET1=4 - A CG method with the test on conjugation is used.
$MET1=5 - A CG method with the test on orthogonality is used.

The default value is $MET1=3 for the Hestenes-Stiefel method and $MET1=4 for other methods.
Macrovariable $MET2 specifies the scaling parameter as is described in [93].

$MET2=1 - No scaling is used.
$MET2=2 - The BFGS scaling in every iteration is used.
$MET2=3 - The DFP scaling in every iteration is used.
$MET2=4 - The Hoshino scaling in every iteration is used.

The default value is $MET2=1.
Similarly, the UFO system contains two variable metric methods with limited storage:

$NUMBER=1 - The BFGS method with limited storage described in [138]. The default number of
VM steps is $MF=5.

$NUMBER=2 - The extended BFGS method with limited storage described in [80]. The default
number of VM steps is $MF=3.

Both these methods are realized by using various scaling techniques [88] specified by the macrovariable
$MET1.

43

$MET1=1 - The scaling is suppressed.
$MET1=2 - The scalar scaling is used.
$MET1=3 - The diagonal scaling is used.
$MET1=4 - The scalar and diagonal scalings are used simultaneously.

The default value is $MET1=2. Values $MET1=3 and $MET1=4 can be used only if $NUMBER=1.
Possible specifications (type-decomposition-number) for the conjugate direction methods in the uncon-

strained case are these:

L-C-1, L-V-1,
L-C-2, L-V-2.

The default choice is L-C-1. Conjugate direction methods can also be used for sparse linear constraints
when $JACC=’S’.

3.3 Variable metric methods

Variable metric methods are specified by the statement $CLASS=’VM’. These methods are most com-
monly used for either unconstrained or linearly constrained optimizations. Variable metric methods use
a symmetric (usually positive definite) matrix which is updated in every iteration in such a way that it
approximates the Hessian matrix of the objective function as precisely as possible. In the UFO system,
the variable metric methods are realized in the three different forms (for $HESF=’D’, $HESF=’S’ and
$HESF=’B’) depending on the Hessian matrix specification.

There are three families of variable metric methods for dense problems ($HESF=’D’) which are distin-
guished using the macrovariable $UPDATE:

$UPDATE=’B’ - The Broyden family [15]. Variable metric methods from this family are the most
commonly used ones since they are very robust and efficient.

$UPDATE=’D’ - The Davidon family [34]. Variable metric methods from this family are similar to
the previous ones. The only difference is that projections into the new subspace are
computed. This guarantees the quadratic termination property even in the case of an
imperfect line search.

$UPDATE=’S’ - The shifted Broyden family [182]. Variable metric methods from this family are
efficient without scaling strategies.

The default value is $UPDATE=’B’.
Individual variable metric methods are specified by using macrovariables $MET, $MET1, $MET2

$MET3 and $MET4. Macrovariable $MET determines the variable metric update.

$MET=1 - The BFGS method [15], [48], [65], [156] is used.
$MET=2 - The DFP method [35], [53] is used.
$MET=3 - The Hoshino method [76] is used.
$MET=4 - The safeguarded rank-one method [94] is used.
$MET=5 - The optimally conditioned method [34] is used.
$MET=6 - The rank-one based method [94] from the perfect Broyden subclass is used.
$MET=7 - The variationally derived method [102] from the perfect Broyden subclass is used.
$MET=8 - The heuristic method [95] is used.
$MET=9 - The method [187] derived from the matrix decomposition is used.
$MET=10 - The method [188] which minimizes the angle between the direction vector and the

negative gradient is used.
$MET=11 - The method [95] which minimizes the norm of the direction vector is used.
$MET=12 - The least prior deviation method [131] is used.

44

The default value is $MET=1. If we specify $DECOMP=’M’, only values $MET=1,2,3,4 can be used. If
we specify $UPDATE=’M’, only values $MET=1,2,3,4,5,6,7,8 can be used. If we specify $UPDATE=’S’,
only values $MET=1,2,3,4,5,6 can be used ($MET=5 corresponds to the variationally derived method [102]
from the perfect Broyden subclass and $MET=5 corresponds to the hybrid globally convergent update
[182] in this case).

Macrovariable $MET1 determines the Oren (scaling) parameter [140].

$MET1=±1 - No scaling is used.
$MET1=±2 - The initial scaling [157] is used.
$MET1=±3 - The controlled scaling [102] is used.
$MET1=±4 - The interval scaling [120] is used.
$MET1=±5 - The scaling in each iteration is used.

Moreover, if $MET1>0, the basic initial scaling is used and if $MET2<0, the modified initial scaling is
used. The default value is $MET1=4.

Macrovariable $MET2 determines the value of the Biggs (nonquadratic model) parameter [6].

$MET2=±1 - The unit value is used.
$MET2=±2 - The Spedicato value [159] is used.
$MET2=±3 - The modified Spedicato value [95] is used.
$MET2=±4 - The value determined from the homogeneous model [95] is used.
$MET2=±5 - The value determined from the Bigs cubic model [5] is used.
$MET2=±6 - The value determined from the Zhang tensor model [189] is used.
$MET2=±7 - The Deng curvilinear model [186] is used.

Moreover, if $MET2>0, the basic update is used and if $MET2<0, the modified update [149] is used. The
default value is $MET2=2.

Macrovariable $MET3 determines the Powell correction [144].

$MET3=1 - The Powell correction is suppressed (the strong update elimination).
$MET3=2 - The Powell correction is suppressed (the weak update elimination).
$MET3=3 - The Powell correction is applied.

The default value is $MET3=1. If $UPDATE=’S’, then macrovariable $MET3 determines the value of
the shift parameter [182].

$MET3=0 - The parameter from the previous iteration is used.
$MET3=1 - A simple choice with the constant relative parameter is used.
$MET3=2 - A choice defined by a quadratic equation is used.
$MET3=3 - A heuristic choice with the relative parameter not greater than half is used.
$MET3=4 - A heuristic choice with the optimally conditioned first iteration (the first formula)

is used.
$MET3=5 - A heuristic choice with the optimally conditioned first iteration (the second formula)

is used.
$MET3=6 - A heuristic choice derived from the lowest eigenvalue is used.

The default value is $MET3=4.
Macrovariable $MET4 specifies a rule for the determination of the scaling parameter [108].

$MET4=1 - The BFGS scaling is used.
$MET4=2 - The DFP scaling is used.
$MET4=3 - The geometric mean is used.
$MET4=4 - The harmonic mean is used.
$MET4=5 - The arithmetic mean is used.

45

The default value depends on the value of macrovariable $MET (values $MET4=1 or $MET4=3 are most
frequently used).

Possible specifications (type-decomposition-number) for dense variable metric methods in the uncon-
strained case are these:

L-G-1, L-S-1, L-B-1, L-I-1, L-M-1,
L-M-3,

G-G-1, G-S-1, G-B-1, G-M-1,
G-G-2, G-S-2, G-B-2, G-M-2,

G-M-3,
G-M-4,
G-M-5,
G-M-7.

The default choice is L-I-1. In both the box constrained and the linearly constrained cases we cannot use
specifications with $DECOMP=’B’.

If the Hessian matrix is sparse with a general pattern ($HESF=’S’), the sparse variable metric methods,
which preserve this pattern, are used. If $DECOMP=’M’, the individual variable metric updates (or
families) are specified by using the macrovariable $UPDATE:

$UPDATE=’M’ - The simple Marwil projection update [129]. This update can only be used if $DE-
COMP=’M’.

$UPDATE=’G’ - The fractioned Marwil projection update [174]. This update can only be used if
$DECOMP=’M’ and $NUMBER=3.

$UPDATE=’T’ - The fractioned Toint projection update (the best method given in [174]). This
update can only be used if $DECOMP=’M’ and $NUMBER=3.

$UPDATE=’B’ - The partitioned variable metric updates from the Broyden family [69]. These updates
can only be used if $MODEL=’AF’ or $MODEL=’AQ’ or $MODEL=’AP’.

The default value is $UPDATE=’M’.
Fractioned updates with specifications $UPDATE=’G’ or $UPDATE=’T’ can only be used in the

unconstrained case. If $UPDATE=’B’, the particular update is specified by using the macrovariable
$MET.

$MET=1 - The BFGS method [15], [48], [65], [156] is used.
$MET=2 - The DFP method [35], [53] is used.
$MET=3 - The Hoshino method [76] is used.
$MET=4 - The safeguarded rank-one method [94] is used.

The default value is $MET=1.
If $DECOMP=’G’, less efficient sparse product form updates from the Broyden family are used. In

this case, the particular update is specified by using the macrovariable $MET as in the previous case. The
default value is $MET=1.

Possible specifications (type-decomposition-number) for sparse variable metric methods in the uncon-
strained case are these:

L-G-1, L-M-1,
L-M-3,

G-G-1, G-M-1,
G-M-2,
G-M-3,
G-M-4,
G-M-5,
G-M-7.

46

The default choice is L-M-3. In the box constrained case, only the choice $DECOMP=’M’ is permitted.
The fractioned updates ($UPDATE=’T’ and $UPDATE=’G’) can only be used if $DECOMP=’M’ and
$NUMBER=3.

If the Hessian matrix is sparse with a partitioned pattern ($HESF=’B’), only the partitioned variable
metric updates, specified by the choice $UPDATE=’B’, can be used. These updates are the same as in the
case when the Hessian matrix is sparse with a general pattern, but the partitioned realization is usually
less efficient than the general one due to the more expensive matrix operations.

Possible specifications (type-decomposition-number) for partitioned variable metric methods in the
unconstrained case are these:

L-M-3,
G-M-3.

The default choice is L-M-3.

3.4 Variable metric methods with limited storage based on compact variable metric updates

Variable metric methods with limited storage based on compact variable metric updates are specified by
the statement $CLASS=’VL’. The number of VM steps is specified by the macrovariable $MF (the default
value is $MF=5). Variable metric methods with limited storage based on compact variable metric updates
use several small-size matrices which are updated in every iteration in such a way that their product
approximates the Hessian matrix as precisely as possible [21].

Individual variable metric methods with limited storage based on compact variable metric updates are
specified by using the macrovariables $MET and $MET1. Macrovariable $MET determines the variable
metric update.

$MET=1 - The BFGS method [15], [48], [65], [156] is used.
$MET=4 - The safeguarded rank-one method [94] is used.

The default value is $MET=1.
Macrovariable $MET1 determines the scaling technique.

$MET1=1 - The scaling is suppressed.
$MET1=2 - The scalar scaling is used.

The default value is $MET1=2.
Possible specifications (type-decomposition-number) for variable metric methods with limited storage

based on compact variable metric updates are these:

L-I-1,
L-M-3,
G-M-3,
G-M-4,
G-M-5.

3.5 Variable metric methods with limited storage based on shifted product-form variable metric
updates

Variable metric methods with limited storage based on shifted product-form variable metric updates are
specified by the statement $CLASS=’VP’. The number of VM steps is specified by the macrovariable $MF
(the default value is $MF=10). Variable metric methods with limited storage based on shifted product-
form variable metric updates use a rectangular matrix containing $MF columns with $NF elements, which

47

is updated in every iteration in such a way that the shifted product of this matrix with its transposition
approximates the Hessian matrix as precisely as possible [182].

Individual variable metric methods with limited storage based on shifted product-form variable metric
updates are specified by using the macrovariables $MET $MET3 and $MET5. Macrovariable $MET
determines the variable metric update.

$MET=1 - The the BFGS method [15], [48], [65], [156] is used.
$MET=2 - The DFP method [35], [53] is used.
$MET=3 - The Hoshino method [76] is used.
$MET=4 - The safeguarded rank-one method [94] is used.
$MET=5 - The variationally derived method [102] from the preconvex part of the Broyden

family is used.

The default value is $MET=1.
Macrovariable $MET3 determines the shift parameter.

$MET3=0 - The parameter from the previous iteration is used.
$MET3=1 - A simple choice with the constant relative parameter is used.
$MET3=2 - A choice defined by a quadratic equation is used.
$MET3=3 - A heuristic choice with the relative parameter not greater than half is used.
$MET3=4 - A heuristic choice with the optimally conditioned first iteration (the first formula)

is used.
$MET3=5 - A heuristic choice with the optimally conditioned first iteration (the second formula)

is used.
$MET3=6 - A heuristic choice derived from the lowest eigenvalue is used.

The default value is $MET3=4.
Macrovariable $MET5 determines the individual limited-memory method.

$MET5=±1 - A rank-one limited memory method is used.
$MET5=±2 - A simple rank-two limited memory method is used.
$MET5=±3 - The the rank-two limited memory method derived from the shifted Broyden class

(based on a simple simple choice) is used.
$MET5=±4 - The rank-two limited memory method derived from the shifted Broyden class (based

on a minimization of the Frobenius norm) is used.
$MET5=±5 - The rank-two limited memory method derived from the shifted Broyden class (based

on a comparison of direction vectors) is used.
$MET5=±6 - The rank-two limited memory method derived from the standard Broyden class

(based on a minimization of the Frobenius norm) is used.

Two different implementations ($MET5>0 and $MET5<0) can be used. The default value is $MET5=5.
Possible specifications (type-decomposition-number) for variable metric methods with limited storage

based on shifted product-form variable metric updates are these:

L-I-1.

3.6 Variable metric methods with limited storage based on reduced Hessians

Variable metric methods with limited storage based on reduced Hessians are specified by the statement
$CLASS=’VR’. The number of VM steps is specified by the macrovariable $MF (the default value is
$MF=10). Variable metric methods with limited storage based on reduced Hessians use a small-size
matrix which is updated in every iteration in such a way that it approximates the reduced Hessian matrix
as precisely as possible [60].

There are two families of variable metric methods with limited storage based on reduced Hessians
implemented in the UFO system:

48

$NUMBER=1 - Basic variable metric methods with limited storage based on reduced Hessians de-
scribed in [60].

$NUMBER=2 - Variable metric methods with limited storage based on reduced Hessians and or-
thogonal transformations described in [182].

Individual variable metric methods with limited storage based on reduced Hessians are specified by
using the macrovariables $MET, $MET1, $MET2, $MET3, $MET4 and $MET5. Macrovariable $MET
determines the variable metric update.

$MET=1 - The BFGS method [15], [48], [65], [156] is used.
$MET=2 - The DFP method [35], [53] is used.
$MET=3 - The Hoshino method [76] is used.
$MET=4 - The safeguarded rank-one method [94] is used.
$MET=5 - The optimally conditioned method [34] is used.
$MET=6 - The rank-one based method [94] from the perfect Broyden subclass is used.
$MET=7 - The variationally derived method [102] from the perfect Broyden subclass is used.
$MET=8 - The heuristic method [95] is used.
$MET=9 - The method [187] derived from the matrix decomposition is used.
$MET=10 - The method [188] which minimizes the angle between the direction vector and the

negative gradient is used.

The default value is $MET=1.
Macrovariable $MET1 determines the Oren (scaling) parameter [140].

$MET1=1 - No scaling is used.
$MET1=2 - The initial scaling [157] is used.
$MET1=3 - The controlled scaling [102] is used.
$MET1=4 - The interval scaling [120] is used.
$MET1=5 - The scaling in each iteration is used.

The default value is $MET1=3.
Macrovariable $MET2 determines the value of the Biggs (nonquadratic model) parameter [6].

$MET2=1 - The unit value is used.
$MET2=2 - The Spedicato value [159] is used.
$MET2=3 - The modified Spedicato value [95] is used.
$MET2=4 - The value determined from the homogeneous model [95] is used.
$MET2=5 - The value determined from the Biggs cubic model [5] is used.

Moreover, if $MET2>0, the basic update is used and if $MET2<0, the modified update [149] is used. The
default value is $MET2=2.

Macrovariable $MET3 determines the Powell correction [144].

$MET3=1 - The Powell correction is suppressed (the strong update elimination).
$MET3=2 - The Powell correction is suppressed (the weak update elimination).
$MET3=3 - The Powell correction is applied.

The default value is $MET3=1.
Macrovariable $MET4 specifies a rule for the determination of the scaling parameter [108].

$MET4=1 - The BFGS scaling is used.
$MET4=2 - The DFP scaling is used.
$MET4=3 - The geometric mean is used.
$MET4=4 - The harmonic mean is used.
$MET4=5 - The arithmetic mean is used.

49

The default value depends on the value of macrovariable $MET (values $MET4=1 or $MET4=3 are most
frequently used).

Macrovariable $MET5 specifies a type of scaling.

$MET5=1 - The standard scaling is used .
$MET5=2 - The simplified scaling is used .

The default value is $MET5=1.
Possible specifications (type-decomposition-number) for variable metric methods with limited storage

based on reduced Hessians are these:

L-R-1 L-I-1,
L-R-2 L-I-2.

3.7 Modified Newton methods

Modified Newton methods are specified by the statement $CLASS=’MN’. These methods use the Hessian
matrix of the objective function which is computed either analytically or numerically. The UFO sys-
tem performs a numerical computation of the Hessian matrix automatically whenever the macrovariable
$HMODELF (or $FGHMODELF) is not defined. Modified Newton methods are realized in the three
different forms (for $HESF=’D’, $HESF=’S’ and $HESF=’B’) depending on the Hessian matrix specifi-
cation. Even if the modified Newton methods can be realized as line search methods ($TYPE=’L’), it is
more advantageous to realize them as trust region methods ($TYPE=’G’).

If the Hessian matrix is dense ($HESF=’D’), all second derivatives have to be given analytically or they
are computed numerically by using differences of gradients. Possible specifications (type-decomposition-
number) for dense modified Newton methods in the unconstrained case are these:

L-G-1, L-S-1, L-B-1, L-M-1,
L-G-2, L-S-2, L-B-2, L-M-2,

L-M-3,
G-G-1, G-S-1, G-B-1, G-M-1,
G-G-2, G-S-2, G-B-2, G-M-2,

G-M-3,
G-M-4,
G-M-5,
G-M-7.

The default choice is G-M-7. In both the box constrained and the linearly constrained cases we cannot use
specifications with $DECOMP=’S’ and $DECOMP=’B’. The choice L-G-1 differs from the choice L-G-2.
The last one corresponds to the combination of both the Newton and the conjugate gradient methods.

If the Hessian matrix is sparse with a general pattern ($HESF=’S’), we have two possibilities. If
$MODEL=’FF’, only the structurally nonzero second order derivatives have to be given analytically by
using the prescribed pattern. The numerical computation of the second derivatives is based on the fact
that a substantially lower number of differences has to be used in comparison with the dense case. The
determination of suitable differences is a combinatorial problem equivalent to a graph coloring problem
[26], [25]. If $MODEL=’AF’ or $MODEL=’AQ’ or $MODEL=’AP’, only the nonzero second derivatives of
the approximating functions have to be given analytically by using the prescribed pattern. The numerical
computation of the second derivatives is based on the fact that the approximating functions depend on a
minor number of variables so that the number of differences is substantially lower in comparison to the
dense case.

If $MODEL=’AQ’ (sum of squares), the combination [98] of both the modified Newton and the modified
Gauss-Newton methods can be used. This choice is possible by using the macrovariable $MET.

50

$MET=1 - The modified Newton method is used.
$MET=2 - The the combined method is used.

The default value is $MET=2.
Possible specifications (type-decomposition-number) for sparse modified Newton methods in the un-

constrained case are these:

L-G-1, L-M-1,
L-M-3,

G-G-1, G-M-1,
G-M-2,
G-M-3,
G-M-4,
G-M-5,
G-M-7.

The default choice is G-M-3. In the box constrained case, only the choice $DECOMP=’M’ is permitted.
If the Hessian matrix is sparse with a partitioned pattern ($HESF=’B’), a computation of the second

order derivatives is the same as in the case when the Hessian matrix is sparse with a general pattern, but
the partitioned realization is usually less efficient than the general one due to the more expensive matrix
operations.

If $MODEL=’AQ’ (sum of squares), the combination of both the modified Newton and the modified
Gauss-Newton methods can be used. This choice is possible by using the macrovariable $MET in the
same way that is used if $HESF=’S’. Possible specifications (type-decomposition-number) for partitioned
modified Newton methods in the unconstrained case are these:

L-M-3,
G-M-3.

The default choice is G-M-3.

3.8 Truncated Newton methods

Truncated Newton methods are specified by the statement $CLASS=’TN’. These methods differ from
modified Newton methods in that the directional derivatives are determined by the numerical differentiation
instead of the sparse Hessian matrix multiplication. Truncated Newton methods are very efficient for large
problems with computationally simple objective functions ($KCF=1 or $KCA=1). The main advantage of
truncated Newton methods is that no matrices are used (implicitly $HESF=’N’). This fact highly decreases
storage requirements.

Truncated Newton methods are implemented either as line search methods or as trust region meth-
ods and are based on the conjugate gradient subalgorithm. Possible specifications (type-decomposition-
number) for truncated Newton methods are these:

L-M-3,
G-M-3,
G-M-4,
G-M-5.

The default choice is G-M-3.

3.9 Modified Gauss-Newton methods for nonlinear least squares and nonlinear equations

Modified Gauss-Newton methods are specified by the statement $CLASS=’GN’. These methods are spe-
cial optimization methods for either nonlinear least squares ($MODEL=’AQ’) or nonlinear least powers

51

($MODEL=’AP’) problems. Modified Gauss-Newton methods are based on the fact that the first term in
the Hessian matrix expression, the so-called normal equation matrix, depending on the first derivatives of
the approximating functions only is a good approximation of the whole Hessian matrix. The second term
in the Hessian matrix expression can be approximated by using the variable metric updates.

Modified Gauss-Newton methods are realized in four different forms (for $HESF=’D’, $HESF=’S’,
$HESF=’B’, $HESF=’N’) depending on the Hessian matrix specification. Although the modified Gauss-
Newton methods can be realized as the line search methods ($TYPE=’L’), it is more advantageous to
realize them as the trust region methods ($TYPE=’G’).

If the Hessian matrix is specified to be dense ($HESF=’D’), then the normal equation matrix is also
dense. In this case, we can use hybrid methods with dense updates:

$UPDATE=’N’ - No update is used. The method utilizes the normal equation matrix (the first part
of the Hessian matrix expression).

$UPDATE=’S’ - The Dennis structured approach [39] is used. The second part of the Hessian matrix
is approximated by using modified variable metric updates. This part is added to
the normal equation matrix if the conditions for leaving the modified Gauss-Newton
method are satisfied.

$UPDATE=’F’ - The Fletcher hybrid approach [1], [55] is used. The Hessian matrix is approximated
either by the normal equation matrix or by the matrix obtained by using the variable
metric updates. The decision between the two cases is based on the rate of the
function value decrease and on the normal equation matrix conditioning.

$UPDATE=’B’ - A variable metric update from the Broyden class is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modified Gauss-Newton method are satisfied [98].

The default value is $UPDATE=’N’.
Individual variable metric updates from the above families are specified by using the macrovariable

$MET.

$MET=1 - The BFGS method [15], [48], [65], [156] is used.
$MET=2 - The DFP method [35], [53] is used.
$MET=3 - The Hoshino method [76] is used.
$MET=4 - The original (unsafeguarded) rank-one method is used.

The value $MET=4 is allowed only if $UPDATE=’S’ and is the default in this case. The value $MET=1
is the default in the other cases.

Variable metric updates ($UPDATE=’F’ or $UPDATE=’B’) can be realized either as simple updates
(normal equation matrix is updated) or as cumulative updates (previous approximation of the Hessian
matrix is updated), as is described in [98]. A decision between these possibilities is mediated by the
macrovariable $MOT1.

$MOT1=0 - The cumulative update is used.
$MOT1=1 - The simple update is used.

The default value is MOT1=1.
In the dense case, the modified Gauss-Newton methods can be realized with additional special matrix

decompositions which cannot be used in other cases. If $DECOMP=’R’, the recursive QR decomposition
[143] is used with an additional correction of the upper triangular matrix R. If $DECOMP=’C’, this matrix
R can moreover be changed by using the rank revealing algorithm [24] which can improve its conditioning.
Possible specifications (type-decomposition-number) for dense modified Gauss-Newton methods in the
unconstrained case are these:

52

L-G-1 , L-S-1, L-B-1, L-R-1, L-C-1, L-M-1,
L-M-3,

G-G-1, G-S-1, G-B-1, G-R-1, G-C-1, G-M-1,
G-G-2, G-S-2, G-B-2, G-R-2, G-C-2, G-M-2,

G-M-3,
G-M-4,
G-M-5,
G-M-7,

T-G-1, T-S-1, T-R-1, T-C-1, T-M-1,
T-G-2,

T-S-7, T-C-7, T-M-7,
M-M-1.

The default choice is G-M-7. In both the box constrained and the linearly constrained cases we cannot use
specifications $DECOMP=’S’, $DECOMP=’R’, $DECOMP=’C’. If $DECOMP=’S’ or $DECOMP=’C’,
then variable metric updates cannot be used ($UPDATE=’N’). The specification $UPDATE=’S’ can only
be used if $DECOMP=’M’.

If the Hessian matrix is specified to be sparse with a general pattern ($HESF=’S’), the normal equation
matrix has the same structure. In this case, we can use hybrid methods with sparse updates:

$UPDATE=’N’ - No update is used. The method utilizes the normal equation matrix (the first part
of the Hessian matrix expression).

$UPDATE=’S’ - The Dennis structured approach [39] is used. The second part of the Hessian matrix
is approximated by using modified variable metric updates. This part is added to the
normal equation matrix if conditions for leaving the modified Gauss-Newton method
are satisfied.

$UPDATE=’D’ - The Brown-Dennis structured approach [16] is used. The Hessian matrices of approx-
imating functions are approximated by using variable metric updates. These matrices
serve for approximating the second part of the Hessian matrix which is added to the
normal equation matrix if conditions for leaving the modified Gauss-Newton method
are satisfied.

$UPDATE=’B’ - A variable metric update from the Broyden class is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modified Gauss-Newton method are satisfied [98].

$UPDATE=’M’ - A sparse update based on the Marwil projection is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modified Gauss-Newton method are satisfied [98].

The default value is $UPDATE=’N’.
Individual variable metric updates from the above families are specified by using the macrovariable

$MET as in the dense case. The value $MET=4 is allowed only if either $UPDATE=’S’ or $UPDATE=’D’,
and is the default in this case. The value $MET=1 is the default in the other cases excepting the case
$UPDATE=’M’ in which the macrovariable $MET is not utilized.

Variable metric updates ($UPDATE=’M’ or $UPDATE=’B’) can be realized either as simple updates
(normal equation matrix is updated) or as cumulative updates (previous approximation of the Hessian
matrix is updated). A decision between these possibilities is mediated by the macrovariable $MOT1
similarly as in the dense case.

If $UPDATE=’D’, we can use several switches for utilizing variable metric updates specified by the
macrovariable $MOT2.

$MOT2=0 - The Fletcher and Xu switch [55] is used.
$MOT2=1 - A modification of the Fletcher and Xu switch is used.
$MOT2=2 - The Dennis and Welsch switch [43] is used.
$MOT2=3 - The Ramsin and Wedin switch [150] is used.

53

The default value is $MOT2=0.
Possible specifications (type-decomposition-number) for sparse Gauss-Newton methods in the uncon-

strained case are these:

L-G-1, L-M-1,
L-M-3,

G-G-1, G-M-1,
G-G-2, G-M-2,

G-M-3,
G-M-4,
G-M-5,
G-M-7,

T-G-1, T-M-1,
T-M-7,
M-M-1.

The default choice is G-M-3. In the box constrained case, only the choice $DECOMP=’M’ is permitted.
If the Hessian matrix is specified to be sparse with a partitioned pattern ($HESF=’B’), the normal

equation matrix has the same structure. If this is the case, then we can use hybrid methods with partitioned
updates $UPDATE=’N’, $UPDATE=’S’, $UPDATE=’D’, $UPDATE=’F’, $UPDATE=’B’, whose details
have already been explained above. Note that the partitioned realization is usually less efficient than the
general one due to the more expensive matrix operations.

Possible specifications (type-decomposition-number) for partitioned Gauss-Newton methods are these:

L-M-3,
G-M-3.

The default choice is G-M-3.
If the Hessian matrix is not specified ($HESF=’N’), the normal equation matrix is not used. The

Jacobian matrix, defining a linear least squares problem, is utilized in each iteration instead. Such so-
called normal equation free Gauss-Newton methods are realized in the two different forms (for $JACA=’D’
and $JACA=’S’) depending on the Jacobian matrix specification.

If the Jacobian matrix is specified to be dense ($JACA=’D’), then we cannot use hybrid methods with
variable metric updates (only the specification $UPDATE=’N’ is permitted). Moreover, dense, normal
equation free Gauss-Newton methods can only be used in the unconstrained case.

Possible specifications (type-decomposition-number) for dense, normal equation free, Gauss-Newton
methods are these:

L-Q-1, L-A-1, L-E-1,
L-A-3, L-E-3,
L-A-4, L-E-4,

L-E-5,
G-Q-1, G-A-1, G-E-1,
G-Q-2, G-E-2,

G-A-3, G-E-3,
G-A-4, G-E-4,

G-E-5,
G-A-7.

The default choice is G-A-3 for least squares problems and G-E-3 for systems of nonlinear equations. The
specification $DECOMP=’E’ can only be used if NA=NF (system of nonlinear equations).

If the Jacobian matrix is specified to be sparse ($JACA=’S’), we can use hybrid methods with simple
variable metric updates:

54

$UPDATE=’N’ - No update is used. The method utilizes the original Jacobian matrix.
$UPDATE=’V’ - The simple factorized BFGS update [98] is used. The second order information is

approximated by the unsymmetric rank-one update of the Jacobian matrix.
$UPDATE=’R’ - The simple factorized rank-one update [98] is used. The second order information

is approximated by the addition of a dense row to the Jacobian matrix.

If $UPDATE=’V’ or $UPDATE=’R’, we can use several switches for utilizing variable metric updates,
specified by the macrovariable $MOT2 as in the case of the specification $HESF=’S’ described above. The
default value is $MOT2=0.

The main advantage of sparse, normal equation free, Gauss-Newton methods consists in the fact that
the normal equation matrix is dense if the sparse Jacobian matrix has at least one dense row. If this is the
case, then the classical Gauss-Newton methods cannot be used. On the other hand, the normal equation
matrix often has a lower number of nonzero elements than the Jacobian one. Consequently, the classical
Gauss-Newton methods are more efficient in this case.

Possible specifications (type-decomposition-number) for sparse, normal equation free, Gauss-Newton
methods are these:

L-A-1, L-E-1,
L-A-3, L-E-3,
L-A-4, L-E-4,

L-E-5,
G-A-1, G-E-1,

G-E-2,
G-A-3, G-E-3,
G-A-4, G-E-4,

G-E-5,
G-A-7.

The default choice is G-A-3 for least squares problems and G-E-3 for systems of nonlinear equations. The
specification $DECOMP=’E’ can only be used if NA=NF (system of nonlinear equations). The choice
L-E-1 differs from the choice L-E-2. The last one corresponds to the incomplete LU decomposition.

3.10 Quasi-Newton methods for nonlinear least squares and nonlinear equations

Quasi-Newton methods are specified by the statement $CLASS=’QN’. These methods are special opti-
mization methods for nonlinear least squares ($MODEL=’AQ’) problems including systems of nonlinear
equations ($MODEL=’NE’) when the first derivatives are not specified analytically (the macrovariable
$GMODELA is not defined). Quasi-Newton methods use a rectangular matrix which is updated in every
iteration in such a way that it approximates the Jacobian matrix as precisely as possible. In the UFO sys-
tem, the quasi-Newton methods are realized in the two different forms (for $JACA=’D’ and $JACA=’S’)
depending on the Jacobian matrix specification.

There are two possibilities for dense problems ($JACA=’D’) which are distinguished by using the
macrovariable $UPDATE:

$UPDATE=’N’ - No update is used. An approximation of the Jacobian matrix is computed numeri-
cally by using differences.

$UPDATE=’B’ - The Broyden family [14] of rank-one updates is used in almost all iterations. After
restart, the Jacobian matrix is approximated numerically by using differences.

When $UPDATE=’B’, the individual quasi-Newton methods are specified by using the macrovariable
$MET.

$MET=1 - The first (good) Broyden update [14] is used.
$MET=2 - The second Broyden update [14] is used.

55

$MET=3 - The the second Greenstadt update [160] is used.
$MET=4 - The first Greenstadt update [160] is used.
$MET=5 - The first Todd OC update [81] is used.
$MET=6 - The first Todd OCX update [81] is used.
$MET=7 - The second Todd OC update [81] is used.
$MET=8 - The second Todd OCX update [81] is used.

The default value is $MET=1.
Dense quasi-Newton methods can only be used in the unconstrained case.
Possible specifications (type-decomposition-number) for dense quasi-Newton methods are these:

L-Q-1, L-A-1, L-E-1,
L-A-3, L-E-3,
L-A-4, L-E-4,

L-E-5,
G-Q-1, G-A-1, G-E-1,
G-Q-2, G-E-2,

G-A-3, G-E-3,
G-A-4, G-E-4,

G-E-5,
G-A-7.

The default choice is G-Q-3. The specification $DECOMP=’E’ can only be used if NA=NF (system of
nonlinear equations).

If the Jacobian matrix is sparse with a general pattern ($JACA=’S’), there are two possibilities for
computing an approximation of the Jacobian matrix by the differences. These possibilities are distinguished
by using the macrovariable $NUMDER:

$NUMDER=1 - Derivatives of individual approximating functions are computed.
$NUMDER=2 - The Coleman-More [27] graph coloring algorithm is used.

Moreover, various sparse quasi-Newton updates which preserve the pattern of the Jacobian matrix can be
used.

If $NUMDER=1, there are three choices of the quasi-Newton updates which are specified by the
macrovariable $UPDATE:

$UPDATE=’N’ - No update is used. An approximation of the Jacobian matrix is computed numeri-
cally by using differences.

$UPDATE=’B’ - Sparse quasi-Newton updates are used in almost all iterations. After restart, the
Jacobian matrix is approximated numerically by using differences.

$UPDATE=’S’ - Modified Newton methods such as the row scaling update are used in almost all
iterations. After restart, the Jacobian matrix is approximated numerically by using
differences.

If $NUMDER=2, there are four choices of the quasi-Newton updates which are specified by the
macrovariable $UPDATE:

$UPDATE=’N’ - No update is used. An approximation of the Jacobian matrix is computed numeri-
cally by using differences.

$UPDATE=’B’ - Sparse quasi-Newton updates [155] are used in almost all iterations. After restart,
the Jacobian matrix is approximated numerically by using differences.

$UPDATE=’S’ - Modified Newton methods such as the row scaling update are used in almost all
iterations. After restart, the Jacobian matrix is approximated numerically by using
differences.

56

$UPDATE=’C’ - Cyclic column determination methods are used in almost all iterations. After restart,
the Jacobian matrix is approximated numerically by using differences.

Individual quasi-Newton methods are specified by using the macrovariable $MET. If $UPDATE=’B’, the
following specifications are possible.

$MET=1 - The Schubert update [155] is used.
$MET=2 - The Bogle-Perkins update [11] is used.
$MET=3 - The column update [127] is used.

If $UPDATE=’S’, the following specifications are possible.

$MET=0 - The modified Newton method is used.
$MET=1 - The the row scaling update [127] is used.

If $UPDATE=’C’, the following specifications are possible.

$MET=0 - The cyclic column determination method [86] is used.
$MET=1 - The cyclic column determination method [86] is used followed by the Schubert

update [155].

Possible specifications (type-decomposition-number) for sparse quasi-Newton methods are these:

L-A-1, L-E-1,
L-A-3, L-E-3,
L-A-4, L-E-4,

L-E-5,
G-A-1, G-E-1,

G-E-2,
G-A-3, G-E-3,
G-A-4, G-E-4,

G-E-5,
G-A-7.

The default choice is G-A-3 for the least squares problems and G-E-3 for systems of nonlinear equations.
The specification $DECOMP=’E’ can only be used if NA=NF (system of nonlinear equations). The choice
L-E-1 differs from the choice L-E-2. The latter corresponds to the incomplete LU decomposition.

3.11 Quasi-Newton methods with limited storage for nonlinear equations

Quasi-Newton methods with limited storage are specified by the statement $CLASS=’QL’. The number of
QN steps is specified by the macrovariable $MF (the default value is $MF=5). These methods are special
methods for solving sparse systems of nonlinear equations ($MODEL=’NE’) when the first derivatives
are not specified analytically (the macrovariable $GMODELA is not defined). Therefore only the case
NA=NF is permitted. Quasi-Newton methods with limited storage use an initial approximation of the
sparse Jacobian matrix together with several small-size matrices which are updated in every iteration in
such a way that their product approximates the Jacobian matrix as precisely as possible [21]. There are
two possibilities which are distinguished by using the macrovariable $UPDATE:

$UPDATE=’N’ - No update is used. Every approximation of the Jacobian matrix is computed nu-
merically by using differences.

$UPDATE=’B’ - The Broyden good update of rank-one with limited storage [21] is used in almost all
iterations. After restart, the Jacobian matrix is approximated numerically by using
differences.

57

Possible specifications (type-decomposition-number) for quasi-Newton methods with limited storage
are these:

L-A-3, L-E-3,
L-A-4, L-E-4,

L-E-5,
G-A-3, G-E-3,
G-A-4, G-E-4,

G-E-5,

The default choice is G-E-3.
Besides the quasi-Newton methods with limited storage, this class contains inverse column scaling

methods which are chosen by using the specification $DECOMP=’I’. There are two possibilities which are
distinguished by using the macrovariable $UPDATE:

$UPDATE=’N’ - No update is used. Every approximation of the Jacobian matrix is computed nu-
merically by using differences.

$UPDATE=’B’ - The inverse column scaling update [128] is used in almost all iterations. After restart,
the Jacobian matrix is approximated numerically by using differences.

Possible specifications (type-decomposition-number) for inverse column scaling methods are these:

L-I-1,
L-I-3.

If $NUMBER=1, then a complete LU decomposition is used. If $NUMBER=3, then a combination of
direct and iterative methods is used. The default value is $NUMBER=3.

3.12 Truncated Newton methods for nonlinear equations

Truncated Newton methods are specified by the statement $CLASS=’TN’. These methods are special
methods for solving systems of nonlinear equations ($MODEL=’NE’) when the first derivatives are not
specified analytically (the macrovariable $GMODELA is not defined). Therefore only the case NA=NF
is permitted. Truncated Newton methods differ from quasi-Newton methods in that the sparse Jacobian
matrix multiplication is replaced by the numerical differentiation. These methods are very efficient for large
problems with computationally simple functions in nonlinear equations ($KCA=1). The main advantage
of the truncated Newton methods is that no matrices are used (implicitly $JACA=’N’). This fact highly
decreases storage requirements.

Truncated Newton methods are implemented either as the line search methods or as the trust region
methods and are based on the smoothed CGS subalgorithm. This subalgorithm can be preconditioned by
using the tridiagonal decomposition. This possibility is determined by the macrovariable $MOS2.

$MOS2=0 - The tridiagonal decomposition is not used.
$MOS2=1 - The tridiagonal decomposition is used before the iterative process is started.
$MOS2=2 - The tridiagonal decomposition is used as a preconditioner.
$MOS2=3 - Both previous cases are assumed.

The default value is $MOS2=0.
Possible specifications (type-decomposition-number) for truncated Newton methods are these:

L-E-3,
L-E-4,
L-E-5,
G-E-3,
G-E-4,
G-E-5.

58

The default choice is G-E-3.

3.13 Quasi-Newton and Brent methods for nonlinear equations

Quasi-Newton and Brent methods are specified by the statement $CLASS=’QB’. These methods are
special simple methods for solving dense systems of nonlinear equations ($MODEL=’NE’) when the first
derivatives are not specified analytically (the macrovariable $GMODELA is not defined). Therefore, only
the case NA=NF is permitted. Individual methods are selected using the macrovariable $NUMBER:

$NUMBER=1 - The Brent method described in [13].
$NUMBER=3 - The simple Newton method (this method can also be used if the macrovariable

$GMODELA is defined).

The default value is $NUMBER=3.

3.14 Simplex type methods for linear programming problems

Simplex type methods for linear programming problems are specified by the statement $CLASS=’LP’.
These methods are realized in the two different forms (for $JACC=’D’ and $JACC=’S’) depending on the
constraint Jacobian matrix specification.

If the constraint Jacobian matrix is dense ($JACC=’D’), we can use two different linear programming
methods based on the active set strategy:

$NUMBER=1 - Primal reduced gradient (null-space) method (like the method proposed in [61]),
which is a special implementation of the steepest descent reduced gradient method.

$NUMBER=2 - Primal projected gradient (range-space) method which is a special implementation
of the steepest descent projected gradient method.

Possible specifications (type-number) for dense linear programming methods are L-1 and L-2. The
default choice is L-1.

If the constraint Jacobian matrix is sparse ($JACC=’S’), we can use two different linear programming
methods based on the active set strategy:

$NUMBER=1 - Primal reduced gradient (null-space) simplex type method which is described in
[172].

$NUMBER=2 - Primal projected steepest descent (range-space) method.

A possible specification (type-number) for simplex type linear programming methods are L-1 and L-2.
The default choice is L-1, but this choice is not suitable for problems with equality constraints.

3.15 Interior point methods for linear programming problems

Interior point methods for linear programming problems are specified by the statement $CLASS=’LI’.
These methods, based on an infeasible primal-dual predictor-corrector strategy, can be used only in the
sparse case when $JACC=’S’. Moreover, only the standard LP constraints Ax = b, x ≥ 0 can be considered
at present. Individual methods are chosen by using the macrovariable $MLP:

$MLP=1 - The first algorithm of Miao [130].
$MLP=2 - The second algorithm of Miao [130].
$MLP=3 - The Mizuno algorithm [132].

All these methods can be realized in the three forms depending on the way of solving the linear generalized
Karush-Kuhn-Tucker system:

59

$NUMBER=1 - Direct solution based on the Gill-Murray decomposition applied to the Schur com-
plement.

$NUMBER=2 - Direct solution based on the Bunch-Parlett decomposition applied to the original
Karush-Kuhn-Tucker system.

$NUMBER=3 - Iterative solution based on the conjugate gradient method applied to the Schur
complement.

Possible specifications (type-number) for interior point linear programming methods are L-1, L-2 and
L-3. The default choice is L-1.

3.16 Simplex type methods for quadratic programming problems

Simplex type methods for quadratic programming problems are specified by the statement $CLASS=’QP’.
These methods are realized in the two different forms (for $JACC=’D’ and $JACC=’S’) depending on the
constraint Jacobian matrix specification.

If the constraint Jacobian matrix is dense ($JACC=’D’), we can use three different quadratic program-
ming methods based on the active set strategy:

$NUMBER=1 - Primal reduced gradient (null-space) method (like the method proposed in [63])
which is a special implementation of the Newton reduced gradient method.

$NUMBER=2 - Primal projected gradient (range-space) method (like the method proposed in [46])
which is a special implementation of the Newton projected gradient method.

$NUMBER=3 - Dual projected gradient (range-space) method (like the method proposed in [66]).

Possible specifications (type-number) for dense quadratic programming methods are L-1, L-2, and L-3.
The default choice is L-1.

If the constraint Jacobian matrix is sparse ($JACC=’S’), we can use two different quadratic program-
ming methods based on the active set strategy:

$NUMBER=1 - Primal reduced gradient (null-space) simplex type method which is described in
[172].

$NUMBER=2 - Primal projected conjugate gradient (range-space) method.

A possible specification (type-number) for sparse simplex type quadratic programming methods are
L-1 and L-2. The default choice is L-2. Choice L-1 is not suitable for problems with equality constraints.

3.17 Interior point methods for quadratic programming problems

Interior point methods for quadratic programming problems are specified by the statement $CLASS=’QI’.
These primal-dual methods, based on the logarithmic barrier function and iterative solution of the indefinite
Karush-Kuhn-Tucker system, can be used only in the sparse case when $JACC=’S’. Interior point methods
for quadratic programming problems are in fact the same as methods with the choices $TYPE=’L’ and
$DECOMP=’I’ described in Section 3.24.

Two realizations are possible, which are specified by the macrovariable $NUMBER:

$NUMBER=1 - An exact sparse Bunch-Parlett (BP) decomposition [44] of the indefinite Karush-
Kuhn-Tucker system is used.

$NUMBER=3 - An inexact preconditioned conjugate gradient (PCG) method for the indefinite
Karush-Kuhn-Tucker system is applied which uses a special determination of the
required precision. The particular realization of the inexact preconditioned conju-
gate gradient method depends on specifications given by the macrovariables $MOS1,
$MOS2 and $MOS3.

60

The default value is $NUMBER=’3’.
Macrovariable $MOS1 specifies the precision control and the choice of the penalty parameter.

$MOS1=0 - The precision control is suppressed.
$MOS1=1 - A precision guaranteeing descent direction is used together with the basic choice of

the penalty parameter.
$MOS1=2 - A precision guaranteeing descent direction is used together with an extended choice

of the penalty parameter.

The default value is $MOS1=0.
Macrovariable $MOS2 specifies a preconditioning technique.

$MOS2=0 - Preconditioning is suppressed.
$MOS2=±1 - The indefinite preconditioner [116] based on a diagonal approximation of the Hessian

matrix is used in the normal equation form.
$MOS2=±1 - The indefinite preconditioner [116] based on a diagonal approximation of the Hessian

matrix is used in the augmented system form.

If $MOS2>0, a complete Gill-Murray decomposition is used. If $MOS2<0, an incomplete Gill-Murray
decomposition is used. The default value is $MOS2=1.

Macrovariable $MOS3 specifies residual smoothing of the conjugate gradient method.

$MOS2=0 - The residual smoothing is suppressed.
$MOS2=0 - A simple one-dimensional residual smoothing is used.

The default value is $MOS3=0.
Possible specifications (type-number) for sparse interior point quadratic programming methods are L-1

and L-3. The default choice is L-3.

3.18 Proximal bundle methods for nonsmooth optimization

Proximal bundle methods for nonsmooth optimization problems are specified by the statement $CLASS
=’BM’. These methods use a solution of the special quadratic programming subproblem derived from
the cutting plane approach [179]. This subproblem is in fact the same as in the recursive quadratic
programming methods for minimax problems. Proximal bundle methods are realized only for unconstrained
or linearly constrained dense problems ($JACA=’D’). The special quadratic programming subproblem can
be solved by using the following methods:

$NUMBER=1 - Dual projected gradient (range-space) method proposed in [96].
$NUMBER=2 - Primal projected gradient (range-space) method which is a special implementation

of the Newton projected gradient method.

The special quadratic programming subproblem is defined in such a way that it has a diagonal Hessian
matrix. There are several methods for computing the diagonal weight coefficients, which are selected by
using the macrovariables $MOS and $MES2.

$MOS=1 - If $MES2=1, the weights are updated by using curvature of the one-dimensional
quadratic function.

$MOS=1 - If $MES2=2, the weights are updated by using the minimum position estimate
(suitable for polyhedral and nearly polyhedral functions).

$MOS=2 - The weights are updated by using the quasi-Newton condition.

The default values are $MOS=1 and $MES2=1.
Proximal bundle methods are only realized as line search methods in two modifications which are

specified by the macrovariable $MEX.

61

$MEX=0 - A convex version is assumed.
$MEX=1 - A nonconvex version is assumed and we can define a measure of nonconvexity by

using the macrovariable $ETA5. The default value is $ETA5=0.25.

Another important parameter is the maximum stepsize defined by the macrovariable $XMAX. The
maximum stepsize is a safeguard, which guarantees that the new point lies in the region where the bundle
model is valid. The default value is $XMAX=1000. Proximal bundle methods are sensitive to the values
of the above two parameters. Therefore, they should be carefully tuned.

Possible specifications (type-number) for proximal bundle methods are L-1 and L-2. The default choice
is L-1. Proximal bundle methods can be used when $KSF=3 or $KSA=3. They can also be used for
minimax problems as is shown in Section 3.20.

3.19 Bundle-Newton methods for nonsmooth optimization

Bundle-Newton methods for nonsmooth optimization problems are specified by the statement $CLASS
=’BN’. These methods use a solution of the special quadratic programming subproblem derived from the
cutting plane approach which contains second order information [109]. This subproblem is in fact the same
as in recursive quadratic programming methods for minimax problems. Bundle-Newton methods are only
realized for unconstrained or linearly constrained dense problems ($JACA=’D’). The special quadratic
programming subproblem can be solved by using the following methods:

$NUMBER=1 - Dual projected gradient (range-space) method proposed in [96].
$NUMBER=2 - Primal projected gradient (range-space) method which is a special implementation

of the Newton projected gradient method.

The special quadratic programming subproblem has a general (dense) Hessian matrix which is a bundle
approximation of the second-order matrix of the original nonsmooth problem.

Bundle-Newton methods are only realized as line search methods. A nonconvex version is assumed
and we can define a measure of nonconvexity by using the macrovariable $ETA5. The default value
is $ETA5=0.25. Another important parameter is the maximum stepsize defined by the macrovariable
$XMAX. The maximum stepsize is a safeguard, which guarantees that the new point lies in the region
where the bundle model is valid. The default value is $XMAX=1000. Proximal bundle methods are
sensitive to the values of the above two parameters. Therefore, they should be carefully tuned.

Possible specifications (type-number) for bundle-Newton methods are L-1 and L-2. The default choice
is L-1. Bundle-Newton methods can be used when $KSF=3 or $KSA=3. They can also be used for
minimax problems as is shown in Section 3.20.

3.20 Variable metric bundle methods for nonsmooth optimization

Variable metric bundle methods for nonsmooth optimization problems are specified by the statement
$CLASS =’VB’. These methods are based on a special realization of the BFGS variable metric method.
This realization uses special null steps and restarts. Stepsize selection is based on the polyhedral ap-
proximation obtained by using bundles of points and subgradients. Variable metric bundle methods are
realized only for unconstrained or linearly constrained dense problems ($JACA=’D’). They need not solve
any quadratic programming subproblem.

Variable metric bundle methods are only realized as line search methods in two modifications which
are specified by the macrovariable $MEX.

$MEX=0 - A convex version [114] is assumed.
$MEX=1 - A nonconvex version [181] is assumed and we can define a measure of nonconvexity

by using the macrovariable $ETA5. The default value is $ETA5=0.25.

Another important parameter is the maximum stepsize defined by the macrovariable $XMAX. The
maximum stepsize is a safeguard, which guarantees that the new point lies in the region where the bundle

62

model is valid. The default value is $XMAX=1000. Variable metric bundle methods are sensitive to the
values of the above two parameters. Therefore, these parameters should be carefully chosen.

Possible specifications (type-number) for variable metric bundle methods are L-1 and L-2. The default
choice is L-1. Variable metric bundle methods can be used when $KSF=3 or $KSA=3. They can also be
used for minimax problems as is shown in Section 3.22.

3.21 Variable metric bundle methods for large-scale sum of absolute values

If $MODEL=’AA’, then the objective function is a sum of absolute values. Variable metric bundle methods
for large-scale sums of absolute values are specified by the statement $CLASS =’VB’. These methods are
based on a special realization of the partitioned BFGS variable metric method. This realization uses special
null steps and restarts. Stepsize selection is based on the polyhedral approximation obtained by using
bundles of points and subgradients. Variable metric bundle methods are realized only for unconstrained
or box constrained sparse problems ($JACA=’S’ and $HESF=’S’). They need not solve any quadratic
programming subproblem.

Variable metric bundle methods are only realized as line search methods in several modifications which
are specified by the macrovariable $MEX, $MEX1, $MEX2.

$MEX=0 - A convex version [114] is assumed.
$MEX=1 - A nonconvex version [181] is assumed and we can define a measure of nonconvexity

by using the macrovariable $ETA5. The default value is $ETA5=0.25.
$MEX1=0 - The basic termination criterion is used.
$MEX1=1 - An extended termination criterion for large-scale problems is used.
$MEX2=0 - The basic algorithm is used.
$MEX2=1 - An additional restart is used if the direction vector is short.
$MEX2=2 - A special correction of the direction vector is used.

The default values are $MEX=1, $MEX1=0, $MEX2=0.
Another important parameter is the maximum stepsize defined by the macrovariable $XMAX. The

maximum stepsize is a safeguard, which guarantees that the new point lies in the region where the bundle
model is valid. The default value is $XMAX=1000. Variable metric bundle methods for large-scale sum
of absolute values are sensitive to the value of the parameter $XMAX. Therefore, this parameter should
be carefully chosen.

A possible specification (type-number) for variable metric bundle methods for large-scale sum of abso-
lute values is L-1.

3.22 Methods for minimax problems.

Minimax problems are specified by the choice $MODEL=’AM’. These problems can be solved by using
the six classes of methods:

$CLASS=’BM’ - Proximal bundle methods.
$CLASS=’BN’ - Bundle-Newton methods.
$CLASS=’VB’ - Variable metric bundle methods.
$CLASS=’VM’ - Recursive quadratic programming variable metric methods [110]. An approximation

of the Lagrangian function Hessian matrix is updated in each iteration by using the
variable metric updates belonging to the Broyden family.

$CLASS=’MN’ - Recursive quadratic programming modified Newton methods. The Lagrangian func-
tion Hessian matrix is computed in each iteration either analytically or numerically.

$CLASS=’LP’ - Recursive linear programming methods.

The default value is $CLASS=’VM’.

63

Even if the minimax problems can be solved by using bundle methods described in Sections 3.17 – 3.19,
it is more efficient to use the recursive quadratic programming methods that utilize a special structure of
the minimax problem. Recursive quadratic programming methods are realized in the three different forms:

$TYPE=’L’ - Line search methods.
$TYPE=’G’ - General trust region methods.
$TYPE=’C’ - General trust region methods with second order corrections [51].

If $TYPE=’L’, the special line search method ($MES=5), described in [91], can be used.
The special quadratic programming subproblem, which is derived from the minimax problem, can be

solved by using the two different methods:

$NUMBER=1 - Dual projected gradient (range-space) method proposed in [96].
$NUMBER=2 - Primal projected gradient (range-space) method which is a special implementation

of the Newton projected gradient method.

Recursive quadratic programming variable metric methods use the same updates as methods with the
choices $DECOMP=’G’ and $UPDATE=’B’ described in Section 3.3 (values $MET=1 - $MET=12 can be
used). Similarly, recursive quadratic programming modified Newton methods correspond to the methods
with the choice $DECOMP=’G’ described in Section 3.6 (the Gill-Murray decomposition is used).

Recursive linear programming methods are realized as trust region methods with box constrained
subproblems. The special linear programming subproblem, which is derived from the minimax problem,
is solved by a primal projected gradient (range-space) method which is a special implementation of the
steepest descent method.

All of the above methods are only realized for dense unconstrained or linearly constrained problems.
A possible specifications (type-number) for recursive quadratic programming methods are these:

L-1,
L-2,
G-1,
G-2,
C-1,
C-2.

The default choice is L-1. A possible specification (type-number) for recursive linear programming methods
is G-1.

3.23 Recursive quadratic programming methods for dense general nonlinear programming
problems

Recursive quadratic programming methods for dense general nonlinear programming problems are specified
by the statement $FORM=’SQ’. These methods belong to the two following classes:

$CLASS=’VM’ - Recursive quadratic programming variable metric methods. An approximation of
the Lagrangian function Hessian matrix is updated in each iteration by using variable
metric updates.

$CLASS=’MN’ - Recursive quadratic programming modified Newton methods. The Lagrangian func-
tion Hessian matrix is computed in each iteration either analytically or numerically.

The default value is $CLASS=’VM’. Variable metric methods are the same as in Section 3.3 with the
choice $DECOMP=’G’ and $UPDATE=’B’ (values $MET=1 - $MET=12 can be used). Similarly, mod-
ified Newton methods are the same as in Section 3.6 with the choice $DECOMP=’G’ (the Gill-Murray
decomposition is used).

64

Recursive quadratic programming methods for dense general nonlinear programming problems are
realized as line search methods ($TYPE=’L’) with the l1-exact penalty function. They are like the methods
proposed in [144]. The special line search method ($MES=5) for l1-exact penalty function can be used
successfully. The quadratic programming subproblem can be solved by using the two different methods:

$NUMBER=1 - Dual projected gradient (range-space) method (like the method proposed in [66]).
$NUMBER=2 - Primal projected gradient (range-space) method (like the method proposed in [46])

which is a special implementation of the Newton projected gradient method.

Possible specifications (type-number) for recursive quadratic programming methods for dense general
nonlinear programming problems are L-1 and L-2. The default choice is L-1.

3.24 Recursive quadratic programming methods for sparse equality constrained nonlinear pro-
gramming problems

Recursive quadratic programming methods for sparse equality constrained nonlinear programming prob-
lems are specified by the statement $FORM=’SE’. These methods, which are intended for large problems,
belong to the following classes:

$CLASS=’VM’ - Recursive quadratic programming variable metric methods. An approximation of
the Lagrangian function Hessian matrix is updated in each iteration by using variable
metric updates.

$CLASS=’VL’ - Recursive quadratic programming variable metric methods with limited storage
based on compact representations of variable metric updates. The number of VM
steps is specified by the macrovariable $MF (the default value is $MF=5). Variable
metric methods with limited storage use several small-size matrices which are updated
in every iteration in such a way that their product approximates the Lagrangian
function Hessian matrix as precisely as possible [21].

$CLASS=’MN’ - Inexact recursive quadratic programming modified Newton methods. The La-
grangian function Hessian matrix is computed in each iteration either analytically
or numerically.

The default value is $CLASS=’MN’.
If $CLASS=’VM’, the individual variable metric updates (or families) are specified by using the

macrovariable $UPDATE:

$UPDATE=’M’ - The simple Marwil projection update [129].
$UPDATE=’B’ - The partitioned variable metric updates from the Broyden family [69]. These updates

can only be used if $MODEL=’AF’ or $MODEL=’AQ’ or $MODEL=’AP’.

The default value is $UPDATE=’M’. If $UPDATE=’B’, the particular update is specified by using the
macrovariable $MET.

$MET=1 - The BFGS method [15], [48], [65], [156] is used.
$MET=2 - The DFP method [35], [53] is used.
$MET=3 - The Hoshino method [76] is used.
$MET=4 - The safeguarded rank-one method [94] is used.

The default value is $MET=1.
If $CLASS=’VL’, two variable metric updates with limited storage, belonging to the Broyden family,

can be used. These updates are specified by using the macrovariable $MET.

$MET=1 - The BFGS method [15], [48], [65], [156] is used.
$MET=4 - The safeguarded rank-one method [94] is used.

65

The default value is $MET=1.
Recursive quadratic programming methods for sparse equality constrained nonlinear programming

problems are realized in the three different ways which are specified by using the macrovariable $TYPE:

$TYPE=’L’ - Line search methods based on various merit functions or filter structures.
$TYPE=’G’ - Trust region methods. These methods use two direction determination subproblems

[42], [83], [121]. The vertical subproblem, solved by using the dog-leg method, serves
for a sufficient decrease of constraint violations. The horizontal subproblem, solved
by a special realization of the conjugate gradient method, serves for minimization of
a quadratic approximation of a particular merit function.

The default value is $TYPE=’L’.
If $TYPE=’L’, various penalty functions or filter structures can be used for step-size selection. The

corresponding choice is determined by the macrovariable $MERIT:

$MERIT=’P’ - A penalty function is used.
$MERIT=’M’ - The Markov filter [177], [105] is used.
$MERIT=’F’ - The Fletcher-Leyffer filter [52], [177] is used.

The default value is $MERIT=’P’. If $MERIT=’P’, additional choices specified by macrovariables $MEP,
$MEP1, $MEP2 are possible.

Macrovariable $MEP determines the particular merit function:

$MEP=0 - No merit function is used.
$MEP=1 - The Powell l1 exact penalty function is used.
$MEP=2 - The l2 augmented Lagrangian function is used.
$MEP=3 - The l1 augmented Lagrangian function is used.
$MEP=4 - The Han l1 exact penalty function is used.
$MEP=5 - The Schittkowski augmented Lagrangian function is used.

The default value is $MEP=2.
Macrovariable $MEP1 specifies the second order correction for overcoming the Maratos effect.

$MEP1=1 - The second order correction is suppressed.
$MEP1=2 - The second order correction is determined as a least squares solution of the shifted

constraint system.

The default value is $MEP1=1.
Macrovariable $MEP2 specifies estimates of Lagrange multipliers at the beginning of each iteration.

$MEP2=1 - The initial estimate is taken from the previous iteration.
$MEP2=2 - The initial estimate is determined as a least squares solution of the first part of the

Karush-Kuhn-Tucker system.

The default value is $MEP2=1.
If $TYPE=’G’, only the default specification $MERIT=’P’ is possible (with penalty functions deter-

mined by macrovariable $MET as above). However, default values $MEP1=1 and $MEP2=1 are used in
this case.

If $TYPE=’L’, the direction vector can be computed in the three different ways, which are specified
by using the macrovariable $DECOMP:

$DECOMP=’K’ - The direction vector is determined as a solution of the indefinite Karush-Kuhn-
Tucker system [115].

66

$DECOMP=’Z’ - The direction vector is decomposed into two parts. The vertical part is computed
directly from the constraint violation. The horizontal part, lying in the null-space, is
computed iteratively by using a special realization of the conjugate gradient method.
Instead of projecting into the null-space, either the augmented system or an orthog-
onal projection matrix, both determined from a range-space basis, are used [77].

$DECOMP=’G’ - The direction vector is determined directly from the Lagrangian multipliers, which
are determined iteratively by using the conjugate gradient method in the range space
using the Schur complement.

The default value is $DECOMP=’K’.
If $DECOMP=’K’, five realizations are possible, which are specified by the macrovariable $NUMBER:

$NUMBER=1 - An exact sparse Bunch-Parlett (BP) decomposition [44] of the indefinite Karush-
Kuhn-Tucker system is used.

$NUMBER=3 - An inexact preconditioned conjugate gradient (PCG) method for the indefinite
Karush-Kuhn-Tucker system is applied which uses a special determination of the
required precision. The particular realization of the inexact preconditioned conju-
gate gradient method depends on specifications given by the macrovariables $MOS1,
$MOS2, $MOS3 and $MOS4.

$NUMBER=4 - An inexact preconditioned conjugate residual (PCR) method for the indefinite
Karush-Kuhn-Tucker system is applied which uses a special determination of the
required precision. The particular realization of the inexact preconditioned conjugate
residual method depends on specifications given by the macrovariables $MOS1 and
$MOS2.

$NUMBER=5 - An inexact symmetric preconditioned quasi-minimum residual (PQMR) method for
the indefinite Karush-Kuhn-Tucker system is applied which uses a special determi-
nation of the required precision. The particular realization of the inexact symmetric
preconditioned quasi-minimum residual method depends on specifications given by
the macrovariables $MOS1 and $MOS2.

$NUMBER=6 - An inexact nonsymmetric preconditioned conjugate gradient squared (PCGS)
method for the indefinite Karush-Kuhn-Tucker system is applied which uses a spe-
cial determination of the required precision. The particular realization of the inexact
nonsymmetric preconditioned conjugate gradient squared method depends on speci-
fications given by the macrovariables $MOS1, $MOS2 and $MOS3.

The default value is $NUMBER=’3’.
Macrovariable $MOS1 specifies the precision control and the choice of the penalty parameter.

$MOS1=0 - The precision control is suppressed.
$MOS1=1 - A precision guaranteeing descent direction is used together with the basic choice of

the penalty parameter.
$MOS1=2 - A precision guaranteeing descent direction is used together with an extended choice

of the penalty parameter.

The default value is $MOS1=0.
Macrovariable $MOS2 specifies a preconditioning technique.

$MOS2=0 - Preconditioning is suppressed.
$MOS2=±1 - The indefinite preconditioner [115] based on a diagonal approximation of the Hessian

matrix is used in the normal equation form.
$MOS2=±2 - The indefinite preconditioner [115] based on a diagonal approximation of the Hessian

matrix is used in the augmented system form.
$MOS2=±3 - The indefinite preconditioner [115] based on a diagonal perturbation of the Schur

complement is used.

67

If $MOS2>0, a complete Gill-Murray decomposition is used. If $MOS2<0, an incomplete Gill-Murray
decomposition is used. The default value is $MOS2=1.

Macrovariable $MOS3 specifies residual smoothing of the conjugate gradient method.

$MOS3=0 - The residual smoothing is suppressed.
$MOS3=1 -A simple one-dimensional residual smoothing is used.

The default value is $MOS3=0.
Macrovariable $MOS4 specifies the choice of the initial direction.

$MOS4=0 - The zero initial direction is used.
$MOS4=1 - The vertical initial direction is used.

The default value is $MOS4=0.
If $DECOMP=’Z’, only one realization is possible, which is specified by the macrovariable $NUMBER:

$NUMBER=3 - An inexact null-space preconditioned conjugate gradient (NPCG) method for the
determination of the horizontal direction is applied which uses a special determination
of the required precision. A particular realization of the null-space preconditioned
conjugate gradient method depends on the specifications given by the macrovariables
$MOS1 and $MOS2.

Macrovariable $MOS1 specifies the precision control and the choice of the penalty parameter.

$MOS1=0 - The precision control is suppressed.
$MOS1=1 - A precision guaranteeing descent direction is used together with the basic choice of

the penalty parameter.
$MOS1=2 - A precision guaranteeing descent direction is used together with an extended choice

of the penalty parameter.

The default value is $MOS1=0.
Macrovariable $MOS2 specifies a way for computing the preconditioner.

$MOS2=±1 - The preconditioner is computed by using the orthogonal projection matrix deter-
mined from a range-space basis.

$MOS2=±2 - The preconditioner is computed by using the augmented system determined from a
range-space basis.

If $MOS2>0, a diagonal approximation of the Hessian matrix is used. If $MOS2<0, the unit approximation
of the Hessian matrix is used. The default value is $MOS2=1.

If $DECOMP=’G’, two realizations are possible, which are specified by the macrovariable $NUMBER:

$NUMBER=3 - The sparse Gill-Murray decomposition of the Lagrangian function Hessian matrix
followed by a range-space smoothed conjugate gradient (RSCG) method for a positive
definite range space system is applied which uses a special determination of the re-
quired precision. The particular realization of the preconditioned conjugate gradient
method depends on specifications given by the macrovariables $MOS1, $MOS2 and
$MOS3.

$NUMBER=4 - The sparse Bunch-Parlett decomposition of the Lagrangian function Hessian ma-
trix followed by a range-space smoothed conjugate gradient (RSCG) method for an
indefinite range space system is applied which uses a special determination of the
required precision. The particular realization of the smoothed conjugate gradient
method depends on specifications given by the macrovariables $MOS1 and $MOS3.

The default value is $NUMBER=’3’.
Macrovariable $MOS1 specifies the precision control and the choice of the penalty parameter.

68

$MOS1=0 - The precision control is suppressed.
$MOS1=1 - A precision guaranteeing descent direction is used.

The default value is $MOS1=1.
Macrovariable $MOS2 specifies a preconditioning technique.

$MOS2=0 - The preconditioning is suppressed.
$MOS2=±1 - The positive definite preconditioner [115] based on a diagonal approximation of the

Hessian matrix is used.
$MOS2=±1 - The polynomial preconditioner [136] based on a decomposition of the normal equa-

tion is used.

If $MOS2>0, a complete Gill-Murray decomposition is used. If $MOS2<0, an incomplete Gill-Murray
decomposition is used. The default value is $MOS2=1.

Macrovariable $MOS3 specifies residual smoothing of the conjugate gradient method.

$MOS3=0 - The residual smoothing is suppressed.
$MOS3=1 - A simple one-dimensional residual smoothing is used.

The default value is $MOS3=1.
If $TYPE=’G’, only the default specifications $DECOMP=’Z’ and $NUMBER=’3’ are possible, which

correspond to the trust region conjugate gradient (TRCG) method. Macrovariable $MOS2 specifies a way
for computing the projection step.

$MOS2=1 - The projection step is computed by using the orthogonal projection matrix deter-
mined from a range-space basis.

$MOS2=2 - The projection step is computed by using the augmented system determined from
a range-space basis.

The default value is $MOS2=1.
Possible specifications (type-decomposition-number) for recursive quadratic programming methods for

sparse equality constrained nonlinear programming problems are these:

L-K-1,
L-K-3, L-Z-3, L-G-3,
L-K-4, L-G-4,
L-K-5,
L-K-6,

G-Z-3.

The default choice is L-K-3. The choice $DECOMP=’G’ cannot be used for variable metric methods with
limited storage ($CLASS=’VL’).

3.25 Interior point methods for sparse equality and inequality constrained nonlinear program-
ming problems

Interior point methods for sparse equality and inequality constrained nonlinear programming problems
[116] are specified by the statement $FORM=’SI’. These methods, which are intended for large problems,
belong to the following class:

$CLASS=’MN’ - Inexact interior point modified Newton methods. The Lagrangian function Hessian
matrix is computed in each iteration either analytically or numerically.

Interior point methods for sparse equality and inequality constrained nonlinear programming problems
are realized in the way which is specified by using the macrovariable $TYPE:

69

$TYPE=’L’ - Line search methods based on various merit functions or filter structures.
$TYPE=’G’ - Trust region methods. These methods use two direction determination subproblems

[42], [83]. The vertical subproblem, solved by using the dog-leg method, serves for
a sufficient decrease of constraint violations. The horizontal subproblem, solved by
a special realization of the conjugate gradient method, serves for minimization of a
quadratic approximation of a particular merit function.

If $TYPE=’L’, various penalty functions or filter structures can be used for step-size selection. The
corresponding choice is determined by the macrovariable $MERIT:

$MERIT=’P’ - A penalty function is used.
$MERIT=’M’ - The Markov filter [177], [105] is used.
$MERIT=’F’ - The Fletcher-Leyffer filter [52], [177] is used.
$MERIT=’B’ - The barrier filter [177] is used.

If $MERIT=’P’, then macrovariable $MEP determines the particular merit function:

$MEP=0 - No merit function is used. In this case, the line search option $KTERS=6 is implic-
itly assumed.

$MEP=1 - The augmented logarithmic barrier function is used.
$MEP=2 - The augmented Lagrangian function is used.

The default value is $MEP=0.

If $TYPE=’G’, only the default specification $MERIT=’P’ is possible. In this case, macrovariable
$MEP determines the particular merit function:

$MEP=1 - The augmented logarithmic barrier function is used.
$MEP=2 - The simplified augmented logarithmic barrier function is used.

The default value is $MEP=1.

Other important specifications can be determined by using macrovariables $MEP2, $MEP3, $MEP4,
$MEP5 and $MOS5. Macrovariable $MEP2 determines a strategy for computation of primal and dual
stepsizes.

$MEP2=0 - Individual components of primal and dual stepsizes are handled separately.
$MEP2=±1 -Primal and dual stepsizes are not greater than their maximum values.
$MEP2=±2 -Primal and dual stepsizes are not greater than their maximum values, but the dual

stepsize is not greater than the primal stepsize.

If $MEP2>0, the basic stepsize does not depend on the primal stepsize. If $MEP2<0, the basic stepsize
is not greater than the primal stepsize (this is implicitly assumed when $MEP=1). The default value is
$MEP2=0.

Macrovariable $MEP3 determines a strategy for computation of the barrier parameter.

$MEP3=1 - The Shanno-Vanderbei formula [176] is used.
$MEP3=2 - The Tapia C2 formula [3] is used.
$MEP3=3 - The Tapia C3 formula [3] is used.
$MEP3=4 - The El Bakry formula [45] is used.

The default value is $MEP3=1.
Macrovariable $MEP4 determines a regularization strategy if gradients of constraint functions are

approximately linearly dependent.

$MEP4=0 - Regularization is not used.

70

$MEP4=1 - Regularization described in [104] is used.

The default value is $MEP4=0.
Macrovariable $MEP5 determines a restart strategy.

$MEP5=0 - The restart is suppressed.
$MEP5=1 - The uniform descent is assured.

The default value is $MEP5=0.
Macrovariable $MOS5 determines an approach to the KKT-equations formulation.

$MOS5=1 - The primal formulation is used
$MOS5=2 - The primal-dual formulation is used.

The default value is $MOS5=2.

Macrovariables $MET4 and $MET5 can be used only if $TYPE=’L’. Moreover the value $MEP5=1 is
significant only if $MERIT=’P’ and $MEP=0.

The direction vector can be computed in the way, which is specified by using the macrovariable $DE-
COMP:

$DECOMP=’I’ - The direction vector is determined as a solution of the indefinite Karush-Kuhn-
Tucker system [115].

If $TYPE=’L’, two realizations are possible, which are specified by the macrovariable $NUMBER:

$NUMBER=1 - An exact sparse Bunch-Parlett (BP) decomposition [44] of the indefinite Karush-
Kuhn-Tucker system is used.

$NUMBER=3 - An inexact preconditioned conjugate gradient (PCG) method for the indefinite
Karush-Kuhn-Tucker system is applied which uses a special determination of the
required precision. A realization of the inexact preconditioned conjugate gradient
method depends on specifications given by the macrovariables $MOS1, $MOS2 and
$MOS3.

The default value is $NUMBER=’3’.
Macrovariable $MOS1 specifies the precision control and the choice of the penalty parameter.

$MOS1=0 - The precision control is suppressed.
$MOS1=1 - A precision guaranteeing descent direction is used together with the basic choice of

the penalty parameter.
$MOS1=2 - A precision guaranteeing descent direction is used together with an extended choice

of the penalty parameter.

The default value is $MOS1=0.
Macrovariable $MOS2 specifies a preconditioning technique.

$MOS2=0 - Preconditioning is suppressed.
$MOS2=±1 - The indefinite preconditioner [116] based on a diagonal approximation of the Hessian

matrix is used in the normal equation form.
$MOS2=2 - The indefinite preconditioner [116] based on a diagonal approximation of the Hessian

matrix is used in the augmented system form.
$MOS2=±3 - The indefinite preconditioner [104] based on the Gill-Murray decomposition of the

approximation of the Hessian matrix is used.

If $MOS2>0, a complete Gill-Murray decomposition is used. If $MOS2<0, an incomplete Gill-Murray
decomposition is used. The default value is $MOS2=1.

71

Macrovariable $MOS3 specifies residual smoothing of the conjugate gradient method.

$MOS3=0 - The residual smoothing is suppressed.
$MOS3=0 - A simple one-dimensional residual smoothing is used.

The default value is $MOS3=0.
If $TYPE=’G’, only one realization is possible, which is specified by the macrovariable $NUMBER:

$NUMBER=3 - Trust region method that use two direction determination subproblems [18], [19].
The vertical subproblem, solved by using the dog-leg method, serves for a sufficient
decrease of constraint violations. The horizontal subproblem, solved by a special re-
alization of the conjugate gradient method, serves for minimization of a quadratic
approximation of a particular merit function. A realization of the inexact precondi-
tioned conjugate gradient method depends on specifications given by the macrovari-
ables $MOS1, $MOS2, $MOS3 and $MOS4.

Macrovariable $MOS1 specifies the choice of the penalty parameter.

$MOS1=1 - A constant penalty parameter is used.
$MOS1=2 - Penalty parameter is determined from the quadratic model.

The default value is $MOS1=1.
Macrovariable $MOS2 specifies a preconditioning technique.

$MOS2=1 - The preconditioner is computed by using the orthogonal projection matrix deter-
mined from a range-space basis.

Macrovariable $MOS3 determines a decision in the case when a negative curvature is detected.

$MOS3=1 - Additional conjugate gradient iterations are performed.
$MOS3=2 - A boundary step is determined.

The default value is $MOS3=1.
Macrovariable $MOS4 determines a norm for the trust region definition.

$MOS4=0 - The trust region is defined by slack variables.
$MOS4=1 - The trust region is defined by the Chebyshev l∞ norm.
$MOS4=2 - The trust region is defined by the Euclidean l2 norm.

The default value is $MOS4=2.
Possible specifications (type-decomposition-number) for interior point methods for sparse equality and

inequality constrained nonlinear programming problems are these:

L-I-1,
L-I-3,
G-I-3.

The default choice is L-I-3.

3.26 Nonsmooth equation methods for sparse equality and inequality constrained nonlinear
programming problems

Nonsmooth equation methods for sparse equality and inequality constrained nonlinear programming prob-
lems [123] are specified by the statement $FORM=’SF’. These methods, which are intended for large
problems, belong to the following class:

72

$CLASS=’MN’ - Inexact nonsmooth equation modified Newton methods. The Lagrangian function
Hessian matrix is computed in each iteration either analytically or numerically.

Nonsmooth equation methods for sparse equality and inequality constrained nonlinear programming
problems are realized in the way which are specified by using the macrovariable $TYPE:

$TYPE=’L’ - Line search methods based on various merit functions or filter structures.

If $TYPE=’L’, various penalty functions or filter structures can be used for step-size selection. The
corresponding choice is determined by the macrovariable $MERIT:

$MERIT=’P’ - A penalty function is used.
$MERIT=’M’ - The Markov filter [177], [105] is used.
$MERIT=’F’ - The Fletcher-Leyffer filter [52], [177] is used.

If $MERIT=’P’, then macrovariable $MEP determines the particular merit function:

$MEP=0 - No merit function is used. In this case, the line search option $KTERS=6 is implic-
itly assumed.

$MEP=2 - The augmented Lagrangian function is used together with the residual function.

The default value is $MEP=2.
Other important specifications can be determined by using macrovariables $MEP3 and $MEP4. If

$MERIT=’P’, then macrovariable $MEP3 determines a strategy for the use of the residual function.

$MEP3=0 - The augmented Lagrangian function is used as the merit function (the residual
function is not used.

$MEP3=1 - The combination of the augmented Lagrangian function and the residual function
is used as the merit function.

$MEP3=1 - The residual function is used as the merit function (with the exception of restarted
iterations).

The default value is $MEP3=0.
Macrovariable $MEP4 determines a regularization strategy if gradients of constraint functions are

approximately linearly dependent.

$MEP4=0 - Regularization is not used.
$MEP4=1 - Regularization described in [104] is used.

The default value is $MEP4=0.
The direction vector can be computed in the way, which is specified by using the macrovariable $DE-

COMP:

$DECOMP=’I’ - The direction vector is determined as a solution of the indefinite Karush-Kuhn-
Tucker system [115].

Two realizations are possible, which are specified by the macrovariable $NUMBER:

$NUMBER=1 - An exact sparse Bunch-Parlett (BP) decomposition [44] of the indefinite Karush-
Kuhn-Tucker system is used.

$NUMBER=3 - An inexact preconditioned conjugate gradient (PCG) method for the indefinite
Karush-Kuhn-Tucker system is applied which uses a special determination of the
required precision. The particular realization of the inexact preconditioned conju-
gate gradient method depends on specifications given by the macrovariables $MOS1,
$MOS2 and $MOS3.

73

The default value is $NUMBER=’3’.
Macrovariable $MOS1 specifies the precision control and the choice of the penalty parameter.

$MOS1=0 - The precision control is suppressed.
$MOS1=1 - A precision guaranteeing descent direction is used together with the basic choice of

the penalty parameter.
$MOS1=2 - A precision guaranteeing descent direction is used together with an extended choice

of the penalty parameter.

The default value is $MOS1=0.
Macrovariable $MOS2 specifies a preconditioning technique.

$MOS2=0 - Preconditioning is suppressed.
$MOS2=±1 - The indefinite preconditioner [116] based on a diagonal approximation of the Hessian

matrix is used in the normal equation form.
$MOS2=2 - The indefinite preconditioner [116] based on a diagonal approximation of the Hessian

matrix is used in the augmented system form.
$MOS2=±3 - The indefinite preconditioner [104] based on the Gill-Murray decomposition of the

approximation of the Hessian matrix is used.

If $MOS2>0, a complete Gill-Murray decomposition is used. If $MOS2<0, an incomplete Gill-Murray
decomposition is used. The default value is $MOS2=1.

Macrovariable $MOS3 specifies residual smoothing of the conjugate gradient method.

$MOS3=0 - The residual smoothing is suppressed.
$MOS3=0 - A simple one-dimensional residual smoothing is used.

The default value is $MOS3=0.
Possible specifications (type-decomposition-number) for nonsmooth equation methods for sparse equal-

ity and inequality constrained nonlinear programming problems are these:

L-F-1,
L-F-3.

The default choice is L-F-3.

3.27 Methods for initial value problems for ordinary differential equations

Methods for initial value problems for ordinary differential equations are specified by using the macrovari-
able $SOLVER. The UFO system contains five types of integration methods:

$SOLVER=’DP5’ - The Dormand and Prince method of the fifth order with a stepsize control for nonstiff
problems.

$SOLVER=’DP8’ - The Dormand and Prince method of the eighth order with a stepsize control for
nonstiff problems.

$SOLVER=’EX1’ - The extrapolation method with a stepsize control, based on the midpoint rule, for
nonstiff problems.

$SOLVER=’RD5’ - The Radau method of the fifth order with a stepsize control for stiff problems.
$SOLVER=’RS4’ - The Rosenbrock method of the fourth order with a stepsize control for stiff problems.

The default value is $SOLVER=’DP8’. These methods, described in [71], use a stepsize control based on
a local truncation error.

A solution to the initial value problem for ordinary differential equations can be stored for subsequent
processing. The extent of the data stored is determined by using the macrovariable $MED.

$MED=0 - No data are stored.

74

$MED=1 - The data in all solution steps are stored.
$MED=2 - The data in equidistant mesh points are stored. The number of mesh points is

specified by using the statement $NA=number of mesh points in this case.

3.28 Methods for direction determination

Optimization methods, contained in the UFO system, are usually implemented in such a way that they
use the same modules for direction determination. These modules, realized with different kinds of matrix
decomposition, are distinguished by using the macrovariables $TYPE and $NUMBER. The meaning of
the specification $TYPE has been explained above. Now we will explain the specification $NUMBER.

If $TYPE=’L’, then line search methods are supposed. In this case, relatively simple procedures are
used for direction determination. There are five possibilities:

$NUMBER=1 - Direct methods for solving linear systems based on various matrix decomposi-
tions. The Gill-Murray decomposition [62] of the Hessian matrix is applied if $DE-
COMP=’M’ and $MOS2=0 or if $DECOMP=’G’. The Schnabel-Eskow decompo-
sition [154] of the Hessian matrix is used if $DECOMP=’M’ and $MOS2=1 or if
$DECOMP=’S’. The Choleski decomposition of the Hessian matrix is utilized if $DE-
COMP=’R’ or $DECOMP=’C’. The Bunch-Parlett decomposition [17] of the Hessian
matrix is applied if $DECOMP=’B’. The inverse matrix is used if $DECOMP=’I’.
The orthogonal QR decomposition [173] of the Jacobian matrix is utilized if $DE-
COMP=’A’ or $DECOMP=’Q’. The complete LU decomposition [36] of the Jacobian
matrix is applied if $DECOMP=’E’. Moreover, symbolic decomposition is always
determined before the iterative process in the sparse case, so that only numerical
computations with known factors are carried out in the subsequent iterations.

$NUMBER=2 - An alternative possibility to the previous case. The direct solution is combined with
a conjugate gradient direction if the Hessian matrix is indefinite. This possibility can
be advantageously used in connection with the modified Newton method.

$NUMBER=3 - Inexact iterative methods. The conjugate gradient method [37] for solving linear
systems with the Hessian matrix is applied if $DECOMP=’M’. The CGLS method
[142] for solving linear least squares problems with the Jacobian matrix is used if
$DECOMP=’A’. The smoothed CGS method [170] for solving linear systems with the
Jacobian matrix is utilized if $DECOMP=’E’. The precision control is specified by
the macrovariable $MOS. If $DECOMP=’M’ and $HESF=’S’, the conjugate gradient
method can be preconditioned by using the incomplete Gill-Murray decomposition.
This possibility is specified by the macrovariable $MOS2. If $DECOMP=’E’ and
$JACA=’S’, the smoothed CGS method can be preconditioned by using either the
incomplete LU decomposition or the SSOR preconditioner. This possibility is specified
by the macrovariable $MOS2.

$NUMBER=4 - Inexact iterative methods. The LSQR method [142] for solving linear least squares
problems with the Jacobian matrix is applied if $DECOMP=’A’. The GMRES
method [153] for solving linear systems with the Jacobian matrix is used if $DE-
COMP=’E’. The precision control is specified by the macrovariable $MOS.

$NUMBER=5 - Inexact iterative methods. The smoothed BICGSTAB method [175] for solving linear
systems with the sparse Jacobian matrix is used if $DECOMP=’E’. The precision
control is specified by the macrovariable $MOS.

Macrovariable $MOS used in iterative methods has the following meaning.

$MOS=1 - A simple strategy is used for precision control.
$MOS=2 - The geometric decreasing strategy is used for precision control.
$MOS=3 - The harmonic decreasing strategy is used for precision control.

The default value is $MOS=3.

75

Macrovariable $MOS2 used in iterative methods has the following meaning.

$MOS2=0 - Preconditioning is suppressed.
$MOS2=1 - The incomplete Gill-Murray or LU decompositions are used.
$MOS2=2 - The SSOR preconditioner is used.

The default value is $MOS2=0.
If the line search method is used then a descent property of the determined direction is tested. If

−sT g ≥ ε0 ‖ s ‖‖ g ‖
where sT g is the directional derivative, s is the direction, and g is the objective function gradient, then the
direction is accepted. In the opposite case the optimization method is restarted. The value ε0 is specified
by using the macrovariable $EPS0.

If $TYPE=’G’, then trust region methods are supposed. The initial trust region radius can be specified
by the statement $XDEL=trust region radius, but the default automatically derived value is recommended.
The trust region methods can be internally scaled. This way is very advantageous for nonlinear regression
problems containing exponentials. The trust region scaling is specified by the macrovariable $MOS1.

$MOS1=1 - No scaling is performed.
$MOS1=2 - The scaling coefficients are derived from the normal equation matrix diagonal ele-

ments [97].

The default value is $MOS1=1.
There are six trust region methods:

$NUMBER=1 - Dog-leg methods based on various matrix decompositions. The Gill-Murray decom-
position [62] of the Hessian matrix is applied if $DECOMP=’M’ and $MOS2=0 or if
$DECOMP=’G’. The Schnabel-Eskow decomposition [154] is used if $DECOMP=’M’
and $MOS2=1 or if $DECOMP=’S’. The Choleski decomposition of the Hessian ma-
trix is utilized if $DECOMP=’R’ or $DECOMP=’C’. The Bunch-Parlett decompo-
sition [17] of the Hessian matrix is applied if $DECOMP=’B’. The orthogonal QR
decomposition [173] of the Jacobian matrix is utilized if $DECOMP=’A’ or $DE-
COMP=’Q’. The complete LU decomposition [36] of the Jacobian matrix is applied
if $DECOMP=’E’. Moreover, symbolic decomposition is always determined before
the iterative process in the sparse case, so that only numerical computations with
known factors are carried out in the subsequent iterations. The individual dog-leg
methods are specified by the macrovariable $MOS.

$NUMBER=2 - An alternative possibility to the previous case. The multiple dog-leg methods (com-
binations of dog-leg methods and conjugate gradient methods) [92] are supposed. The
number of dog-leg steps is specified by the statement $MOS=number of steps.

$NUMBER=3 - Iterative trust region methods. The conjugate gradient trust region method [164]
with the Hessian matrix is applied if $DECOMP=’M’. The CGLS trust region method
[99] with the Jacobian matrix is used if $DECOMP=’A’. The smoothed CGS trust
region method [124] with the Jacobian matrix is utilized if $DECOMP=’E’. The pre-
cision control is specified by the macrovariable $MOS in the same way as in line search
methods. If $DECOMP=’M’ and $HESF=’S’, the conjugate gradient method can be
preconditioned by using the incomplete Gill-Murray decomposition. This possibility
is specified by macrovariable $MOS2 in the same way as in line search methods. If
$DECOMP=’E’ and $JACA=’S’, the smoothed CGS method can be preconditioned
by using either the incomplete LU decomposition or the SSOR preconditioner. This
possibility is specified by macrovariable $MOS2 in the same way as in line search
methods.

76

$NUMBER=4 - Iterative trust region methods. The combined Lanczos and CG trust region method
[92] with the Hessian matrix is applied if $DECOMP=’M’. The LSQR trust region
method [99] with the Jacobian matrix is used if $DECOMP=’A’. The GMRES trust
region method [124] with the Jacobian matrix is utilized if $DECOMP=’E’. The
precision control is specified by the macrovariable $MOS as in the previous case.
Iterative methods can be again preconditioned. This possibility is specified by the
macrovariable $MOS2 as in the previous case.

$NUMBER=5 - Iterative trust region methods. The combined CG and Lanczos trust region method
[92] with the Hessian matrix is applied if $DECOMP=’M’. The smoothed BICGSTAB
trust region method [124] with the Jacobian matrix is utilized if $DECOMP=’E’. The
precision is specified by the macrovariable $MOS as in the previous case. Iterative
methods can be again preconditioned. This possibility is specified by the macrovari-
able $MOS2 as in the previous case.

$NUMBER=7 - An optimum locally constrained trust region method [135]. The Gill-Murray decom-
position [62] of the Hessian matrix is applied if $DECOMP=’M’ and $MOS2=0. The
Schnabel-Eskow decomposition [154] of the Hessian matrix is used if $DECOMP=’M’
and $MOS2=1 or if $DECOMP=’S’. The special augmented Jacobian matrix is used
if $DECOMP=’A’.

Macrovariable $MOS used in dog-leg methods has the following meaning.

$MOS=1 - The single dog-leg method [145] is used.
$MOS=2 - The double dog-leg method [40] is used.
$MOS=3 - The optimum dog-leg method [23] is used.

The default value is $MOS=2.
If $TYPE=’T’, only the specifications $NUMBER=1, $NUMBER=2 and $NUMBER=7 can be used.

These specifications have the same meaning as in the case $TYPE=’G’, but the implementation is simpler.
If $NUMBER=7, the simplified optimum locally constrained trust region method [97] is used.

If $TYPE=’M’, only the specification $NUMBER=1 can be used. In this case a modified Marquardt
method proposed by Fletcher [47] is applied.

3.29 Methods for stepsize selection

Stepsize selection is a very important part of optimization methods. The UFO system contains two types
of stepsize selection procedures: line search methods and trust region methods. Line search methods are
realized in two modifications specified by the macrovariable $SEARCH:

$SEARCH=’B’ - Basic line search methods based on various interpolation and extrapolation formulas.
$SEARCH=’M’ - Mixed line search methods which control the maximum stepsize like the trust region

methods.

The choice of individual line search procedures is influenced by the order of directional derivatives
being used. This order can be specified by the macrovariable $KDS. The value of the macrovariable $KDS
is usually derived internally from the order of analytically supplied partial derivatives. If this order is
zero, then always $KDS=0. In the opposite case, the value of the macrovariable $KDS can be specified by
the user. If $KDS=0, only the function values are used during the line search. If $KDS=1, the function
values and the first directional derivatives are used. If $KDS=2 then, in addition, the Hessian matrices
or their approximations are computed during the line search (this case is very useful for a line search
implementation of modified Gauss-Newton methods).

The particular interpolation and extrapolation rule is specified by the macrovariable $MES. If $KDS=0,
we have the following possibilities:

$MES=1 - The uniformly increasing extrapolation or bisection interpolation is used.
$MES=2 - Two point quadratic extrapolation or interpolation is used.

77

$MES=3 - Three point quadratic extrapolation or interpolation is used.
$MES=4 - Three point cubic extrapolation or interpolation is used.
$MES=5 - Special extrapolation or interpolation is used based on the special form of the ob-

jective function.

If $KDS=1 or $KDS=2, the following possibilities, based on the first directional derivatives, can be used:

$MES=1 - The uniformly increasing extrapolation or bisection interpolation is used.
$MES=2 - Quadratic extrapolation or interpolation (with one directional derivative) is used.
$MES=3 - Quadratic extrapolation or interpolation (with two directional derivatives) is used.
$MES=4 - Cubic extrapolation or interpolation [35] is used.
$MES=5 - Conic extrapolation or interpolation [7] is used.

More detailed specifications concerning the line search selection can be chosen by using macrovariables
$MES1, $MES2, $MES3:

$MES1=1 - Constant extrapolation is used.
$MES1=2 - Extrapolation specified by the macrovariable $MES is used.
$MES1=3 - Extrapolation is suppressed.
$MES2=1 - Standard line search termination criterion is used.
$MES2=2 - Special termination criterion for nonconvex functions is used.
$MES2=3 - Line search is terminated after at least two function evaluations.
$MES3=1 - Safeguard against rounding errors is suppressed.
$MES3=2 - The first level of safeguard is used.
$MES3=3 - The second level of safeguard is used.

Another useful specification for the line search selection is a termination criterion which is determined
by using the macrovariable $KTERS:

$KTERS<0 - The nonmonotone line search procedure proposed in [70] is used. The absolute value
of the macrovariable $KTERS, which cannot be greater then 10, gives the number of
nonmonotone steps.

$KTERS=1 - Perfect stepsize. The relative precision of the stepsize parameter is given by the
value $EPS3.

$KTERS=2 - The Goldstein stepsize [67]. The termination precision is given by the value $EPS1.
$KTERS=3 - The Curry-Altman stepsize [30] (Wolfe conditions). The termination precision is

given by the values $EPS1 and $EPS2.
$KTRES=4 - The extended Curry-Altman stepsize [50] (strict Wolfe conditions). The termination

precision is given by the values $EPS1 and $EPS2.
$KTERS=5 - The Armijo stepsize [4]. The termination is given by the value $EPS1.
$KTERS=6 - The first stepsize. The stepsize selection is terminated after the first function eval-

uation.

The last useful specification for the line search methods is the initial stepsize choice which is determined
by the macrovariable $INITS. The initial stepsize is usually computed by the rule

α = min(c1,−c2(ΔF/sT g))

where sT g is the initial directional derivative and ΔF = F − Fmin or ΔF = Fold − F if the value of the
macrovariable $INITS is positive or negative respectively. The absolute value of the macrovariable $INITS
determines coefficients c1 and c2

$INITS=±1 - Values c1 = 1 and c2 = 0 are used.
$INITS=±2 - Values c1 = 1 and c2 = 4 are used.
$INITS=±3 - Values c1 = 1 and c2 = 2 are used.
$INITS=±4 - Values c1 = 0 and c2 = 2 are used.

78

Trust region methods are also realized in two modifications specified by the macrovariable $SEARCH:

$SEARCH=’B’ - The basic trust region methods with stepsize control based on the comparison of
both the actual and the predicted function decreases.

$SEARCH=’M’ - Mixed trust region methods which use interpolation formulas for stepsize reduction
like the line search methods [139].

Trust region methods are also influenced by using the macrovariable $KTERS. If $KTERS<0, then
nonmonotone trust region procedure proposed in [38] is used. The absolute value of the macrovariable
$KTERS, which cannot be greater then 10, gives the number of nonmonotone steps.

3.30 Methods for numerical differentiation

The UFO system computes derivatives of the model function (approximating functions, constraint func-
tions) numerically whenever they are not given analytically. This is made possible by the macroprocessor
which generates a corresponding part of the UFO source program. The main problem of a numerical
differentiation is a difference determination which has to be chosen in such a way that the total influence
of both the cancellation and the roundoff error is as small as possible. There are three possibilities in the
UFO system which are distinguished by using the macrovariable $MCG:

$MCG=0 - The simple difference determination described in [41] is used.
$MCG=1 - The optimum difference determination proposed in [64] is used.
$MCG=2 - The optimum difference determination proposed in [165] is used.

The default option is $MCG=2. The above possibilities are used for a computation of the model function
first order derivatives. The others (second order derivatives or derivatives of the approximating functions
and constraint functions) are always computed with the simple difference determination.

3.31 Methods for objective function evaluation in the case of dynamical systems optimization

If either $MODEL=’DF’ or $MODEL=’DQ’, the objective function is computed from the solution of
an initial value problem for ordinary differential equations. The initial value problem is solved and the
integral criterion is evaluated by using integration methods specified by the macrovariable $SOLVER as
is described above. If the partial derivatives of all the functions used are given analytically, the gradient
of the objective function is computed by integration methods. There are two possibilities specified by the
macrovariable $SYSTEM:

$SYSTEM=’F’ - Forward integration using an augmented system of ordinary differential equations.
$SYSTEM=’B’ - Backward integration using the adjoint system of ordinary differential equations.

The default value is $SYSTEM=’F’. In the case of modified Gauss-Newton methods ($CLASS=’GN’),
an approximation of the Hessian matrix is also computed by using forward integration of an augmented
system.

3.32 Global optimization methods

Global optimization methods are used if $EXTREM=’G’ is specified. The global optimization methods use
local optimization methods for finding local minima. Therefore the particular local optimization method
has to be chosen by using the macrovariables $CLASS, $TYPE and others. Individual global optimization
methods are specified by using the macrovariables $GCLASS and $GTYPE. The UFO system contains
four classes of global optimization methods:

$GCLASS=1 - Random search methods. These methods are simple and robust, but less efficient.

79

$GCLASS=2 - Continuation methods. These methods use some penalty functions which are ad-
justed after reaching an arbitrary local minimum so that another local minimum is
found.

$GCLASS=3 - Clustering methods. These methods are based on randomly generated sample points
which are processed by using clustering algorithms to determine basins of attraction
(clusters) of the individual minima. The basins of attraction (clusters) obtained are
not searched repeatedly.

$GCLASS=4 - Multi-level methods. Modern stochastic methods which involve a combination of
sampling and local search techniques. These methods combine strong theoretical
properties with an attractive computational behavior. These methods are simpler
but more efficient than the clustering methods.

If $GCLASS=1, we can choose four types of global optimization methods:

$GTYPE=1 - Single-start methods. Random points, uniformly distributed in a given region, are
generated and a local minimization method is started from the point with the lowest
function value.

$GTYPE=2 - Multi-start methods. Random points, uniformly distributed in a given region, are
generated and local minimization is started from every point. The local minima
obtained are compared and selected.

$GTYPE=3 - Modified multi-start methods. Random points, distributed in a given region uni-
formly, are generated and local minimization is started whenever a point is found
which has a lower function value than that reached up to date.

$GTYPE=4 - Bayesian reduced multi-start methods [8]. Random samples of points are repeatedly
generated. Every random sample is reduced and local minimization is started from
all points belonging to the reduced sample. Obtained local minima are compared
and selected. This process is repeated while the Bayesian termination criterion is not
satisfied.

If $GCLASS=2, then we can choose three types of global optimization methods:

$GTYPE=1 - Tunneling function methods [85]. These methods consist of two phases: a local
minimization phase and a tunneling phase. The starting point for the second phase
is the local minimum. At the end of the tunneling phase a new point is found which
has a function value equal or lower than the starting point.

$GTYPE=2 - Combined tunneling function and random search methods. In this case a random
search is used in the tunneling phase if the minimization of a tunneling function has
failed to find a new starting point.

$GTYPE=3 - Filled function methods [57], [58]. The idea of filled function methods is based on
a filled function. This function has a maximum in the point of a known minimum of
the objective function. On the other hand, this function does not have minimizers or
saddle points in any basin of a higher minimizer of the objective function, but it does
have a minimizer or a saddle point in a basin of a lower minimizer of the objective
function.

If $GCLASS=3, we can choose two types of global optimization methods:

$GTYPE=1 - Density clustering method [9]. Density clustering refers to a class of clustering
techniques by using nonparametric probability density estimates to form clusters. All
unclustered points from a reduced sample, which are within the threshold distance
from the seed point, are added to the cluster.

80

$GTYPE=2 - Single linkage clustering method [9]. In this case, the next two clusters to be merged
are those for which the distance between the nearest points is the smallest. When
this distance becomes larger than the threshold distance, the procedure is stopped.
Starting with each point in a separate cluster, the points at distances smaller than
the threshold distance are linked. A cluster is recognized as a set of points linked
together.

If $GCLASS=4, we can choose three types of global optimization methods:

$GTYPE=1 - Multi-level single linkage method [152]. In this case, the function values of the
sample points are used in a very simple manner to obtain a very powerful method.
The local search procedure is applied to every sample point, except if there is another
sample point within the critical distance which has a smaller function value. Clusters
can be constructed by associating a point with a local minimum, if there exists a
chain of points linking it to that minimum. This is done so that the distance between
each successive pair is, at most, equal to the critical distance and the function value
is decreasing along the chain. A point in this way could be assigned to more than one
minimum.

$GTYPE=2 - Multi-level mode analysis method [152]. This method is a generalization of the mode
analysis method. The region is partitioned into cells. After the sample reduction, it
is determined which cells contain enough points to be ”full”. For each full cell the
function value of the cell is defined to be equal to the smallest function value of any of
the sample points in the cell. Finally, for every full cell, local minimization is applied
except if a cell has a neighboring cell which is full and has a smaller function value.

$GTYPE=3 - Modified multi-level single linkage method. This is a multi level single linkage
method with some modifications which are described in [152].

The number of points randomly generated in the given region can be specified by using the macrovari-
able $MNRND. The default value is usually 100+20*NF. Since it depends on the number of variables and
for NF>20 is too large, we recommend to use global optimization methods up to 20 variables only. If
we use clustering or multi level single linkage methods ($GCLASS=3 or $GCLASS=4), we can specify
additional parameters.

$MNLMIN - Maximum considered number of local minima. The default value is 50+20*NF.
$GAMA - Reduction of random sample (typically 0.1D0 - 0.2D0). A greater value of GAMA

usually leads to a greater number of local minima, but it requires a greater amount
of work.

$SIGMA - Parameter of cluster or single linkage termination (typically 1 - 8).

81

4 Input possibilities in the UFO system

The UFO system has many input possibilities including interactive dialogues. These input possibilities
can be divided into three basic groups which are batch mode, text dialogue mode and graphic dialogue
mode. Batch and dialogue modes can be combined. The basic means for the batch and combined modes
is the UFO control language.

4.1 The UFO control language

The form of the UFO source program can be determined by using the statements of the UFO control
language. The UFO control language is based on the batch editing language (BEL) [166] described in
Appendix B. The UFO control language contains four types of instructions:

1. Standard Fortran 77 instructions which can be written in the free format.

2. Fortran 77 instructions containing macrovariables. These instructions get a final form after the first
pass of the UFO preprocessor.

3. Substitutions and directives. These macroinstructions control the UFO preprocessor execution.

4. Special substitutions. These macroinstructions are special tools of the UFO control language that
realize the most useful sets of single instructions.

Standard Fortran 77 instructions used in the UFO control language have some extensions and limi-
tations. The main extension is the free format. The instructions need not have a limited length, they
can be written everywhere in the input file and if they are written in the same line, the character ’;’ is
used to separate the instructions. The continuation of an instruction is specified by character ’& ’. The
main limitation concerns the application of instructions in the UFO source program. Therefore, statement
numbers greater than 9999 cannot be used, comments can be introduced by character ′∗′ only and the
only continuation character can be ’& ’. At the same time, it is recommended to use identifiers beginning
with character ’W’ which are not used in the UFO system.

Macrovariables used in the UFO system begin with character ’$’ and are supposed to be of the type
character. Their values are always in the form of a string of characters which can be sometimes interpreted
as an integer or a real or a logical constant. The chief significance of the macrovariables is their use
in substituting their values for their names in the Fortran 77 statements. In this case we place the
macrovariable (beginning with ’$’) in the text, but if it is followed by a letter or a digit we have to use
brackets. For example if we write

$FLOAT W(100)
or

CALL UD$HESF$TYPE$DECOMP$NUMBER
or

X(1)=1.0$(P)0

and if the values of $FLOAT, $HESF, $TYPE, $DECOMP, $NUMBER and $P are ’REAL∗8’ (this is de-
fault), ’D’, ’L’, ’G’, ’1’ and ’D’ (this is default), we get REAL∗8 W(100) or CALL UDDLG1 or X(1)=1.0D0
respectively, after the UFO preprocessor application. The values of macrovariables can be defined and
changed by assignments or by special directives as will be shown later.

Substitutions and directives are very important for the UFO control language since they make the
substitutions of texts, definitions and changes of macrovariables, branching, loops, etc., possible. We
briefly describe the most useful of them. A more detailed description is given in Appendix B.

1. Assignment: The assignment of a string of characters for a macrovariable is specified by the macroin-
struction $MACRO=’value’. For example, in order to obtain the result given above, we have to set
$HESF=’D’, $TYPE=’L’, $DECOMP=’G’, $NUMBER=1 (the integers do not need to be substi-
tuted as strings).

82

2. Text insertion: If we write

$SET(MACRO) or $ADD(MACRO)

text text

$ENDSET $ENDADD

then a given text (that can contain a large number of Fortran 77 statements) is inserted into the
macrovariable $MACRO. The macroinstruction $SET is used for the definition of a new macrovari-
able. The macroinstruction $ADD appends a new text into the old macrovariable so that it can be
used repeatedly.

3. Logical substitutions: The macrovariables $INT, $REAL, $LOG and $DEF have logical values. If
we write $INT(MACRO) (or $REAL(MACRO) or $LOG(MACRO)), the resulting value is either
.TRUE., if the value of the macrovariable $MACRO is an integer constant (or a real constant or
a logical constant), or .FALSE. in the opposite case. If we write $DEF(MACRO), the value of
$DEF is either .TRUE., if the macrovariable $MACRO was previously defined (by the substitution
$MACRO=’value’ or by using macroinstructions $SET and $ADD), or .FALSE. in the opposite case.
This possibility can be used for branching. If we use the directive $ERASE(MACRO), the previously
defined macrovariable $MACRO becomes undefined (so that $DEF(MACRO)=.FALSE.).

4. List of items macrovariables: Values of macrovariables can be lists of items, i.e. they can have a
more complicated form $MACRO=’item 1 \item 2\...\item n’ where every item corresponds to one
value. The list of items macrovariables use pointers which point out the current items. The current
item can be obtained by the substitution $DATA(MACRO) which also moves the pointer to the next
item. The directive $RESTORE(MACRO) returns the pointer to the first item.

5. Branching: This possibility is very similar to the branching in the Fortran 77 language:

$IF(condition)

statements

$ELSEIF(condition)

statements

$ELSE

statements

$ENDIF

Conditions can be logical constants .TRUE., .FALSE., or logical macrovariables $INT(MACRO),
$REAL(MACRO), $LOG(MACRO), $DEF(MACRO), or they can have a form of comparisons
MACRO=MACRO1, MACRO=’value’ etc. (besides the relation =, we can also use other rela-
tions < or > or <= or >= or <>). Branching is used in the UFO preprocessor stage and has an
influence on the form of the UFO source program.

6. Loops: The basic looping directives have the following form (similarly as in the Fortran 77 or Pascal
languages):

$DO(MACRO=INDEX1,INDEX2,INDEX3)

statements

$ENDDO

or

$REPEAT

83

statements

$UNTIL(condition)

For example if we set $NF=2, $NC=3 and write

$DO(I=1,NF,1)

$DO(J=1,NC,1)

CALL $SETCG($I,$J,$I.0D0+$J.0D0)

$ENDDO

$ENDDO

then the UFO preprocessor generates the sequence

$SETCG(1,1,1.0D0+1.0D0)

$SETCG(1,2,1.0D0+2.0D0)

$SETCG(1,3,1.0D0+3.0D0)

$SETCG(2,1,2.0D0+1.0D0)

$SETCG(2,2,2.0D0+2.0D0)

$SETCG(2,3,2.0D0+3.0D0)

Similarly, if we set $FLOAT=’REAL*8’, $N=20, $MACRO=’X($N)\G($N)\H($N,$N)\.END.’, and
write

$REPEAT

$I=’$DATA(MACRO)’

$IF(I<>’.END.’) $FLOAT $I

$UNTIL(I=’.END.’)

then the UFO preprocessor generates the sequence

REAL*8 X(20)

REAL*8 G(20)

REAL*8 H(20,20)

7. File substitutions: Suppose we have a file with a name file name.extension. Then we can include it
into the UFO source program by using the macroinstructions

$INCLUDE(’file name.extension’)

or

$SUBST(’file name.extension’)

The main difference between these possibilities is that the directive $INCLUDE includes a text
without change (it has to be a regular Fortran 77 text with a fixed format) while the directive
$SUBST substitutes a text executed consecutively by the UFO preprocessor (so that it can contain
the macrovariables and macroinstructions and can be written in the free format). Moreover, the
directives $SUBST can be nested. This possibility is widely used for the UFO source program
generation by using nested templates. If the included file has the name file name.I, we can use a
simpler form without extension. For example, the file UZLINS.I can be substituted by using the
macroinstruction $SUBST(’UZLINS’).

84

8. Special substitutions: Besides macroinstructions of the batch editing language BEL, the UFO control
language contains special substitutions which realize sets of instructions and are useful for controlling
the UFO preprocessor:

$BATCH - Switch to the batch mode.

$DIALOGUE - Switch to the default dialogue mode (text or graphic).

$TDIALOGUE - Switch to the text dialogue mode.

$GDIALOGUE - Switch to the graphic dialogue mode.

$GLOBAL - Global declarations.

$INITIATION - Initiation of the global variables.

$INPUT - User supplied input.

$OUTPUT - User supplied output.

$METHOD - Generation of the optimization method.

$MODERASE - Cancellation of the current model.

$METERASE - Cancellation of the current method.

$VARERASE - Clearing the common variables.

$TSTART - Start of the time measurement.

$TSTOP - Termination of the time measurement and print of the measured time.

$END - End of the optimization block.

$STANDARD - Standard optimization block: The macroinstruction $STANDARD substi-
tutes the sequence of macroinstructions $GLOBAL, $INITIATION, $INPUT,
$TSTART, $METHOD, $TSTOP, $OUTPUT.

9. Comments: Every line beginning with $REM is a comment line, which is ignored by the macropro-
cessor.

Moreover $UYTES1, $UYTES2, $UYTES3, $UOTES4, $UKMAI1, $UKMCI1, $UKMCI2 are simplified
substitutions of subroutines UYTES1, UYTES2, UYTES3, UOTES4, UKMAI1, UKMCI1, UKMCI2 re-
spectively and $SETAG, $SETCG are simplified calling statements (Sections 2.6 and 2.14).

We have described basic possibilities of the UFO control language that are sufficient for preparing the
batch input file. More details are given in subsequent chapters and especially in Appendix B. Usually, the
macrovariable $STANDARD is used if one optimization problem is solved by one optimization method.
The following three examples show possibilities how to use various methods for solving various optimization
problems. The first example demonstrates the use of the UFO control language for solving one optimization
problem by using two different optimization methods: the robust but less efficient pattern-search method
($CLASS=’HM’, $TYPE=’P’) and the superlinearly convergent variable metric method with numerical
computation of gradients ($CLASS=’VM’). The input template has the form:

$REM +---+
$REM + MODEL DESCRIPTION +
$REM +---+
$SET(INPUT)
X(1)=-1.2D0; X(2)= 1.0D0

$ENDSET
$SET(FMODELF)
FF=1.0D2*(X(1)**2-X(2))**2+(X(1)-1.0D0)**2

$ENDSET
$NF=2
$REM : output specifications

85

$LOUT=2
$MOUT=1
$NOUT=1

$REM +---+
$REM + START OF THE PROGRAM GENERATION +
$REM +---+
$BATCH; $REM : the batch mode
$GLOBAL; $REM : global declarations
$TSTART; $REM : start of time measurement

$REM +---+
$REM + THE FIRST METHOD +
$REM +---+
$REM : parameters of the first method
$XDEL=’1.0$P-2’
$TOLB=’1.0$P-2’
$MIT=800
$MFV=800
$CLASS=’HM’
$TYPE=’P’
$INITIATION; $REM : model specification and generation
$INPUT; $REM : the user input
$METHOD; $REM : method specification and generation
$METERASE; $REM : clearing parameters of the first method

$REM +---+
$REM + THE SECOND METHOD +
$REM +---+
$REM : parameters of the second method
$HESF=’D’
$TOLX=’1.0$P-16’
$TOLF=’1.0$P-16’
$TOLG=’1.0$P-8’
$TOLB=’1.0$P-16’
$MIT=800
$MFV=800
$CLASS=’VM’
$TYPE=’L’
$DECOMP=’I’
$NUMBER=1
$METHOD; $REM : method specification and generation

$TSTOP; $REM : print of the CPU time
$END; $REM : end of the program generation

The text output file follows:

CLASS = HM - PN1 UPDATE = N MODEL = FF HESF = N NF = 2
0 NIT= 53 NFV= 222 NDC= 0 FV BOUND F= 0.5266202783E-02

FF = 0.5266202783D-02
X = 0.9322729460D+00 0.8717390863D+00
CLASS = VM - LI1 UPDATE = B MODEL = FF HESF = D NF = 2

86

0 NIT= 12 NFV= 42 NFG= 0 FV BOUND F= 0.1936407754E-20 G=0.607D-09
FF = 0.1936407754D-20
X = 0.1000000000D+01 0.1000000000D+01
TIME= 0:00:00.00

The second example demonstrates the use of the UFO control language for solving three similar opti-
mization problems by the same optimization method. All problems concern nonlinear approximation (sum
of values and sum of squares) with the same number of variables. The input template has the form:

$REM +---+
$REM + GLOBAL PARAMETERS +
$REM +---+
$NF=100
$NA=500
$MA=2000
$M=9000
$REM : output specifications
$LOUT=2
$MOUT=1
$NOUT=0

$REM +---+
$REM + METHOD SELECTION +
$REM +---+
$REM : parameters of the method
$TOLX=’1.0$P-10’
$TOLF=’1.0$P-15’
$TOLG=’1.0$P-5’
$JACA=’S’
$HESF=’S’
$MIT=800
$MFV=1200
$CLASS=’VM’
$TYPE=’L’
$DECOMP=’M’
$NUMBER=3
$UPDATE=’B’
$MOS2=0
$NEXT=1

$REM +---+
$REM + START OF THE PROGRAM GENERATION +
$REM +---+
$BATCH; $REM : the batch mode
$GLOBAL; $REM : global declarations

$REM +---+
$REM + THE FIRST MODEL +
$REM +---+
$MODEL=’AF’
$SET(INPUT)
CALL EIUB14(NF,NA,MA,X,IAG,JAG,FMIN,XMAX,NEXT,IEXT,IERR)

$ENDSET

87

$SET(FMODELA)
CALL EAFU14(NF,KA,X,FA,NEXT)

$ENDSET
$SET(GMODELA)
CALL EAGU14(NF,KA,X,GA,NEXT)

$ENDSET
$COLLECTION=’Y’; $REM : cycle for testing
$NEXT=3; $REM : number of steps in the cycle
$INITIATION; $REM : model specification and generation
$INPUT; $REM : the user input
$METHOD; $REM : method specification and generation
$MODERASE; $REM : clearing parameters of the first model

$REM +---+
$REM + THE SECOND MODEL +
$REM +---+
$MODEL=’AQ’
$SET(INPUT)
CALL EIUB15(NF,NA,MA,X,IAG,JAG,FMIN,XMAX,NEXT,IEXT,IERR)

$ENDSET
$SET(FMODELA)
CALL EAFU15(NF,KA,X,FA,NEXT)

$ENDSET
$SET(GMODELA)
CALL EAGU15(NF,KA,X,GA,NEXT)

$ENDSET
$NEXT=1; $REM : THE PROBLEM NUMBER
$INITIATION; $REM : model specification and generation
$INPUT; $REM : the user input
$TSTART; $REM : start of time measurement
$METHOD; $REM : method specification and generation
$TSTOP; $REM : print of the CPU time
$MODERASE; $REM : clearing parameters of the second model

$REM +---+
$REM + THE THIRD MODEL +
$REM +---+
$SET(INPUT)
CALL EIUB18(NF,NA,MA,X,IAG,JAG,FMIN,XMAX,NEXT,IEXT,IERR)

$ENDSET
$SET(FMODELA)
CALL EAFU18(NF,KA,X,FA,NEXT)

$ENDSET
$SET(GMODELA)
CALL EAGU18(NF,KA,X,GA,NEXT)

$ENDSET
$COLLECTION=’Y’; $REM : cycle for testing
$NEXT=5; $REM : number of steps in the cycle
$INITIATION; $REM : model specification and generation
$INPUT; $REM : the user input
$METHOD; $REM : method specification and generation

88

$END; $REM : end of the program generation

The text output file follows:

CLASS = VM - LM3 UPDATE = B MODEL = AF HESF = S NF = 100
1 NIT= 303 NFV= 364 NFG= 364 GRAD TOL F= 0.3916196246E-14 G=0.229D-05
2 NIT= 104 NFV= 168 NFG= 168 GRAD TOL F= 10.69009184 G=0.993D-06
3 NIT= 35 NFV= 38 NFG= 38 GRAD TOL F= 0.5708941253E-10 G=0.567D-05

TOTAL NIT= 442 NFV= 570 NFG= 570 NDC= 0 * 3
NCG= 9078 NLS= 125 NSC= 0 NUP= 25779
NRS= 3 NMX= 0 NAD= 0 NRM= 0

TIME= 0:00:00.09
CLASS = VM - LM3 UPDATE = B MODEL = AQ HESF = S NF = 100
1 NIT= 306 NFV= 389 NFG= 389 GRAD TOL F= 0.5452508290E-14 G=0.161D-05

TIME= 0:00:00.08
CLASS = VM - LM3 UPDATE = B MODEL = AQ HESF = S NF = 100
1 NIT= 38 NFV= 40 NFG= 40 GRAD TOL F= 0.3359765546E-10 G=0.268D-05
2 NIT= 34 NFV= 36 NFG= 36 GRAD TOL F= 0.4552663103E-12 G=0.919D-06
3 NIT= 4 NFV= 5 NFG= 5 GRAD TOL F= 0.8693979881E-14 G=0.375D-07
4 NIT= 12 NFV= 16 NFG= 16 GRAD TOL F= 7.086281648 G=0.655D-06
5 NIT= 69 NFV= 132 NFG= 132 GRAD TOL F= 320.3198802 G=0.940D-05

TOTAL NIT= 157 NFV= 229 NFG= 229 NDC= 0 * 5
NCG= 2517 NLS= 67 NSC= 0 NUP= 8284
NRS= 5 NMX= 0 NAD= 0 NRM= 0

The third example demonstrates the use of the UFO control language for solving one optimization
problem by using two different models: general objective function and sum of squares. Three optimization
methods: the robust but less efficient heuristic pattern-search method ($CLASS=’HM’, $TYPE=’P’), the
variable metric method with numerical computation of gradients ($CLASS=’VM’) and the modified Gauss-
Newton method with numerical computation of Jacobian matrices ($CLASS=’GN’, $UPDATE=’F’) are
used. The input template has the form:

$REM +---+
$REM + GLOBAL PARAMETERS +
$REM +---+
$REM : declaration of the user variables
$FLOAT W,WA,WB,WC,WM
$REM : output specifications
$LOUT=2
$MOUT=1
$NOUT=1

$REM +---+
$REM + START OF THE PROGRAM GENERATION +
$REM +---+
$BATCH; $REM : the batch mode
$GLOBAL; $REM : global declarations

$REM +---+
$REM + THE FIRST MODEL +
$REM +---+
$SET(INPUT)
X(1)=ONE ; X(2)=TWO ; X(3)=ONE

89

X(4)=ONE ; X(5)=ONE ; X(6)=ONE
XMAX=TEN
FMIN=ZERO

$ENDSET
$SET(FMODELF)
FF=ZERO
DO 2 KA=1,20

W=$DBLE(KA)/TEN
WA=EXP(-W*X(1))
WB=EXP(-W*X(2))
WC=EXP(-W*X(3))
WM=EXP(-W)-FIVE*EXP(-TEN*W)+THREE*EXP(-FOUR*W)
FF=FF+(X(4)*WA-X(5)*WB+X(6)*WC-WM)**2

2 CONTINUE
FF=HALF*FF

$ENDSET
$NF=6

$REM +---+
$REM + THE FIRST METHOD +
$REM +---+
$XDEL=’1.0$P-2’
$TOLB=’1.0$P-1’
$MIT=800
$MFV=8000
$CLASS=’HM’
$TYPE=’P’
$INITIATION; $REM : model specification and generation
$INPUT; $REM : the user input
$METHOD; $REM : method specification and generation
$METERASE; $REM : clearing parameters of the first method

$REM +---+
$REM + THE SECOND METHOD +
$REM +---+
$TOLX=’1.0$P-8’
$TOLF=’1.0$P-8’
$TOLG=’1.0$P-2’
$TOLB=’1.0$P-2’
$MIT=800
$MFV=8000
$HESF=’D’
$CLASS=’VM’
$TYPE=’L’
$DECOMP=’I’
$NUMBER=1
$METHOD; $REM : method specification and generation
$METERASE; $REM : clearing parameters of the second method
$MODERASE; $REM : clearing parameters of the first model

$REM +---+
$REM + THE SECOND MODEL +

90

$REM +---+
$SET(INPUT)
DO 3 KA=1,NA

W=$DBLE(KA)/TEN
AM(KA)=EXP(-W)-FIVE*EXP(-TEN*W)+THREE*EXP(-FOUR*W)

3 CONTINUE
$ENDSET
$SET(FMODELA)
W=$DBLE(KA)/TEN
WA=EXP(-W*X(1))
WB=EXP(-W*X(2))
WC=EXP(-W*X(3))
FA=X(4)*WA-X(5)*WB+X(6)*WC

$ENDSET
$NA=20
$NAL=0
$KBA=1
$MODEL=’AQ’

$REM +---+
$REM + THE THIRD METHOD +
$REM +---+
$TOLX=’1.0$P-16’
$TOLF=’1.0$P-16’
$TOLG=’1.0$P-8’
$TOLB=’1.0$P-16’
$MIT=800
$MFV=8000
$CLASS=’GN’
$TYPE=’G’
$DECOMP=’M’
$NUMBER=7
$UPDATE=’F’
$JACA=’D’
$HESF=’D’
$INITIATION; $REM : model specification and generation
$INPUT; $REM : the user input
$METHOD; $REM : method specification and generation

$END; $REM : end of the program generation

The text output file follows:

CLASS = HM - PN1 UPDATE = N MODEL = FF HESF = N NF = 6
0 NIT= 18 NFV= 176 NDC= 0 FV BOUND F= 0.9758203329E-01

FF = 0.9758203329D-01
X = 0.1577350877D+01 0.3818216079D+01 0.1711759499D+01 0.1324516197D+01

0.1282806727D+01 0.1275838294D+01
CLASS = VM - LI1 UPDATE = B MODEL = FF HESF = D NF = 6
0 NIT= 9 NFV= 72 NFG= 0 GRAD TOL F= 0.5384948810E-01 G=0.740D-02

FF = 0.5384948810D-01
X = 0.2184135468D+01 0.5676842761D+01 0.1972958227D+01 0.1753256141D+01

0.2957973274D+01 0.1724924127D+01

91

CLASS = GN - GM7 UPDATE = F MODEL = AQ HESF = D NF = 6
0 NIT= 14 NFV= 105 NFG= 0 FV BOUND F= 0.3963563826E-30 G=0.171D-14

F = 0.3963563826D-30
X = 0.4000000000D+01 0.1000000000D+02 0.1000000000D+01 0.3000000000D+01

0.5000000000D+01 0.1000000000D+01

4.2 The batch mode

A switch to the batch mode is realized by using the special substitution $BATCH. If we want to process
either the batch mode or the mixed mode we have to prepare a batch input file written in the UFO
control language. This input file prescribes the structure of the UFO source program. If a macrovariable
is used, it has to be the one defined previously. Therefore definitions of macrovariables usually lie at the
beginning of the input file. Many macrovariables serve for defining a given optimization problem. The most
important among them are the macrovariable $INPUT which determines initial input values (user supplied
input) and macrovariables which define problem functions, specifically the model (or objective) function,
approximating functions for nonlinear approximation, constraint functions for nonlinear programming,
state functions, initial functions and the terminal function for optimization of dynamical systems. These
functions are specified by using special macrovariables whose names consist of three parts. The first part
can contain letters F, G, D, H or their combinations:

F - Function value.
G - Gradient with respect to basic variables.
D - Gradient with respect to state variables.
H - Hessian matrix with respect to basic variables.
FG - Function value and gradient with respect to basic variables.
FD - Function value and gradient with respect to state variables.
GD - Gradient with respect to basic variables and gradient with respect to state variables.
FGD - Function value, gradient with respect to basic variables and gradient with respect to state

variables.
FGH - Function value, gradient with respect to basic variables and Hessian matrix with respect to

basic variables.
The second part always has the form MODEL. The third part can contain letters F, A, C, E, Y and also
an additional letter S:

F - The model function or the terminal function.
A - The selected approximating function.
AS - All approximating functions.
C - The selected constraint function.
CS - All constraint functions.
E - The selected state function.
ES - All state functions.
Y - The selected initial function.
YS - All initial functions.

The following combinations are possible:

92

$FMODELF $FMODELA $FMODELC $FMODELE $FMODELY
$FMODELAS $FMODELCS $FMODELES $FMODELYS

$GMODELF $GMODELA $GMODELC $GMODELE $GMODELY
$GMODELAS $GMODELCS $GMODELES $GMODELYS

$DMODELF $DMODELA $DMODELE
$DMODELES

$HMODELF $HMODELA $HMODELC
$HMODELAS $HMODELCS

$FGMODELF $FGMODELA $FGMODELC $FGMODELE $FGMODELY
$FGMODELAS $FGMODELCS $FGMODELES $FGMODELYS

$FDMODELF $FDMODELA $FDMODELE
$FDMODELES

$GDMODELF $GDMODELA $GDMODELE
$GDMODELES

$FGDMODELF $FGDMODELA $FGDMODELE
$FGDMODELES

$FGHMODELF $FGHMODELA $FGHMODELC
$FGHMODELAS $FGHMODELCS

The choice of a suitable way for problem function definitions is ambiguous and problem dependent.
We can only give several remarks:

1. The basic and most general way is the use of different macrovariables for different quantities (values,
gradients, Hessian matrices) together with an independent evaluation of individual functions (the last
letter is different from S). This way saves the computer storage and frequently also the computational
time.

2. Sometimes, evaluations of gradients require function values. In this case, it can be advantageous to
compute values and gradients simultaneously. A similar consideration also holds for Hessian matrices.

3. Even if simultaneous evaluations of all approximating (constraint, state, initial) functions increase
storage requirements, it can be advantageous if there are complicated computations common for all
such functions, and also if a problem has a low dimension or a sparse structure. It is frequently
advantageous for the evaluation of state and initial functions when the dynamical systems are opti-
mized.

4. If the gradients of approximating (constraint, state, initial) functions are computed simultaneously
(the last letter is equal to S), then also function values have to be computed simultaneously. Similarly
if the Hessian matrices are computed simultaneously, then also function values and gradients have
to be computed simultaneously.

A simple example of a batch input file was shown in Section 1.2. We repeat it here with some explanations:

$REM : model specifications
$SET(INPUT)
X(1)=-1.2D0; X(2)= 1.0D0

$ENDSET
$SET(FMODELF)
FF=1.0D2*(X(1)**2-X(2))**2+(X(1)-1.0D0)**2

$ENDSET
$NF=2
$REM : the default method is used
$REM : print specifications
$MOUT=1

93

$NOUT=1
$REM : the batch mode is used
$BATCH
$REM : the standard form of the source program is used
$STANDARD

By using the macrovariable $INPUT, we specify the initial values of variables x1 = −1.2 and x2 = 1.0. By
using the macrovariable $FMODELF, we specify the model function value (the model function gradient
is not specified, it will be computed numerically). The macrovariable $NF defines the number of variables
and $MOUT, $NOUT are print specifications. The macroinstruction $BATCH switches the mode to the
batch mode. The macroinstruction $STANDARD defines the standard form of the UFO source program.
Descriptions of more complicated problems are shown in Chapter 7.

In the above example, a direct definition of a model function value is used. We can also use indirect
specifications by means of the Fortran 77 subroutines or the files prepared beforehand. Suppose that the
model function value is defined by using the subroutine EFFU01 or is specified in the file FVAL.FOR. Then
we can write:

$SET(FMODELF)
CALL EFFU01(NF,X,FF,NEXT)

$ENDSET
or

$SET(FMODELF)
$INCLUDE(’FVAL.FOR’)

$ENDSET
or

$SET(FMODELF)
$SUBST(’FVAL.FOR’)

$ENDSET

The last possibility is useful if the model function value specification is written in a free format or it
contains the BEL macroinstructions.

If we need to utilize user supplied subroutines, we can include them into the UFO source program by
using the macrovariable $SUBROUTINES:

$SET(SUBROUTINES)
user supplied subroutines

$ENDSET

In this case, some exceptions laid on the text of user supplied subroutines forced by the UFO preprocessor
have to be satisfied. All comments have to begin with character ’*’, the continuation line has to begin
with character ’&’, character ’$’ has to be replaced by ’$$’ and character ’;’ does not have to be present.

The batch input file should also contain optimization method selection. Fortunately, this selection is
not critical since the optimization method can be chosen automatically by using knowledge bases contained
in the UFO system templates. Here we will only demonstrate some possibilities. The greatest influence
on the optimization method selection have the following macrovariables:

$CLASS - Class of optimization methods (heuristic, conjugate gradient, variable metric, vari-
able metric with limited storage, modified Newton, truncated Newton, Gauss-Newton,
quasi-Newton, quasi-Newton with limited storage, proximal bundle, bundle-Newton).

$TYPE - Type of optimization methods (line search, trust region, SQP filter).
$DECOMP - Type of matrix decomposition (original matrix, Choleski decomposition, inversion).
$NUMBER - Individual methods for direction determination (various direct, various iterative).
$UPDATE - Type of variable metric or quasi-Newton update.

A more detailed description of these choices together with other choices ($MET, $MET1, $MET2, $MET3,
$MES, $MES1, $MES2, $MES3, $MOS, $MOS1, $MOS2, $MOS3) is given in Section 3.

94

4.3 The text dialogue mode

A switch to the text dialogue mode is realized by using the special substitution $TDIALOGUE. This is
equivalent to the substitution $DIALOGUE in the UNIX version of the UFO system. If this is the case,
a sequence of questions appear on the screen in the text form. Each question, which is placed in its own
frame, consists of the macrovariable description usually followed by the list of its possible values. The
name of a macrovariable together with its default value is written on the top of the frame. We have two
possibilities for an answer. First, the required value can be entered from the keyboard. Secondly, we can
press ENTER to choose the default value. After the assignment of a value to the macrovariable, a new
question immediately appears on the screen until the last one is exhausted. The dialogue mode can be
terminated by entering character ’ !’ from the keyboard. We demonstrate four questions as an example:

AND OTHER INPUT DATA HAVE TO BE SPECIFIED.

TYPES OF CONSTRAINTS, THE STRUCTURE OF SPARSE PROBLEM,
HERE THE STARTING POINT, BOUNDS FOR VARIABLES,

USER SUPPLIED INPUT:

? INPUT () ?

Here a user supplied input is expected. This is a text which should be entered from the keyboard.

? MODEL (FF) ?
TYPE OF OBJECTIVE FUNCTION

FF - GENERAL FUNCTION
FL - LINEAR FUNCTION
FQ - QUADRATIC FUNCTION

AF - SUM OF FUNCTIONS
AQ - SUM OF SQUARES

AP - SUM OF POWERS
AM - MINIMAX
DF - DIFFERENTIAL SYSTEM WITH GENERAL INTEGRAL CRITERION
DQ - DIFFERENTIAL SYSTEM WITH INTEGRAL OF SQUARES

NO - MODEL IS NOT SPECIFIED

Here an optimization model, i.e. a type of the objective function, is chosen. We have 10 possibilities, FF,
FL, FQ, AF, AQ, AP, AM, DF, DQ, NO. The default value of the macrovariable $MODEL corresponding
to the general objective function is FF. By pressing ENTER, the default value FF is accepted.

? NF (0) ?
NUMBER OF VARIABLES

Here the number of variables is expected. This is a positive integer. No default value is offered, i.e. we
have to set a value. If this value is not a positive integer, the answer is ignored and the same question
appears on the screen.

95

? FMIN (-1.0D 60) ?
LOWER BOUND FOR FUNCTION VALUE

Here a real constant is expected. By pressing ENTER the default value -1.0D 60 is accepted.
More details concerning a text dialogue mode are given in Appendix A, where a complete text dialogue

concerning unconstrained minimization of the Rosenbrock function is shown.

4.4 The graphic dialogue mode

The graphic dialogue mode can be used only on PC computers under the MS DOS system. This possibility
is not allowed on the UNIX workstations. A switch to the graphic dialogue mode is realized by using the
special substitution $GDIALOGUE. This is an equivalent to the substitution $DIALOGUE in the PC
version of the UFO system. If this is the case, a sequence of screens follows. Each screen realizes one
question which is in fact the same as that in the text dialogue mode. Nevertheless, the graph dialogue
mode has several advantages over the text one:

1. Information is better arranged on the screen.

2. The window for typing answers is in fact a simple editor. Therefore the text can be easily corrected
and a movement controlled by arrows is possible.

3. Application of the special UFO editor is possible for realizing more complicated answers. The UFO
editor works with multiple windows so that an answer can be set up from several sources. Therefore
a convenient utility of the batch mode can also be used in the dialogue mode.

To compare text and graphic dialogue modes, we again demonstrate the above four questions:

Here a user supplied input is expected. This is a text which should be written into the window displayed
on the screen (followed by pressing ENTER). If this text is more complicated, we can use the UFO editor
by typing character ’E’ and pressing ENTER. The return from the UFO editor to the graphic dialogue is

96

realized by pressing <alt-5> (Section 1.3). The dialogue mode can be terminated by typing character ’ !’
and pressing ENTER.

Here an optimization model, i.e. a type of the objective function, is chosen. We have 10 possibilities, FF,
FL, FQ, AF, AQ, AP, AM, DF, DQ, NO. The default value of the macrovariable $MODEL, corresponding
to the general objective function, is FF. By pressing ENTER, the default value FF is accepted. If we want
to choose a different possibility, it has to be written into the two-character window, followed by pressing
ENTER. The dialogue mode can be terminated by typing character ’ !’ and pressing ENTER.

Here the number of variables is expected. This is a positive integer. No default value is offered, i.e. we
have to enter a value. If this value is not a positive integer, the answer is ignored and another answer is
expected. The dialogue mode can be terminated by typing character ’ !’ and pressing ENTER.

97

Here a real constant is expected. By pressing ENTER the default value -1.0D 60 is accepted. If we want
to choose a different value, it has to be written into the twenty-character window, followed by pressing
ENTER. The dialogue mode can be terminated by typing character ’ !’ and pressing ENTER.

98

5 Output possibilities in the UFO system

The UFO system has many output possibilities including graphic pictures. These output possibilities can
be divided into five basic groups.

5.1 Basic screen output

The basic screen output can be used only if $GRAPH=’N’ and $DISPLAY=’N’. In this case, individual
rows corresponding to the iterations and the final results are printed on the screen consequently. A
print level of the screen output is determined by using the macrovariables $MOUT and $NOUT. The
macrovariable $MOUT can have the following values:

$MOUT= 0 - Screen output is suppressed.
$MOUT=± 1 - Standard output. The final results appear on the screen.
$MOUT=± 2 - Extended output. Additional information from every iteration appears on the screen.
$MOUT=± 3 - Extended output. Additional final results of linear or quadratic programming sub-

problems appear on the screen.
$MOUT=± 4 - Extended output. Additional information from every iteration of linear or quadratic

programming subproblems appears on the screen.

If $MOUT>0, printed results have the standard form while if $MOUT<0, additional information contain-
ing various method specifications and optimization options is printed.

The macrovariable $NOUT can have the following values:

$NOUT= 0 - Short final results (scalar variables) appear on the screen.
$NOUT= 1 - Extended final results (vectors) appear on the screen.

The basic screen output can be copied into file P.OUT (text file output) if $KOUT=0 and $LOUT>0
(see Section 5.4. In this case, macrovariable $LOUT can have the following values:

$LOUT= 0 - Basic screen output is not copied into text file P.OUT.
$LOUT= 1 - Basic screen output is copied into text file P.OUT. Standard line of the final results is

printed.
$LOUT= 2 - Basic screen output is copied into text file P.OUT. Modified line of the final results,

containing the termination criterion, is printed.

Typical basic screen outputs are shown in Section 7. If we use values $LOUT=2, $MOUT=-2,
$NOUT=2 in the problem specification introduced in Section 7.1, then text file P.OUT contains the follow-
ing information.

CLASS = VM - LG1 UPDATE = B MODEL = FF HESF = D NF = 5
NIT= 0 NFV= 1 NFG= 1 F= 1.866666667 G=0.667D-01
NIT= 1 NFV= 4 NFG= 4 F= 1.550000000 G=0.150D+00
NIT= 2 NFV= 7 NFG= 7 F= 1.200000000 G=0.200D+00
NIT= 3 NFV= 9 NFG= 9 F= 1.000000000 G=0.000D+00

0 NIT= 3 NFV= 9 NFG= 9 GRAD TOL F= 1.000000000 G=0.000D+00
FF = -0.1000000000D+01
X = 0.1000000000D+01 0.2000000000D+01 0.3000000000D+01 0.4000000000D+01

0.5000000000D+01
TIME= 0:00:00.00

OPTIONS:

99

MET = 8 MET1 = 3 MET2 = 2 MET3 = 1 MET4 = 3 MET5 = 0
MOT = 2 MOT1 = 0 MOT2 = 0 MOT3 = 0 MOT4 = 0 MOT5 = 0
MES = 4 MES1 = 2 MES2 = 2 MES3 = 2 MES4 = 0 MES5 = 0
MOS = 0 MOS1 = 0 MOS2 = 0 MOS3 = 0 MOS4 = 0 MOS5 = 0
MEP = 0 MEP1 = 0 MEP2 = 0 MEP3 = 0 MEP4 = 0 MEP5 = 0
MED = 0 MED1 = 0 MED2 = 0 MED3 = 0 MED4 = 0 MED5 = 0
MEG = 0 MEG1 = 0 MEX = 0 MEX1 = 0 MEQ = 0 MEQ1 = 0
MFP = 0 MFP1 = 0 MLP = 0 MLP1 = 0 MQP = 0 MQP1 = 0
KTERS = 3 INITD = 1 INITS = 2 INITH = 1 IREM = 0 IADD = 0

MIT = 500 MIC = 0 MRED = 10 MF = 0
MFV = 1000 MCG = 0 IRES1 = 999 MA = 0
MFG = 10000 MSTP = 0 IRES2 = 0 MB = 0

TOLX = 0.100D-11 EPS0 = 0.100D-05 ETA0 = 0.100D-14 ALF1 = 0.100D-09
TOLF = 0.100D-13 EPS1 = 0.100D-03 ETA1 = 0.100D-12 ALF2 = 0.100D+11
TOLG = 0.100D-05 EPS2 = 0.900D+00 ETA2 = 0.100D-14 ALF3 = 0.000D+00
TOLB =-0.100D+61 EPS3 = 0.000D+00 ETA3 = 0.000D+00 BET1 = 0.000D+00
TOLC = 0.000D+00 EPS4 = 0.000D+00 ETA4 = 0.000D+00 BET2 = 0.000D+00
TOLA = 0.000D+00 EPS5 = 0.000D+00 ETA5 = 0.000D+00 BET3 = 0.000D+00
TOLR = 0.000D+00 EPS6 = 0.000D+00 ETA6 = 0.000D+00 GAM1 = 0.000D+00
XDEL = 0.000D+00 EPS7 = 0.000D+00 ETA7 = 0.000D+00 GAM2 = 0.000D+00
XMAX = 0.100D+04 EPS8 = 0.500D+00 ETA8 = 0.000D+00 GAM3 = 0.000D+00
RPF1 = 0.000D+00 EPS9 = 0.100D-07 ETA9 = 0.100D+61 DEL1 = 0.000D+00
RPF2 = 0.000D+00 FMIN =-0.100D+61 FMAX = 0.100D+21 DEL1 = 0.000D+00
RPF3 = 0.000D+00 DEL3 = 0.000D+00

The first line contains specifications of the method used ($CLASS=’VM’, $TYPE=’L’, $DECOMP=’G’,
$NUMBER=1, $UPDATE=’B’) and the problem characteristics ($MODEL=’FF’, $HESF=’D’, $NF=5).
Then information concerning individual iterations and the final results are printed (0 corresponds to
$NEXT=0 and GRAD TOL is the cause of termination). Since $MOUT<0, the options (parameters of the
method) follows.

5.2 Extended screen output

If we want to use an extended screen output, we have to set $DISPLAY=’Y’ (the default value is $DIS-
PLAY=’N’). This type of screen output consists of text pages which correspond to individual iterations
and the final results. The final results are divided into several groups which can be displayed successively.
We can change the displayed group by typing particular characters from the keyboard.

Change of the displayed group of the final results:

F - (function) : Value of the objective function and statistics.
V - (variables) : Values of variables if NF>0 (with their bounds if KBF>0).
A - (approximation) : Values of approximating functions if NA>0 (with their prescribed values if

KBA>0). Values of selected components of a solution of the set of ordinary dif-
ferential equations at the prescribed mesh points if NE>0.

C - (constraints) : Values of constraint functions if NC>0 (with their bounds if KBC>0).
D - (data) : Data which specify the problem solved (sizes of problem and additional specifica-

tions).
O - (options) : Options which specify the method used.

Exit:

Q - (quit) : Exit from the extended screen output.

100

After typing each character we must use ENTER.
Besides these possibilities we can stop every iteration for scanning the iterative process. It is specified if

we set $SCAN=’Y’ (the default value is $SCAN=’N’). If $SCAN=’N’, the output of iterations is suppressed.
Scanning of the iterative process can be terminated by using character ’ !’ from the keyboard.

5.3 Graphic screen output

The graphic screen output can be used only on PC computers under the MS DOS system. This possibility
is not allowed on the UNIX workstations. If we want to use a graphic screen output, we have to set
$GRAPH=’Y’ (the default value is $GRAPH=’N’). In this case, both iterations and the final results
appear in the graphic mode. In general, the graphic screen output is a sequence of screens which can be
examined successively in a required order. A change of the screen is carried out by using the menu given
on the top of this screen. We have three possibilities. First, the character displayed as a capital at the
menu item can immediately be typed from the keyboard. Secondly, we can use characters → and ← (or
keys + and - in Windows 2000 versions), which realize movement in the top menu. The underlined menu
item is then selected by pressing ENTER. Finally, we can apply a mouse click to the menu item when
DOS graphics is used. In the subsequent graphic screen output description, we focus our attention to the
first possibility without a loss of generality.

The graphic form of the final results can be specified in detail by using macrovariables $PATH (’N’-
no, ’Y’- yes, ’E’- extended), $MAP (’N’- no, ’Y’- yes, ’E’- extended), $HIL (’N’- no, ’Y’- yes) and $ISO
(’N’- no, ’Y’- yes). The final results are divided into several groups which can be displayed successively.
We can change the displayed group by typing particular characters from the keyboard.

Change of the displayed group of the final results:

F - (function) : Value of the objective function and statistics.
V - (variables) : Values of variables if NF>0 (with their bounds if KBF>0).
A - (approximation) : Values of approximating functions if NA>0 (with their prescribed values if

KBA>0). Values of selected components of a solution of the set of ordinary dif-
ferential equations at the prescribed mesh points if NE>0.

C - (constraints) : Values of constraint functions if NC>0 (with their bounds if KBC>0).
D - (data) : Data which specify the problem solved (sizes of problem and additional specifica-

tions).
O - (options) : Options which specify the method used.
T - (path) : Values of the objective function and selected variables (we can change these vari-

ables during the graphic output, if we have specified $PATH=’E’) in the last NPA
iterations (only if $PATH=’Y’ or $PATH=’E’).

Exit:

Q - (quit) : Exit from the graphic output.
X - (exit) : Exit from the UFO system.

Besides these possibilities we can stop every iteration for scanning the iterative process. It is specified
if we set $SCAN=’Y’ (the default value is $SCAN=’N’). In every iteration, we can choose one of the possi-
bilities F, V, A, C, D, O as in the case above. If we have chosen either V (variables) or A (approximation)
or C (constraints), the intermediate results can be displayed graphically by typing G (graph) from the
keyboard. In all these cases we can execute a single iteration by typing SPACE merely. We can also
execute all iterations until the k-th one by typing J (jump) and entering the number k. Finally, by typing
U (automatic), all remaining iterations are executed without scanning.

Besides text representations in the graphic mode, which are essentially like the ones in the extended
screen output (with the choice $DISPLAY=’Y’), we can chose several types of graphic data representation.

a) Graphic picture:

101

If we have chosen either V (variables) or A (approximation) or C (constraints), the results can be
displayed graphically by typing G (graph) from the keyboard. A graphic picture appears on the screen in
this case. It contains either values of variables with indices I, 1 ≤ I ≤ NF, or values of the approximating
functions with indices KA, 1 ≤ KA ≤ NA, or values of the constraint functions with indices KC, 1 ≤ KC ≤
NC. If we have chosen A (approximation) in the case of NE>0, the graphic picture contains a component
(with the index VAR) of a solution of the set of ordinary differential equations at the mesh points AT(KA),
1 ≤ KA ≤ NA. We have to define the index VAR from the keyboard in this case. The graphic picture can
be changed by typing the particular characters from the keyboard.

Change of representation:

V - (values) : Values are drawn.
O - (ordinates) : Values and ordinates from zero axis are drawn.
C - (curve) : Values are connected by a curve.
M - (mixed) : Curve and ordinates are drawn.

Change of graph (if either KBF>0 or KBA>0 or KBC>0):

F - (functions) : Either values of variables X(I), 1 ≤ I ≤ NF, or values of the approximating func-
tions AF(KA), 1 ≤ KA ≤ NA, or values of the constraint functions CF(KC), 1 ≤
KC ≤ NC, are demonstrated.

A - (approximation) : Either values of variables X(I) together with their bounds XL(I) and XU(I), 1
≤ I ≤ NF, or values of the approximating functions AF(KA) together with their
prescribed values AM(KA) , 1 ≤ KA ≤ NA, or values of the constraint functions
CF(KC) together with their bounds CL(KC) and CU(KC), 1 ≤ KC ≤ NC, are
demonstrated.

D - (differences) : Either the differences between variables and their bounds or the differences be-
tween the approximating functions and their prescribed values or the differences
between the constraint functions and their bounds are demonstrated.

Continuation (if either NF > 200 or NA > 200 or NC > 200):

P - (previous) : Previous set of at most 200 values is drawn.
N - (next) : Next set of at most 200 values is drawn.

Choice of the next displayed iteration (only if $SCAN=’Y’):

J - (jump) : The iterative process is stopped at the k-th iteration. Number k is read from the
keyboard.

U - (automatic) : All remaining iterations are executed without scanning.

New graph or return:

W - (new) : This possibility can be used only if NE>0. Then a new component (with a new
index VAR) of a solution of the set of ordinary differential equations is drawn. We
have to define a new index VAR from the keyboard in this case.

Q - (quit) : Return to the displayed group of final results.

If we have chosen F (function) as a group of final results, we can use additional graphic representations.

b) Two-dimensional orbit:

If NE>1, we can draw an orbit of two components of a solution of the set of ordinary differential
equations by typing G (graph) from the keyboard. We have to define an index VAR for every selected
component of a solution (according to the text appeared on the screen). The two-dimensional orbit can
be changed by typing particular characters from the keyboard.

Change of the orbit:

V - (values) : Values are drawn.
C - (curves) : Values are connected by a curve.

102

New orbit or return:

W - (new) : New components of a solution of the set of ordinary differential equations are
drawn. We have to define new two indices from the keyboard in this case.

Q - (quit) : Return to the displayed group of final results.

c) Three-dimensional orbit:

If NE>2, then we can draw an orbit of three components of a solution of the set of ordinary differential
equations by typing I (picture) from the keyboard. We have to define an index VAR for every selected
component of a solution (according to the text appeared on the screen). The three-dimensional orbit can
be changed by typing particular characters from the keyboard.

Change of the orbit:

V - (values) : Values are drawn.
C - (curves) : Values are connected by a curve.
O - (rotate) : Rotation of values or curves about a vertical axis by a subsequently entered angle

Dfi.
T - (tilt) : Tilting rotated values or curves by a subsequently entered angle Dtheta.
A - (axes) : Drawing a picture with rotated and tilted axes.
S - (scale) : Scaling of rotated and tilted values or curves to make full use of the screen.

New orbit or return:

W - (new) : New components of a solution of the set of ordinary differential equations are
drawn. We have to define new three indices from the keyboard in this case.

Q - (quit) : Return to the displayed group of final results.

d) Colored map of the objective function:

If we have specified either $MAP=’Y’ or $MAP=’E’ (default value is $MAP=’N’), we can draw a
colored map of the objective function by typing M (map) from the keyboard. This picture can be changed
by typing particular characters from the keyboard.

Change of the map:

L - (linear) : Linear scale of the colored map.
G - (logarithmic) : Logarithmic scale of the colored map.
R - (refinement) : Refinement of the colored map.
B - (back) : Back refinement of the colored map.
N - (inverse) : Colored map of the objective function negation.

Another type of picture, new map or return:

H - (hills) : Drawing an objective function surface with respect to visibility (only if $HIL=’Y’
is specified).

S - (isolines) : Drawing contours of the objective function (only if $ISO=’Y’ is specified).
W - (new) : Selection of new variables and drawing a new colored map.
Q - (quit) : Return to the displayed group of final results.

If we set $MAP=’Y’, one picture for two variables is drawn. If we set $MAP=’E’, three pictures for all
combinations of two from three variables are drawn. In both cases we have to define, from the keyboard,
an index VAR and bounds XL(VAR), XU(VAR) for every variable used (according to the text appeared
on the screen). Note that the choice $MAP=’E’ excludes the choices $HIL=’Y’ and $ISO=’Y’ so that the
other pictures cannot be used.

e) Objective function surface:

If we have specified $HIL=’Y’ (default value is $HIL=’N’), we can draw an objective function surface
with respect to visibility by typing H (hills) from the keyboard. This picture can be changed by typing

103

particular characters from the keyboard.

Change of the surface:

L - (linear) : Linear scale of the surface.
G - (logarithmic) : Logarithmic scale of the surface.
R - (refinement) : Refinement of the surface.
B - (back) : Back refinement of the surface.
O - (rotate) : Rotation of the surface about a vertical axis by a subsequently entered angle Dfi.
T - (tilt) : Tilting the rotated surface by a subsequently entered angle Dtheta.
F - (face) : Facing the rotated surface (drawing the rotated surface without tilting).
N - (inverse) : Surface of the objective function negation.

Another type of picture, new surface or return:

M - (map) : Drawing a colored map of the objective function (only if $MAP=’Y’ is specified).
S - (isolines) : Drawing contours of the objective function (only if $ISO=’Y’ is specified).
W - (new) : Selection of new variables and drawing new surface.
Q - (quit) : Return to the displayed group of final results.

Before drawing the objective function surface we have to define, from the keyboard, an index VAR and
bounds XL(VAR), XU(VAR) for every variable used (according to the text appeared on the screen).

f) Objective function contours:

If we have specified $ISO=’Y’ (default value is $ISO=’N’), we can draw an objective function contours
by typing S (isolines) from the keyboard. This picture can be changed by typing particular characters
from the keyboard.

Change of contours:

L - (linear) : Linear scale of contours.
G - (logarithmic) : Logarithmic scale of contours.
R - (refinement) : Refinement of contours.
B - (back) : Back refinement of contours.
O - (color) : Coloring of contours and used levels.
N - (inverse) : Inverse coloring of contours and used levels.

Another type of picture, new contours or return:

M - (map) : Drawing a colored map of the objective function (only if $MAP=’Y’ is specified).
H - (hills) : Drawing an objective function surface with respect to visibility (only if $HIL=’Y’

is specified).
W - (new) : Selection of new variables and drawing a new surface.
Q - (quit) : Return to the displayed group of final results.

g) Graphic path of the objective function and selected variables:

If we have chosen T (path), we can display the values of the objective function as a function graph
by typing G (graph) or draw the objective function contours with the path in the last NPA iterations by
typing S (isolines). The graph can be changed in the same way as in a).

Change of contours:

L - (linear) : Linear scale of contours.
G - (logarithmic) : Logarithmic scale of contours.
R - (refinement) : Refinement of contours.
B - (back) : Back refinement of contours.
Z - (zoom) : Zoom of the path for the number of last iterations entered.

104

Another type of picture, new contours or return:

W - (new) : Selection of new variables and drawing new contours (only if we have specified
$PATH=’E’).

Q - (quit) : Return to the displayed group of final results.

Before drawing the objective function contours we have to define, from the keyboard, an index VAR
and bounds XL(VAR), XU(VAR) for every variable used (according to the text appeared on the screen).

5.4 Text file output

The UFO system contains a great number of text file output procedures which are controlled by using
the macrovariables $KOUT, $KOUT1, $KOUT2, $KOUT3 and $LOUT. These text file output procedures
are useful especially for debugging new optimization methods. The UFO system works with the output
file P.OUT. The Fortran number of this output file defines the common variable IWR. The macrovariables
$KOUT, $KOUT1, $KOUT2, $KOUT3 determine what is printed and the macrovariable $LOUT has an
influence on the extent of the print.

The macrovariable $KOUT can have the following values:

$KOUT= 0 - Text file output is suppressed (the file P.OUT is empty) .
$KOUT= ± 1 - Standard output. The heading and the final results are printed together with selected

information in each accepted iteration.
$KOUT= ± 2 - Extended output. Additional information, obtained from stepsize selection, is printed.
$KOUT= ± 3 - Extended output. Additional information, obtained from direction determination and

variable metric update, is printed.
$KOUT= ± 4 - Extended output. Additional information, obtained from linear constraint addition

and deletion, is printed.
$KOUT= ± 5 - Extended output. Additional information, obtained from numerical differentiation, is

printed.

If $KOUT>0, the standard heading is printed while if $KOUT<0, the extended heading, containing
problem specifications and optimization options, is printed.

The selection of iterations accepted for print is controlled by the contents of the macrovariables
$KOUT1, $KOUT2, $KOUT3. If $KOUT1≤$KOUT2, only the iterations whose numbers are between
$KOUT1 and $KOUT2 are assumed, but the $KOUT3−1 ones are always omitted ($KOUT1 is a lower
bound, $KOUT2 is an upper bound and $KOUT3 is a step). Similarly, if $KOUT1>$KOUT2, only
the iterations whose numbers are smaller than $KOUT2 or greater than $KOUT1 are assumed, but the
$KOUT3−1 ones are always omitted. If $KOUT3=0, no iterations are assumed.

While the macrovariable $KOUT specifies what information is printed, the macrovariable $LOUT
specifies how much information is printed:

$LOUT= 0 - Basic output. The basic information (one row if $KOUT=1) is printed in each ac-
cepted iteration.

$LOUT=± 1 - Extended output. Additional scalars, together with the vector of variables, are
printed.

$LOUT=± 2 - Extended output. Additional vectors (usually gradients) are printed.
$LOUT=± 3 - Extended output. Additional matrices (usually Hessian matrices) are printed.
$LOUT=± 4 - The most extended output. All useful data are printed.

If $LOUT>0, the basic part of the information is printed. If $LOUT<0, a more extensive part of the
information is printed.

The macrovariable $LOUT has an additional significance. If $KOUT=0 and $LOUT>0, a copy of the
basic screen output is performed (see Section 5.1). If $KOUT=0 and $LOUT<0, paper saving print for

105

line printers is assumed. In the last case, only several rows are printed for every solution. This type of
output is useful for simultaneous tests of optimization methods.

To show a typical text file output, we use values $KOUT=5, $LOUT=0 in the problem specification
introduced in Section 7.1. In this case, text file P.OUT contains the following information.

UNCONSTRAINED MAXIMIZATION USING UFO SYSTEM

OPTIMIZATION SUBROUTINE : U1FDU1
DIRECTION DETERMINATION : UDDLG1
STEP SIZE DETERMINATION : US1L01
FUNCTION DETERMINATION : UF1F01
GRADIENT DETERMINATION :
H MATRIX DETERMINATION :
VARIABLE METRIC UPDATE : UUDBG1

PROBLEM

NF= 5 KDF= 1 KSF= 1 KCF= 2 KBF= 2 ISNF= 1 NORMF= 0
NA= 0 NAL= 0 MAL= 0 KDA= -1 KSA= 0 KCA= 0 KBA= 0 ISNA= 0 NORMA= 0
NC= 0 NCL= 0 MCL= 0 KDC= -1 KSC= 0 KCC= 0 KBC= 0 ISNC= 0 NORMC= 0

NIT= 0 NFV= 1 NFG= 1 F=0.187D+01 G=0.667D-01 D=0.000D+00

DIRECTION DETERMINATION USING UDDLG1

0 ALF=0.000D+00 SIG=0.000D+00
END OF DIRECTION DETERMINATION : G.M. POS
G = 0.11547D+00 S = 0.11547D+00 P = -0.13333D-01
STEPSIZE SELECTION USING US1L01 : P/(G*S) = -.100D+01

R=0.000D+00 S=0.115D+00 F=0.186666666667D+01 P=-.133D-01 B=0.150D+02
0 0 R=0.100D+01 D=0.115D+00 F=0.185288395062D+01 P=-.142D-01 INIT-1
1 -1 R=0.400D+01 D=0.462D+00 F=0.180590617284D+01 P=-.171D-01 BISECT.
1 -2 R=0.150D+02 D=0.173D+01 F=0.155000000000D+01 P=-.300D-01 BISECT.

R=0.150D+02 D=0.173D+01 F=0.155000000000D+01
END OF STEPSIZE SELECTION : R BOUND
VARIABLE METRIC UPDATE USING UUDBG1
GAM=0.000D+00 RHO=0.000D+00 PAR=0.000D+00 BET=0.000D+00
A =0.000D+00 B =-.250D+00 C =0.000D+00
END OF VARIABLE METRIC UPDATE : B - NEG.
CONSTRAINT ADDITION USING UYADS1
NEW= -3 N= 2
END OF CONSTRAINT ADDITION : N = 2 IER = 0
NIT= 1 NFV= 4 NFG= 4 F=0.155D+01 G=0.150D+00 D=0.333D+00
UNIT G.M. POS R BOUND NORMAL

DIRECTION DETERMINATION USING UDDLG1

0 ALF=0.000D+00 SIG=0.000D+00
END OF DIRECTION DETERMINATION : G.M. POS
G = 0.21213D+00 S = 0.21213D+00 P = -0.45000D-01
STEPSIZE SELECTION USING US1L01 : P/(G*S) = -.100D+01

106

R=0.000D+00 S=0.212D+00 F=0.155000000000D+01 P=-.450D-01 B=0.667D+01
0 0 R=0.100D+01 D=0.212D+00 F=0.150387500000D+01 P=-.473D-01 INIT-1
1 -1 R=0.400D+01 D=0.849D+00 F=0.135200000000D+01 P=-.540D-01 BISECT.
1 -2 R=0.667D+01 D=0.141D+01 F=0.120000000000D+01 P=-.600D-01 CUBIC

R=0.667D+01 D=0.141D+01 F=0.120000000000D+01
END OF STEPSIZE SELECTION : R BOUND
VARIABLE METRIC UPDATE USING UUDBG1
GAM=0.000D+00 RHO=0.000D+00 PAR=0.000D+00 BET=0.000D+00
A =0.000D+00 B =-.100D+00 C =0.000D+00
END OF VARIABLE METRIC UPDATE : B - NEG.
CONSTRAINT ADDITION USING UYADS1
NEW= -4 N= 1
END OF CONSTRAINT ADDITION : N = 1 IER = 0
NIT= 2 NFV= 7 NFG= 7 F=0.120D+01 G=0.200D+00 D=0.250D+00
UNIT G.M. POS R BOUND UPDATE

DIRECTION DETERMINATION USING UDDLG1

0 ALF=0.000D+00 SIG=0.000D+00
END OF DIRECTION DETERMINATION : G.M. POS
G = 0.20000D+00 S = 0.20000D+00 P = -0.40000D-01
STEPSIZE SELECTION USING US1L01 : P/(G*S) = -.100D+01

R=0.000D+00 S=0.200D+00 F=0.120000000000D+01 P=-.400D-01 B=0.500D+01
0 0 R=0.100D+01 D=0.200D+00 F=0.116000000000D+01 P=-.400D-01 INIT-1
1 -1 R=0.500D+01 D=0.100D+01 F=0.100000000000D+01 P=-.400D-01 CUBIC

R=0.500D+01 D=0.100D+01 F=0.100000000000D+01
END OF STEPSIZE SELECTION : R BOUND
VARIABLE METRIC UPDATE USING UUDBG1
GAM=0.000D+00 RHO=0.000D+00 PAR=0.000D+00 BET=0.000D+00
A =0.000D+00 B =0.000D+00 C =0.000D+00
END OF VARIABLE METRIC UPDATE : B - NEG.
CONSTRAINT ADDITION USING UYADS1
NEW= -5 N= 0
END OF CONSTRAINT ADDITION : N = 0 IER = 0
NIT= 3 NFV= 9 NFG= 9 F=0.100D+01 G=0.000D+00 D=0.200D+00
UNIT G.M. POS R BOUND UPDATE

FINAL RESULTS

FF= -0.1000000000D+01
X = 0.1000000000D+01 0.2000000000D+01 0.3000000000D+01 0.4000000000D+01

0.5000000000D+01

TERMINATION: 4 GRAD TOL F=0.100D+01 G=0.000D+00 D=0.200D+00

STATISTICS

NIT = 3 NDEC = 0
NFV = 9 NAV = 0 NCV = 0 NRES = 3
NFG = 9 NAG = 0 NCG = 0 NREM = 0
NFH = 0 NAH = 0 NCH = 0 NADD = 0

107

Here the optimization subroutines used are listed on the top followed by problem specifications. After the
line containing the starting function value and gradient norm (zero iteration), results of individual iterations
follow. Since $KOUT=5, information concerning direction determination, step-size selection, variable
metric update and constraint handling is printed. The last two lines describing every iteration contain
the current number of iterations NIT, function evaluations NFV, gradient evaluations NFG, the function
value F, the gradient norm G, the step-size D and the information concerning the status of the current
iteration (UNIT, G.M. POS, R BOUND, UPDATE). After results of individual iterations, the final results are
printed. They contain the cause of termination ITERM=4 (GRAD TOL) corresponding to the attainment
of the required gradient norm. Furthermore, F is the objective function value, G is the maximum absolute
value of gradient elements and D is the maximum relative change of variables. The statistics contains
the final number of iterations NIT, (objective, particular, constraint) function evaluations (NFV, NAV,
NCV), (objective, particular, constraint) gradient evaluations (NFG, NAG, NCG), (objective, particular,
constraint) Hessian matrix evaluations (NFH, NAH, NCH), the number of decompositions NDEC, the
number of restarts NRES, and the numbers of constraint deletions NREM and additions NADD.

5.5 User supplied output

The UFO system allows utilizing both the user supplied output subroutines and the post-processing sub-
routines. These subroutines can be inserted in the UFO source program by using the macrovariable
$OUTPUT:

$SET(OUTPUT)
Calling the user supplied output subroutines.
Calling the post-processing subroutines.

$ENDSET

The parameters of the user supplied output subroutines and the post-processing subroutines must satisfy
the UFO conventions. For example, the vector of variables, the model function value and the model
function gradient must be denoted by X, FF and GF, respectively (see Chapter 2).

5.6 Storing final results

If we set $OUTPUTDATA=’Y’, the final values of variables X(I), 1≤ I≤ NF, are stored in file P.DAT.
Similarly, if we set $INPUTDATA=’Y’, the values of variables X(I), 1≤ I≤ NF, from file P.DAT are used
as input data for a new optimization process.

5.7 Other output files

The UFO system uses two other output files P.DIM and P.SIF which contain additional information about
the problem solved. File P.DIM shows us the problem dimension. It contains the numbers of variables,
approximating functions, constraints and also numbers of nonzero elements in sparse structures. For
example, if we apply the UFO system to the input file TSIF21.UFO, then the file P.DIM contains the
following text:

PROBLEM: NEXT = 0
NUMBER OF VARIABLES: NF = 450
NUMBER OF CONSTRAINTS: NC = 360
NUMBER OF NONZERO ELEMENTS: MC = 1576
NUMBER OF NONZERO ELEMENTS: MHC = 55
NUMBER OF NONZERO ELEMENTS: MCH = 4736
NUMBER OF NONZERO ELEMENTS: M = 2779

108

File P.SIF contains information concerning SIF files of the CUTE collection (Section 6.3). This file is
generated by the SIF decoder. For example, if we apply the UFO system to the input file TSIF21.UFO,
the file P.SIF contains the following text:

Problem name: BRITGAS
The objective function uses 1 nonlinear group

There are 360 nonlinear equality constraints

There are 426 variables bounded only from below
There are 24 variables bounded from below and above

5.8 Error messages

If we use the specification $MOUT>0 (basic screen output), then nonstandard terminations are indicated.
The message consists of the three parts: the name of a critical subroutine, the number of a message, and
an explanation text. For example, if the number of iterations is exceeded, we obtain the following message:

0 NIT= 500 NFV=2545 NFG= 0 NDC=1556 NCG= 0 F= .122D+06 G= .112D+05
UYFUT1: (-2) MAXIMUM NUMBER OF ITERATIONS

Error messages are very useful especially in case the problem dimension is invalid. For example, if the
number of nonzero elements in the Jacobian matrix is specified incorrectly, then we obtain the message:

0 NIT= 0 NFV= 0 NFG= 0 NDC= 0 NCG= 0 F= .000D+00 G= .000D+00
UZLMIN: (78) LACK OF SPACE : MA TOO SMALL
ACTUAL VALUE: 298 - DECLARED VALUE: 250

Here UZLMIN is the subroutine where the error was detected, 78 is the error number and MA TOO SMALL is
the explanation. In this case, additional information (ACTUAL VALUE and DECLARED VALUE) is given.

The following table presents all UFO error messages (error numbers and explanations):

-1 - MAXIMUM NUMBER OF FUNCTION EVALUATIONS : MFV TOO SMALL
-2 - MAXIMUM NUMBER OF ITERATIONS : MIT TOO SMALL
-3 - MAXIMUM NUMBER OF CYCLES : MIC TOO SMALL
1 - BAD DECOMPOSITION
2 - BAD INTERVAL IN THE OLC DIRECTION DETERMINATION
3 - MAXIMUM NUMBER OF STEPS IN THE OLC DIRECTION DETERMINATION
4 - BREAKDOWN IN THE ITERATIVE METHOD
5 - BREAKDOWN IN THE ITERATIVE METHOD
6 - MAXIMUM NUMBER OF REDUCTIONS
7 - NEGATIVE DIRECTIONAL DERIVATIVE
8 - BAD INTERVAL FOR INTERPOLATION
9 - BAD PREDICTION IN THE TRUST REGION METHOD

10 - RESTART
11 - FEASIBLE SOLUTION DOES NOT EXIST
12 - BOUNDED SOLUTION DOES NOT EXIST
13 - FEASIBLE SOLUTION DOES NOT EXIST
14 - FEASIBLE TRUST REGION DOES NOT EXIST
15 - INVALID SITUATION IN CONSTRAINT HANDLING
16 - INVALID SITUATION IN CONSTRAINT HANDLING
17 - LACK OF SPACE IN CONSTRAINT HANDLING : MMAX TOO SMALL
18 - LACK OF SPACE IN CONSTRAINT HANDLING : MMAX TOO SMALL

109

19 - BAD INPUT DATA
20 - BAD INPUT DATA
21 - UXSGFM: NAU IS DECLARED TOO SMALL
22 - UXSGFM: NZ IS DECLARED TOO SMALL
23 - UXSGFM: JACOBIAN MATRIX IS TOO UNSTABLE
24 - UXSGFM: JACOBIAN MATRIX IS SINGULAR
25 - UXSGFM: NZ IS TOO SMALL FOR THE FACTOR
26 - UXSGFM: NAU IS TOO SMALL FOR THE FACTOR
27 - UXSGFM: NZ IS TOO SMALL FOR DATA MANIPULATIONS AFTER FACTORIZATION
28 - UXSGFM: COLUMN SCHEME FOR THE FACTOR IS NOT CREATED: LACK OF SPACE
29 - BAD INPUT DATA
30 - BAD INPUT DATA
31 - UXSGUM: NAU IS DECLARED TOO SMALL
32 - UXSGUM: JACOBIAN MATRIX IS SINGULAR
33 - UXSGUM: FACTOR IS BADLY CONDITIONED
34 - UXSGUM: LITTLE SPACE FOR L-UPDATES
35 - UXSGUM: JACOBIAN MATRIX SINGULARITY IS FACED
36 - UNBOUNDENESS IS FACED
37 - UKLTS3: ROWS ARE NOT SPECIFIED
38 - UKLTS3: COLUMNS ARE NOT SPECIFIED
39 - UKLTS3: TYPE IS NOT SPECIFIED
40 - UKLTS3: TYPC IS NOT DEFINED
41 - LACK OF SPACE FOR THE CHOLESKI FACTOR : MMAX TOO SMALL
42 - LACK OF SPACE FOR A SYMBOLIC FACTORIZATION : MMAX TOO SMALL
43 - LACK OF SPACE FOR THE FILL-IN
44 - LACK OF SPACE FOR NUMERICAL DIFFERENTIATION : M TOO SMALL
45 - STRUCTURAL SINGULARITY DURING INCOMPLETE LU FACTORIZATION
46 - INVALID STRUCTURE FOR INCOMPLETE LU FACTORIZATION
47 - LACK OF SPACE IN NUMERICAL DIFFERENTIATION : NVAR TOO SMALL
48 - LACK OF SPACE IN THE INCOMPLETE DECOMPOSITION : MMAX TOO SMALL
49 - LACK OF SPACE IN THE SCHUR COMPLEMENT : MMAX TOO SMALL
50 - LACK OF SPACE FOR THE FACTOR
51 - INSUFFICIENT STORAGE FOR NONZERO SUBSCRIPTS
52 - LACK OF SPACE IN THE FRONTAL SCHEME
53 - ERROR IN THE FRONTAL SCHEME
54 - LACK OF SPACE IN THE FRONTAL SCHEME
55 - ERROR IN THE FRONTAL SCHEME
56 - LACK OF SPACE IN THE INTEGER FIELD
57 - LACK OF SPACE IN THE REAL FIELD
58 - ZERO INDEX
59 - DIMENSION ERROR
60 - LACK OF SPACE IN THE WORKING FIELD
61 - INVALID MATRIX ORDER
62 - NUMBER OF NONZEROS SMALLER THAN ZERO
63 - INVALID ENTRIES IN THE INPUT MATRIX
64 - INCONSISTENT MEMORY
65 - LACK OF SPACE IN THE INTEGER FIELD : MMAX TOO SMALL
66 - LACK OF SPACE IN THE REAL FIELD : MMAX TOO SMALL
67 - INVALID LU FACTORS
68 - MAXIMUM INTEGER TOO SMALL
69 - INVALID INPUTS
70 - ZERO PIVOT WHEN DEFINITENESS IS DECLARED

110

71 - CHANGE IN SIGN OF PIVOT ENCOUNTERED
72 - SINGULARITY DETECTED
73 - NONZERO ELEMENT IGNORED
74 - PIVOT HAS DIFFERENT SIGN FROM THE PREVIOUS ONE
75 - LACK OF SPACE : M TOO SMALL
76 - LACK OF SPACE : MAH TOO SMALL
77 - LACK OF SPACE : MCH TOO SMALL
78 - LACK OF SPACE : MA TOO SMALL
79 - LACK OF SPACE : MC TOO SMALL
80 - LACK OF SPACE : NF TOO SMALL
81 - LACK OF SPACE : NA TOO SMALL
82 - LACK OF SPACE : NC TOO SMALL
83 - SIMPLE BOUNDS ARE NOT PERMITTED
84 - INEQUALITY CONSTRAINTS ARE NOT PERMITTED
85 - TOO MANY DENSE ROWS : ND TOO SMALL
86 - LACK OF SPACE : MHA TOO SMALL
87 - LACK OF SPACE : MHC TOO SMALL
88 - LINEAR DEPENDENCE OF ACTIVE CONSTRAINTS
89 - INFEASIBLE SOLUTION
90 - MAXIMUM NUMBER OF SIMPLEX ITERATIONS : MIS TOO SMALL
91 - DIFFERENTIAL EQUATION IS UNSTABLE
92 - MAXIMUM NUMBER OF INTEGRATION STEPS EXCEEDED
93 - TOO SMALL INTEGRATION STEP
94 - DIFFERENTIAL EQUATION IS STIFF
95 - SINGULAR JACOBIAN IN IMPLICIT INTEGRATION METHOD
96 - LACK OF SPACE IN DIFFERENTIAL EQUATION SOLVER
97 - LACK OF SPACE : MMAX TOO SMALL
98 - MAXIMUM NUMBER OF MINOR CYCLES : MIQ TOO SMALL
99 - MAXIMUM NUMBER OF MAJOR CYCLES : MAQ TOO SMALL
100 - LACK OF SPACE : MF TOO SMALL
101 - LARGE LAGRANGIAN FUNCTION RETURN
102 - INVALID TERMINATION: EPS9 TOO SMALL
103 - FEASIBILITY RESTORATION PHASE IS EXPECTED

111

6 Special tools of the UFO system

The UFO system contains special tools that facilitate the user’s activity. There are tools for checking the
correctness of optimization problems and for testing optimization methods.

6.1 Checking external subroutines

The values, gradients, Hessian matrices of the model function or the approximating functions or the
constraint functions are specified by using the macrovariables $FMODELF, $GMODELF, $HMODELF
or $FMODELA, $GMODELA, $HMODELA or $FMODELC, $GMODELC, $HMODELC, respectively.
Sometimes the correctness of these models needs to be checked up. If this is the case, then both the
analytical and the numerical differentiation can be compared. The checking of optimization problems can
be specified by using the macrovariable $TEST. If $TEST=’N’, no checking is performed. If $TEST=’Y’,
both the analytical and the numerical differentiation are executed before optimization is started (at the
initial starting point) and the derivatives obtained are printed. Only the derivatives that are analytically
specified (the first, the second) are checked. If $TEST=’A’, the checking is performed after the opti-
mization is finished (at the final optimum point). Finally, if $TEST=’O’, only checking is performed and
optimization is not started. The output of checking an optimization problem has the following form:

STANDARD TEST OF EXTERNAL SUBROUTINES

PROBLEM NO 1

PROBLEM

NF = 2 KDF = 2 KSF = 1 KCF = 2 NORMF = 0
NA = 0 NAL = 0 MAL = 0 KDA = -1 KSA = 0 KCA = 0 NORMA = 0
NC = 3 NCL = 0 MCL = 0 KDC = 1 KSC = 0 KCC = 2 NORMC = 0

PARAMETERS

X = -.2000000000D+01 .1000000000D+01

DERIVATIVES

FF A = .9090000000D+03
GF N = -.2405999822D+04 -.6000004263D+03
GF A = -.2406000000D+04 -.6000000000D+03
HF N = .4402000148D+04 .8000000070D+03 .2000000002D+03
HF A = .4402000000D+04 .8000000000D+03 .2000000000D+03

FC A = -.1000000000D+01
GC N = .1000000000D+01 .2000000032D+01
GC A = .1000000000D+01 .2000000000D+01

FC A = .5000000000D+01
GC N = -.4000000070D+01 .9999999930D+00
GC A = -.4000000000D+01 .1000000000D+01

FC A = .5000000000D+01
GC N = -.4000000070D+01 .2000000042D+01
GC A = -.4000000000D+01 .2000000000D+01

112

Here the letter ’N’ indicates a numerical differentiation and the letter ’A’ indicates an analytical dif-
ferentiation.

6.2 Testing optimization methods

The UFO system contains a great number of subroutines (collections of test problems) which serve for test-
ing optimization methods. All of these subroutines begin with letter ’E’ (external). The input subroutines
have the second letter ’I’ and the third letter ’U’ or ’L’ or ’N’ for unconstrained or linearly constrained or
nonlinearly constrained problems, respectively. The model specification subroutines have the second letter
’F’ or ’A’ or ’C’ or ’E’ or ’Y’ for a model function or approximating functions or constraint functions or
state functions or initial functions, respectively, and the third letter ’F’ or ’G’ or ’H’ for values or gradients
or Hessian matrices. The fourth letter is always ’U’ or ’D’ or ’S’ or ’B’ for universal or dense or sparse or
partitioned problems, respectively. The last two digits specify individual test problems collections. When
we want to carry out a test of the method selected, we use the specifications $COLLECTION=’Y’ and
$NEXT=number of test problems in the input batch file.

Tests corresponding to individual test problems collections are realized by using the following test input
files (asterisks denote possible additional letters):

TEST01∗.UFO - tests for unconstrained optimization (25 dense problems from [29], [94]). External
subroutines EIUD01, EFFU01, EFGU01, EFHD01 are used.

TEST02∗.UFO - tests for the sum of squares minimization (30 dense problems from [134]). External
subroutines EIUD02, EAFU02, EAGU02, EAHD02 are used.

TEST03∗.UFO - tests for linearly constrained optimization (15 dense problems from [74]). External
subroutines EILD03, EFFU03, EFGU03 are used.

TEST04∗.UFO - tests for medium-size linear programming (6 dense problems). External subroutine
EILD04 is used.

TEST05∗.UFO - tests for medium-size quadratic programming (5 dense problems). External subrou-
tine EILD05 is used.

TEST06∗.UFO - tests for minimax (25 dense problems from [122]). External subroutines EIUD06,
EAFU06, EAGU06, EAHD06 are used.

TEST07∗.UFO - tests for inequality constrained nonlinear programming (34 dense problems from
[74]). External subroutines EIND07, EFFU07, EFGU07, ECFU07, ECGU07 are used.

TEST08∗.UFO - tests for equality constrained nonlinear programming (31 dense problems from [74]).
External subroutines EIND08, EFFU08, EFGU08, ECFU08, ECGU08 are used.

TEST09∗.UFO - tests for unconstrained global optimization (13 problems from [190]). External
subroutines EIUD09, EFFU09, EFGU09 are used.

TEST10∗.UFO - tests for unconstrained optimization (15 sparse problems from [121]). External
subroutines EIUS10, EFFU10, EFGU10, EFHS10 are used.

TEST11∗.UFO - tests for large-scale linear programming (18 sparse problems). External subroutine
EILS11 is used.

TEST12∗.UFO - tests for large-scale quadratic programming (11 sparse problems). External subrou-
tine EILS12 is used.

TEST13∗.UFO - tests for linearly constrained optimization (6 sparse problems). External subroutines
EILS13, EFFU13, EFGU13 are used.

TEST14∗.UFO - tests for the sum of functions minimization (22 sparse problems from [121]). External
subroutines EIUB14, EAFU14, EAGU14 are used.

TEST15∗.UFO - tests for the sum of squares minimization (24 sparse problems from [121]). External
subroutines EIUB15, EAFU15, EAGU15 are used.

TEST16∗.UFO - tests for nonlinear equations solutions (32 dense problems). External subroutines
EIUD16, EAFU16, EAGU16 are used.

TEST17∗.UFO - tests for nonlinear equations solutions (30 dense problems). External subroutines
EIUD17, EAFU17, EAGU17 are used.

113

TEST18∗.UFO - tests for nonlinear equations (32 sparse problems from [121]). External subroutines
EIUB18, EAFU18, EAGU18 are used.

TEST19∗.UFO - tests for nonsmooth unconstrained optimization (25 dense problems from [122]).
External subroutines EIUD19, EFFU19, EFGU19, EFHD19 are used.

TEST20∗.UFO - tests for equality constrained sparse nonlinear programming (18 sparse problems
from [122]). External subroutines EIUB20, EIUS20, EIND20, EINS20, EFFU20, EFGU20,
EAFU20, EAGU20, ECFU20, ECGU20 are used.

TEST21∗.UFO - tests for inequality constrained sparse nonlinear programming (1 dense problem).
External subroutines EIUS21, EINS21, EFFU21, EFGU21, ECFU21, ECGU21 are used.

TEST22∗.UFO - tests for linearly constrained minimax optimization (15 dense problems from [122]).
External subroutines EIUD22, EAFU22, EAGU22, EAHD22 are used.

TEST23∗.UFO - extended tests for unconstrained optimization (74 dense problems from [121]). Ex-
ternal subroutines EIUD23, EFFU23, EFGU23 are used.

TEST24∗.UFO - extended tests for the sum of squares minimization (115 dense problems from [29],
[94], [121], [134]). External subroutines EIUD24, EAFU24, EAGU24 are used.

TEST25∗.UFO - extended tests for the sum of functions minimization (74 sparse problems from [121]).
External subroutines EIUB25, EAFU25, EAGU25 are used.

TEST26∗.UFO - extended tests for the sum of squares minimization (52 sparse problems from [121]).
External subroutines EIUB26, EAFU26, EAGU26 are used.

TEST27∗.UFO - extended tests for the sum of squares minimization (82 dense problems from [121]).
External subroutines EIUD27, EAFU27, EAGU27 are used.

TEST28∗.UFO - extended tests for unconstrained optimization (92 dense problems from [29], [94],
[121], [134]). External subroutines EIUD28, EFFU28, EFGU28 are used.

TEST29∗.UFO - tests for nonsmooth unconstrained optimization (31 dense problems). External
subroutines EIUD29, EFFU29, EFGU29, EFBU29 are used.

TEST30∗.UFO - tests for optimization of dynamical systems (4 dense problems). External subrou-
tines EIUD30, EEFU30, EEGU30, EYFU30, EYGU30 are used.

TEST31∗.UFO - tests for differential equations (6 dense problems). External subroutines EIUD31,
EEFU31 are used.

TEST32∗.UFO - tests for the sum of squares minimization (6 dense problems from [90]). External
subroutines EIUD32, EAFU32, EAGU32 are used.

TEST33∗.UFO - tests for the sum of squares minimization (6 dense problems from [90]). External
subroutines EIUD33, EAFU33, EAGU33 are used.

TEST34∗.UFO - tests for large-scale linear programming (18 sparse problems). External subroutine
EINS20 is used.

TEST35∗.UFO - tests for large-scale quadratic programming (8 sparse problems). External subrou-
tine EIQS35 is used.

TEST36∗.UFO - extended tests for nonlinear equations solutions (94 dense problems). External
subroutines EIUD36, EAFU36, EAGU36 are used.

TEST37∗.UFO - extended tests for nonlinear equations solutions (64 dense problems). External
subroutines EIUD37, EAFU37, EAGU37 are used.

In these input files, all necessary macrovariables are defined and the external subroutines are called. The
external subroutines with the last two digits 01, . . . , 37 are briefly described in the text files E01.TXT, . . . ,
E37.TXT. The external subroutines with the last two digits 01, . . . , 22 contain original test problems. The
remaining external subroutines are their various combinations.

To demonstrate the use of the test input file we perform a test of the sum of squares minimization by
using a hybrid method realized as a trust region method. The test input file TEST02.UFO has the following
form:

$REM : model specifications
$SET(INPUT)
CALL EIUD02(NF,NA,NAL,X,FMIN,XMAX,NEXT,IEXT,IERR)
IF(NEXT.EQ.10) XMAX=1.0$P 1
IF(IERR.NE. 0) GO TO $$ENDTEST

114

$ENDSET
$SET(FMODELA)
CALL EAFU02(NF,KA,X,FA,NEXT)

$ENDSET
$NF=12
$NA=400
$MODEL=’AQ’
$REM : method specifications
$CLASS=’GN’
$TYPE=’G’
$DECOMP=’M’
$NUMBER=7
$UPDATE=’F’
$TOLX=’1.0$P-16’
$TOLF=’1.0$P-14’
$TOLB=’1.0$P-16’
$TOLG=’1.0$P-6’
$REM : print specifications
$MOUT=1
$REM : the cycle for testing 30 test problems is generated
$COLLECTION=’YES’
$NEXT=30
$REM : the batch mode is used
$BATCH
$REM : the standard form of the source program is used
$STANDARD

The result (screen output) obtained has the following form (each row corresponds to one test problem and
the last row is the summary):

CLASS = GN - GM7 UPDATE = F MODEL = AQ HESF = D NF = 2
1 NIT= 12 NFV= 41 NFG= 0 FV BOUND F= 0.2465190329E-31 G=0.222D-15
2 NIT= 20 NFV= 69 NFG= 0 GRAD TOL F= 24.49212684 G=0.667D-06
3 NIT= 33 NFV= 102 NFG= 0 FV BOUND F= 0.2035629458E-22 G=0.581D-06
4 NIT= 14 NFV= 47 NFG= 0 FV BOUND F= 0.000000000 G=0.000D+00
5 NIT= 6 NFV= 21 NFG= 0 GRAD TOL F= 0.1422753549E-15 G=0.807D-07
6 NIT= 11 NFV= 41 NFG= 0 GRAD TOL F= 62.18109118 G=0.927D-06
7 NIT= 7 NFV= 32 NFG= 0 FV BOUND F= 0.2748725380E-26 G=0.728D-12
8 NIT= 5 NFV= 24 NFG= 0 GRAD TOL F= 0.4107438653E-02 G=0.293D-08
9 NIT= 1 NFV= 8 NFG= 0 GRAD TOL F= 0.5639663969E-08 G=0.177D-07
10 NIT= 235 NFV= 954 NFG= 0 STEP TOL F= 43.97292759 G=0.178D-03
11 NIT= 80 NFV= 329 NFG= 0 FV BOUND F= 0.7813056212E-24 G=0.350D-08
12 NIT= 12 NFV= 53 NFG= 0 FV BOUND F= 0.3624914786E-20 G=0.107D-09
13 NIT= 10 NFV= 55 NFG= 0 GRAD TOL F= 0.1686647891E-09 G=0.247D-06
14 NIT= 40 NFV= 213 NFG= 0 GRAD TOL F= 0.7422398347E-15 G=0.538D-06
15 NIT= 11 NFV= 62 NFG= 0 GRAD TOL F= 0.1537528024E-03 G=0.511D-06
16 NIT= 24 NFV= 134 NFG= 0 FV TOL F= 42911.10081 G=0.108D-03
17 NIT= 22 NFV= 139 NFG= 0 GRAD TOL F= 0.2732447349E-04 G=0.127D-06
18 NIT= 17 NFV= 128 NFG= 0 GRAD TOL F= 0.1023149745E-15 G=0.273D-07
19 NIT= 13 NFV= 169 NFG= 0 GRAD TOL F= 0.2192388901E-01 G=0.379D-07
20 NIT= 9 NFV= 130 NFG= 0 GRAD TOL F= 0.2361205389E-09 G=0.138D-06
21 NIT= 12 NFV= 171 NFG= 0 FV BOUND F= 0.1479114197E-30 G=0.222D-15
22 NIT= 10 NFV= 143 NFG= 0 GRAD TOL F= 0.5059943643E-09 G=0.247D-06

115

23 NIT= 19 NFV= 264 NFG= 0 GRAD TOL F= 0.4393003951E-04 G=0.361D-06
24 NIT= 17 NFV= 244 NFG= 0 GRAD TOL F= 0.3081274513E-03 G=0.820D-06
25 NIT= 10 NFV= 143 NFG= 0 FV BOUND F= 0.1248755103E-25 G=0.190D-11
26 NIT= 9 NFV= 133 NFG= 0 GRAD TOL F= 0.1376154725E-06 G=0.491D-07
27 NIT= 6 NFV= 91 NFG= 0 FV BOUND F= 0.9458284017E-18 G=0.142D-08
28 NIT= 7 NFV= 104 NFG= 0 GRAD TOL F= 0.2107337939E-10 G=0.379D-06
29 NIT= 2 NFV= 39 NFG= 0 GRAD TOL F= 0.7987932563E-13 G=0.203D-06
30 NIT= 5 NFV= 78 NFG= 0 FV BOUND F= 0.2322757795E-26 G=0.181D-12
TOTAL NIT= 679 NFV= 4161 NFG= 0 NDC= 1549 * 29

NCG= 0 NLS= 0 NSC= 0 NUP= 670
NRS= 0 NMX= 0 NAD= 0 NRM= 0

6.3 Interface to the CUTE collection

The CUTE collection [12] is the most famous set of problems for testing optimization methods. These
problems are written in the special so-called SIF format. Therefore a SIF decoder is necessary. Such a
decoder is part of the CUTE collection, but this version can only be used for a relatively small set of
optimization codes (e.g. for the LANCELOT [28] code). Since the UFO system has a special nature, the
original SIF decoder had to be modified. This modification consists in replacing the subroutine SDLANC
by the subroutine SDUFO and in preparing new interface subroutines SIUBXX, SIUDXX, SIUSXX, SINBXX,
SINDXX, SINSXX, SFFUXX, SFGUXX, SFFGUX, SCFUXX, SCGUXX, SCFGUX, SAFUXX, SAGUXX, SAFGUX (instead of
USETUP, UFN, UGR, CSETUP, CFN, CGR etc.).

The CUTE collection is not distributed with the UFO system. The SIF files together with SIF decoder
subroutines can to be obtained from their authors (they are also available on the INTERNET address
http://www.cse.clrc.ac.uk/nag/cuter/). The special interface subroutines listed above are exceptions.
They are contained in the library CUTELIB.LIB.

If we want to use a SIF file for testing the UFO system methods, it suffices to write the macroinstruc-
tion $SIF=’SIF file name’ in the input batch file. For example, if we want to use problem DTOC3 for
testing recursive quadratic programming methods for sparse equality constrained nonlinear programming
problems, then the problem specification (input batch file) has the following form.

$SIF=’DTOC3’
$JACC=’S’
$BATCH
$STANDARD

Here DTOC3 is a name of the SIF file and SE is the form of recursive quadratic programming methods
(Section 3.24). The problem solution (basic screen output) has this form.

CLASS = MN - LI3 UPDATE = N MODEL = FF HESF = S NF = 1499
NIC= 0 NIT= 0 NFV= 1 NFG= 8 F=0.000D+00 C=0.150D+02 G=0.000D+00
NIC= 0 NIT= 1 NFV= 2 NFG= 16 F=0.235D+03 C=0.953D-10 G=0.406D-14

0 NIC= 0 NIT= 2 NFV= 2 NFG= 16 F=0.235D+03 C=0.953D-10 G=0.406D-14

The form of additional output files P.DIM and P.SIF is shown in Section 5.7.
If the sparsity pattern contains a relatively great number of nonzero elements, then default dimensions

(e.g. $M, $MA, $MAH, $MHA, $MC, $MCH, $MHC) might be too small and therefore they must be
specified in the input batch file.

116

7 Application of the UFO system (examples)

Before the solution of a given problem, the input file containing the problem description and other speci-
fications for the macroprocessor must usually be prepared. This input file can contain only the macroin-
struction $STANDARD (input file STANDARD.UFO). Then a full dialogue is processed. However, a more
advantageous possibility is to prepare an input file containing the problem description while a method
selection is left to the dialogue. Moreover, since a method selection can be made automatically by using
knowledge bases coded in UFO templates, the batch mode is recommended.

When writing input file instructions, we have to observe some conventions. Since the UFO source
program contains a great number of common variables, we recommend using variables beginning with the
letter ’W’ for the problem description to avoid their double use. Real variables of this type should be
declared at the beginning of the UFO source program by the statement $FLOAT (for example $FLOAT
W,W1,W2). Simple integers I,J,K,L need not be declared. We recommend using statement numbers
smaller than 10000 for the problem description to avoid their double use.

The basic implementation of the UFO system is in a double precision arithmetic. Therefore usually
$FLOAT=’REAL*8’ and $P=’D’. We recommend writing real constants always in the form of $P or D
specification (for example 1.0$P 2, 4.0$P-1 or 1.0D 2, 4.0D-1) since the conversions from a single precision,
which depend on a compiler, can be incorrect. Instead of constants 0.0D0, 0.5D0, 1.0D0, 2.0D0, 3.0D0,
4.0D0, 5.0D0, 1.0D1, we can use the common variables ZERO, HALF, ONE, TWO, THREE, FOUR,
FIVE, TEN, which contain corresponding values.

In the following text, we demonstrate the application of the UFO system to 20 typical problems.
Every example consists of the problem description, the problem specification (input file), comments to the
problem specification and the problem solution (basic screen output) obtained on a PC computer. All
input files contain the necessary data and can be used in the batch mode. These input files are included
into the UFO system as the demo-files PROB01.UFO,. . . ,PROB20.UFO.

7.1 Optimization with simple bounds

a) Problem description:

Suppose we have to find a local maximum of the objective function

F (x) =
1
n!

(n∏
i=1

xi

)− 2

with simple bounds 0 ≤ xi ≤ i for 1 ≤ i ≤ n, where n = 5. The starting point is xi = 2 for 1 ≤ i ≤ n. The
solution point is xi = i for 1 ≤ i ≤ n and the corresponding maximum value of the objective function is
F = −1.0.

b) Problem specification (input file):

$FLOAT W
$SET(INPUT)
DO 1 I=1,NF
X(I)=2.D0 ; XL(I)=0.D0 ; XU(I)=DBLE(I) ; IX(I)=3

1 CONTINUE
$ENDSET
$SET(FGMODELF)
W=1.D0
DO 2 I=1,NF
W=W*X(I)/DBLE(I)

2 CONTINUE
FF=W-2.D0
DO 3 I=1,NF

117

GF(I)=W/X(I)
3 CONTINUE
$ENDSET
$IEXT=1
$NF=5
$KBF=2
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values and the simple bounds for variables.
By using the macrovariable $FGMODELF we specify analytically the value and the gradient of the model
function. Because we look for a maximum, we set $IEXT=1.

d) Problem solution (basic screen output):

CLASS = VM - LG1 UPDATE = B MODEL = FF HESF = D NF = 5
NIT= 0 NFV= 1 NFG= 1 F= 1.866666667 G=0.667D-01
NIT= 1 NFV= 4 NFG= 4 F= 1.550000000 G=0.150D+00
NIT= 2 NFV= 7 NFG= 7 F= 1.200000000 G=0.200D+00
NIT= 3 NFV= 9 NFG= 9 F= 1.000000000 G=0.000D+00

0 NIT= 3 NFV= 9 NFG= 9 NDC= 0 NCG= 0 F=0.100D+01 G=0.000D+00
FF = -0.1000000000D+01
X = 0.1000000000D+01 0.2000000000D+01 0.3000000000D+01 0.4000000000D+01

0.5000000000D+01

7.2 Minimization of the sum of squares

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =
1
2

m∑
i=1

(
x4e

−x1ti − x5e
−x2ti + x6e

−x3ti − yi

)2
,

where m = 20, ti = i/10 and yi = e−ti −5e−10ti +3e−4ti for 1 ≤ i ≤ m. The starting point is x1 = 1, x2 =
2, x3 = 1, x4 = 1, x5 = 1, x6 = 1. The solution point is x1 = 1, x2 = 10, x3 = 4, x4 = 1, x5 = 5, x6 = 3 and
the corresponding minimum value of the objective function is F = 0.0.

b) Problem specification (input file):

$FLOAT W,WA,WB,WC
$SET(INPUT)
X(1)=1.D0 ; X(2)=2.D0 ; X(3)=1.D0
X(4)=1.D0 ; X(5)=1.D0 ; X(6)=1.D0
DO 1 KA=1,NA

W=0.1D0*$DBLE(KA)
AM(KA)=EXP(-W)-5.D0*EXP(-1.0D1*W)+3.D0*EXP(-4.D0*W)

1 CONTINUE
XMAX=1.D1
FMIN=0.D0

$ENDSET
$SET(FMODELA)
W=0.1D0*$DBLE(KA)

118

WA=EXP(-W*X(1))
WB=EXP(-W*X(2))
WC=EXP(-W*X(3))
FA=X(4)*WA-X(5)*WB+X(6)*WC

$ENDSET
$NF=6
$NA=20
$NAL=0
$KBA=1
$MOS1=1
$MODEL=’AQ’
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables and the vector AM contain-
ing values yi, 1 ≤ i ≤ m. Since the approximating functions contain exponentials, we define the maximum
stepsize $XMAX=10. By using the macrovariable $FMODELA we specify analytically the values of the
approximating function. The gradients of the approximating functions are computed numerically. For the
sum of squares minimization we set $MODEL=’AQ’. The specification $KBA=1 indicates that the vector
AM is used.

d) Problem solution (basic screen output):

CLASS = GN - GM7 UPDATE = N MODEL = AQ HESF = D NF = 6
NIT= 0 NFV= 7 NFG= 0 F= 0.4652437783 G=0.675D+00
NIT= 1 NFV= 14 NFG= 0 F= 0.1755707488 G=0.172D+00
NIT= 2 NFV= 22 NFG= 0 F= 0.1310718542 G=0.103D+00
NIT= 3 NFV= 30 NFG= 0 F= 0.1014547191 G=0.987D-01
NIT= 4 NFV= 37 NFG= 0 F= 0.8325110963E-01 G=0.315D+00
NIT= 5 NFV= 44 NFG= 0 F= 0.5149743622E-01 G=0.225D+00
NIT= 6 NFV= 52 NFG= 0 F= 0.1248663022E-01 G=0.964D-01
NIT= 7 NFV= 59 NFG= 0 F= 0.4692732603E-02 G=0.479D-01
NIT= 8 NFV= 66 NFG= 0 F= 0.2350712826E-02 G=0.292D-01
NIT= 9 NFV= 73 NFG= 0 F= 0.1276233060E-02 G=0.420D-01
NIT= 10 NFV= 80 NFG= 0 F= 0.7512378805E-03 G=0.482D-01
NIT= 11 NFV= 87 NFG= 0 F= 0.3065852206E-03 G=0.395D-01
NIT= 12 NFV= 95 NFG= 0 F= 0.3583746062E-04 G=0.409D-02
NIT= 13 NFV= 103 NFG= 0 F= 0.2339698105E-04 G=0.374D-03
NIT= 14 NFV= 110 NFG= 0 F= 0.1221490232E-04 G=0.272D-02
NIT= 15 NFV= 117 NFG= 0 F= 0.7308108434E-05 G=0.287D-02
NIT= 16 NFV= 124 NFG= 0 F= 0.3876069070E-05 G=0.202D-02
NIT= 17 NFV= 131 NFG= 0 F= 0.2023584146E-05 G=0.190D-02
NIT= 18 NFV= 138 NFG= 0 F= 0.1029329293E-05 G=0.193D-02
NIT= 19 NFV= 145 NFG= 0 F= 0.6760021848E-06 G=0.196D-02
NIT= 20 NFV= 152 NFG= 0 F= 0.5022053254E-09 G=0.553D-04
NIT= 21 NFV= 159 NFG= 0 F= 0.4846290353E-19 G=0.610D-09

0 NIT= 21 NFV= 159 NFG= 0 NDC= 77 NCG= 0 F=0.485D-19 G=0.610D-09
F = 0.4846290353D-19
X = 0.1000000000D+01 0.1000000000D+02 0.4000000000D+01 0.1000000000D+01

0.5000000000D+01 0.3000000000D+01

119

7.3 Minimax approximation

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) = max
1≤i≤m

| x1 + tix2

1 + tix3 + t2i x4 + t3i x5
− yi|,

where m = 21, ti = (i−1)/10−1 and yi = eti for 1 ≤ i ≤ m. The starting point is x1 = 0.5, x2 = 0, x3 =
0, x4 = 0, x5 = 0. The solution point is x1 = 0.9998, x2 = 0.2536, x3 = −0.7466, x4 = 0.2452, x5 =
−0.3749 and the corresponding minimum value of the objective function is F = 0.000122371.

b) Problem specification (input file):

$FLOAT W
$SET(INPUT)
X(1)=0.5D0 ; X(2)=0.0D0 ; X(3)=0.0D0
X(4)=0.0D0 ; X(5)=0.0D0

$ENDSET
$SET(FMODELA)
W=0.1D0*DBLE(KA-1)-1.0D0
FA=(X(1)+W*X(2))/(1.0D0+W*(X(3)+W*(X(4)+W*X(5))))-EXP(W)

$ENDSET
$MODEL=’AM’
$NF=5
$NA=21
$NAL=0
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables. By using the macrovari-
able $FMODELA we specify analytically the values of the approximating functions. The gradients of the
approximating functions are computed numerically. For minimax approximation we set $MODEL=’AM’.

d) Problem solution (basic screen output):

CLASS = VM - LQ1 UPDATE = B MODEL = AM HESF = D NF = 5
NIT= 0 NFV= 6 NFG= 0 F= 2.218281828 G=0.100D+61
NIT= 1 NFV= 13 NFG= 0 F= 0.4253776661 G=0.783D+00
NIT= 2 NFV= 19 NFG= 0 F= 0.8271277817E-01 G=0.223D+00
NIT= 3 NFV= 25 NFG= 0 F= 0.1256835449E-01 G=0.114D+00
NIT= 4 NFV= 31 NFG= 0 F= 0.6693249221E-02 G=0.290D-01
NIT= 5 NFV= 37 NFG= 0 F= 0.6121577573E-02 G=0.140D-01
NIT= 6 NFV= 43 NFG= 0 F= 0.1771822204E-02 G=0.550D-01
NIT= 7 NFV= 49 NFG= 0 F= 0.2044273255E-03 G=0.208D-01
NIT= 8 NFV= 55 NFG= 0 F= 0.1225222540E-03 G=0.833D-04
NIT= 9 NFV= 61 NFG= 0 F= 0.1223712525E-03 G=0.240D-07

0 NIT= 9 NFV= 61 NFG= 0 NDC= 0 NCG= 0 F=0.122D-03 G=0.240D-07
F = 0.1223712525D-03
X = 0.9998776287D+00 0.2535884404D+00 -0.7466075717D+00 0.2452015019D+00

-0.3749029101D-01

120

7.4 Nonsmooth optimization

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) = −x1 + 2 ∗ (x2
1 + x2

2 − 1) +
7
4
|x2

1 + x2
2 − 1|.

The starting point is x1 = −1, x2 = −1. The solution point is x1 = 1, x2 = 0, and the corresponding
minimum value of the objective function is F = −1.0.

b) Problem specification (input file):

$FLOAT W
$SET(INPUT)
X(1)=-1.D0
X(2)=-1.D0

$ENDSET
$SET(FGMODELF)
W=X(1)**2+X(2)**2-1.D0
FF=-X(1)+2.D0*W+1.75D0*ABS(W)
W=SIGN(3.5$P 0,W)+4.D0
GF(1)=W*X(1)-1.D0
GF(2)=W*X(2)

$ENDSET
$NF=2
$KSF=3
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables. By using the macrovari-
able $FGMODELF we specify analytically the value and the gradient of the objective function. For
nonsmooth optimization we set $KSF=3.

d) Problem solution (basic screen output):

CLASS = BM - L11 UPDATE = N MODEL = FF HESF = D NF = 2
NIT= 0 NFV= 1 NFG= 1 F= 4.750000000 G=0.100D+61
NIT= 1 NFV= 3 NFG= 3 F=-0.3788888889 G=0.850D+01
NIT= 2 NFV= 4 NFG= 4 F=-0.6061514369 G=0.933D+00
NIT= 3 NFV= 5 NFG= 5 F= 9.250000000 G=0.802D+00
NIT= 4 NFV= 6 NFG= 6 F=-0.7284826639 G=0.802D+00
NIT= 5 NFV= 7 NFG= 7 F= 0.8708184712 G=0.348D+00
NIT= 6 NFV= 8 NFG= 8 F=-0.8275709577 G=0.722D+00
NIT= 7 NFV= 9 NFG= 9 F=-0.8436035754 G=0.162D+00
NIT= 8 NFV= 10 NFG= 10 F=-0.9986081259 G=0.984D-01
NIT= 9 NFV= 11 NFG= 11 F=-0.9980886265 G=0.114D+00
NIT= 10 NFV= 12 NFG= 12 F=-0.9992851884 G=0.501D+00
NIT= 11 NFV= 13 NFG= 13 F=-0.9999999867 G=0.530D-01
NIT= 12 NFV= 14 NFG= 14 F=-0.9999922205 G=0.454D-05
NIT= 13 NFV= 15 NFG= 15 F= -1.000000000 G=0.986D-07

0 NIT= 13 NFV= 15 NFG= 15 NDC= 0 NCG= 0 F=-.100D+01 G=0.986D-07
FF = -0.1000000000D+01
X = 0.1000000000D+01 0.0000000000D+00

121

7.5 Optimization with linear constraints

a) Problem specification:

Suppose we have to find a local minimum of the objective function

F (x) = (x1 − x2)2 + (x3 − 1)2 + (x4 − 1)4 + (x5 − 1)6

over the set given by the linear constraints

x1 + x2 + x3 + 4x4 = 7,

x3 + 5x5 = 6.

The starting point is x1 = 10, x2 = 7, x3 = 2, x4 = −3, x5 = 0.8. The solution point is x1 = 1, x2 =
1, x3 = 1, x4 = 1, x5 = 1 and the corresponding minimum value of the objective function is F = 0.0.

b) Problem specification (input file):

$SET(INPUT)
X(1)= 1.D1 ; X(2)= 7.D0 ; X(3)= 2.D0
X(4)=-3.D0 ; X(5)=0.8D0
IC(1)=5 ; CL(1)=7.D0
CG(1)=1.D0 ; CG(2)=1.D0 ; CG(3)=1.D0
CG(4)=4.D0 ; CG(5)=0.D0
IC(2)=5 ; CL(2)=6.D0
CG(6)=0.D0 ; CG(7)=0.D0 ; CG(8)=1.D0
CG(9)=0.D0 ; CG(10)=5.D0
FMIN =0.D0

$ENDSET
$SET(FMODELF)
FF=(X(1)-X(2))**2+(X(3)-1.D0)**2+ &

(X(4)-1.D0)**4+(X(5)-1.D0)**6
$ENDSET
$SET(GMODELF)
GF(1)= 2.D0*(X(1)-X(2))
GF(2)=-2.D0*(X(1)-X(2))
GF(3)= 2.D0*(X(3)-1.D0)
GF(4)= 4.D0*(X(4)-1.D0)**3
GF(5)= 6.D0*(X(5)-1.D0)**5

$ENDSET
$NF=5
$NC=2
$NCL=2
$KBC=1
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables and the types and values
of the general linear constraints. Since there are only equality constraints, we can specify only the left
sides (CL(1) and CL(2)) and we can set $KBC=1. The specification $FMIN=0 is used, since the objective
function value cannot be smaller then zero. By using the macrovariable $FMODELF we specify analytically
the value of the model function. By using the macrovariable $GMODELF we specify analytically the
gradient of the model function.

d) Problem solution (basic screen output):

122

CLASS = VM - LG1 UPDATE = B MODEL = FF HESF = D NF = 5
NIT= 0 NFV= 1 NFG= 1 F= 266.0000640 G=0.853D+02
NIT= 1 NFV= 2 NFG= 2 F= 23.36590202 G=0.911D+01
NIT= 2 NFV= 3 NFG= 3 F= 9.082029409 G=0.573D+01
NIT= 3 NFV= 4 NFG= 4 F= 1.180947507 G=0.213D+01
NIT= 4 NFV= 5 NFG= 5 F= 0.3278298455 G=0.713D+00
NIT= 5 NFV= 6 NFG= 6 F= 0.1969059589 G=0.356D+00
NIT= 6 NFV= 7 NFG= 7 F= 0.6972244149E-01 G=0.176D+00
NIT= 7 NFV= 8 NFG= 8 F= 0.1791441524E-01 G=0.115D+00
NIT= 8 NFV= 9 NFG= 9 F= 0.5643511948E-02 G=0.887D-01
NIT= 9 NFV= 10 NFG= 10 F= 0.2190093826E-02 G=0.438D-01
NIT= 10 NFV= 11 NFG= 11 F= 0.8383567168E-03 G=0.639D-02
NIT= 11 NFV= 12 NFG= 12 F= 0.1933645225E-03 G=0.101D-01
NIT= 12 NFV= 13 NFG= 13 F= 0.5495677142E-04 G=0.137D-02
NIT= 13 NFV= 14 NFG= 14 F= 0.1463468059E-04 G=0.117D-02
NIT= 14 NFV= 15 NFG= 15 F= 0.4872666765E-05 G=0.220D-02
NIT= 15 NFV= 16 NFG= 16 F= 0.1203915690E-05 G=0.118D-02
NIT= 16 NFV= 17 NFG= 17 F= 0.7914796148E-06 G=0.108D-02
NIT= 17 NFV= 18 NFG= 18 F= 0.2070004312E-06 G=0.164D-03
NIT= 18 NFV= 19 NFG= 19 F= 0.6014332855E-07 G=0.162D-04
NIT= 19 NFV= 20 NFG= 20 F= 0.1821407821E-07 G=0.116D-03
NIT= 20 NFV= 21 NFG= 21 F= 0.9713555354E-08 G=0.201D-03
NIT= 21 NFV= 22 NFG= 22 F= 0.2625654615E-08 G=0.406D-04
NIT= 22 NFV= 23 NFG= 23 F= 0.1884926025E-08 G=0.508D-04
NIT= 23 NFV= 24 NFG= 24 F= 0.8035144110E-09 G=0.107D-04
NIT= 24 NFV= 25 NFG= 25 F= 0.2551768226E-09 G=0.238D-05
NIT= 25 NFV= 26 NFG= 26 F= 0.7613012252E-10 G=0.776D-05
NIT= 26 NFV= 27 NFG= 27 F= 0.2444365765E-10 G=0.706D-05
NIT= 27 NFV= 28 NFG= 28 F= 0.9517068620E-11 G=0.249D-05
NIT= 28 NFV= 29 NFG= 29 F= 0.3624829699E-11 G=0.832D-06

0 NIT= 28 NFV= 29 NFG= 29 NDC= 0 NCG= 0 F=0.362D-11 G=0.832D-06
FF = 0.3624829699D-11
X = 0.1002725618D+01 0.1002725912D+01 0.1000000296D+01 0.9986370434D+00

0.9999999409D+00

7.6 Minimax approximation with linear constraints

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) = max(f1(x), f2(x), f3(x))

with
f1(x) = − exp(x1 − x2),

f2(x) = sinh(x1 − 1)− 1,

f3(x) = − log(x2)− 1

over the set given by the box constraint x2 ≥ 1/100 and the linear constraint

5
100

x1 − x2 +
1
2
≥ 0.

123

The starting point is x1 = −1, x2 = 1/100. The solution point is x1 = 1.5264, x2 = 0.5763 and the
corresponding minimum value of the objective function is F = −0.448910.

b) Problem specification (input file):

$SET(INPUT)
X(1)=-1.D 0 ; IX(1)=0
X(2)= 1.D-2 ; XL(2)= 1.D-2 ; IX(2)=1

CL(1)=-5.D-1 ; IC(1)=1
CG(1)=5.D-2 ; CG(2)=-1.D 0

$ENDSET
$SET(FMODELA)
IF (KA.EQ.1) FA=-EXP(X(1)-X(2))
IF (KA.EQ.2) FA= SINH(X(1)-1.D0)-1.D0
IF (KA.EQ.3) FA=-LOG(X(2))-1.D0

$ENDSET
$MODEL=’AM’
$IEXT=-1
$NF=2
$NA=3
$NC=1
$NCL=1
$KBF=1
$KBC=1
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables and the types and values
of both the box constraints and the general linear constraints. Since there are only one-sided constraints,
we specify only the left sides (XL(2) and CL(1)) and we can set $KBF=1 and $KBC=1. By using
the macrovariable $FMODELA we specify analytically the values of the approximating functions. The
gradients of the approximating functions are computed numerically. For minimax approximation we set
$MODEL=’AM’ and $IEXT=-1.

d) Problem solution (basic screen output):

CLASS = VM - LQ1 UPDATE = B MODEL = AM HESF = D NF = 2
NIT= 0 NFV= 3 NFG= 0 F= 3.605170186 G=0.100D+61
NIT= 1 NFV= 6 NFG= 0 F= 1.978554385 G=0.363D+00
NIT= 2 NFV= 9 NFG= 0 F= 0.6817245952 G=0.487D+00
NIT= 3 NFV= 12 NFG= 0 F=-0.2766372012 G=0.595D+00
NIT= 4 NFV= 15 NFG= 0 F=-0.3838143336 G=0.344D+00
NIT= 5 NFV= 18 NFG= 0 F=-0.4394007767 G=0.281D-01
NIT= 6 NFV= 21 NFG= 0 F=-0.4488931954 G=0.124D-02
NIT= 7 NFV= 24 NFG= 0 F=-0.4489107860 G=0.215D-05

0 NIT= 8 NFV= 24 NFG= 0 NDC= 0 NCG= 0 F=-.449D+00 G=0.736D-11
F = -0.4489107860D+00
X = 0.1526434615D+01 0.5763217308D+00

7.7 Optimization with nonlinear constraints (nonlinear programming)

a) Problem description:

124

Suppose we have to find a local minimum of the objective function

F (x) = x1x3

over the set given by the simple bounds x1 ≥ 0, x3 ≥ 0, x5 ≥ 1, x7 ≥ 1 and by the nonlinear constraints

(x4 − x6)2 + (x5 − x7)2 ≥ 4,

x3x4 − x2x5√
x2

2 + x2
3

≥ 1,

x3x6 − x2x7√
x2

2 + x2
3

≥ 1,

x1x3 + (x2 − x1)x5 − x3x4√
(x2 − x1)2 + x2

3

≥ 1,

x1x3 + (x2 − x1)x7 − x3x6√
(x2 − x1)2 + x2

3

≥ 1.

The starting point is x1 = 3.0, x2 = 0.0, x3 = 2.0, x4 = −1.5, x5 = 1.5, x6 = 5.0, x7 = 0.0. The solution
point is x1 = 4.828, x2 = 0.000, x3 = 4.828, x4 = 1.000, x5 = 2.414, x6 = 2.414, x7 = 1.000 and the
corresponding minimum value of the objective function is F = 23.3137.

b) Problem specification (input file):

$FLOAT W
$SET(INPUT)
X(1)= 3.0D0 ; XL(1)= 0.0D0 ; IX(1)= 1
X(2)= 0.0D0
X(3)= 2.0D0 ; XL(3)= 0.0D0 ; IX(3)= 1
X(4)=-1.5D0
X(5)= 1.5D0 ; XL(5)= 1.0D0 ; IX(5)= 1
X(6)= 5.0D0
X(7)= 0.0D0 ; XL(7)= 1.0D0 ; IX(7)= 1
CL(1)=4.0D0 ; IC(1)= 1
CL(2)=1.0D0 ; IC(2)= 1
CL(3)=1.0D0 ; IC(3)= 1
CL(4)=1.0D0 ; IC(4)= 1
CL(5)=1.0D0 ; IC(5)= 1

$ENDSET
$SET(FMODELF)
FF=X(1)*X(3)

$ENDSET
$SET(FMODELC)
IF (KC.LE.0) THEN
ELSE IF (KC.EQ.1) THEN

FC=(X(4)-X(6))**2+(X(5)-X(7))**2
ELSE IF (KC.EQ.2) THEN

W=SQRT(X(2)**2+X(3)**2)
FC=(X(3)*X(4)-X(2)*X(5))/W

ELSE IF (KC.EQ.3) THEN
W=SQRT(X(2)**2+X(3)**2)
FC=(X(3)*X(6)-X(2)*X(7))/W

ELSE IF (KC.EQ.4) THEN

125

W=SQRT((X(2)-X(1))**2+X(3)**2)
FC=(X(1)*X(3)+(X(2)-X(1))*X(5)-X(3)*X(4))/W

ELSE IF (KC.EQ.5) THEN
W=SQRT((X(2)-X(1))**2+X(3)**2)
FC=(X(1)*X(3)+(X(2)-X(1))*X(7)-X(3)*X(6))/W

ENDIF
$ENDSET
$NF=7
$NC=5
$NCL=0
$KBF=1
$KBC=1
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values and simple bounds for variables and
the types and values of the general constraints. Since there are only one-sided simple bounds and one-sided
general constraints, we set $KBF=1 and $KBC=1. By using the macrovariable $FMODELF we specify
analytically the value of the model function. The gradient of the model function is computed numerically.

d) Problem solution (basic screen output):

CLASS = VM - LQ1 UPDATE = N MODEL = FF HESF = D NF = 7
NIC= 0 NIT= 0 NFV= 8 NFG= 0 F=0.600D+01 C=0.294D+01 G=0.000D+00
NIC= 0 NIT= 1 NFV= 19 NFG= 0 F=0.340D+02 C=0.961D+00 G=0.267D+01
NIC= 0 NIT= 2 NFV= 31 NFG= 0 F=0.292D+02 C=0.540D-01 G=0.139D+01
NIC= 0 NIT= 3 NFV= 43 NFG= 0 F=0.247D+02 C=0.156D-01 G=0.105D+01
NIC= 0 NIT= 4 NFV= 55 NFG= 0 F=0.236D+02 C=0.356D-01 G=0.691D+00
NIC= 0 NIT= 5 NFV= 68 NFG= 0 F=0.235D+02 C=0.277D-01 G=0.797D+00
NIC= 0 NIT= 6 NFV= 81 NFG= 0 F=0.233D+02 C=0.171D-02 G=0.127D+00
NIC= 0 NIT= 7 NFV= 94 NFG= 0 F=0.233D+02 C=0.122D-03 G=0.107D+00
NIC= 0 NIT= 8 NFV= 106 NFG= 0 F=0.233D+02 C=0.345D-03 G=0.182D+00
NIC= 0 NIT= 9 NFV= 118 NFG= 0 F=0.233D+02 C=0.122D-04 G=0.101D+00
NIC= 0 NIT= 10 NFV= 130 NFG= 0 F=0.233D+02 C=0.188D-04 G=0.308D-01
NIC= 0 NIT= 11 NFV= 142 NFG= 0 F=0.233D+02 C=0.603D-08 G=0.456D-03
NIC= 0 NIT= 12 NFV= 154 NFG= 0 F=0.233D+02 C=0.702D-10 G=0.706D-04
NIC= 0 NIT= 13 NFV= 167 NFG= 0 F=0.233D+02 C=0.734D-13 G=0.186D-05

0 NIC= 0 NIT= 14 NFV= 167 NFG= 0 F=0.233D+02 C=0.734D-13 G=0.830D-07
FF = 0.2331370850D+02
X = 0.4828427143D+01 0.1652390958D-06 0.4828427106D+01 0.1000000083D+01

0.2414213581D+01 0.2414213626D+01 0.1000000000D+01

7.8 Global optimization

a) Problem description:

Suppose we have to find the global minimum of the objective function

F (x) = (x1 − 3)2(x1 + 5)2 + (x2 − 2)2(x2 + 3)2 − x2
1x

2
2

over the set given by the inequalities −12 ≤ x1 ≤ 10 and −12 ≤ x2 ≤ 10. The starting point is x1 = 0,
x2 = 0. The solution point is x1 = −7.3300, x2 = −6.4475 and the global minimum value of the objective
function is F = −806.077.

126

b) Problem specification (input file):

$SET(INPUT)
XL(1)=-12.D0 ; XU(1)=10.D0
XL(2)=-12.D0 ; XU(2)=10.D0

$ENDSET
$SET(FMODELF)
FF=((X(1)-3.D0)*(X(1)+5.D0))**2+ &

((X(2)-2.D0)*(X(2)+3.D0))**2-(X(1)*X(2))**2
$ENDSET
$NF=2
$MOUT=1
$NOUT=1
$EXTREM=’G’
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the bounds defining the investigated region. By using
the macrovariable $FMODELF we specify analytically the value of the model function. The gradient
of the model function is computed numerically. Since we require to find the global minimum we set
$EXTREM=’G’.

d) Problem solution (basic screen output):

CLASS = VM - LI1 UPDATE = B MODEL = FF HESF = D NF = 2
0 NIT= 64 NFV= 708 NEX= 4 F=-0.806D+03

EXTREM 1 :
F = -0.8060772623D+03
X = -0.7329989920D+01 -0.6447506446D+01

EXTREM 2 :
F = -0.3072281498D+03
X = -0.6228926454D+01 0.4363683102D+01

EXTREM 3 :
F = -0.1504539067D+03
X = 0.3836710556D+01 -0.4317610574D+01

EXTREM 4 :
F = -0.5795091449D+02
X = 0.3368245192D+01 0.2827173202D+01

7.9 Large scale optimization (sparse Hessian matrix)

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =
n∑

i=1

(
(3− 2xi)xi − xi−1 − xi+1 + 1

)2
, xn+1 = x0 = 0

127

where n = 100. The starting point is xi = −1 for 1 ≤ i ≤ n. The minimum value of the objective function
is F = 0.0

b) Problem specification (input file):

$FLOAT W
$SET(INPUT)
DO 1 I=1,NF

X(I)=-1.0D0
J=2*(I-1)+1
IH(I)=J
JH(J)=I
JH(J+1)=I+1

1 CONTINUE
IH(NF+1)=2*NF

$ENDSET
$SET(FMODELF)
FF=0.0D0
DO 2 J=1,NF

W=(3.0D0-2.0D0*X(J))*X(J)+1.0D0
IF (J.GT.1) W=W-X(J-1)
IF (J.LT.NF) W=W-X(J+1)
FF=FF+W*W

2 CONTINUE
$ENDSET
$SET(GMODELF)
GF(1)=0.0D0
DO 3 J=1,NF

W=(3.0D0-2.0D0*X(J))*X(J)+1.0D0
IF (J.GT.1) W=W-X(J-1)
IF (J.LT.NF) W=W-X(J+1)
W=W+W
GF(J)=GF(J)+W*(3.0D0-4.0D0*X(J))
IF (J.GT.1) GF(J-1)=GF(J-1)-W
IF (J.LT.NF) GF(J+1)=-W

3 CONTINUE
$ENDSET
$NF=100
$M=1000
$LOUT=2
$HESF=’S’
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables and the sparsity pattern
of the Hessian matrix. The sparse Hessian matrix, indicated by the statement $HESF=’S’, is tridiagonal so
that the number of its upper half nonzero elements is 2∗NF−1=199. We set $M=1000, since a greater space
is needed for sparse matrix processing. By using the macrovariable $FMODELF we specify analytically
the value of the model function. By using the macrovariable $GMODELF we specify analytically the
gradient of the model function.

d) Problem solution (basic screen output):

128

CLASS = MN - GM3 UPDATE = N MODEL = FF HESF = S NF = 100
NIT= 0 NFV= 1 NFG= 4 F= 410.0000000 G=0.380D+02
NIT= 1 NFV= 2 NFG= 8 F= 51.26265737 G=0.123D+02
NIT= 2 NFV= 3 NFG= 12 F= 6.162928937 G=0.694D+01
NIT= 3 NFV= 4 NFG= 16 F= 0.2405291932 G=0.141D+01
NIT= 4 NFV= 5 NFG= 20 F= 0.7598786985E-03 G=0.122D+00
NIT= 5 NFV= 6 NFG= 24 F= 0.2442230672E-05 G=0.636D-02
NIT= 6 NFV= 7 NFG= 28 F= 0.3898601533E-07 G=0.822D-03
NIT= 7 NFV= 8 NFG= 32 F= 0.1062176733E-09 G=0.481D-04
NIT= 8 NFV= 9 NFG= 36 F= 0.5393507093E-12 G=0.401D-05
NIT= 9 NFV= 10 NFG= 40 F= 0.3871095331E-14 G=0.271D-06

0 NIT= 9 NFV= 10 NFG= 40 GRAD TOL F= 0.3871095331E-14 G=0.271D-06

7.10 Large-scale optimization (sparse Jacobian matrix)

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =
n∑

i=1

fA
i (x)

where n=100 and

fA
i (x) =

(
(3− 2xi)xi − xi+1 + 1

)2
, i = 1

fA
i (x) =

(
(3− 2xi)xi − xi−1 − xi+1 + 1

)2
, 2 ≤ i ≤ n− 1

fA
i (x) =

(
(3− 2xi)xi − xi−1 + 1

)2
, i = n

The starting point is xi = −1 for 1 ≤ i ≤ n. The minimum value of the objective function is F = 0.0 (This
problem is equivalent to the previous one).

b) Problem specification (input file):

$FLOAT WA
$SET(INPUT)
DO 1 I=1,NF

X(I)=-1.0D0
1 CONTINUE
L=1
DO 2 I=1,NA

IAG(I)=L
IF (I.GT.1) THEN
JAG(L)=I-1
L=L+1
ENDIF
JAG(L)=I
L=L+1
IF (I.LT.NF) THEN
JAG(L)=I+1
L=L+1
ENDIF

2 CONTINUE
IAG(NA+1)=L

129

$ENDSET
$SET(FMODELA)
WA=(3.0D0-2.0D0*X(KA))*X(KA)+1.0D0
IF (KA.GT. 1) WA=WA-X(KA-1)
IF (KA.LT.NA) WA=WA-X(KA+1)
FA=WA*WA

$ENDSET
$SET(GMODELA)
WA=(3.0D0-2.0D0*X(KA))*X(KA)+1.0D0
IF (KA.GT. 1) WA=WA-X(KA-1)
IF (KA.LT.NA) WA=WA-X(KA+1)
WA=WA+WA
GA(KA)=WA*(3.0D0-4.0D0*X(KA))
IF (KA.GT. 1) GA(KA-1)=-WA
IF (KA.LT.NA) GA(KA+1)=-WA

$ENDSET
$NF=100
$NA=100
$MA=300
$M=600
$LOUT=2
$MODEL=’AF’
$JACA=’S’
$HESF=’B’
$FMIN=’0.0$P 0’
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables and the sparsity pattern
of the Jacobian matrix. The sparse Jacobian matrix, indicated by the statement $JACA=’S’, is tridiagonal
and the number of its nonzero elements is 3∗NF−2=298. Therefore we set $MA=300. Since we use the
partitioned Hessian matrix indicated by the statement $HESF=’B’, we must specify the number of its
nonzero elements (it is 6∗NF−2). Therefore we set $M=600. By using the macrovariable $FMODELA we
specify analytically the values of the approximating functions. By using the macrovariable $GMODELA
we specify analytically the gradients of the approximating functions. For the sum of values minimization
we set $MODEL=’AF’.

d) Problem solution (basic screen output):

CLASS = VM - LM3 UPDATE = B MODEL = AF HESF = B NF = 100
NIT= 0 NFV= 1 NFG= 1 F= 410.0000000 G=0.380D+02
NIT= 1 NFV= 2 NFG= 2 F= 56.19847311 G=0.887D+01
NIT= 2 NFV= 3 NFG= 3 F= 33.51055573 G=0.597D+01
NIT= 3 NFV= 5 NFG= 5 F= 8.212655678 G=0.709D+01
NIT= 4 NFV= 7 NFG= 7 F= 1.405304652 G=0.448D+01
NIT= 5 NFV= 8 NFG= 8 F= 0.1546538446 G=0.147D+01
NIT= 6 NFV= 9 NFG= 9 F= 0.8654952764E-02 G=0.276D+00
NIT= 7 NFV= 10 NFG= 10 F= 0.5809356546E-03 G=0.115D+00
NIT= 8 NFV= 11 NFG= 11 F= 0.1714867549E-04 G=0.187D-01
NIT= 9 NFV= 12 NFG= 12 F= 0.1059237179E-05 G=0.423D-02
NIT= 10 NFV= 13 NFG= 13 F= 0.4823394334E-07 G=0.105D-02
NIT= 11 NFV= 14 NFG= 14 F= 0.1475859572E-08 G=0.217D-03

130

NIT= 12 NFV= 15 NFG= 15 F= 0.1093278165E-10 G=0.129D-04
NIT= 13 NFV= 16 NFG= 16 F= 0.1983979792E-12 G=0.131D-05
NIT= 14 NFV= 17 NFG= 17 F= 0.1844060690E-13 G=0.667D-06

0 NIT= 14 NFV= 17 NFG= 17 GRAD TOL F= 0.1844060690E-13 G=0.667D-06

7.11 Large-scale sum of squares optimization (sparse Jacobian matrix)

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =
1
2

n∑
i=1

(
fA

i (x)
)2

where n = 100 and

fA
i (x) = (3− 2xi)xi − xi+1 + 1 , i = 1

fA
i (x) = (3− 2xi)xi − xi−1 − xi+1 + 1 , 2 ≤ i ≤ n− 1

fA
i (x) = (3− 2xi)xi − xi−1 + 1 , i = n

The starting point is xi = −1 for 1 ≤ i ≤ n. The minimum value of the objective function is F = 0.0 (This
problem is equivalent to the previous one).

b) Problem specification (input file):

$SET(INPUT)
DO 1 I=1,NF

X(I)=-1.0D0
1 CONTINUE
L=1
DO 2 I=1,NA

IAG(I)=L
IF (I.GT.1) THEN
JAG(L)=I-1
L=L+1
ENDIF
JAG(L)=I
L=L+1
IF (I.LT.NA) THEN
JAG(L)=I+1
L=L+1
ENDIF

2 CONTINUE
IAG(NA+1)=L

$ENDSET
$SET(FMODELA)
I=KA
FA=(3.0D0-2.0D0*X(I))*X(I)+1.0D0
IF (I.GT.1) FA=FA-X(I-1)
IF (I.LT.NA) FA=FA-X(I+1)

$ENDSET
$SET(GMODELA)
I=KA
GA(I)=3.0D0-4.0D0*X(I)

131

IF (I.GT.1) GA(I-1)=-1.0D0
IF (I.LT.NA) GA(I+1)=-1.0D0

$ENDSET
$NF=100
$NA=100
$MA=300
$M=600
$LOUT=2
$MODEL=’AQ’
$JACA=’S’
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables and the sparsity pattern
of the Jacobian matrix. The sparse Jacobian matrix, indicated by the statement $JACA=’S’, is tridiagonal
and the number of its nonzero elements is 3∗NF−2=298. Therefore we set $MA=300. Since we do not
use the sparse Hessian matrix, we do not specify the number of its nonzero elements. By using the
macrovariable $FMODELA we specify analytically the values of the approximating functions. By using
the macrovariable $GMODELA we specify analytically the gradients of the approximating functions. For
the sum-of-squares minimization we set $MODEL=’AQ’.

d) Problem solution (basic screen output):

CLASS = GN - GE3 UPDATE = N MODEL = AQ HESF = N NF = 100
NIT= 0 NFV= 1 NFG= 1 F= 205.0000000 G=0.190D+02
NIT= 1 NFV= 2 NFG= 2 F= 6.361704571 G=0.230D+01
NIT= 2 NFV= 3 NFG= 3 F= 0.2275266679E-01 G=0.118D+00
NIT= 3 NFV= 4 NFG= 4 F= 0.4866007329E-06 G=0.532D-03
NIT= 4 NFV= 5 NFG= 5 F= 0.2346349433E-15 G=0.128D-07

0 NIT= 4 NFV= 5 NFG= 5 GRAD TOL F= 0.2346349433E-15 G=0.128D-07

7.12 Large-scale sum of absolute values optimization (sparse Jacobian matrix)

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =
1
2

n∑
i=1

∣∣fA
i (x)

∣∣

where n = 100 and

fA
i (x) = (3− 2xi)xi − xi+1 + 1 , i = 1

fA
i (x) = (3− 2xi)xi − xi−1 − xi+1 + 1 , 2 ≤ i ≤ n− 1

fA
i (x) = (3− 2xi)xi − xi−1 + 1 , i = n

The starting point is xi = −1 for 1 ≤ i ≤ n. The minimum value of the objective function is F = 0.0 (This
problem is equivalent to the previous one).

b) Problem specification (input file):

$SET(INPUT)
DO 1 I=1,NF

132

X(I)=-1.0D0
1 CONTINUE
XMAX=2.0D0
L=1
DO 2 I=1,NA

IAG(I)=L
IF (I.GT.1) THEN
JAG(L)=I-1
L=L+1
ENDIF
JAG(L)=I
L=L+1
IF (I.LT.NA) THEN
JAG(L)=I+1
L=L+1
ENDIF

2 CONTINUE
IAG(NA+1)=L

$ENDSET
$SET(FMODELA)
I=KA
FA=(3.0D0-2.0D0*X(I))*X(I)+1.0D0
IF (I.GT.1) FA=FA-X(I-1)
IF (I.LT.NA) FA=FA-X(I+1)

$ENDSET
$SET(GMODELA)
I=KA
GA(I)=3.0D0-4.0D0*X(I)
IF (I.GT.1) GA(I-1)=-1.0D0
IF (I.LT.NA) GA(I+1)=-1.0D0

$ENDSET
$NF=100
$NA=100
$MA=300
$M=3000
$LOUT=2
$MODEL=’AA’
$JACA=’S’
$HESF=’S’
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables, the sparsity pattern of
the Jacobian matrix and the maximum step-size $XMAX. The sparse Jacobian matrix, indicated by the
statement $JACA=’S’, is tridiagonal and the number of its nonzero elements is 3∗NF−2=298. Therefore
we set $MA=300. Since we use the sparse Hessian matrix, we set $HESF=’S’ and specify the number of its
nonzero elements $M=3000 (this is a reasonable upper bound). By using the macrovariable $FMODELA
we specify analytically the values of the approximating functions. By using the macrovariable $GMOD-
ELA we specify analytically the gradients of the approximating functions. For the sum-of-absolute-values
minimization we set $MODEL=’AA’.

133

d) Problem solution (basic screen output):

CLASS = VB - LM1 UPDATE = V MODEL = AA HESF = S NF = 100
NIT= 0 NFV= 1 NFG= 1 F= 202.0000000 G=0.600D+01
NIT= 1 NFV= 2 NFG= 2 F= 109.8977246 G=0.459D+01
NIT= 2 NFV= 3 NFG= 3 F= 33.54010051 G=0.566D+01
NIT= 3 NFV= 4 NFG= 4 F= 26.80482736 G=0.558D+01
NIT= 4 NFV= 5 NFG= 5 F= 3.117114219 G=0.502D+01
NIT= 5 NFV= 6 NFG= 6 F= 1.344360901 G=0.699D+01
NIT= 6 NFV= 7 NFG= 7 F= 1.344360901 G=0.688D+01
NIT= 7 NFV= 8 NFG= 8 F= 1.013497084 G=0.699D+01
NIT= 8 NFV= 9 NFG= 9 F= 0.8829971522 G=0.699D+01
NIT= 9 NFV= 10 NFG= 10 F= 0.7508310254 G=0.699D+01
NIT= 10 NFV= 11 NFG= 11 F= 0.4829735344 G=0.698D+01
--
NIT= 101 NFV= 102 NFG= 102 F= 0.4574126359E-06 G=0.700D+01
NIT= 102 NFV= 103 NFG= 103 F= 0.4574126359E-06 G=0.700D+01
NIT= 103 NFV= 104 NFG= 104 F= 0.3647925462E-06 G=0.700D+01
NIT= 104 NFV= 105 NFG= 105 F= 0.3647925462E-06 G=0.700D+01
NIT= 105 NFV= 106 NFG= 106 F= 0.3647925462E-06 G=0.700D+01
NIT= 106 NFV= 107 NFG= 107 F= 0.3633449755E-06 G=0.700D+01
NIT= 107 NFV= 108 NFG= 108 F= 0.3633449755E-06 G=0.700D+01
NIT= 108 NFV= 109 NFG= 109 F= 0.3633449755E-06 G=0.699D+01
NIT= 109 NFV= 110 NFG= 110 F= 0.3633449755E-06 G=0.699D+01
NIT= 110 NFV= 111 NFG= 111 F= 0.3633449755E-06 G=0.700D+01
NIT= 111 NFV= 112 NFG= 112 F= 0.3633438734E-06 G=0.700D+01

0 NIT= 112 NFV= 112 NFG= 112 GRAD TOL F= 0.3633438734E-06 G=0.111D-11

7.13 Large-scale nonlinear equations

a) Problem description:

Suppose we have to solve the system of the nonlinear equations

fA
i (x) = (3− 2xi)xi − xi+1 + 1 = 0 , i = 1

fA
i (x) = (3− 2xi)xi − xi−1 − xi+1 + 1 = 0 , 2 ≤ i ≤ n− 1

fA
i (x) = (3− 2xi)xi − xi−1 + 1 = 0 , i = n

where n = 100. The starting point is xi = −1 for 1 ≤ i ≤ n. The minimum value of the objective function
is F = 0.0 (This problem is equivalent to the previous one).

b) Problem specification (input file):

$SET(INPUT)
DO 1 I=1,NF

X(I)=-1.0D0
1 CONTINUE
$ENDSET
$SET(FMODELA)
I=KA
FA=(3.0D0-2.0D0*X(I))*X(I)+1.0D0
IF (I.GT.1) FA=FA-X(I-1)
IF (I.LT.NA) FA=FA-X(I+1)

$ENDSET

134

$NF=100
$NA=100
$LOUT=2
$MODEL=’NE’
$JACA=’N’
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables. By using the macrovari-
able $FMODELA we specify analytically the values of functions in the nonlinear equations. For solving
nonlinear equations we set $MODEL=’NE’.

d) Problem solution (basic screen output):

CLASS = TN - GE3 UPDATE = N MODEL = AQ HESF = N NF = 100
NIT= 0 NFV= 1 F= 205.0000000
NIT= 1 NFV= 5 F= 5.266293104
NIT= 2 NFV= 9 F= 0.1672522970E-01
NIT= 3 NFV= 13 F= 0.1523614858E-05
NIT= 4 NFV= 19 F= 0.9562244762E-11
NIT= 5 NFV= 27 F= 0.3893958431E-18

0 NIT= 5 NFV= 27 NDC= 0 FV BOUND F= 0.3893958431E-18

7.14 Large-scale linear programming

a) Problem description:

Suppose we have to find the global maximum of the linear function

F (x) =
n∑

i=1

(−1)ixi

with simple bounds −20 ≤ xi ≤ 20, 1 ≤ i ≤ n, and linear constraints

−xi + xi+1 − xi+2 = i, 1 ≤ i ≤ nC

where n = 20 and nC = 18. The starting point is not given. The maximum value of the linear objective
function is F = 7.0

b) Problem specification (input file):

$SET(INPUT)
DO 1 I=1,NF

IX(I)=3
XL(I)=-2.0D1
XU(I)=2.0D1
GF(I)=$DBLE((-1)**I)

1 CONTINUE
DO 2 KC=1,NC

IC(KC)=5
CL(KC)=$DBLE(KC)
$SETCG(KC,KC,-1.0D0)
$SETCG(KC,KC+1, 1.0D0)

135

$SETCG(KC,KC+2,-1.0D0)
2 CONTINUE
$ENDSET
$IEXT=1
$NF=20
$NC=18
$NCL=18
$MC=54
$KBF=2
$KBC=1
$MODEL=’FL’
$JACC=’S’
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the bounds for variables and the sparsity pattern with
numerical values of the constraint Jacobian matrix. We use the procedure UKMCI1. The sparse Jacobian
matrix, indicated by the statement $JACC=’S’, is tridiagonal and the number of its nonzero elements is
3∗(NF−2)=54. Therefore, we set $MC=54. The option $MODEL=’FL’ indicates the linear programming
problem.

d) Problem solution (basic screen output):

CLASS = LP - LN1 UPDATE = N MODEL = FL HESF = N NF = 20
NUMITR= 1 INEW= 20 IOLD= 15 KINP= 0 IU= 48 F=0.980D+04
NUMITR= 2 INEW= 19 IOLD= 20 KINP= 0 IU= 49 F=0.208D+04
NUMITR= 3 INEW= 0 IOLD= 20 KINP= 0 IU= 49 F=0.000D+00
NUMITR= 3 NEL= 3 NREF= 1 KINP= 0 IU= 49 F=0.000D+00 ITERL= 1
NUMITR= 1 INEW= 15 IOLD= 19 KINP= 0 IU= 49 F=0.900D+01
NUMITR= 2 INEW= 20 IOLD= 18 KINP= 0 IU= 48 F=0.700D+01
NUMITR= 3 INEW= 0 IOLD= 18 KINP= 0 IU= 48 F=0.700D+01
NUMITR= 3 NEL= 3 NREF= 1 KINP= 0 IU= 48 F=0.700D+01 ITERL= 2
0 NIC= 0 NIT= 6 NFV= 2 NFG= 0 F=0.700D+01 C=0.000D+00 G=0.000D+00

FF = -0.7000000000D+01
X = -0.2000000000D+01 0.0000000000D+00 0.1000000000D+01 -0.1000000000D+01

-0.5000000000D+01 -0.8000000000D+01 -0.8000000000D+01 -0.6000000000D+01
-0.5000000000D+01 -0.7000000000D+01 -0.1100000000D+02 -0.1400000000D+02
-0.1400000000D+02 -0.1200000000D+02 -0.1100000000D+02 -0.1300000000D+02
-0.1700000000D+02 -0.2000000000D+02 -0.2000000000D+02 -0.1800000000D+02

7.15 Large-scale quadratic programming

a) Problem description:

Suppose we have to find the global minimum of the quadratic function

F (x) =
1
2
(2x2

1 + x2
2 + 2x2

3 + x2
4 − 2x1x3 + 2x3x4)− x1 − 3x2 + x3 − x4

with simple bounds xi ≥ 0 for 1 ≤ i ≤ 4 and linear constraints

x1 + 2x2 + x3 + x4 ≤ 5,

136

3x1 + x2 + 2x3 − x4 ≤ 4,

2x2 + 8x3 ≥ 3.

The starting point is xi = 1/2 for 1 ≤ i ≤ 4. The minimum value of the quadratic objective function is
F = −4.681818.

b) Problem specification (input file):

$SET(INPUT)
DO 1 I=1,NF
X(I)= 0.5D0
XL(I)=0.0D0
IX(I)=1

1 CONTINUE
GF(1)=-1.0D0; GF(2)=-3.0D0; GF(3)= 1.0D0; GF(4)=-1.0D0
IH(1)= 1; IH(2)= 3; IH(3)= 4; IH(4)= 6; IH(5)= 7
JH(1)= 1; JH(2)= 3; JH(3)= 2; JH(4)= 3; JH(5)= 4; JH(6)= 4
HF(1)= 2.0D0; HF(2)=-1.0D0; HF(3)= 1.0D0
HF(4)= 2.0D0; HF(5)= 1.0D0; HF(6)= 1.0D0
IC(1)=2; IC(2)=2; IC(3)=1
CL(1)= 5.0D0; CL(2)= 4.0D0; CL(3)= 3.0D0
ICG(1)=1; ICG(2)=5; ICG(3)=9; ICG(4)=11
JCG(1)=1; JCG(2)=2; JCG(3)=3; JCG(4)=4; JCG(5)=1
JCG(6)=2; JCG(7)=3; JCG(8)=4; JCG(9)=2; JCG(10)=3
CG(1)= 1.0D0; CG(2)= 2.0D0; CG(3)= 1.0D0; CG(4)= 1.0D0; CG(5)= 3.0D0
CG(6)= 1.0D0; CG(7)= 2.0D0; CG(8)=-1.0D0; CG(9)= 2.0D0; CG(10)= 8.0D0

$ENDSET
$NF=4
$NC=3
$NCL=3
$MC=10
$M=100
$KBF=1
$KBC=1
$MODEL=’FQ’
$JACC=’S’
$HESF=’S’
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the bounds for variables, the sparsity pattern with
numerical values of the model Hessian matrix, and the sparsity pattern with numerical values of the
constraint Jacobian matrix. The sparse Hessian matrix is indicated by the statement $HESF=’S’. We set
$M=100 as a sufficiently large dimension for the working fields. The sparse Jacobian matrix is indicated by
the statement $JACC=’S’ and the number of its nonzero elements is $MC=10. The option $MODEL=’FQ’
indicates the quadratic programming problem.

d) Problem solution (basic screen output):

CLASS = QP - LN2 UPDATE = N MODEL = FQ HESF = S NF = 4
MODE = 1 NRED = 0 N = 4 IOLD = 0 INEW = 0
MODE = 1 NRED = 1 N = 3 IOLD = 0 INEW = 3 ADDITION

137

MODE = 1 NRED = 2 N = 2 IOLD = 0 INEW = -3 ADDITION
MODE = 1 NRED = 3 N = 2 IOLD = 0 INEW = 0
MODE = 1 NRED = 4 N = 2 IOLD = 0 INEW = 0
MODE = 1 NRED = 4 N = 3 IOLD = 1 INEW = 0 DELETION
MODE = 1 NRED = 5 N = 2 IOLD = 0 INEW = 1 ADDITION
MODE = 1 NRED = 6 N = 2 IOLD = 0 INEW = 0
MODE = 1 NRED = 7 N = 2 IOLD = 0 INEW = 0
0 NIC= 0 NIT= 7 NFV= 2 NFG= 0 F=-.468D+01 C=0.000D+00 G=0.000D+00

FF = -0.4681818182D+01
X = 0.2727272727D+00 0.2090909091D+01 0.0000000000D+00 0.5454545455D+00

7.16 Large-scale optimization with linear constraints

a) Problem description:

The problem we have solved is in fact the Hock and Schittkowski problem number 119 (see [44]) which
has 16 variables and 8 linear constraints. The minimum value of the objective function is F = 244.899.

b) Problem specification (input file):

$FLOAT WI,WJ
$SET(INPUT)
DO 1 I=1,NF

X(I)=10.0D0; XL(I)=0.0D0; XU(I)=5.0D0; IX(I)=3
1 CONTINUE
IH(1)= 1; IH(2)= 6; IH(3)=10; IH(4)=15; IH(5)=19
IH(6)=24; IH(7)=27; IH(8)=30; IH(9)=33; IH(10)=36
IH(11)=38; IH(12)=40; IH(13)=42; IH(14)=44; IH(15)=45
IH(16)=46; IH(17)=47;
JH(1)= 1; JH(2)= 4; JH(3)= 7; JH(4)= 8; JH(5)=16
JH(6)= 2; JH(7)= 3; JH(8)= 7; JH(9)=10;
JH(10)= 3; JH(11)= 7; JH(12)= 9; JH(13)=10; JH(14)=14
JH(15)= 4; JH(16)= 7; JH(17)=11; JH(18)=15;
JH(19)= 5; JH(20)= 6; JH(21)=10; JH(22)=12; JH(23)=16
JH(24)= 6; JH(25)= 8; JH(26)=15;
JH(27)= 7; JH(28)=11; JH(29)=13;
JH(30)= 8; JH(31)=10; JH(32)=15;
JH(33)= 9; JH(34)=12; JH(35)=16;
JH(36)=10; JH(37)=14;
JH(38)=11; JH(39)=13;
JH(40)=12; JH(41)=14;
JH(42)=13; JH(43)=14;
JH(44)=14;
JH(45)=15;
JH(46)=16;
DO 2 I=1,NC

IC(I)=5
2 CONTINUE
CL(1)= 2.5D0
CL(2)= 1.1D0
CL(3)=-3.1D0
CL(4)=-3.5D0
CL(5)= 1.3D0

138

CL(6)= 2.1D0
CL(7)= 2.3D0
CL(8)=-1.5D0
$SETCG(1, 1, 0.22D0)
$SETCG(1, 2, 0.20D0)
$SETCG(1, 3, 0.19D0)
$SETCG(1, 4, 0.25D0)
$SETCG(1, 5, 0.15D0)
$SETCG(1, 6, 0.11D0)
$SETCG(1, 7, 0.12D0)
$SETCG(1, 8, 0.13D0)
$SETCG(1, 9, 1.00D0)
$SETCG(2, 1,-1.46D0)
$SETCG(2, 3,-1.30D0)
$SETCG(2, 4, 1.82D0)
$SETCG(2, 5,-1.15D0)
$SETCG(2, 7, 0.80D0)
$SETCG(2,10, 1.00D0)
$SETCG(3, 1, 1.29D0)
$SETCG(3, 2,-0.89D0)
$SETCG(3, 5,-1.16D0)
$SETCG(3, 6,-0.96D0)
$SETCG(3, 8,-0.49D0)
$SETCG(3,11, 1.00D0)
$SETCG(4, 1,-1.10D0)
$SETCG(4, 2,-1.06D0)
$SETCG(4, 3, 0.95D0)
$SETCG(4, 4,-0.54D0)
$SETCG(4, 6,-1.78D0)
$SETCG(4, 7,-0.41D0)
$SETCG(4,12, 1.00D0)
$SETCG(5, 4,-1.43D0)
$SETCG(5, 5, 1.51D0)
$SETCG(5, 6, 0.59D0)
$SETCG(5, 7,-0.33D0)
$SETCG(5, 8,-0.43D0)
$SETCG(5,13, 1.00D0)
$SETCG(6, 2,-1.72D0)
$SETCG(6, 3,-0.33D0)
$SETCG(6, 5, 1.62D0)
$SETCG(6, 6, 1.24D0)
$SETCG(6, 7, 0.21D0)
$SETCG(6, 8,-0.26D0)
$SETCG(6,14, 1.00D0)
$SETCG(7, 1, 1.12D0)
$SETCG(7, 4, 0.31D0)
$SETCG(7, 7, 1.12D0)
$SETCG(7, 9,-0.36D0)
$SETCG(7,15, 1.00D0)
$SETCG(8, 2, 0.45D0)
$SETCG(8, 3, 0.26D0)
$SETCG(8, 4,-1.10D0)

139

$SETCG(8, 5, 0.58D0)
$SETCG(8, 7,-1.03D0)
$SETCG(8, 8, 0.10D0)
$SETCG(8,16, 1.00D0)

$ENDSET
$SET(FGMODELF)
FF=0.0D0
DO 3 I=1,NF

GF(I)=0.0D0
3 CONTINUE
DO 5 I=1,NF

WI=X(I)*(X(I)+1.0D0)+1.0D0
K1=IH(I)
K2=IH(I+1)-1
DO 4 K=K1,K2
J=JH(K)
WJ=X(J)*(X(J)+1.0D0)+1.0D0
FF=FF+WI*WJ
GF(I)=GF(I)+(2.0D0*X(I)+1.0D0)*WJ
GF(J)=GF(J)+WI*(2.0D0*X(J)+1.0D0)

4 CONTINUE
5 CONTINUE
$ENDSET
$NF=16
$M=200
$NC=8
$NCL=8
$MC=54
$KBF=2
$KBC=1
$JACC=’S’
$HESF=’S’
$ADD(INTEGER,’\IH($NF+1)\JH($M)’)
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the bounds for variables, the sparsity pattern with
numerical values of the model Hessian matrix, and the sparsity pattern with numerical values of the
constraint Jacobian matrix. We use the procedure UKMCI1. The sparse Hessian matrix is indicated by
the statement $HESF=’S’. The sparse Jacobian matrix is indicated by the statement $JACC=’S’. The
option $MODEL=’FF’ indicates a general objective function. By using the macrovariable $FGMODELF
we specify analytically the value and the gradient of the model function. Since the Hessian structure
appears in the gradient definition and the conjugate gradient method is used as default, we have to declare
files IH and JH.

d) Problem solution (basic screen output):

CLASS = VM - LM3 UPDATE = M MODEL = FF HESF = S NF = 16
NIT= 0 NFV= 2 NFG= 2 F= 4528.573861 G=0.100D+01
NIT= 1 NFV= 3 NFG= 3 F= 325.0955478 G=0.000D+00
NIT= 2 NFV= 4 NFG= 4 F= 252.2712344 G=0.000D+00
NIT= 3 NFV= 5 NFG= 5 F= 246.0828245 G=0.185D+02

140

NIT= 4 NFV= 6 NFG= 6 F= 245.0236003 G=0.887D+01
NIT= 5 NFV= 7 NFG= 7 F= 244.9100700 G=0.161D+01
NIT= 6 NFV= 8 NFG= 8 F= 244.8997060 G=0.351D-01
NIT= 7 NFV= 9 NFG= 9 F= 244.8996978 G=0.130D-01
NIT= 8 NFV= 10 NFG= 10 F= 244.8996975 G=0.124D-02
NIT= 9 NFV= 11 NFG= 11 F= 244.8996975 G=0.159D-03
NIT= 10 NFV= 12 NFG= 12 F= 244.8996975 G=0.322D-06

0 NIT= 10 NFV= 12 NFG= 12 NDC= 0 NCG= 0 F=0.245D+03 G=0.322D-06
FF = 0.2448996975D+03
X = 0.3984735060D-01 0.7919831554D+00 0.2028703315D+00 0.8443579157D+00

0.1269906451D+01 0.9347387094D+00 0.1681961969D+01 0.1553008761D+00
0.1567870334D+01 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00
0.6602040658D+00 0.0000000000D+00 0.6742559281D+00 0.0000000000D+00

7.17 Large-scale optimization with nonlinear equality constraints

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =
n∑

i=1

(
fA

i (x)
)2

where n = 100 and

fA
i (x) = (3− 2xi)xi − xi+1 + 1 , i = 1

fA
i (x) = (3− 2xi)xi − xi−1 − xi+1 + 1 , 2 ≤ i ≤ n− 1

fA
i (x) = (3− 2xi)xi − xi−1 + 1 , i = n

over the set given by the nonlinear equality constraints

8xi(x2
i − xi−1)− 2(1− xi) + 4(xi − x2

i+1) + x2
i−1 − xi−2 + xi+1 − x2

i+2 = 0, 3 ≤ i ≤ n− 2.

The starting point is xi = −1, 1 ≤ i ≤ n. The minimum value of the objective function is F = 5.29056.

b) Problem specification (input file):

$FLOAT WA,WB
$SET(INPUT)
DO 1 I=1,NF
X(I)=-1.D0

1 CONTINUE
M=0
IH(1)=1
DO 2 I=1,NF
M=M+1
JH(M)=I
IF (I.LE.NF-1) THEN
M=M+1
JH(M)=I+1
ENDIF
IF (I.LE.NF-2) THEN
M=M+1
JH(M)=I+2

141

ENDIF
IH(I+1)=M+1

2 CONTINUE
MC=0
ICG(1)=1
DO 3 I=3,NF-2
MC=MC+1
JCG(MC)=I-2
MC=MC+1
JCG(MC)=I-1
MC=MC+1
JCG(MC)=I
MC=MC+1
JCG(MC)=I+1
MC=MC+1
JCG(MC)=I+2
ICG(I-1)=MC+1

3 CONTINUE
DO 4 KC=1,NC
IC(KC)=5
CL(KC)=0.D0

4 CONTINUE
$ENDSET
$SET(FMODELF)
FF=0.D0
DO 5 J=1,NF
WA=(3.D0-2.D0*X(J))*X(J)+1.D0
IF (J.GT. 1) WA=WA-X(J-1)
IF (J.LT.NF) WA=WA-X(J+1)
FF=FF+WA**2

5 CONTINUE
$ENDSET
$SET(GMODELF)
DO 6 J=1,NF
GF(J)=0.D0

6 CONTINUE
DO 7 J=1,NF
WA=(3.D0-2.D0*X(J))*X(J)+1.D0
IF (J.GT. 1) WA=WA-X(J-1)
IF (J.LT.NF) WA=WA-X(J+1)
WB=2.D0*WA
GF(J)=GF(J)+WB*(3.D0-4.D0*X(J))
IF (J.GT. 1) GF(J-1)=GF(J-1)-WB
IF (J.LT.NF) GF(J+1)=GF(J+1)-WB

7 CONTINUE
$ENDSET
$SET(FMODELC)
K=KC+2
FC=8.D0*X(K)*(X(K)**2-X(K-1))-2.D0*(1.D0-X(K))+
& 4.D0*(X(K)-X(K+1)**2)+X(K-1)**2-X(K-2)+X(K+1)-
& X(K+2)**2
$ENDSET

142

$SET(GMODELC)
K=KC+2
GC(K-2)=-1.D0
GC(K-1)=-8.D0*X(K)+2.D0*X(K-1)
GC(K)=24.D0*X(K)**2-8.D0*X(K-1)+6.D0
GC(K+1)=-8.D0*X(K+1)+1.D0
GC(K+2)=-2.D0*X(K+2)

$ENDSET
$NF=100
$M=1500
$NC=96
$NCL=0
$NCE=NC
$MC=500
$KBC=1
$LOUT=2
$JACC=’S’
$HESF=’S’
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables, the sparsity pattern of
the objective Hessian matrix, the sparsity pattern of the constraint Jacobian matrix, and the constraint
specifications. The sparse Hessian matrix, indicated by the statement $HESF=’S’, is tridiagonal so that
the number of its upper half nonzero elements is 2∗NF−1=199. We set $M=1500, since a greater space is
needed for sparse matrix processing. The sparse Jacobian matrix is indicated by the statement $JACC=’S’.
Since there are only the equality constraints, we can specify the right hand sides CL(KC), 1 ≤ KC ≤ NC,
and set $KBC=1. The statement $NCE=NC expresses that all constraints are equalities. By using
the macrovariable $FMODELF we specify analytically the value of the model function. By using the
macrovariable $GMODELF we specify analytically the gradient of the model function. By using the
macrovariable $FMODELC we specify analytically the values of the constraint functions. By using the
macrovariable $GMODELC we specify analytically the gradients of the constraint functions.

d) Problem solution (basic screen output):

CLASS = MN - LK3 UPDATE = N MODEL = FF HESF = S NF = 100
NIC= 0 NIT= 0 NFV= 1 NFG= 10 F=0.410D+03 C=0.280D+02 G=0.380D+02
NIC= 0 NIT= 1 NFV= 2 NFG= 20 F=0.374D+04 C=0.880D+01 G=0.126D+02
NIC= 0 NIT= 2 NFV= 3 NFG= 30 F=0.587D+03 C=0.285D+01 G=0.489D+01
NIC= 0 NIT= 3 NFV= 4 NFG= 40 F=0.269D+03 C=0.127D+01 G=0.640D+01
NIC= 0 NIT= 4 NFV= 5 NFG= 50 F=0.966D+02 C=0.851D+00 G=0.890D+01
NIC= 0 NIT= 5 NFV= 9 NFG= 60 F=-.557D+02 C=0.731D+00 G=0.776D+01
NIC= 0 NIT= 6 NFV= 11 NFG= 70 F=0.295D+01 C=0.311D+00 G=0.385D+01
NIC= 0 NIT= 7 NFV= 12 NFG= 80 F=0.533D+01 C=0.490D-01 G=0.850D+00
NIC= 0 NIT= 8 NFV= 13 NFG= 90 F=0.530D+01 C=0.252D-02 G=0.189D+00
NIC= 0 NIT= 9 NFV= 14 NFG= 100 F=0.529D+01 C=0.927D-03 G=0.514D-01
NIC= 0 NIT= 10 NFV= 15 NFG= 110 F=0.529D+01 C=0.190D-03 G=0.111D-01
NIC= 0 NIT= 11 NFV= 16 NFG= 120 F=0.529D+01 C=0.238D-04 G=0.117D-02
NIC= 0 NIT= 12 NFV= 17 NFG= 130 F=0.529D+01 C=0.447D-06 G=0.220D-04
NIC= 0 NIT= 13 NFV= 18 NFG= 140 F=0.529D+01 C=0.168D-09 G=0.824D-08

0 NIT= 14 NFV= 18 NFG= 140 T= 4 F= 5.29056 C=0.168D-09 G=0.824D-08

143

7.18 Large-scale optimization with nonlinear equality and inequality constraints

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =
n−2∑
j=2

(
x2

i−1 + x2
i + 2x2

i+1 + x2
i+2 − 5xi−1 − 5xi − 21xi+1 + 7xi+2

)

where n = 100 over the set given by the nonlinear constraints

x2
j−1 + x2

j + x2
j+1 + x2

j+2 + xj−1 − xj + xj+1 − xj+2 ≤ 8, mod(k, 3) = 0

x2
j−1 + 2x2

j + x2
j+1 + 2x2

j+2 − xj−1 − xj+2 ≤ 10, mod(k, 3) = 1

2x2
j−1 + x2

j + x2
j+1 + 2xj−1 − xj − xj+2 ≤ 5, mod(k, 3) = 2

where j = 2(div(k − 1, 3) + 1), 1 ≤ k ≤ 3(n − 2)/2 (div(k,l) is the integer division and mod(k, l) is the
remainder after integer division). The starting point is xi = 0, 1 ≤ i ≤ n. The minimum value of the
objective function is F = −1303.79.

b) Problem specification (input file):

$SET(INPUT)
DO 1 I=1,NF
X(I)=0.0D0

1 CONTINUE
DO 2 I=1,NF
IH(I)=I
JH(I)=I

2 CONTINUE
IH(NF+1)=NF+1
MC=0
KC=0
DO 5 J=1,NC/3
CL(KC+1)=8.0D0
CL(KC+2)=1.0D1
CL(KC+3)=5.0D0
I=2*(J-1)
DO 4 K=1,3
IC(KC+K)=2
ICG(KC+K)=MC+1
DO 3 L=1,4
JCG(MC+L)=I+L

3 CONTINUE
MC=MC+4

4 CONTINUE
KC=KC+3

5 CONTINUE
ICG(NC+1)=MC+1

$ENDSET
$SET(FMODELF)

FF=0.0D0
DO 11 J=2,NF-2,2
FF=FF+X(J-1)**2+X(J)**2+2.0D0*X(J+1)**2+X(J+2)**2&

144

-5.0D0*X(J-1)-5.0D0*X(J)-2.1D1*X(J+1)+7.0D0*X(J+2)
11 CONTINUE
$ENDSET
$SET(GMODELF)

DO 12 I=1,NF
GF(I)=0.0D0

12 CONTINUE
DO 13 J=2,NF-2,2
GF(J-1)=GF(J-1)+2.0D0*X(J-1)-5.0D0
GF(J)=GF(J)+2.0D0*X(J)-5.0D0
GF(J+1)=GF(J+1)+4.0D0*X(J+1)-2.1D1
GF(J+2)=GF(J+2)+2.0D0*X(J+2)+7.0D0

13 CONTINUE
$ENDSET
$SET(FMODELC)

J=2*((KC-1)/3+1)
L=MOD(KC,3)
GO TO (21,22,23), L+1

21 FC=X(J-1)**2+X(J)**2+X(J+1)**2+X(J+2)**2&
+X(J-1)-X(J)+X(J+1)-X(J+2)

GO TO 24
22 FC=X(J-1)**2+2.0D0*X(J)**2+X(J+1)**2+2.0D0*X(J+2)**2&
-X(J-1)-X(J+2)

GO TO 24
23 FC=2.0D0*X(J-1)**2+X(J)**2+X(J+1)**2&
+2.0D0*X(J-1)-X(J)-X(J+2)
24 CONTINUE
$ENDSET
$SET(GMODELC)

J=2*((KC-1)/3+1)
L=MOD(KC,3)
GO TO (25,26,27), L+1

25 GC(J-1)=2.0D0*X(J-1)+1.0D0
GC(J)=2.0D0*X(J)-1.0D0
GC(J+1)=2.0D0*X(J+1)+1.0D0
GC(J+2)=2.0D0*X(J+2)-1.0D0
GO TO 28

26 GC(J-1)=2.0D0*X(J-1)-1.0D0
GC(J)=4.0D0*X(J)
GC(J+1)=2.0D0*X(J+1)
GC(J+2)=4.0D0*X(J+2)-1.0D0
GO TO 28

27 GC(J-1)=4.0D0*X(J-1)+2.0D0
GC(J)=2.0D0*X(J)-1.0D0
GC(J+1)=2.0D0*X(J+1)
GC(J+2)=-1.0D0

28 CONTINUE
$ENDSET
$NF=100
$M=1000
$NC=147
$NCL=0

145

$MC=1000
$KBC=1
$LOUT=2
$JACC=’S’
$HESF=’S’
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables, the sparsity pattern of
the objective Hessian matrix, the sparsity pattern of the constraint Jacobian matrix, and the constraint
specifications. The sparse Hessian matrix, indicated by the statement $HESF=’S’, is diagonal so that the
number of its upper half nonzero elements is NF=100. We set $M=1000, since a greater space is needed
for sparse matrix processing. The sparse Jacobian matrix is indicated by the statement $JACC=’S’. Since
there are only one sided inequality constraints, we can specify the right hand sides CL(KC), 1 ≤ KC
≤ NC, and set $KBC=1 (we can also specify CU(KC), 1 ≤ KC ≤ NC, and set $KBC=2). By using
the macrovariable $FMODELF we specify analytically the value of the model function. By using the
macrovariable $GMODELF we specify analytically the gradient of the model function. By using the
macrovariable $FMODELC we specify analytically the values of the constraint functions. By using the
macrovariable $GMODELC we specify analytically the gradients of the constraint functions.

d) Problem solution (basic screen output):

CLASS = MN - LI3 UPDATE = N MODEL = FF HESF = S NF = 100
NIC= 0 NIT= 0 NFV= 1 NFG= 7 F=0.000D+00 C=0.000D+00 G=0.257D+02
NIC= 0 NIT= 1 NFV= 2 NFG= 14 F=-.265D+04 C=0.321D+02 G=0.611D+01
NIC= 0 NIT= 2 NFV= 3 NFG= 21 F=-.183D+04 C=0.118D+02 G=0.276D+03
NIC= 0 NIT= 3 NFV= 4 NFG= 28 F=-.258D+04 C=0.391D+02 G=0.165D+03
NIC= 0 NIT= 4 NFV= 5 NFG= 35 F=-.177D+04 C=0.107D+02 G=0.804D+02
NIC= 0 NIT= 5 NFV= 6 NFG= 42 F=-.143D+04 C=0.386D+01 G=0.209D+03
NIC= 0 NIT= 6 NFV= 7 NFG= 49 F=-.130D+04 C=0.122D+02 G=0.322D+02
NIC= 0 NIT= 7 NFV= 8 NFG= 56 F=-.132D+04 C=0.196D+01 G=0.409D+01
NIC= 0 NIT= 8 NFV= 9 NFG= 63 F=-.131D+04 C=0.633D+00 G=0.674D+00
NIC= 0 NIT= 9 NFV= 10 NFG= 70 F=-.130D+04 C=0.267D-01 G=0.372D-01
NIC= 0 NIT= 10 NFV= 11 NFG= 77 F=-.130D+04 C=0.136D-03 G=0.562D-03
NIC= 0 NIT= 11 NFV= 12 NFG= 84 F=-.130D+04 C=0.294D-06 G=0.228D-05
NIC= 0 NIT= 12 NFV= 13 NFG= 91 F=-.130D+04 C=0.109D-09 G=0.361D-07

0 NIT= 13 NFV= 13 NFG= 91 T= 4 F= -1303.79 C=0.109D-09 G=0.361D-07

7.19 Optimization of dynamical systems - general integral criterion

a) Problem description:

Suppose we have to find a minimum of the objective function

F (x) =
1
2

∫ T

0

(y2
1(t) + y2

2(t))dt +
1
2
(y2

1(T) + y2
2(T))

where T = 1.5 and where
dy1(t)

dt = y2(t), y1(0) = x1

dy2(t)
dt = (1− y2

1(t))y2(t)− y1(t), y2(0) = 1

b) Problem specification (input file):

146

$SET(INPUT)
X(1)=ZERO
TA=ZERO
TAMAX=1.5D 0

$ENDSET
$SET(FMODELF)
FF=HALF*(YA(1)**2+YA(2)**2)

$ENDSET
$SET(DMODELF)
DF(1)=YA(1)
DF(2)=YA(2)

$ENDSET
$SET(FMODELA)
FA=HALF*(YA(1)**2+YA(2)**2)

$ENDSET
$SET(DMODELA)
DA(1)=YA(1)
DA(2)=YA(2)

$ENDSET
$SET(FMODELE)
GO TO (1,2) KE

1 FE=YA(2)
GO TO 3

2 FE=-YA(1)+(ONE-YA(1)**2)*YA(2)
3 CONTINUE
$ENDSET
$SET(DMODELE)
GO TO (4,5) KE

4 DE(1)=ZERO
DE(2)=ONE
GO TO 6

5 DE(1)=-ONE-TWO*YA(1)*YA(2)
DE(2)=ONE-YA(1)**2

6 CONTINUE
$ENDSET
$SET(FMODELY)
GO TO (7,8) KE

7 FE=X(1)
GO TO 9

8 FE=ONE
9 CONTINUE
$ENDSET
$SET(GMODELY)

GO TO (10,11) KE
10 GE(1)=ONE

GO TO 12
11 GE(1)=ZERO
12 CONTINUE
$ENDSET
$NF=1
$NE=2
$MODEL=’DF’

147

$TOLR=’1.0$P-9’
$TOLA=’1.0$P-9’
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial value of the variable x1 as well as the initial
and terminal times 0 and T, respectively. By using the macrovariables $FMODELA and $DMODELA
we specify the subintegral function and by using the macrovariables $FMODELF and $DMODELF we
specify the terminal function. The right hand sides of the differential equations are specified by using the
macrovariables $FMODELE and $DMODELE, while the initial values and their derivatives are given by
using the macrovariables $FMODELY and $GMODELY. The option $MODEL=’DF’ indicates a general
integral criterion.

d) Problem solution (basic screen output):

CLASS = VM - LI1 UPDATE = B MODEL = DF HESF = D NF = 1
NIT= 0 NFV= 1 NFG= 0 F= 2.763393900 G=0.242D+01
NIT= 1 NFV= 3 NFG= 0 F= 1.974913643 G=0.513D+00
NIT= 2 NFV= 4 NFG= 0 F= 1.944235577 G=0.468D-02
NIT= 3 NFV= 5 NFG= 0 F= 1.944233169 G=0.122D-03
NIT= 4 NFV= 6 NFG= 0 F= 1.944233168 G=0.205D-07

0 NIT= 4 NFV= 6 NFG= 0 NDC= 0 NCG= 0 F=0.194D+01 G=0.205D-07
FF = 0.7671653645D+00
X = 0.6169838477D+00

7.20 Optimization of dynamical systems - special integral criterion

a) Problem description:

Suppose we have to find a minimum of the objective function

F (x) =
1
2

∫ T

0

(y1(t)− 1/(1 + t))2dt

where T = 1 and where
dy1(t)

dt
= −x1y1(t), y1(0) = x2

b) Problem specification (input file):

$SET(INPUT)
X(1)=2.0D 0
X(2)=0.0D 0
TA=ZERO
TAMAX=ONE

$ENDSET
$SET(FMODELE)
FE=-X(1)*YA(1)**2
YE=ONE/(ONE+TA)
WE=ONE

$ENDSET
$SET(GDMODELE)
GE(1)=-YA(1)**2

148

GE(2)=ZERO
DE(1)=-TWO*X(1)*YA(1)

$ENDSET
$SET(FMODELY)
FE=X(2)

$ENDSET
$SET(GMODELY)
GE(1)=ZERO
GE(2)=ONE

$ENDSET
$MODELA=’Y’
$NF=2
$NE=1
$MODEL=’DQ’
$CLASS=’GN’
$UPDATE=’F’
$TOLR=’1.0$P-9’
$TOLA=’1.0$P-9’
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of the variables x1 and x2 as well as the
initial and terminal times 0 and T, respectively. The right hand side of the differential equation is specified
by using the macrovariables $FMODELE and $GDMODELE, while the initial values and their derivatives
are given by using the macrovariables $FMODELY and $GMODELY. The option $MODEL=’DQ’ together
with $MODELA=’Y’ indicate a special integral criterion.

d) Problem solution (basic screen output):

CLASS = GN - GM7 UPDATE = F MODEL = DQ HESF = D NF = 2
NIT= 0 NFV= 1 NFG= 1 F= 0.2500000000 G=0.693D+00
NIT= 1 NFV= 3 NFG= 2 F= 0.3379696559E-01 G=0.114D+00
NIT= 2 NFV= 5 NFG= 3 F= 0.1598937577E-02 G=0.613D-02
NIT= 3 NFV= 7 NFG= 4 F= 0.1195750953E-04 G=0.225D-02
NIT= 4 NFV= 9 NFG= 5 F= 0.1909017677E-08 G=0.300D-04
NIT= 5 NFV= 11 NFG= 6 F= 0.2793082948E-15 G=0.200D-08

0 NIT= 5 NFV= 11 NFG= 6 NDC= 7 NCG= 0 F=0.279D-15 G=0.200D-08
F = 0.2793082948D-15
X = 0.9999999725D+00 0.9999999990D+00

7.21 Initial value problem for ordinary differential equations

a) Problem description:

Suppose we have to find a solution of the Van der Pol equation

dy1(t)
dt = y2(t), y1(0) = 2

dy1(t)
dt = (1− y2

1(t))y2(t)− y1(t), y2(0) = 0

in the interval 0 ≤ t ≤ T where T = 20.

b) Problem specification (input file):

149

$SET(INPUT)
YA(1)=2.0D0
YA(2)=0.0D0
TA=0.0D0
TAMAX=1.0D1

$ENDSET
$SET(FMODELE)
IF (KE.EQ.1) THEN

FE=YA(2)
ELSE

FE=(1.0D0-YA(1)**2)*YA(2)-YA(1)
ENDIF

$ENDSET
$NA=21
$NE=2
$MODEL=’DE’
$MED=2
$BATCH
$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of the variables y1 and y2 as well as
the initial and terminal times 0 and T, respectively. The right hand sides of the differential equations are
specified by using the macrovariable $FMODELE. The option $MODEL=’DE’ indicates integration of a
system of ordinary differential equations. Macrovariable $NA denotes the number of time points (nodes)
in which the results are printed.

d) Problem solution (basic screen output):

CLASS = NO - NN0 UPDATE = N MODEL = NO HESF = N NF = 0
0 NSTP= 47 NACC= 35 NREJ= 12 NEV =1228 NEG = 0
1 AT= 0.0000000000D+00

AY= 0.2000000000D+01 0.0000000000D+00
2 AT= 0.5000000000D+00

AY= 0.1837719210D+01 -0.5345234547D+00
3 AT= 0.1000000000D+01

AY= 0.1508144241D+01 -0.7802180795D+00
4 AT= 0.1500000000D+01

AY= 0.1040932817D+01 -0.1124320556D+01
5 AT= 0.2000000000D+01

AY= 0.3233165976D+00 -0.1832974600D+01
6 AT= 0.2500000000D+01

AY= -0.8409663144D+00 -0.2677481056D+01
7 AT= 0.3000000000D+01

AY= -0.1866073894D+01 -0.1021060289D+01
8 AT= 0.3500000000D+01

AY= -0.1981111880D+01 0.2780991398D+00
9 AT= 0.4000000000D+01

AY= -0.1741768298D+01 0.6246661652D+00
10 AT= 0.4500000000D+01

AY= -0.1369680461D+01 0.8749049693D+00
11 AT= 0.5000000000D+01

AY= -0.8370774151D+00 0.1307088938D+01

150

12 AT= 0.5500000000D+01
AY= 0.1492104708D-01 0.2187559874D+01

13 AT= 0.6000000000D+01
AY= 0.1279043316D+01 0.2437814560D+01

14 AT= 0.6500000000D+01
AY= 0.1981657547D+01 0.3834607828D+00

15 AT= 0.7000000000D+01
AY= 0.1920152630D+01 -0.4358385236D+00

16 AT= 0.7500000000D+01
AY= 0.1630052536D+01 -0.7027644971D+00

17 AT= 0.8000000000D+01
AY= 0.1213232754D+01 -0.9878137411D+00

18 AT= 0.8500000000D+01
AY= 0.5979891894D+00 -0.1543326967D+01

19 AT= 0.9000000000D+01
AY= -0.4129152480D+00 -0.2526902993D+01

20 AT= 0.9500000000D+01
AY= -0.1638546749D+01 -0.1781241644D+01

21 AT= 0.1000000000D+02
AY= -0.2008340784D+01 0.3290648928D-01

151

8 Model examples for demonstration of graphic output

Here we introduce several problem specifications (input files) which demonstrate the application of the
graphic screen output. The graphic screen output can be used only on PC computers under the MS DOS
system. This possibility is not allowed on the UNIX workstations.

The input files are included into the UFO system as demo-files PROC01.UFO,. . . ,PROC08.UFO. Corre-
sponding graphic pictures are included in the Appendix C. The data recommended for graphic pictures
are introduced in lines which begin by the directive $REM.

8.1 Nonlinear regression

$SET(INPUT)
LDIM=5
X(1)=7.0D20
X(2)=1.0D4
X(3)=2.2D0
X(4)=1.01D0
X(5)=7.0D17
X(6)=7.0D3
X(7)=1.6D0
X(8)=1.01D0
X(9)=1.0D16
X(10)=4.0D3
X(11)=1.5D0
X(12)=1.01D0
X(13)=2.0D15
X(14)=4.0D3
X(15)=1.3D0
X(16)=1.01D0
X(17)=1.0D16
X(18)=5.0D2
X(19)=1.2D0
X(20)=1.01D0
BETA=5.95D0
CALL BIUD01(NF,LDIM,NA,X,XL,XU,IX,AT,AM)

$ENDSET
$SET(FMODELA)
CALL BAFU01(NF,LDIM,KA,NA,X,AT,FA,BETA)

$ENDSET
$SET(GMODELA)
CALL BAGU01(NF,LDIM,KA,NA,X,AT,GA,BETA)

$ENDSET
$NF=30
$NA=500
$MIT=100
$MODEL=’AQ’
$CLASS=’GN’
$TYPE=’G’
$DECOMP=’M’
$NUMBER=7
$UPDATE=’F’
$TOLX=’1.0$P-16’

152

$TOLF=’1.0$P-16’
$TOLB=’1.0$P-16’
$TOLG=’1.0$P-6’
$KBA=1
$KBF=2
$GRAPH=’Y’
$SCAN=’Y’
$BATCH
$ADD(REAL,’\BETA\AT($NA)’)
$ADD(SUBROUTINES)

SUBROUTINE BIUD01(N,L,NA,X,XL,XU,IX,AT,AM)
INTEGER N,L,NA,IX(N),I,K
REAL*8 X(N),XL(N),XU(N),AT(NA),AM(NA)
N=4*L
K=0
DO 1 I=1,L
X(K+1)=LOG(X(K+1))
XL(K+1)=LOG(1.0D+0)
XU(K+1)=LOG(1.0D+40)
IX(K+1)=3
X(K+2)=LOG(X(K+2))
XL(K+2)=LOG(1.0D+0)
XU(K+2)=LOG(1.0D+10)
IX(K+2)=3
XL(K+3)=1.0D-2
XU(K+3)=1.0D+2
IX(K+3)=3
XL(K+4)=1.00001D0
XU(K+4)=1.00000D1
IX(K+4)=3
K=K+4

1 CONTINUE
OPEN (11,FILE=’PROC01.DAT’,STATUS=’OLD’)
NA=0

2 NA=NA+1
READ (11,’(2D14.6)’,ERR=3) AT(NA),AM(NA)
GO TO 2

3 NA=NA-1
RETURN
END
SUBROUTINE BAFU01(N,L,KA,NA,X,AT,FA,BETA)
INTEGER N,L,KA,NA
REAL*8 X(N),AT(NA),FA,Q(8),QD(8)
REAL*8 ARG,POM,BK,B6INT,BETA
INTEGER J,K
COMMON /BCOM/ Q,QD
DATA BK /8.617385D-5/
FA=0.0D 0
K=0
DO 1 J=1,L
ARG=X(K+3)/(BK*AT(KA))
IF (KA.EQ.1) THEN

153

Q(J)=B6INT(AT(KA),ARG)
FA=FA+EXP(X(K+1)+X(K+2)-ARG)
ELSE
POM=X(K+4)-1.0D0
FA=FA+EXP(X(K+1)+X(K+2)-ARG)*
& (1.0D0+(POM/BETA)*EXP(X(K+1))*(B6INT(AT(KA),ARG)-
& Q(J)))**(-X(K+4)/POM)
ENDIF
K=K+4

1 CONTINUE
RETURN
END
SUBROUTINE BAGU01(N,L,KA,NA,X,AT,GA,BETA)
INTEGER N,L,KA,NA
REAL*8 X(N),AT(NA),GA(N)
REAL*8 FAC,ARG,POM,POW,BK,B6INT,B6INTD,A,B,C,D,E,F,G
REAL*8 Q(8),QD(8),QQ,QQD,BETA
INTEGER J,K
COMMON /BCOM/ Q,QD
DATA BK /8.617385D-5/
K=0
DO 1 J=1,L
FAC=1.0D0/(BK*AT(KA))
ARG=FAC*X(K+3)
IF (KA.EQ.1) THEN
Q(J)=B6INT(AT(KA),ARG)
QD(J)=FAC*B6INTD(AT(KA),ARG)
QQ=0.0D0
QQD=0.0D0
ELSE
QQ=B6INT(AT(KA),ARG)-Q(J)
QQD=FAC*B6INTD(AT(KA),ARG)-QD(J)
ENDIF
POM=X(K+4)-1.0D0
POW=-X(K+4)/POM
A=EXP(X(K+1)+X(K+2)-ARG)
B=EXP(X(K+1))
G=B*QQ
C=(1.0D0+(POM/BETA)*G)
D=C**POW
E=POW*D/C
F=POM*POM
GA(K+1)=A*(D+E*(POM/BETA)*G)
GA(K+2)=A*D
GA(K+3)=A*(-FAC*D+E*(POM/BETA)*B*QQD)
GA(K+4)=A*D*(LOG(C)/F+POW*G/(C*BETA))
K=K+4

1 CONTINUE
RETURN
END
FUNCTION B6INT(T,X)
REAL*8 T,X,B6INT

154

REAL*8 A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5,B6
DATA A1,A2,A3,A4,A5,A6 /41.0D+0, 590.0D+0, 3648.0D+0,
& 9432.0D+0, 8028.0D+0, 720.0D+0/
DATA B1,B2,B3,B4,B5,B6 /42.0D+0, 630.0D+0, 4200.0D+0,
& 12600.0D+0, 15120.0D+0, 5040.0D+0/
B6INT=(1.0D0-(A6+X*(A5+X*(A4+X*(A3+X*(A2+X*(A1+X))))))/
& (B6+X*(B5+X*(B4+X*(B3+X*(B2+X*(B1+X)))))))*EXP(-X)*T
RETURN
END
FUNCTION B6INTD(T,X)
REAL*8 T,X,B6INTD
REAL*8 A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5,B6
REAL*8 C1,C2,C3,C4,C5,D1,D2,D3,D4,D5,DIS,DEN,DISD,DEND
DATA A1,A2,A3,A4,A5,A6 /41.0D+0, 590.0D+0, 3648.0D+0,
& 9432.0D+0, 8028.0D+0, 720.0D+0/
DATA B1,B2,B3,B4,B5,B6 /42.0D+0, 630.0D+0, 4200.0D+0,
& 12600.0D+0, 15120.0D+0, 5040.0D+0/
DATA C1,C2,C3,C4,C5 /205.0D+0, 2360.0D+0, 10944.0D+0,
& 18863.0D+0, 8028.0D+0/
DATA D1,D2,D3,D4,D5 /210.0D+0, 2520.0D+0, 12600.0D+0,
& 25200.0D+0, 15120.0D+0/
DIS=A6+X*(A5+X*(A4+X*(A3+X*(A2+X*(A1+X)))))
DEN=B6+X*(B5+X*(B4+X*(B3+X*(B2+X*(B1+X)))))
DISD=C5+X*(C4+X*(C3+X*(C2+X*(C1+6.0D0*X))))
DEND=D5+X*(D4+X*(D3+X*(D2+X*(D1+6.0D0*X))))
B6INTD=((DIS-DISD+DEND*DIS/DEN)/DEN-1.0D0)*EXP(-X)*T
RETURN
END

$ENDADD
$STANDARD

8.2 Nonlinear minimax optimization

$FLOAT W
$SET(INPUT)
X(1)=0.5D0 ; X(2)=0.0D0 ; X(3)=0.0D0
X(4)=0.0D0 ; X(5)=0.0D0

$ENDSET
$SET(FMODELA)
W=0.1D0*DBLE(KA-1)-1.0D0
FA=(X(1)+W*X(2))/(1.0D0+W*(X(3)+W*(X(4)+W*X(5))))-EXP(W)

$ENDSET
$MODEL=’AM’
$NF=5
$NA=21
$NAL=0
$GRAPH=’Y’
$MAP=’Y’
$HIL=’Y’
$ISO=’Y’
$PATH=’E’
$BATCH

155

$STANDARD

$REM VAR=1, XL=-5, XU=5
$REM VAR=3, XL=-5, XU=5

8.3 Transformer network design

$SET(INPUT)
NEXT=4
CALL EIUD06(NF,NA,NAL,X,FMIN,XMAX,NEXT,IEXT,IERR)

$ENDSET
$SET(FMODELA)
CALL EAFU06(NF,KA,X,FA,NEXT)

$ENDSET
$SET(GMODELA)
CALL EAGU06(NF,KA,X,GA,NEXT)

$ENDSET
$NF=6
$NA=11
$NAL=0
$MOUT=1
$MODEL=’AM’
$GRAPH=’Y’
$MAP=’Y’
$HIL=’Y’
$ISO=’Y’
$PATH=’E’
$BATCH
$STANDARD

$REM VAR=1, XL=-5, XU=5
$REM VAR=3, XL=-5, XU=5

8.4 Global optimization

$SET(INPUT)
NEXT=4
CALL EIUD09(NF,XL,XU,NEXT,IERR)

$ENDSET
$SET(FMODELF)
CALL EFFU09(NF,X,FF,NEXT)

$ENDSET
$NF=4
$MOUT=1
$GCLASS=1
$GRAPH=’Y’
$MAP=’Y’
$HIL=’Y’
$ISO=’Y’
$EXTREM=’G’
$BATCH
$STANDARD

156

$REM VAR=1, XL=-3.8, XU=3.8
$REM VAR=2, XL=-3.8, XU=3.8

8.5 Nonsmooth optimization

$SET(INPUT)
NEXT=15
CALL EIUD19(NF,X,FMIN,XMAX,NEXT,IEXT,IERR)
MA=NF+3

$ENDSET
$SET(FMODELF)
CALL EFFU19(NF,X,FF,NEXT)

$ENDSET
$SET(GMODELF)
CALL EFGU19(NF,X,GF,NEXT)

$ENDSET
$KSF=3
$NF=30
$MOUT=-1
$MODEL=’FF’
$GRAPH=’Y’
$MAP=’Y’
$HIL=’Y’
$ISO=’Y’
$PATH=’Y’
$BATCH
$STANDARD

$REM VAR=1, XL=-5, XU=5
$REM VAR=4, XL=-5, XU=5

8.6 The Rosenbrock function

$SET(INPUT)
X(1)=-1.2D0
X(2)= 1.0D0

$ENDSET
$SET(FMODELF)
FF=1.0D2*(X(1)**2-X(2))**2+(X(1)-1.0D0)**2

$ENDSET
$NF=2
$GRAPH=’Y’
$MAP=’Y’
$ISO=’Y’
$PATH=’Y’
$BATCH
$STANDARD

8.7 Ordinary differential equations

$FLOAT W1,W2,W3,W4

157

$SET(INPUT)
TA=0.0D0
YA(1)=0.994D0
YA(2)=0.0D0
YA(3)=0.0D0
YA(4)=-2.00158510637908252240537862224D0
TAMAX=17.0652165601579625588917206249D0

$ENDSET
$SET(FMODELE)
W1=0.012277471D0
W2=1.D0-W1
W3=(YA(1)+W1)**2+YA(2)**2
W3=W3*SQRT(W3)
W4=(YA(1)-W2)**2+YA(2)**2
W4=W4*SQRT(W4)
GO TO (1,2,3,4) KE

1 FE=YA(3)
GO TO 5

2 FE=YA(4)
GO TO 5

3 FE=YA(1)+2*YA(4)-W2*(YA(1)+W1)/W3-W1*(YA(1)-W2)/W4
GO TO 5

4 FE=YA(2)-2*YA(3)-W2*YA(2)/W3-W1*YA(2)/W4
5 CONTINUE
$ENDSET
$NE=4
$NA=2000
$MODEL=’DE’
$SOLVER=’DP5’
$TOLR=’1.0$P-9’
$TOLA=’1.0$P-9’
$MED=1
$GRAPH=’Y’
$BATCH
$STANDARD

8.8 The Lorenz attractor

$FLOAT W1,W2,W3
$SET(INPUT)
W1=10.0D0
W2=28.0D0
W3=8.0D0/3.0D0
TA=0.0D0
YA(1)=-8.0D0
YA(2)= 8.0D0
YA(3)=W2-1.0D0
TAMAX=50.0D0

$ENDSET
$SET(FMODELE)
GO TO (1,2,3) KE

1 FE=-W1*YA(1)+W1*YA(2)

158

GO TO 4
2 FE=-YA(1)*YA(3)+W2*YA(1)-YA(2)
GO TO 4

3 FE=YA(1)*YA(2)-W3*YA(3)
4 CONTINUE
$ENDSET
$NE=3
$NA=2000
$MODEL=’D’
$SOLVER=’DP8’
$TOLR=’1.0$P-9’
$TOLA=’1.0$P-9’
$MED=1
$GRAPH=’Y’
$BATCH
$STANDARD

159

References

[1] M.Al-Baali, R.Fletcher: Variational methods for nonlinear least squares. J. Optimizaton Theory and
Applications 36 (1985) 405-421.

[2] M.Altman: Generalized gradient methods of minimizing a functional. Bull. Acad. Polon. Sci., Ser.
Sci. Math. Astronom. Phys. 14 (1966) 313-318.

[3] M.Argaez, R.A.Tapia, L.Velasquez: Numerical comparison of path-following strategies for a basic
interior-point method for nonlinear programming. Report No. CRPC-TR9777-S, Center for Research
on Parallel Computation, Rice University, Houston 1998.

[4] L.Armijo: Minimization of functions having continuous partial derivatives. Pacific J. Math. 16 (1966)
1-3.

[5] M.C.Biggs: A note on minimization algorithms which make use of non-quadratic properties of the
objective function. Journal of the Institute of Mathematics and its Applications 12 (1973) 337-338.

[6] M.C.Biggs: Minimization algorithms making use of nonquadratic properties of the objective function.
J. Inst. math. Appl. 8 (1971) 315-327.

[7] P.Bjorstadt, J.Nocedal: Analysis of a new algorithm for one-dimensional minimization. Computing
22 (1979) 93-100.

[8] C.G.E.Boender, A.H.G.Rinnoy Kan: Bayessian stopping rules for multistart global optimization
methods. Math. Programming 37 (1987) 59-80.

[9] C.G.E.Boender, A.H.G.Rinnoy Kan, G.T.Timmer, L.Stougie: A stochastic method for global opti-
mization. Mathematical programming 22 (1982) 125-140.

[10] P.T.Boggs, J.W.Tolle: A strategy for global convergence in a sequential quadratic programming
algorithm. SIAM Journal on Numerical Analysis 26 (1989) 600-623.

[11] I.D.L.Bogle, J.D.Perkins: A New Sparsity Preserving Quasi-Newton Update for Solving Nonlinear
Equations. SIAM Journal on Scientific and Statistical Computations 11 (1990) 621-630.

[12] I.Bongartz, A.R.Conn, N. Gould, P.L.Toint: CUTE: constrained and unconstrained testing environ-
ment. Report.

[13] R.P.Brent: Some efficient algorithms for solving systems of nonlinear equations. SIAM Journal on
Numerical Analysis 10 (1973) 327-344.

[14] C.G.Broyden: A class of methods for solving nonlinear simultaneous equations. Math. of Comput.
19 (1965) 577-593.

[15] C.G.Broyden: The convergence of a class of double rank minimization algorithms. Part 1 - general
considerations. Part 2 - the new algorithm. J. Inst. Math. Appl. 6 (1970) 76-90, 222-231.

[16] K.M.Brown, J.E.Dennis: A new algorithm for nonlinear least squares curve fitting. In: ”Mathemat-
ical Software” (J.Rice ed.) Academic Press, London 1971.

[17] J.R.Bunch, B.N. Parlett: Direct methods for solving symmetric indefinite systems of linear equations.
SIAM J. Numer. Anal. 8 (1971) 639-655.

[18] R.H.Byrd, J.C.Gilbert, J.Nocedal: A trust region method based on interior point techniques for
nonlinear programming. Mathematical Programming 89 (2000) 149-185.

[19] R.H.Byrd, M.E.Hribar, J.Nocedal: An interior point algorithm for large scale nonlinear program-
ming. SIAM J. Optimization 9 (1999) 877-900.

160

[20] R.H.Byrd, G.Liu, J.Nocedal: On the local behavior of an interior point method for nonlinear pro-
gramming. In Numerical Analysis 1997 (D.F.Griffiths and D.J.Higham, eds.), pp.37-56. Addison
Wesley Longman, 1998.

[21] R.H.Byrd, J.Nocedal, R.B.Schnabel: Representation of quasi-Newton matrices and their use in lim-
ited memory methods. Math Programming 63 (1994) 129-156.

[22] R.H.Byrd, J.Nocedal, R.A.Waltz: Feasible interior methods using slacks for nonlinear optimization.
Report No. OTC 2000/11, Optimization Technology Center, December 2000.

[23] R.H.Byrd, R.B.Schnabel, G.A.Shultz: Approximate solution of the trust region problem by mini-
mization over two-dimensional subspaces. Math. Programming 40 (1988) 247-263.

[24] T.F.Chan: Rank revealing QR factorizations. Linear Algebra Appl. 88/89 (1987) 67-82.

[25] T.F.Coleman: Large sparse numerical optimization. Springer-Verlag, Berlin, 1984.

[26] T.F.Coleman, B.S.Garbow, J.S.Moré: Software for estimation sparse Hessian matrices. ACM Trans.
of Math. Software 11 (1985) 363-367.

[27] T.F.Coleman, B.S.Garbow, J.S.Moré: Software for estimating sparse Jacobian matrices. ACM Trans.
of Math. Software 10 (1984) 329-345.

[28] A.R.Conn, N. Gould, P.L.Toint: LANCELOT. A Fortran Package for Large-Scale Nonlinear Opti-
mization. Springer Verlag, Berlin 1992.

[29] A.R. Conn, N.I.M. Gould, P.L. Toint: Testing a class of methods for solving minimization problems
with simple bounds on the variables. Mat. Comput. 50 (1988) 399-430.

[30] H.Curry: The method of steepest descent for nonlinear minimization problems. Quart. Appl. Math.
2 (1944) 258-261.

[31] Y.H.Dai, L.Z.Liao: New conjugacy conditions and related nonlinear conjugate gradient methods.
Appliad Mathematics and Optimization 43 (2001) 87-101.

[32] Y.H.Dai, Y.Yuan: A nonlinear conjugate gradient method with a strong global convergence property.
SIAM J. Optimization 10 (1999) 177-182.

[33] Y.H.Dai, Y.Yuan: An efficient hybrid conjugate gradient method for unconstrained optimization.
Annals of Operations Research, 2001.

[34] W.C.Davidon: Optimally conditioned optimization algorithms without line searches. Math. Pro-
gramming 9 (1975) 1-30.

[35] W.C.Davidon: Variable metric method for minimisation. A.E.C. Research and Development Report
ANL-5990, 1959.

[36] T.A.Davis, I.S.Duff: An unsymmetric pattern multifrontal method for sparse LU factorization. Re-
port No. TR-93-018, CIS Department, University of Florida, Gainesville 1993.

[37] R.S.Dembo, T.Steihaug: Truncated-Newton algorithms for large-scale unconstrained minimization.
Math. Programming 26 (1983) 190-212.

[38] N.Y.Deng, Y.Xiao, F.J.Zhou: Nonmonotonic trust region algorithm. J. Optimizaton Theory and
Applications 76 (1993) 259-285.

[39] J.E.Dennis: Some computational techniques for the nonlinear least squares problem. In: “Numerical
solution of nonlinear algebraic equations” (G.D.Byrne, C.A.Hall, eds.) Academic Press, London 1974.

161

[40] J.E.Dennis, H.H.W.Mei: An unconstrained optimization algorithm which uses function and gradient
values. Report No. TR-75-246. Dept. of Computer Sci., Cornell University 1975.

[41] J.E.Dennis, R.B.Schnabel: Numerical methods for unconstrained optimization and nonlinear equa-
tions. Prentice-Hall, Englewood Cliffs, New Jersey 1983.

[42] J.E.Dennis, L.N.Vicente: On the convergence theory of trust-region-based algorithms for equality-
constrained optimization. SIAM J. Optimization 7 (1997) pp. 927-950.

[43] J.E.Dennis, R.E.Welsch: Techniques for Nonlinear Least Squares and Robust Regression. Commu-
nications in Statistics B 7 (1978) 345-359.

[44] I.S.Duff, J.K.Reid: The multifrontal solution of indefinite sparse symmetric linear equations. ACM
Trans. of Math. Software 9 (1983) 302-325.

[45] A.El-Bakry, R.Tapia, T.Tsuchiya, Y.Zhang: On the formulation and theory of Newton interior-point
method for nonlinear programming. Journal of Optimization Theory and Applications, 89, 507-541,
1996.

[46] R.Fletcher: A general quadratic programming algorithm. J. Inst. Math. Appl. 7 (1971) 76-91.

[47] R.Fletcher: A modified Marquardt subroutine for nonlinear least squares. Report No. R-6799, The-
oretical Physics Division, A.E.R.E. Harwell, 1971.

[48] R.Fletcher: A new approach to variable metric algorithms. Computer J. 13 (1970) 317-322.

[49] R.Fletcher: Nonlinear programmming without a penalty function. Numerical analysis report
NA/171, University of Dundee, 1997.

[50] R.Fletcher: Practical methods of optimization (Second edition). Wiley, New York, 1987.

[51] R.Fletcher: Second order corrections for nondifferentiable optimization. In: ”Numerical analysis,
Dundee 1981” (G.A.Watson ed.), Lecture Notes in Mathematics912, Springer-Verlag, Berlin 1982.

[52] R. Fletcher and S. Leyffer (1997). Nonlinear programming without a penalty function. Technical
Report NA/171, Department of Mathematics, University of Dundee.

[53] R.Fletcher, M.J.D.Powell: A rapidly convergent descent method for minimization. Computer J. 6
(1963) 163-168.

[54] R.Fletcher, C.M.Reeves: Function minimization by conjugate gradients. Computer J. 7 (1964) 149-
154.

[55] R.Fletcher, C.Xu: Hybrid methods for nonlinear least squares. IMA J. Numer. Anal. 7 (1987) 371-
389.

[56] R.W.Freund, N.M.Nachtigal: A new Krylov-subspace method for symmetric indefinite linear sys-
tems. Report No. ORNL/TM-12754, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1994.

[57] R.P.Ge: A filled function method for finding a global minimizer of a function of several variables.
Math. Programming 46 (1990) 191-204.

[58] R.P.Ge, Y.F.Qin: A Class of filled functions for finding global minimizers of a function of several
variables, J. Optimization Theory and Applications 54 (1987) 241-252.

[59] J.C.Gilbert, C.Lemarechal: Some numerical experiments with variable-storage quasi-Newton algo-
rithms. Math. Programming, 45 (1989) 407-435.

162

[60] P.E.Gill, M.W.Leonard: Limited-memory reduced-Hessian methods for large-scale unconstrained
optimization. Technical Report NA 97-1, Department of Mathematics, University of California, San
Diego, 1997.

[61] P.E.Gill, W.Murray: A numerically stable form of the simplex algorithm. Linear Algebra Appl. 7
(1973) 99-138.

[62] P.E.Gill, W.Murray: Newton type methods for unconstrained and linearly constrained optimization.
Math. Programming 7 (1974) 311-350.

[63] P.E.Gill, W.Murray: Numerically stable methods for quadratic programming. Math. Programming
14 (1978) 349-372.

[64] P.E.Gill, W.Murray, M.H.Wright: Practical optimization. Academic Press, London 1981.

[65] D.Goldfarb: A family of variable metric algorithms derived by variational means. Math Comput. 24
(1970) 23-26.

[66] D.Goldfarb, A.U.Idnani: A numerically stable dual method for solving strictly convex quadratic
programms. Report No. 81-102, Dept.of Computer Sci., The City College of New York, 1981.

[67] A.A.Goldstein: On steepest descent. SIAM J. Control 3 (1965) 147-151.

[68] G.H.Golub, C.F.Van Loan: Matrix computations (second edition). Johns Hopkins University Press,
Baltimore 1989.

[69] A.Griewank, P.L.Toint: Partitioned variable metric updates for large scale structured optimization
problems. Numer. Math. 39 (1982) 119-137.

[70] L.Grippo, F.Lampariello, S.Lucidi: A nonmonotone line search technique for Newton’s method.
SIAM J. Numer. Anal. 23 (1986) 707-716.

[71] E.Hairer, S.P.Norsett, G.Wanner: Solving ordinary differential equations I. Springer Series in Com-
putational Mathematics 8, Springer Verlag, Berlin 1987.

[72] S.P.Han: Variable metric methods for minimizing a class of nondifferentiable functions. Math. Pro-
gramming 20 (1981) 1-13.

[73] M.R.Hestenes, C.M.Stiefel: Methods of conjugate gradient for solving linear systems. J. Res. NBS
49 (1964) 409-436.

[74] W.Hock, K.Schittkowski: Test examples for nonlinear programming codes. Lecture notes in eco-
nomics and mathematical systems 187. Springer Verlag, Berlin 1981.

[75] R.Hooke, T.A.Jeeves: Direct search solution of numerical and statistical problems. J. Assoc. Comp.
Mach. 8 (1961) 212-221.

[76] S.Hoshino: A formulation of variable metric methods. J. Inst. Math. Appl. 10 (1972) 394-403.

[77] M.E.Hribar, J.Nocedal: Improvement to the Horizontal Subproblem. Preprint 1996.

[78] Y.F.Hu, Y.Liu, C.Storey: Efficient generalized conjugate gradient algorithms, Part 1 - theory, Part
2 - implementation. J. Optimization Theory and Applications 69 (1991) 129-137, 139-152.

[79] Y.F.Hu, C.Storey: Efficient generalized conjugate gradient algorithms. Part 2: Implementation. J.
Optimizaton Theory and Applications 69 (1991) 139-152.

[80] Y.F.Hu, C.Storey: Motivating quasi-Newton updates by preconditioned conjugate gradient methods.
Report No. A150, Dept. of Math. Sci., Loughborough Univ. of Technology, Loughborough 1991.

163

[81] C.M.Ip, M.J.Todd: Optimal conditioning and convergence in rank one quasi-Newton updates. SIAM
J. Numer. Anal. 25 (1988) 206-221.

[82] K.C.Kiwiel: An ellipsoid trust region bundle method for nonsmooth convex minimization. SIAM J.
on Control and Optimization 27 (1989) 737-757.

[83] M.Lalee, J.Nocedal, T Plantenga: On the implementation of an algorithm for large-scale equality
constrained optimization. SIAM J. Optimization, Vol.8, 1998, pp.682-706.

[84] C.L.Lawson, R.J.Hanson: Solving least squares problems. Prentice-Hall, Englewood Cliffs, New
Jersey 1974.

[85] A.V.Levy, A.Montalvo: The tunneling algorithm for the global minimization of functions. SIAM
Journal Sci. Stat. Comp. 6 (1985) 15-19.

[86] G.Li: Successive column correction algorithms for solving sparse nonlinear systems of equations.
Mathematical Programming 43 (1989) 187-207.

[87] P.Lindstrom, P.A.Wedin: A new linesearch algorithm for nonlinear least squares problems. Math.
Programming 29 (1984) 268-296.

[88] D.C.Liu, J.Nocedal: On the limited memory BFGS method for large-scale optimization. Math.
Programming 45 (1989) 503-528.

[89] Y.Liu, C.Storey: Efficient generalized conjugate gradient algorithms. Part 1: Theory. J. Optimizaton
Theory and Applications 69 (1991) 129-137.

[90] L.Lukšan: A note on comparison of statistical software for nonlinear regression. Computational
Statistics Quaterly 6 (1991) 321-324.

[91] L.Lukšan: An implementation of recursive quadratic programming variable metric methods for lin-
early constrained nonlinear minimax approximation. Kybernetika 21 (1985) 22-40.

[92] L.Lukšan: Combined trust region methods for nonlinear least squares. Kybernetika 32 (1996) 121-
138.

[93] L.Lukšan: Computational experience with improved conjugate gradient methods for unconstrained
minimization. Kybernetika 28 (1992) 249-262.

[94] L.Lukšan: Computational experience with improved variable metric methods for unconstrained min-
imization. Kybernetika 26 (1990) 415-431.

[95] L.Lukšan: Computational experience with known variable metric updates. J. Optimizaton Theory
and Applications 83 (1994) 27-47.

[96] L.Lukšan: Dual method for solving a special problem of quadratic programming as a subproblem at
linearly constrained nonlinear minimax approximation. Kybernetika 20 (1984) 445-457.

[97] L.Lukšan: Efficient trust region method for nonlinear least squares. Kybernetika 32 (1996) 105-120.

[98] L.Lukšan: Hybrid methods for large sparse nonlinear least squares. J. Optimizaton Theory and
Applications 89 (1996) 575-595.

[99] L.Lukšan: Inexact trust region method for large sparse nonlinear least squares. Kybernetika 29
(1993) 305-324.

[100] L.Lukšan: Inexact trust region method for large sparse systems of nonlinear equations. J. Optimiza-
ton Theory and Applications 81 (1994) 569-590.

164

[101] L.Lukšan: Variable metric methods. Unconstrained minimization. Academia, Prague 1990 (in
Czech).

[102] L.Lukšan: Variationally derived scalling and variable metric updates from the preconvex part of the
Broyden family. J. Optimizaton Theory and Applications 73 (1992) 299-307.

[103] L.Lukšan, C.Matonoha, J.Vlček: A shifted Steihaug-Toint method for computing trust-region step.
Technical Report v-914. Prague, ICS AS CR, 2004.

[104] L.Lukšan, C.Matonoha, J.Vlček: Interior point method for nonlinear nonconvex optimization. Nu-
merical Linear Algebra with Applications 11 (2004) 431-453.

[105] L.Lukšan, C.Matonoha, J.Vlček: Interior point methods for large-scale nonlinear programming.
Technical Report v-917. Prague, ICS AS CR, 2004. To appear in Optimization Methods and software.

[106] L.Lukšan, C.Matonoha, J.Vlček: LSA: Algorithms for large-scale optimization. Technical Report
v-896. Prague, ICS AS CR, 2004.

[107] L.Lukšan, C.Matonoha, J.Vlček: Nonsmooth equation method for nonlinear nonconvex optimiza-
tion. In: Conjugate Gradient Algorithms and Finite Element Methods (M.Kř́ıžek, P.Neittaanmäki,
R.Glowinski, S.Korotov eds.). Springer Verlag, Berlin 2004.

[108] L.Lukšan, E.Spedicato: Variable metric methods for unconstrained optimization and nonlinear least
squares. Journal of Computational and Applied Mathematics 124 (2000) 61-93.

[109] L.Lukšan, J.Vlček: A bundle-Newton method for nonsmooth unconstrained minimization. Mathe-
matical Programming, Vol. 83, 1998, pp 373-391.

[110] L.Lukšan, J.Vlček: Algorithm 811: NDA: Algorithms for nondifferentiable optimization. Transac-
tions on Mathematical Software, Vol.27, 2001, pp.193-213.

[111] L.Lukšan, J.Vlček: Computational experience with globally convergent descent methods for large
sparse systems of nonlinear equations. Optimization Methods and Software, Vol. 8, 1998, pp. 201-223.

[112] L.Lukšan, J.Vlček: Efficient algorithm for large sparse equality constrained nonlinear programming
problems. Technical Report V-652. Prague, ICS AS CR 1996, 17 p.

[113] L.Lukšan, J.Vlček: Efficient methods for large-scale unconstrained optimization. Proceedings on the
conference ”Large-scale Nonlinear Optimization”, Erice 2004.

[114] L.Lukšan, J.Vlček: Globally convergent variable metric method for convex nonsmooth unconstrained
minimization. J. Optimization Theory and Applications Vol.102, 1999, pp.593-613.

[115] L.Lukšan, J.Vlček: Indefinitely preconditioned inexact Newton method for large sparse equality
constrained nonlinear programming problems. Numerical Linear Algebra with Applications, Vol. 5,
1998, pp. 219-247.

[116] L.Lukšan, J.Vlček: Interior point method for nonlinear nonconvex optimization. Technical Report
v-836. Prague, ICS AS CR, 2001.

[117] L.Lukšan, J.Vlček: Numerical experience with iterative methods for equality constrained nonlinear
programming problems. Optimization Methods and Software, Vol.16, 2001, pp.257-287.

[118] L.Lukšan, J.Vlček: Optimization of dynamical systems. Kybernetika 32 (1996) 465-482.

[119] L.Lukšan, J.Vlček: Preconditioning of saddle-point systems. In: Proceedings of the conference SI-
MONA 2000, Liberec 2000.

165

[120] L.Lukšan, J.Vlček: Simple scaling for variable metric updates. Report No. 611, Institute of Computer
Science, Academy of Sciences of the Czech Republic, Prague 1995.

[121] L.Lukšan, J.Vlček: Subroutines for testing large sparse and partially separable unconstrained and
equality constrained optimization problems. Technical Report V-767. Prague, ICS AS CR 1998.

[122] L.Lukšan, J.Vlček: Test problems for nonsmooth unconstrained and linearly constrained optimiza-
tion. Technical Report V-798. Prague, ICS AS CR 2000.

[123] L.Lukšan, J.Vlček: Test problems for unconstrained optimization. Technical Report V-897. Prague,
ICS AS CR, 2003.

[124] L.Lukšan, J.Vlček: Truncated trust region methods based on preconditioned iterative subalgorithms
for large sparse systems of nonlinear equations. J. Optimization Theory and Applications, Vol. 95,
1997, No. 3, pp. 637-658.

[125] L.Lukšan, J.Vlček: Variable metric methods for nonsmooth optimization. Technical Report v-837.
Prague, ICS AS CR, 2001. Presented at the International Conference on Numerical Optimization
and Numerical Linear Algebra, Dunhuang, 2001.

[126] M.Mäkelä, J.Neittaanmäki: Nonsmooth Optimization. World Scientific Publishing Co. Ltd. London
1992.

[127] J.M.Martinez: A quasi-Newton method with modification of one column per iteration. Computing
33 (1984) 353-362.

[128] J.M.Martinez, M.C.Zambaldi: An inverse column-updating method for solving large-scale nonlinear
systems of equations. Optimization Methods and Software 1 (1992) 129-140.

[129] E.S.Marwill: Exploiting sparsity in Newton-like methods. Ph.D. Thesis, Cornell University, Ithaca
1978.

[130] J.Miao: Two infeasible interior-point predictor-corrector algorithms for linear programming. SIAM
J. Optimization 6 (1996) 587-599.

[131] R.B.Mifflin, J.L.Nazareth: The least-prior deviation quasi-Newton update. Technical Report, Dept.
of Pure and Applied Math., Washington State University, Pullman 1991.

[132] S.Mizuno: Polynomiality of infeasible-interior-point algorithms for linear programming. Math Pro-
gramming 67 (1994) 109-119.

[133] J.J.Moré: The Levenberg-Maquardt algorithm. Implementation and theory. In: ”Numerical Analysis”
(G.A.Watson ed.) Springer Verlag, Berlin 1978.

[134] J.J.Moré, B.S.Garbow, K.E.Hillstrm: Testing unconstrained optimization software. ACM Trans.
Math. Software 7 (1981) 17-41.

[135] J.J.Moré, D.C.Sorensen: Computing a trust region step. Report No. ANL-81-83, Argonne National
Laboratory. 1981.

[136] S.G.Nash, A.Sofer: Preconditioning reduced matrices. SIAM J. on Matrix Analysis and Application
17 (1996) 47-68.

[137] J.A.Nelder, R.Mead: A simplex method for function minimization. Computer J. 7 (1965) 308-313.

[138] J.Nocedal: Updating quasi-Newton Matrices with limited storage. Math. Comput. 35 (1980) 773-782.

[139] J.Nocedal, Y.Yuan: Combining trust region and line search techniques. To appear.

166

[140] S.S.Oren, D.G.Luenberger: Self scaling variable metric (SSVM) algorithms. Part 1 - criteria and
sufficient condition for scaling a class of algorithms. Part 2 - implementation and experiments. Man-
agement Sci. 20 (1974) 845-862, 863-874.

[141] S.S.Oren, E. Spedicato: Optimal conditioning of self scaling variable metric algorithms. Math Pro-
gramming 10 (1976) 70-90.

[142] C.C.Paige and M.A.Saunders: LSQR: An algorithm for sparse linear equations and sparse least
squares. ACM Transactions on Mathematical Software 8 (1982) 43-71.

[143] E.Polak, G.Ribire: Note sur la convergence des methodes de directions conjuges. Revue Francaise
Inform. Mech. Oper. 16-R1(1969) 35-43.

[144] M.J.D.Powell: A fast algorithm for nonlinearly constrained optimization calculations. In: ”Numerical
analysis” (G.A.Watson ed.). Springer Verlag, Berlin 1977.

[145] M.J.D.Powell: A new algorithm for unconstrained optimization. In: ”Nonlinear Programming”
(J.B.Rosen O.L.Mangasarian, K.Ritter eds.) Academic Press, London 1970.

[146] M.J.D.Powell: Convergence properties of a class of minimization algoritms. In ”Nonlinear Program-
ming 2” (O.L.Mangasarian, R.R.Meyer, S.M.Robinson eds.). Academic Press, London 1975.

[147] M.J.D.Powell: Convergence properties of algorithms for nonlinear optimization. Report No. DAMPT
1985/NA1, University of Cambridge, 1985.

[148] M.J.D.Powell: Restart procedures of the conjugate gradient method. Math. Programming 12 (1977)
241-254.

[149] D.G.Pu: A Class of modified Broyden algorithms. J. Computational Mathematics 12 (1994) 366-379.

[150] H.Ramsin, P.A.Wedin: A Comparison of Some Algorithms for the Nonlinear Least Squares Problem.
BIT 17 (1977) 72-90.

[151] A.H.G.Rinnoy Kan, C.G.E.Boender, G.T.Timmer: A stochastic approach to global optimization.
Computational Mathematical Programming, NATO ASI Series Vol. F15.

[152] A.H.G.Rinnoy Kan, G.T.Timmer: Stochastic global optimization methods, Part I: Clustering meth-
ods, Part II: Multi-level methods. Math. Programming 39 (1987), North-Holland 26-56, 57-78.

[153] Y.Saad, M.Schultz: GMRES a Generalized Minimal Residual Algorithm for Solving Nonsymmetric
Linear Systems. SIAM Journal on Scientific and Statistical Computations 7 (1986) 856-869.

[154] R.B.Schnabel, E.Eskow: A new Choleski factorization. SIAM J. Sci. Stat. Comput. 11 (19900, 1136-
1158.

[155] L.K.Schubert: Modification of a quasi-Newton method for nonlinear equations with a sparse Jaco-
bian. Math. of Comput. 24 (1970) 27-30. (1991) 75-100.

[156] D.F.Shanno: Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24
(1970) 647-656.

[157] D.F.Shanno, K.J.Phua: Matrix conditioning and nonlinear optimization. Math. Programming 14
(1978) 144-160.

[158] D.F.Shanno, J.Vanderbei: Interior-point methods for nonconvex nonlinear programming: Orderings
and higher-order methods. Mathematical Programming, 87, 303-316, 2000.

[159] E.Spedicato: A class of rank-one positive definite quasi-Newton updates for unconstrained minimiza-
tion. Math. Operationsforsch. Statist. Ser. Optimization 14 (1963) 61-70.

167

[160] E.Spedicato, J.Greenstadt: On some classes of variationally derived quasi-Newton methods for sys-
tems of nonlinear algebraic equations. Numer. Math. 29 (1978) 363-380.

[161] E.Spedicato, M.T.Vespucci: Numerical experiments with variations of the Gauss-Newton algorithm
for nonlinear least squares. J. Optimizaton Theory and Applications 57 (1988) 323-339.

[162] N.M.Steen, G.D.Byrne: The problem of minimizing nonlinear functionals. I. Least squares. In: ”Nu-
merical solution of nonlinear algebraic equations” (G.D.Byrne, C.A.Hall, eds.) Academic Press, Lon-
don 1974.

[163] T.Steihaug: Local and superlinear convergence for truncated iterated projections methods. Math.
Programming 27 (1983) 176-190.

[164] T.Steihaug: The conjugate gradient method and trust regions in large-scale optimization. SIAM J.
Numer. Anal. 20 (1983) 626-637.

[165] G.W.Stewart: A modification of Davidon’s minimization method to accept difference approximations
of derivatives. J. ACM 14 (1967) 72-83.

[166] M.Šǐska: Macroprocessor BEL for the UFO system (version 1989). Report No. 448 (in Czech),
Institute of Computer and Information Sciences, Czechoslovak Academy of Sciences, Prague 1989.

[167] M.Šǐska: Macroprocessor UFO (version 1990). Report No. 484 (in Czech), Institute of Computer
and Information Sciences, Czechoslovak Academy of Sciences, Prague 1991.

[168] P.L.Toint: On large scale nonlinear least squares calculations. SIAM J. Sci. Stat. Comput. 8 (1987)
416-435.

[169] P.L.Toint: On sparse and symmetric matrix updating subject to a linear equation. Math of Comp.
31 (1977) 954-961.

[170] C.H.Tong: A comparative study of preconditioned Lanczos methods for nonsymmetric linear systems.
Report No. SAND91-8240B, Sandia National Laboratories, Livermore 1992.

[171] D.Touati-Ahmed, C.Storey: Efficient hybrid conjugate gradient techniques. J. Optimization Theory
and Applications 64 (1990), pp. 379-397.

[172] M.Tůma: A quadratic programming algorithm for large and sparse problems. Kybernetika 27 (1991)
155-167.

[173] M.Tůma: Intermediate fill-in in sparse QR decomposition. In: ”Linear Algebra for Large Scale and
Real-Time Applications”, (B.de Moor, G.H.Golub, M.Moonen, eds.), Kluwer Academic Publishers,
London 1993, pp. 475-476.

[174] M.Tůma: Sparse fractioned variable metric updates. Report No. 497, Institute of Computer and
Information Sciences, Czechoslovak Academy of Sciences, Prague 1991.

[175] H.A.Van der Vorst: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution
of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 15 (1992) 631-644.

[176] J.Vanderbei, D.F.Shanno: An interior point algorithm for nonconvex nonlinear programming. Com-
putational Optimization and Applications, 13, 231-252, 1999.

[177] J.Vanderbei, D.F.Shanno: Interior-point methods for nonconvex nonlinear programming: Filter
methods and merit functions. Report No. ORFE-00-06, Operations Research and Financial En-
gineering, Princeton University, December 2000.

[178] P.S.Vassilevski, D.Lazarov: Preconditioning mixed finite element saddle-point elliptic problems. Nu-
merical Linear Algebra with Applications 3 (1996) 1-20.

168

[179] J.Vlček: Bundle algorithms for nonsmooth unconstrained optimization. Report No. 608, Institute of
Computer Science, Academy of Sciences of the Czech Republic, Prague 1994.

[180] Vlček J., Lukšan L.: Additional properties of shifted variable metric methods. Technical Report
v-899. Prague, ICS AS CR, 2004.

[181] J.Vlček, L.Lukšan: Globally convergent variable metric method for nonconvex nondifferentiable
unconstrained minimization. J. Optimization Theory and Applications, Vol.111, 2001, pp.407-430.

[182] J.Vlček, L.Lukšan: New variable metric methods for unconstrained minimization covering the large-
scale case. Technical Report V-876. Prague, ICS AS CR, 2002.

[183] M.H.Wright: Interior methods for constrained optimization, Acta Numerica, 1991.

[184] H.Yabe, T.Takahashi: Factorized quasi-Newton methods for nonlinear least squares problems. Math.
Programming 51 (1991) 75-100.

[185] Y.Ye: Interior Point Algorithms - Theory and Analysis, Wiley-Interscience Publication, 1997.

[186] J.Z.Zhang, N.Y.Deng, L.H.Chen: New quasi-Newton equation and related methods for unconstrained
optimization. J. Optimization Theory and Applications, Vol.102, 2999, pp.147-167.

[187] Y.Zhang, R.P.Tewarson: Least-change updates to Choleski factors subject to nonlinear quasi-Newton
condition. IMA J. Numer. Anal. 7 (1987) 509-521.

[188] Y.Zhang, R.P.Tewarson: Quasi-Newton algorithms with updates from the preconvex part of Broy-
den’s family. IMA J. Numer. Anal. 8 (1988) 487-509.

[189] J.Z.Zhang, C.X.Xu: Properties and numerical performance of quasi-Newton methods with modified
quasi-Newton equations. J. Computational and Applied Mathematics 137 (2001) 269-278.

[190] A.Žilinskas, A.A.Thorn: Global optimization. Springer Verlag, Berlin 1990.

169

Index of macrovariables and directives

$ADD, 83
$BATCH, 85, 92
$CLASS, 40, 63–65, 69, 73, 79, 94
$COLLECTION, 113
$DATA, 83
$DECOMP, 41, 42, 60, 64, 66, 71, 73, 94
$DEF, 83
$DIALOGUE, 85, 95, 96
$DISPLAY, 99, 100
$DMODELA, 28, 93
$DMODELE, 26, 93
$DMODELES, 26, 93
$DMODELF, 29, 93
$DO, 83
$ELSE, 83
$ELSEIF, 83
$END, 85
$ENDADD, 83
$ENDDO, 83
$ENDIF, 83
$ENDSET, 83
$EPS0, 76
$EPS1, 78
$EPS2, 78
$EPS3, 78
$ERASE, 83
$ETA5, 62, 63
$EXTREM, 36, 79
$FDMODELA, 28, 93
$FDMODELE, 26, 93
$FDMODELES, 26, 93
$FDMODELF, 29, 93
$FGDMODELA, 28, 93
$FGDMODELE, 26, 93
$FGDMODELES, 26, 93
$FGDMODELF, 29, 93
$FGHMODELA, 20, 36, 93
$FGHMODELAS, 20, 36, 93
$FGHMODELC, 31, 93
$FGHMODELCS, 31, 93
$FGHMODELF, 15, 36, 93
$FGMODELA, 20, 28, 36, 93
$FGMODELAS, 20, 36, 93
$FGMODELC, 31, 93
$FGMODELCS, 31, 93
$FGMODELE, 26, 93
$FGMODELES, 26, 93
$FGMODELF, 15, 29, 36, 93
$FGMODELY, 27, 93

$FGMODELYS, 27, 93
$FLOAT, 82
$FMIN, 15, 36
$FMODELA, 18, 20, 28, 93
$FMODELAS, 18, 20, 93
$FMODELC, 30, 32, 93
$FMODELCS, 30, 32, 93
$FMODELE, 25, 26, 28, 93
$FMODELES, 25, 93
$FMODELF, 14, 28, 93
$FMODELY, 27, 93
$FMODELYS, 27, 93
$FORM, 40, 64, 65, 69, 72
$GAMA, 81
$GCLASS, 79
$GDIALOGUE, 85, 96
$GDMODELA, 28, 93
$GDMODELE, 26, 93
$GDMODELES, 26, 93
$GDMODELF, 29, 93
$GLOBAL, 85
$GMODELA, 19–21, 28, 93
$GMODELAS, 19–21, 93
$GMODELC, 30, 32, 33, 93
$GMODELCS, 30, 32, 33, 93
$GMODELE, 25, 93
$GMODELES, 25, 93
$GMODELF, 14, 29, 93
$GMODELY, 27, 93
$GMODELYS, 27, 93
$GRAPH, 99, 101
$GTYPE, 79
$HESF, 11, 12, 16, 17
$HIL, 101, 103, 104
$HMODELA, 19, 20, 22, 93
$HMODELAS, 19, 20, 22, 93
$HMODELC, 31, 32, 34, 93
$HMODELCS, 31, 32, 34, 93
$HMODELF, 14, 16, 93
$IADA, 39
$IADC, 39
$IADF, 38
$IEXT, 14, 18
$IF, 83
$INCLUDE, 84
$INITIATION, 85
$INITS, 78
$INPUT, 13, 15–18, 20, 21, 23, 25, 27, 29, 30, 32,

35, 36, 85, 92

170

$INPUTDATA, 108
$INT, 83
$ISO, 101, 103, 104
$JACA, 12, 19, 21–24
$JACC, 13, 31–35
$KBA, 18
$KBC, 29
$KBF, 13
$KCA, 20
$KCC, 32
$KCF, 15
$KDS, 77
$KOUT, 105
$KOUT1, 105
$KOUT2, 105
$KOUT3, 105
$KSA, 20
$KSC, 32
$KSF, 15
$KTERS, 78, 79
$LOG, 83
$LOUT, 99, 105
$M, 16
$MA, 21
$MACRO, 82
$MAH, 23
$MAP, 101, 103, 104
$MC, 32
$MCG, 79
$MCH, 35
$MED, 36, 74
$MEP, 66, 70, 73
$MEP1, 66
$MEP2, 66, 70
$MEP3, 70, 73
$MEP4, 70, 73
$MEP5, 71
$MERIT, 66, 70, 73
$MES, 64, 65, 77
$MES1, 78
$MES2, 61, 78
$MES3, 78
$MET, 43, 44, 46–53, 55, 57, 64–66
$MET1, 43, 45, 47, 49
$MET2, 43, 45, 49
$MET3, 45, 48, 49
$MET4, 45, 49
$MET5, 48, 50
$METERASE, 85
$METHOD, 85
$MEX, 61–63
$MEX1, 63

$MEX2, 63
$MF, 43, 47, 48, 57, 65
$MFG, 37
$MFV, 37
$MHA, 23
$MHC, 35
$MIT, 37
$MLP, 59
$MMAX, 37
$MNLMIN, 81
$MNRND, 81
$MODEL, 10
$MODELA, 28
$MODELF, 29
$MODERASE, 85
$MOS, 61, 75, 77
$MOS1, 61, 67, 68, 71, 72, 74, 76
$MOS2, 58, 61, 67–69, 71, 72, 74, 76
$MOS3, 61, 68, 69, 72, 74
$MOS4, 68, 72
$MOS5, 71
$MOT1, 52, 53
$MOT2, 53, 55
$MOUT, 99, 109
$NA, 18, 36, 75
$NAL, 20
$NC, 30
$NCL, 32
$NE, 25, 36
$NEXT, 113
$NF, 13
$NORMA, 18
$NORMF, 13
$NOUT, 99
$NUMBER, 42, 43, 49, 59–62, 64, 65, 67, 68, 71–73,

75, 76, 94
$NUMDER, 56
$OUTPUT, 85, 108
$OUTPUTDATA, 108
$P, 82
$PATH, 101, 105
$REAL, 83
$REM, 85
$REPEAT, 83
$RESTORE, 83
$REXP, 17
$SCAN, 101, 102
$SEARCH, 77, 79
$SET, 83
$SETAG, 23, 85
$SETCG, 35, 85
$SIF, 116

171

$SIGMA, 81
$SOLVER, 74, 79
$STANDARD, 85
$SUBROUTINES, 94
$SUBST, 84
$SYSTEM, 79
$TDIALOGUE, 85, 95
$TEST, 112
$TOLB, 37
$TOLC, 37
$TOLF, 37
$TOLG, 37
$TOLX, 37
$TSTART, 85
$TSTOP, 85
$TYPE, 41, 42, 50, 52, 60, 64–66, 69, 73, 75, 79, 94
$UKMAI1, 23, 85
$UKMCI1, 35, 85
$UKMCI2, 35, 85
$UNTIL, 84
$UOTES4, 85
$UPDATE, 44, 46, 52, 53, 55–58, 64, 65, 94
$UYTES1, 85
$UYTES2, 85
$UYTES3, 85
$VARERASE, 85
$XDEL, 76
$XMAX, 15, 36, 62, 63

172

A Demonstration of the text dialogue mode

Suppose that the model function has the form

fF (x) = 100(x2
1 − x2)2 + (x1 − 1)2

(the Rosenbrock function) and the starting point is x1 = −1.2 and x2 = 1.0. If we type the statement
UFOGO (without batch input file specification), then the following questions (which we supplement together
with answers) appear on the screen.

UFO PREPROCESSOR V.3.1.

AND OTHER INPUT DATA HAVE TO BE SPECIFIED.

TYPES OF CONSTRAINTS, THE STRUCTURE OF SPARSE PROBLEM,
HERE THE STARTING POINT, BOUNDS FOR VARIABLES,

USER SUPPLIED INPUT:

? INPUT () ?

X(1) = -1.2D0; X(2) = 1.0D0

? GRAPH (N) ?
SPECIFICATION OF GRAPHICAL OUTPUT

N - GRAPHICAL OUTPUT SUPPRESSED
Y - GRAPHICAL OUTPUT REQUIRED

? DISPLAY (N) ?
SPECIFICATION OF EXTENDED SCREEN OUTPUT

N - EXTENDED SCREEN OUTPUT SUPPRESSED
Y - EXTENDED SCREEN OUTPUT REQUIRED

? MODEL (FF) ?
TYPE OF OBJECTIVE FUNCTION

FF - GENERAL FUNCTION
FL - LINEAR FUNCTION
FQ - QUADRATIC FUNCTION

AF - SUM OF FUNCTIONS
AQ - SUM OF SQUARES

AP - SUM OF POWERS
AM - MINIMAX
DF - DIFFERENTIAL SYSTEM WITH GENERAL INTEGRAL CRITERION
DQ - DIFFERENTIAL SYSTEM WITH INTEGRAL OF SQUARES
DE - DIFFERENTIAL EQUATIONS
NE - NONLINEAR EQUATIONS

NO - MODEL IS NOT SPECIFIED

173

? NF (0) ?
NUMBER OF VARIABLES

2

? IEXT (0) ?
TYPE OF EXTREMUM

0 - MINIMUM
1 - MAXIMUM

? FMODELF (*) ?
MODEL OF OBJECTIVE FUNCTION

FF = <FORTRAN EXPRESSION>

FF = 1.0D2∗(X(1)∗∗2 - X(2))∗∗2 + (X(1) - 1.0D0)∗∗2

GF(NF) = <FORTRAN EXPRESSION>
.
.

GF(2) = <FORTRAN EXPRESSION>

GF(1) = <FORTRAN EXPRESSION>

MODEL OF GRADIENT OF OBJECTIVE FUNCTION

? GMODELF (*) ?

HF(M) = <FORTRAN EXPRESSION>
.
.

HF(2) = <FORTRAN EXPRESSION>

HF(1) = <FORTRAN EXPRESSION>

MODEL OF HESSIAN MATRIX

? HMODELF (*) ?

? KCF (2) ?
COMPLEXITY OF THE OBJECTIVE FUNCTION

1 - EASY COMPUTED FUNCTION
2 - REASONABLE BUT NOT EASY COMPUTED FUNCTION
3 - EXTREMELY COMPLICATED FUNCTION

174

? KSF (1) ?
SMOOTHNESS OF THE OBJECTIVE FUNCTION:

1 - SMOOTH AND WELL-CONDITIONED FUNCTION
2 - SMOOTH BUT ILL-CONDITIONED FUNCTION
3 - NONSMOOTH FUNCTION

? HESF (D) ?
TYPE OF HESSIAN MATRIX:

D - DENSE
S - SPARSE WITH KNOWN (GENERAL) STRUCTURE

N - HESSIAN MATRIX IS NOT USED

? KBF (0) ?
TYPE OF SIMPLE BOUNDS:

0 - NO SIMPLE BOUNDS
1 - ONE SIDED SIMPLE BOUNDS
2 - TWO SIDED SIMPLE BOUNDS

? KBC (0) ?
TYPE OF GENERAL CONSTRAINTS:

0 - NO GENERAL CONSTRAINTS
1 - ONE SIDED GENERAL CONSTRAINTS
2 - TWO SIDED GENERAL CONSTRAINTS

? EXTREM (L) ?
TYPE OF OPTIMIZATION

L - LOCAL OPTIMIZATION
G - GLOBAL OPTIMIZATION

? NORMF (0) ?
SCALING SPECIFICATION FOR VARIABLES:

0 - NO SCALING IS PERFORMED
1 - SCALING FACTORS ARE DETERMINED AUTOMATICALLY
2 - SCALING FACTORS ARE SUPPLIED BY USER

? INPUTDATA (N) ?
READ INPUT VALUES OF X (Y OR N)

175

? TEST (N) ?
STANDARD TEST OF EXTERNAL SUBROUTINES:

N - NO TEST
Y - PERFORM TEST BEFORE SOLUTION
A - PERFORM TEST AFTER SOLUTION
O - PERFORM TEST WITHOUT SOLUTION

? KOUT (0) ?
LEVEL OF TEXT FILE OUTPUT:

ABS(KOUT)=0 - NO PRINT OR PAPER SAVING PRINT
ABS(KOUT)=1 - STANDARD PRINT OF ITERATIONS
ABS(KOUT)=2 - ADDITIONAL PRINT OF STEPSIZE SELECTION
ABS(KOUT)=3 - ADDITIONAL PRINT OF DIRECTION DETERMINATION

AND VARIABLE METRIC UPDATE
ABS(KOUT)=4 - ADDITIONAL PRINT OF CONSTRAINT HANDLING
ABS(KOUT)=5 - ADDITIONAL PRINT OF NUMERICAL DIFFERENTIATION

KOUT<0 - ADDITIONAL PRINT OF DATA AND OPTIONS IN THE HEADING

? LOUT (1) ?
LEVEL OF TEXT FILE OUTPUT:

0 - NO PRINT
1 - COPY OF THE BASIC SCREEN OUTPUT
-1 - PAPER SAVING PRINT

? MOUT (-2) ?
LEVEL OF BASIC SCREEN OUTPUT:

ABS(MOUT)=0 - NO OUTPUT
ABS(MOUT)=1 - FINAL OUTPUT
ABS(MOUT)=2 - ADDITIONAL OUTPUT IN EACH ITERATION
ABS(MOUT)=3 - ADDITIONAL FINAL OUTPUT OF LINEAR OR

QUADRATIC PROGRAMMING
ABS(MOUT)=4 - ADDITIONAL OUTPUT IN EACH ITERATION

OF LINEAR OR QUADRATIC PROGRAMMING

MOUT<0 - FINAL OUTPUT WITH TERMINATION CRITERION

1

? NOUT (0) ?
LEVEL OF BASIC SCREEN OUTPUT:

0 - BASIC FINAL OUTPUT
1 - EXTENDED FINAL OUTPUT

1

176

? MSELECT (1) ?
SELECTION OF OPTIMIZATION METHOD

1 - AUTOMATICAL SELECTION OF METHOD
2 - MANUAL SELECTION OF METHOD
3 - MANUAL SELECTION OF METHOD AND IMPORTANT PARAMETERS
4 - MANUAL SELECTION OF METHOD AND ALL PARAMETERS

? LAPACK (N) ?
USE LAPACK SUBROUTINES

N - ONLY UFO SUBROUTINES
Y - CONNECTION TO LAPACK POSSIBLE

SPECIFIC OUTPUT.
CAN BE USED FOR ADDITIONAL COMPUTATIONS AND FOR A
HERE THE RESULTS OBTAINED IN THE OPTIMIZATION PROCESS

USER SUPPLIED OUTPUT:

? OUTPUT () ?

? OUTPUTDATA (N) ?
WRITE OUTPUT VALUES OF X (Y OR N)

UFO PREPROCESSOR STOP

Each question is represented by one frame which contains the contents of the question (name of the
macrovariable that has to be defined), the default value (in brackets) and an explanation of the requirement.
If no default value is wanted, the corresponding value or text has to be typed. The dialogue can be ended
by pressing the key <! > .

The result of the UFO preprocessor action is the following source program (reported in a slightly short-
ened form) consisting of global declarations, input specifications, problem definition, method realization
and control variables adjustment:

*
* -------------------
* GLOBAL DECLARATIONS
* -------------------
*

INTEGER ITIME
INTEGER IMD
INTEGER IX(1)
REAL*8 UXVDOT
REAL*8 GF(2)
REAL*8 X(2)
REAL*8 HD(2)
REAL*8 HF(2*(2+1)/2)
REAL*8 S(2)

177

REAL*8 ALF
REAL*8 BET
REAL*8 XO(2)
REAL*8 GO(2)
INTEGER IMB

*
* commons placed here were omitted
* since they require a large space
*
* -------------------
* END OF DECLARATIONS
* -------------------
*

OPEN (2,FILE=’P.OUT’,STATUS=’UNKNOWN’)
OPEN (3,FILE=’P.DIM’,STATUS=’UNKNOWN’)
CALL UYCLEA
CALL UYINTP

*
* ----------
* METHOD (1)
* ----------
*

CALL UYINT1
CALL UOTES1(’VM’,’L’,’I’,’1’,’B’,’FF
& ’,’D’,NF)
X(1)=-1.2D0
X(2)=1.0D0
CALL UYCLST
WRITE(3,’(/’’PROBLEM: NEXT =’’,I8)’) NEXT
IF (NF.GT.2) THEN
CALL UOERR2(’UZLMIN’,80,NF,2)
CALL UOERR4
ITERM=-80
TXFU=’LACK SPC’
ENDIF
WRITE(3,’(’’NUMBER OF VARIABLES: NF =’’,I8)’) NF
M=NF*(NF+1)/2
IF (ITERM.LT.0) STOP
CALL UYTIM1(ITIME)
NDECF=0
IF (ITERM.NE.0) GO TO 11200
CALL UO0FU1(NF,NA,NAL,MAL,NC,NCL,MCL,EPS0,EPS1,EPS2,EPS3,EPS4,EPS5
& ,EPS6,EPS7,EPS8,EPS9,ETA0,ETA1,ETA2,ETA3,ETA4,ETA5,ETA6,ETA7,E
& TA8,ETA9,ALF1,ALF2,ALF3,BET1,BET2,BET3,GAM1,GAM2,GAM3,DEL1,DEL
& 2,DEL3,RPF1,RPF2,RPF3,RGF1,RGF2,RGF3,FMIN,XMAX,XDEL,REXP,MET,M
& ET1,MET2,MET3,MES,MES1,MES2,MES3,MOT,MOT1,MOT2,MOT3,MOS,MOS1,M
& OS2,MOS3,MEP,MEP1,MEP2,MEP3,MEG,MEG1,MEG2,MEG3,MEX,MEX1,MEX2,M
& EX3,MED,MED1,MED2,MED3,MCG,MCG1,MFP,MFP1,MPF,MPF1,MGF,MGF1,MLP
& ,MLP1,MQP,MQP1,MEQ,MEQ1,MSG,MSG1,KSF,KCF,KSA,KCA,KSC,KCC,KTERS
& ,INITD,INITS,INITH,IREM,IADD,IRES1,IRES2,MRED,IRAN1,IRAN2,ISAM
& 1,ISAM2,KINP,IPRN)

*

178

* ----------------------
* VARIABLE METRIC METHOD
* TEMPLATE : U1FDU1
* ----------------------
*

ASSIGN 11130 TO IMD
CALL UYPRO1(’UXFU’,1)
CALL UYPRO2(FMIN,FO)

11110 CONTINUE
*
* -----------------
* MODEL DESCRIPTION
* -----------------
*
11600 CALL UF1F01(NF,GF,GF,FF,F)

GOTO (11640,11610,11620) ISB+1
11610 CONTINUE

ASSIGN 11710 TO IMB
11700 CONTINUE

NFV=NFV+1
FF=1.0D2*(X(1)**2-X(2))**2+(X(1)-1.0D0)**2
GOTO IMB

11710 CONTINUE
GOTO 11600

11620 CONTINUE
CALL UF0GS2(NF,X,IX,X,GF,FF,HD,R,SNORM,1.0D-15,1.0D-15,2,1)
GOTO (11600,11630) ISB+1

11630 CONTINUE
ASSIGN 11910 TO IMB
GOTO 11700

11910 CONTINUE
GO TO 11620

11640 CONTINUE
*
* ------------------------
* END OF MODEL DESCRIPTION
* ------------------------
*

GO TO IMD
11130 CONTINUE

CALL UYTRUG(NF,N,X,GF,GF,UMAX,GMAX)
CALL UO2FU3(NF,M,NA,NC,X,GF,HF,X,X,F,DMAX,GMAX)
CALL UYFUT1(N,F,FO,UMAX,GMAX,DMAX,ITES,IRES1,IRES2,INEW)
IF(ITERM.NE.0) GOTO 11190

11140 CONTINUE
ASSIGN 11140 TO IMD
CALL UUDSD1(N,HF,1)
GOTO (11150,11110) ISB+1

11150 CONTINUE
IF(ITERM.NE.0) GOTO 11190
CALL UYCPSD(NF,IX,HF,HD,MCG1)
CALL UYTRUH(NF,N,X,HF)

179

*
* -----------------------
* DIRECTION DETERMINATION
* TEMPLATE : UDGLG1
* -----------------------
*

CALL UOD1D1
IF (IDECF.LT.0) THEN
IDECF=9
INF=0
ENDIF
TDXX(1:4)=’INV ’
IF (IDECF.EQ.0) THEN

*
* INVERSION
*

ALF=ETA2
CALL UXDPGF(N,HF,INF,ALF,BET)
CALL UXDPGI(N,HF)
NDECF=NDECF+1
IDECF=9
ELSE IF (IDECF.EQ.9) THEN
ELSE
ITERD=-1
TDXX=’BAD DEC9’
CALL UOERR1(’UDDLI1’,1)
GO TO 12630
ENDIF
GNORM=SQRT(UXVDOT(N,GF,GF))

*
* NEWTON LIKE STEP
*

CALL UXDSMM(N,HF,GF,S)
CALL UXVNEG(N,S,S)
INITD=MAX(ABS(INITD),1)
ITERD=1
IF(INF.EQ.0) THEN
TDXX(5:8)=’ POS’
ELSEIF(INF.LT.0) THEN
TDXX(5:8)=’ ZER’
ELSE
TDXX(5:8)=’ NEG’
ENDIF
SNORM=SQRT(UXVDOT(N,S,S))
NRED=INF
CALL UOD1D5(ALF,BET,INF)

12630 CALL UOD1D2(N,GF,S)
*
* ------------------------------
* END OF DIRECTION DETERMINATION
* ------------------------------
*

180

IF (KD.GT.0) P=UXVDOT(N,GF,S)
CALL UD1TL1(NF,N,GF,S,EPS0,ALF1,ALF2,R,P,GNORM,SNORM,RMIN,RMAX,XMA
& X,XDEL,MES,INITD,INITH)
IF(ITERM.NE.0) GOTO 11190
IF(IREST.NE.0) GOTO 11140
CALL UYTRUS(NF,X,X,XO,GF,GO,S,S,RO,FP,FO,F,PO,P,CMAX,CMAXO)

11170 CONTINUE
ASSIGN 11170 TO IMD
CALL US0L01(EPS1,RO,RP,R,FO,FP,F,PO,PP,FMIN,FMAX,PAR1,PAR2,RMAX,RM
& IN,SNORM,MODE,KTERS,MES,MES1,MES2,INITS,MRED)
GOTO (11174,11172) ISB+1

11172 CONTINUE
CALL UXVDIR(NF,R,S,XO,X)
GOTO 11110

11174 CONTINUE
IF (ITERS.LE.0) THEN
CALL UYZER0(NF,X,XO,R,F,FO,FF,P,PO,MOT3)
IF(IDIR.EQ.0) THEN
CALL UYRES1(TSXX)
CALL UYSET1
GO TO 11140
ELSE IF (MOT3.EQ.0) THEN
CALL UYSET1
GO TO 11140
ELSE
ITERD=0
ENDIF
ENDIF
IF(KD.GT.LD) THEN
ASSIGN 11180 TO IMD
GO TO 11110
ENDIF

11180 CONTINUE
TXFU=TUXX
CALL UYUPSD(NF,X,IX,XO,GF,GO,HD,P,MCG1)
CALL UYTRUD(NF,X,X,XO,GF,GO,R,F,FO,P,PO,DMAX)
CALL UUDBI1(N,HF,S,XO,GO,R,PO,F,FO,P,1.0D 60,8)
IF(IDIR.EQ.0) THEN
IF(ITERH.NE.0) CALL UYRES1(’UPDATE ’)
GOTO 11130
ELSE
GOTO 11140
ENDIF

11190 CONTINUE
IF(ITERM.LT.0) TXFU=TDXX
CALL UYEPI1(1)

11200 CONTINUE
CALL UOERR3(KOUT,LOUT,MOUT,ITERM,IER)
CALL UO1FU2(NF,NA,NC,X,X,X,X,FF,F,FO,DMAX,GMAX,XMAX,EPS0,EPS1,EPS2
& ,EPS3,EPS4,EPS5,BET1,BET2,GAM1,GAM2,ETA1,ETA2,MET,MET1,MET2,ME
& T3,MOT,MOT1,MOT2,MOT3,MES,MES1,MES2,MES3,MOS,MOS1,MOS2,MOS3,IN
& ITD,INITS,INITH,IRES1,KTERS,IPRN)

181

13599 CONTINUE
*
* -----------------
* END OF METHOD (1)
* -----------------
*

CALL UYTIM2(ITIME)
CLOSE (2)
CLOSE (3)
END

*
* ------------------------
* INITIATION OF METHOD (1)
* ------------------------
*

SUBROUTINE UYINT1
*
* commons placed here were omitted
* since they require a large space
*

REAL*8 XDELS,RPF1S,RPF2S,RPF3S,RGF1S,RGF2S,RGF3S
COMMON/UMCLST/ XDELS,RPF1S,RPF2S,RPF3S,RGF1S,RGF2S,RGF3S
ETA0=1.0D-15
ETA9=1.0D 60
ITR=6
IRD=5
IWR=2

*
* many other assignments follow which were
* omitted since they require a large space
*

END
*
* ---------------------
* INITIATION OF PROBLEM
* ---------------------
*

SUBROUTINE UYINTP
*
* commons placed here were omitted
* since they require a large space
*

NF=2
IEXT=0
KCF=2
KSF=1
KBF=0
KBC=0
NORMF=0
KDF=0
KDA=-1
KDC=-1

182

KDE=-1
KDY=-1
END

* --
* BROYDEN CLASS OF VARIABLE METRIC UPDATES
* TEMPLATE : UUDBI1
* --

SUBROUTINE UUDBI1(N,H,S,XO,GO,R,PO,F,FO,P,ETA9,MET)
*
* commons placed here were omitted
* since they require a large space
*

REAL*8 H(N*(N+1)/2),S(N),XO(N),GO(N),R,PO,ETA9
REAL*8 F,FO,P
REAL*8 AA,CC
COMMON /UMFUN1/ AA,CC
REAL*8 UXVDOT,UNFUN1
REAL*8 DIS,POM,POM3,POM4,A,B,C,GAM,RHO,PAR
REAL*8 DEN
INTEGER IUPDT
LOGICAL L1,L3
EXTERNAL UNFUN1
IF (MET.LE.0) GO TO 22
CALL UOU1D1(N,XO,GO)
IF (IDECF.NE.9) THEN
ITERH=-1
TUXX=’BAD DEC9’
CALL UOERR1(’UUDBI2’,1)
GO TO 22
ENDIF
L1=ABS(4).GE.3.OR.ABS(4).EQ.2.AND.NIT.EQ.KIT
L3=.NOT.L1

*
* DETERMINATION OF THE PARAMETERS A, B, C
*

B=UXVDOT(N,XO,GO)
IF (B.LE.ZERO) THEN
ITERH=2
TUXX=’B - NEG.’
GO TO 22
ENDIF
CALL UXDSMM(N,H,GO,S)
A=UXVDOT(N,GO,S)
IF (A.LE.ZERO) THEN
ITERH=1
TUXX=’A - NEG.’
GO TO 22
ENDIF
IF(MET.GE.4.OR.L1) THEN
IF (ITERD.NE.1) THEN
MET=1
C=ZERO

183

ELSE
C=-R*PO
IF (C.LE.ZERO) THEN
ITERH=3
TUXX=’C - NEG.’
GO TO 22
ENDIF
ENDIF
ELSE
C=ZERO
ENDIF

*
* DETERMINATION OF THE PARAMETER RHO (NONQUADRATIC PROPERTIES)
*

IF (FO-F+P.EQ.0) THEN
RHO=ONE
ELSE
RHO=HALF*B/(FO-F+P)
ENDIF
IF(RHO.LE.1.0D-2) RHO=ONE
IF(RHO*1.0D-2.GE.ONE) RHO=ONE
AA=A/B
CC=C/B
IUPDT=0
IF (L1) THEN

*
* DETERMINATION OF THE PARAMETER GAM (SELF SCALING)
*

IF (C.LE.ZERO) THEN
PAR=A/B
POM3=0.8D 0
POM4=8.0D 0
ELSE
PAR=SQRT(A/C)
POM3=0.7D 0
POM4=6.0D 0
ENDIF
GAM=RHO/PAR
IF (NIT.NE.KIT) THEN
L3=GAM.LT.POM3.OR.GAM.GT.POM4
ENDIF
ENDIF
IF (L3) THEN
GAM=ONE
PAR=RHO/GAM
ENDIF

*
* NEW UPDATE
*

POM=ONE/(AA*CC)
IF (POM.LT.ONE) THEN
DEN=MAX(POM+1.0D-15,SQRT(C/A))

184

POM=(DEN-POM)/(ONE-POM)
TUXX=’NEW ’
GO TO 20
ENDIF

17 CONTINUE
*
* BFGS UPDATE
*

POM=ONE
DIS=PAR+AA
CALL UXVDIR(N,-DIS,XO,S,XO)
DIS=ONE/(B*DIS)
CALL UXDSMU(N,H,DIS,XO)
CALL UXDSMU(N,H,-DIS,S)
TUXX=’BFGS ’
GO TO 21

20 CONTINUE
*
* GENERAL UPDATE
*

DEN=PAR+POM*AA
DIS=POM/DEN
CALL UXDSMU(N,H,(PAR*DIS-ONE)/A,S)
CALL UXVDIR(N,-DIS,S,XO,S)
CALL UXDSMU(N,H,DEN/B,S)

21 CONTINUE
ITERH=0
IF (GAM.EQ.ONE) GO TO 22

*
* SCALING
*

CALL UXDSMS(N,H,GAM)
22 CONTINUE

CALL UOU1D2(N,H,S,RHO,GAM,PAR,A,B,C,POM,ETA9)
RETURN
END

The results (screen output) obtained by using this source program have the following form:

0 NIT= 40 NFV= 138 NFG= 0 GRAD TOL F= .5038712822E-13 G= .828D-05
FF = .5038712822D-13
X = .1000000098D+01 .1000000177D+01

185

B The BEL interpreter

The BEL (Batch Editor Language) interpreter, developed as a part of the UFO project, is especially
determined for the generation of computer programs, batch editing of texts, preparation of print files,
filtering of text files etc. The BEL interpreter allows us to generate a prescribed output file from the input
file (template) which is a mixture of text lines and special instructions.

B.1 General description

The BEL interpreter, realized by code BEL.EXE, requires input text file BEL.TEM, output text file BEL.OUT
and an internal table of symbols. The input text file (template) consists of standard text lines together
with the BEL instructions. The output text file contains a text generated by the BEL interpreter. The
table of symbols contains names and values of the macrovariables used.

Although the BEL interpreter can be used in various general applications, it was developed especially
for the generation of FORTRAN programs. It is:

1. Interpreter, since instructions contained in the input text are interpreted and immediately realized.

2. Batch editor, since it serves for editing batch files.

3. Macroprocessor, since it makes it possible to define or modify special macrovariables which can be
substituted into the processed text.

The macrovariable can be an integer constant, a logical constant, a string of characters, a set of text lines,
a set of BEL instructions, even a text file.

The BEL instructions, contained in the input text file, can be of two types:

1. Directives, i.e. control instructions and instructions for manipulation with the table of symbols.
These instructions begin with the special character CHDIR. In the subsequent text, we will suppose
that CHDIR=’$’ (’$’ is the default value).

2. Substitutions, i.e.instructions for substituting macrovariables into the text. These instructions begin
with the special character CHSUB. In the subsequent text, we will suppose that CHSUB=’$’ (’$’ is
the default value).

The BEL interpreter works in the following way:

1. The line of the input file is read.

2. The line is recognized and if the character CHSUB is found, a pertinent substitution is realized.

3. If the first character (different from blank) is CHDIR, the line is a directive line. The recognized
directive is realized.

This process is repeated until directives $STOP, $EXIT or the end of the input file is found. Note that
we suppose that CHSUB and CHDIR have the same values. This is allowed, since the correct meaning is
recognized from the context.

At the end of this section, we stress some specific features and advantages of the BEL interpreter.

1. The substitution is recursive. The depth of recursion (the number of nested files) only depends on
the declared work space size.

2. Substitution is allowed in both the text lines and the directives.

3. The names and values of macrovariables can have an arbitrary length which again only depends on
the declared work space size.

186

4. The set of directives is relatively small with a consistent syntax. It contains all important instructions
($IF-$ELSEIF-$ELSE-$ENDIF, $DO-$ENDDO, $REPEAT-$UNTIL etc.)

5. The control parameters (CHDIR, CHSUB etc.) can be changed during the work of the BEL inter-
preter. This makes it possible to generate a program written in the BEL language which can be
immediately processed.

6. The optional parameter of the BEL interpreter (e.g. the number of the I/O unit) can be changed
during its work. This possibility enables us to change the input file without recursive nesting.

7. The BEL interpreter is a fully portable device. It can be implemented in an arbitrary system
containing FORTRAN 77 compiler.

B.2 List of instructions

Substitutions:

$INTEGER - Substitute by the absolute label computed from the relative label.
$NAME, $(NAME) - Substitute by the value of the macrovariable NAME.
$DATA(NAME) - Substitute by a new item from the list of items which is a value of the macrovari-

able NAME.
$DEF(NAME) - Substitute by ’.TRUE.’ if the macrovariable NAME is defined in the table of

symbols. Otherwise substitute by ’.FALSE.’
$INT(NAME) - Substitute by ’.TRUE.’ if the value of the macrovariable NAME is an integer

constant. Otherwise substitute by ’.FALSE.’
$LOG(NAME) - Substitute by ’.TRUE.’ if the value of the macrovariable NAME is a logical

constant. Otherwise substitute by ’.FALSE.’
$REAL(NAME) - Substitute by ’.TRUE.’ if the value of the macrovariable NAME is a real con-

stant. Otherwise substitute by ’.FALSE.’
$$ - Substitute ’$’ (replace ’$$’ by ’$’). This makes possible to insert the character

CHSUB into the text.

Directives:

$ADD - Add a value to a macrovariable.
$ADD, $ENDADD - Add text lines to a macrovariable.
$CLEAR - Clear value of a macrovariable which is a list of items type.
$DO, $ENDDO - Cycle.
$ERASE - Erase a macrovariable from the table of symbols.
$EXIT - Return from the deepest nested file or termination of the BEL interpreter work

if there are no nested files.
$HELP, $CHECK - Set a default value to a macrovariable which has not been previously defined.
$IF, $ELSEIF,
$ELSE, $ENDIF - Conditioned instruction.
$INCLUDE - Insert a macrovariable or a text file into the output file.
$OPTION - Change some optional parameter of the BEL interpreter.
$REM - Remark.
$REPEAT, $UNTIL - Cycle.
$RESTORE - Adjust the list of items pointer to the first item.
$REWIND - Rewind the file on a given unit.
$SET - Set a value to a macrovariable.
$SET, $ENDSET - Set text lines to a macrovariable.
$STOP - Termination of the BEL interpreter work.
$SUBST - Substitute a text file into the input file.

187

B.3 Special characters

The following special characters are important for the BEL interpreter work:

$ - CHSUB (Substitution Character) - this is the first character in every substitution. If ’$’ should be
inserted into the text, we have to use ’$$’.

$ - CHDIR (Directive Character) - if the first character on the line is CHDIR, then the line is a directive
line (CHSUB and CHDIR are distinguished by the context).

& - CHCON (Continuation Character) - if the last character on the line is CHCON, then it is assumed
that the logical line continues on the next physical line.

; - CHEOL (End Of Line Character) - this character specifies the end of the logical line if it does not
coincide with the end of the physical line. This makes it possible to write several logical lines by
using the same physical line.

\ - CHDS (Data Separator Character) - this character separates individual items in the list of items
type macrovariable.

The use of special characters can be demonstrated by the following simple example. Assume that the
input text has the form

$A=’Paul\Peter\Jane\Mary’
This is a list of my brothers and sis&
ters:
$DO(I=1,4); $DATA(A); $ENDDO

Then the output from the BEL interpreter has the form

This is a list of my brothers and sisters:
Paul
Peter
Jane
Mary

The special characters can be changed by the directive $OPTION. But no special character has to
be the alphabet or the digit. Moreover, different special characters have to differ (with the exception of
CHSUB and CHDIR).

B.4 Description of instructions

This section contains a detailed description of the syntax and action of individual BEL instructions. The
following definitions will be used:

<digit> ::= 0 | 1 | 2 | 3 | | 9
<alphabet> ::= A | B | C | D | | Z
<character> ::= an arbitrary character with the exception of apostrophe

<integer constant> ::= (+ | -) <digit> {<digit>}
<logical constant> ::= .TRUE. | .FALSE.

<macroname> ::= <alphabet> {<alphabet> | <digit>}
<string of characters> ::= ’{<character> | ”}
<text> ::= <string of characters> ’{; <string of characters>}
<list of items> ::= <string of characters> ’{\ <string of characters>}
Substitutions:

188

$INTEGER

Syntax:
The type of INTEGER is an integer constant. Although it can have an arbitrary value, an application to
the UFO source program generation requires it to be positive and lower than LABEL2 (see the directive
$OPTION).

Action:
The integer constant INTEGER is a relative label in a given template. The absolute label, substituted into
the UFO source program, is computed by the formula LABEL=LABEL1+K∗LABEL2, where LABEL1
and LABEL2 are options of the BEL interpreter (see the directive $OPTION) and K is a serial number of
the application of the directive $SUBST.

Example:

$10

generates

10010

if the main template is used or

10110

after the first application of the directive $SUBST.

$NAME, $(NAME)

Syntax:
The type of NAME is a macroname. This substitution has two forms, either $NAME or $(NAME). The
latter form is required if the substitution appears inside a continuous string of characters to separate the
NAME from the adjacent text.

Action:
The string ’$NAME’ is replaced by the value of the macrovariable NAME.

Example:

$A=’UFO’
$A SYSTEM

generates

UFO SYSTEM

$DATA(NAME)

Syntax:
The type of NAME is a macroname.

Action:
The string ’$DATA(NAME)’ is replaced by the next item of the list of items which is a value of the
macrovariable NAME. If the next item does not exist, the list of items pointer is returned to the first item.
Additional information is contained in the description of the directive $RESTORE.

Example:

$LIST=’ITEM1\ITEM2\ITEM3’
$DATA(LIST)
$DATA(LIST)
$DATA(LIST)
$DATA(LIST)

189

generates

ITEM1
ITEM2
ITEM3
ITEM1

$DEF(NAME)

Syntax:
The type of NAME is a macroname.

Action:
If the macrovariable NAME is defined in the table of symbols, the string ’$DEF(NAME)’ is replaced by
the logical constant .TRUE., otherwise it is replaced by the logical constant .FALSE..

Example:

$A=10
$DEF(A)

generates

.TRUE.

$INT(NAME)

Syntax:
The type of NAME is a macroname.

Action:
If the value of the macrovariable NAME is an integer constant, the string ’$INT(NAME)’ is replaced by
the logical constant .TRUE., otherwise it is replaced by the logical constant .FALSE..

Example:

$A=-25
$INT(A)

generates

.TRUE.

$LOG(NAME)

Syntax:
The type of NAME is a macroname.

Action:
If the value of the macrovariable NAME is a logical constant, the string ’$LOG(NAME)’ is replaced by
the logical constant .TRUE., otherwise it is replaced by the logical constant .FALSE..

Example:

$A=.FALSE.
$LOG(A)

generates

.TRUE.

$REAL(NAME)

Syntax:

190

The type of NAME is a macroname.

Action:
If the value of the macrovariable NAME is a real constant (i.e. a string of characters which satisfies
the syntactic rules for FORTRAN real constants), the string ’$REAL(NAME)’ is replaced by the logical
constant .TRUE., otherwise it is replaced by the logical constant .FALSE..

Example:

$A=’-0.09D-12’
$REAL(A)

generates

.TRUE.

$$

Action:
The string ’$$’ is replaced by the character ’$’. This substitution allows us to insert the character ’$’ into
the generated text or into the macrovariable.

Example:

$I=’NAME’
$$DEF($I)

generates

$DEF(NAME)

Directives:

$ADD(NAME1,NAME2 or VALUE)

Syntax:
The type of NAME1 and NAME2 is a macroname.
The type of VALUE is an integer constant or a logical constant or a string of characters.

Action:
The value of the macrovariable NAME2 or the VALUE is added to the value of the macrovariable NAME1
(the resulting value of the macrovariable NAME1 is $NAME1$NAME2 in the first case).

Example:

$NAME=’TOM’
$ADD(NAME,’ JONES’)
Name: $NAME

generates

Name: TOM JONES

$ADD(NAME)
TEXT

$ENDADD

Syntax:
The type of NAME is a macroname.
The type of TEXT is a text.

Action:
The TEXT is added to the value of the macrovariable NAME.

191

Example:

$SET(A)
Day: 31

$ENDSET
$ADD(A)

Month: December
Year: 1998

$ENDADD
$A

generates

Day: 31
Month: December
Year: 1998

Remark: Only substitutions are realized in the text TEXT (not directives).

$CLEAR(NAME)

Syntax:
The type of NAME is a macroname.

Action:
This directive clears a list-of-items-type value of the macrovariable NAME, i.e. it deletes all duplications
of items. Small and capital letters of items are not distinguished.

Example:

$DECL=’N\IX(N)\N\M\ I\J\N\M’
$CLEAR(DECL)
$END=’$DATA(DECL)’
$REPEAT

$I=’$DATA(DECL)’
INTEGER $I

$UNTIL(I=END)

generates

INTEGER IX(N)
INTEGER M
INTEGER I
INTEGER J
INTEGER N

$DO(NAME=INDEX1,INDEX2,INDEX3)
TEXT

$ENDDO

Syntax:
The type of NAME is a macroname.
The type of INDEX1, INDEX2, INDEX3 is a macroname or an integer constant.
The type of TEXT is a text.

Action:
This directive has a similar meaning as the statement DO in the FORTRAN language:
NAME is the cycle counter.
INDEX1 is the initial value of the cycle counter.

192

INDEX2 is the final value of the cycle counter.
INDEX3 is the change of the cycle counter after a cycle step.
If INDEX3 is not present, the default value INDEX1=1 is assumed.
The cycle counter NAME does not have to be changed in the cycle step.
The value INDEX3 does not have to be equal to 0.
The body of the cycle is terminated by $ENDDO.
If INDEX1>INDEX2 and INDEX3>0 or INDEX1<INDEX2 and INDEX3<0, then the cycle is not real-
ized.
Cycles can be nested. The maximum depth of nested cycles is 20.

Example:

$A=’X\Y\Z’
$DO(I=1,5,2)

A($I,1)=C($I)+$DATA(A)
$ENDDO

generates

A(1,1)=C(1)+X
A(3,1)=C(3)+Y
A(5,1)=C(5)+Z

$ERASE(NAME)

Syntax:
The type of NAME is a macroname.

Action:
The macrovariable NAME is erased from the table of symbols.

Example:

$A=1
$DEF(A)
$ERASE(A)
$DEF(A)

generates

.TRUE.

.FALSE.

$EXIT

Action:
The directive $EXIT has the same meaning as the end of the file achievement. If the nested files are
processed (see the description of the directive $SUBST), the directive $EXIT realizes return to the higher
level file (if the higher level file does not exist, then $EXIT has the same meaning as $STOP).

$HELP
TEXT

$CHECK(NAME,DEFAULT,TYPE,LEVEL,TRANSFER)

Syntax:
The type of TEXT is a text.
The type of NAME is a macroname.
The type of DEFAULT is either a macroname or an integer constant or a logical constant or a string of
characters.
The type of TYPE is either a list of items or one of the strings INT (integer), LOG (logical), REAL (real).

193

The type of LEVEL is an integer constant.
The type of TRANSFER is a logical constant.

Action:
The text TEXT appears on the screen if the dialogue mode is used. The value of the macrovariable $NAME
is checked to have the type TYPE. If the macrovariable $NAME is not defined or if it has a wrong value,
the value DEFAULT is used. The value of LEVEL gives the lowest level of the dialogue (1,2,3 or 4) from
which the text TEXT appears on the screen. The value of TRANSFER specifies transfer of the variable
$NAME into the UFO source program (YES if transfer is accepted or NO if transfer is suppressed).

Example:

$HELP
TYPE OF THE HESSIAN MATRIX:

D - DENSE
B - SPARSE WITH KNOWN (PARTITIONED) STRUCTURE
S - SPARSE WITH KNOWN (GENERAL) STRUCTURE
N - HESSIAN MATRIX IN NOT USED

$CHECK(HESF,’N’,’D\B\S\N’,1,NO)

$IF(CONDITION) LINE

Syntax:
The CONDITION can be of the following types:
The type of CONDITION is a macroname and a value of CONDITION is a logical constant.
The type of CONDITION is a logical constant (.TRUE. or .FALSE.).
The type of CONDITION is a string of the form PART1<operator>PART2.
The type of PART1 and PART2 can be a macroname or an integer constant or a logical constant or a
string (values of PART1 and PART2 have to be of the same type) and <operator> can have the following
forms:

= equal to
<> not equal to
< less than (for integer values only)
<= less than or equal to (for integer values only)
> greater than (for integer values only)
>= greater than or equal to (for integer values only)

LINE is either a text line or a directive.

Action:
If the condition CONDITION is satisfied, LINE is inserted into the output file (if it is a text line) or
carried out (if it is a directive). If the values of PART1 and PART2 are strings, then small and capital
letters are not distinguished and blanks are ignored.

Example:

$A=’J O H N’
$IF(A=’John’) Yes
$IF(A<>’Mary’) No

generates

Yes
No

194

$IF(CONDITION1)
TEXT1

$ELSEIF(CONDITION2)
TEXT3
.
.
.

$ELSE
TEXT

$ENDIF

Syntax:
CONDITION1 and CONDITION2 have the same syntax and meaning as CONDITION in the previous
case. The number of repeated $ELSEIF is not limited, $ELSEIF or $ELSE can be omitted.

Action:
This directive has a similar meaning as the conditioned statement IF-ELSEIF-ELSE-ENDIF in the FOR-
TRAN language. The conditioned statements can be nested. The maximum depth of nested conditioned
statements is 20.

Example:

$A=10
$L=.FALSE.
$IF(A=10)

A = A + 1
B = B + 1
$IF(L)
C = C + 1
$ENDIF

$ELSE
WRITE(*,*) I

$ENDIF

generates

A = A + 1
B = B + 1

$INCLUDE(NAME)

Syntax:
The type of NAME is a macroname.

Action:
The directive $INCLUDE(NAME) is a special case of substitution. This directive makes it possible to
insert (into the generated text) one or more lines, which were previously assigned to the macrovariable
NAME. In contrast to the standard substitution $NAME, the inserted lines are not processed by the BEL
interpreter, so the directives are not carried out.

Example:

$SET(LINES)
$ADD(A)
X = Y + Z
CALL SUB(X)
$ENDADD

$ENDSET

195

$INCLUDE(LINES)

generates

$ADD(A)
X = Y + Z
CALL SUB(X)
$ENDADD

$INCLUDE(’FILE’)

Syntax:
The type of FILE is a string.

Action:
The directive $INCLUDE(’FILE’) is a special case of substitution. This directive makes it possible to
insert (into the generated text) the text which is stored in the file with the name FILE. The inserted text
is not processed by the BEL interpreter, so the directives are not carried out.

Example:

$INCLUDE(’C:\UFO\UMCOMN.I’)

includes FORTRAN common blocks into the generated text (these common blocks are stored in the file
C:\UFO\UMCOMN.I.
$OPTION(OPTIONNAME=NAME or VALUE)

Syntax:
OPTIONNAME is a selected name from the table of optional parameters (see below).
The type of NAME is a macroname. The value of NAME has to be an integer constant or a logical constant
or a string of character and has to correspond to the type of OPTIONNAME.
The type of VALUE has to be an integer constant or a logical constant or a string of character and has to
correspond to the type of OPTIONNAME.

Action:
This directive makes us possible to change selected optional parameter of the BEL interpreter. Optional
parameters are contained in the following table.

196

Name Type Default Description
CHDIR char. ’$’ see B.3
CHEOL char. ’;’ see B.3
CHCON char. ’&’ see B.3
CHDS char. ’\’ see B.3
FN1 char. ’ ’ first part of the file name
FN2 char. ’.I ’ last part of the file name
ILNLEN int. 80 physical length of the input line
OLNLEN int. 80 physical length of the output line
IUNIT int. - No. of the input file unit
OUNIT int. - No. of the output file unit
INUNIT int. - No. of the $INCLUDE files unit
IIUNIT int. - No. of the interactive mode input unit
OIUNIT int. - No. of the interactive mode output unit
DIALOG int. 1 level of dialogue (0 or 1 or 2)
MODERW int. 1 READ/WRITE mode (1 or 2 or 3)
LABEL1 int. 10000 initial label
LABEL2 int. 100 difference between two consecutive labels
LSUBS log. .TRUE. substitutions carried out
LOUT log. .TRUE. output file created
LSMLET log. .TRUE. small letters used in instructions
LFORTO log. .TRUE. output in standard FORTRAN format
LFRFMT log. .TRUE. input in free FORTRAN format

(used only if LFORTO=.TRUE.)
SIFDEC log. .FALSE. using the SIF decoder
DIALGR log. .FALSE. using the graphic dialogue

$REM

Action:
The rest of the line (following after $REM) is ignored by the BEL interpreter. The directive $REM is used
for remarks.

$REPEAT
TEXT

$UNTIL(CONDITION)

Syntax:
The type of TEXT is text.
CONDITION has the same syntax and meaning as that in the directive $IF(...).

Action:
This directive has a similar meaning as the statement REPEAT-UNTIL in the PASCAL language:
The cycle is terminated whenever the condition CONDITION is satisfied (at least one realization is carried
out).
Cycles can be nested. The maximum depth of nested cycles is 20.

Example:

$N=10
$REAL=’X($N)\G($N)\H($N,$N)\.END.’
$REPEAT

$I=’$DATA(REAL)’
$IF(I<>’.END.’) REAL $I

$UNTIL(I=’.END.’)

197

generates

REAL X(10)
REAL G(10)
REAL H(10,10)

$RESTORE(NAME)

Syntax:
The type of NAME is a macroname.

Action:
The directive $RESTORE(NAME) can only be used if the value of the macrovariable NAME is a list
of items. Such a macrovariable uses a pointer which points out the next called item. The directive
$RESTORE adjust this pointer to point out the first item of the list (if the end of this list is found, the
pointer is adjusted to point out the first item without applying the directive $RESTORE).

Example:

$A=’X\Y\Z’
$DATA(A)
$DATA(A)

$RESTORE(A)
$DATA(A)

generates

X
Y
X

$REWIND(UNIT)

Syntax:
The type of UNIT is an integer constant.

Action:
The file opened on the unit with the number UNIT is rewound, so it can again be read from the first
record (numbering of I/O units is used in the FORTRAN language).

$NAME1 = NAME2 or VALUE

$SET(NAME1 = NAME2 or VALUE)

Syntax:
The type of NAME1 and NAME2 is a macroname.
The type of VALUE is an integer constant or a logical constant or a string of characters.
This directive has two forms. The latter form is used if the macroname is identical with a directive (e.g.
$SET(REM=’REMARK’)).

Action:
The new macrovariable with the name NAME1 and the value equal to the value of the macrovariable
NAME2 or constant VALUE is inserted into the table of symbols. If the macrovariable NAME1 has
already been defined in the table of symbols, then it is changed.

$SET(NAME)
TEXT

$ENDSET

Syntax:
The type of NAME is a macroname.

198

The type of TEXT is text.

Action:
The macrovariable NAME is inserted into the table of symbols with the value TEXT. If the macrovariable
NAME has already been defined in the table of symbols, then it is changed.

Example:

$ENDTEST=100
$SET(INIT)

CALL EIUD01(NF,X,FMIN,XMAX,NEXT,IEXT,IERR)
IF (IERR.NE.0) GO TO $ENDTEST

$ENDSET
$INIT

generates

CALL EIUD01(NF,X,FMIN,XMAX,NEXT,IEXT,IERR)
IF (IERR.NE.0) GO TO 100

Remark: Only substitutions are realized in the text TEXT (not directives).

$STOP

Action:
The directive $STOP terminates the BEL interpreter work.

$SUBST(’FILE’)

Syntax:
The type of FILE is a string.

Action:
This directive performs the following actions:
The new reference label is computed (using the parameters LABEL1 and LABEL2 of the BEL interpreter).
The file with the name FILE is opened.
This file is processed by the BEL interpreter.
The file with the name FILE is closed.
The old reference label is restored.

This directive is similar to the directive $INCLUDE(’FILE’). But the inserted text is now processed by
the BEL interpreter. All substitutions and directives are carried out. The directive $SUBST(’FILE’) serves
for dividing large texts into segments and makes it possible to generate texts by using conditioned branch-
ing. This is advantageously used for generation of the UFO source program where templates corresponding
to individual subroutines are such segments.

Example:

$SUBST(’C:\UFO\PROBLEM.UFO’)

inserts a template, written in the UFO control language, into the generated text (this template is stored
in the file C:\UFO\PROBLEM.UFO.

B.5 Error messages

The BEL interpreter checks input templates and detects errors in the text written by the batch editing
language. A typical error message has the form

+++ FATAL ERROR: 9
FILE: UZMETH.I

199

LINE: 295
CAUSE: MACRO NOT DEFINED
NAME: COLLECTION

+++ EXECUTION ABORTED

Here UZMETH.I is the template where the error was detected, 9 is the error number, 295 is the number
of line containing incorrect text, MACRO NOT DEFINED is the explanation and COLLECTION is the
name of undefined macrovariable.

The following table presents all UFO error messages (error numbers and explanations):

1 - INPUT FILE DOES NOT EXIST OR I/O ERROR
2 - MAX. LENGTH OF BUFFER EXCEEDED
4 - MAX. LENGTH OF SYMBOL TABLE EXCEEDED
5 - ATTEMPT TO APPEND TO READ ONLY VARIABLE
6 - ATTEMPT TO APPEND TO UNDEFINED VARIABLE
7 - ATTEMPT TO OVERWRITE OR DELETE UNDEFINED VARIABLE
8 - ATTEMPT TO OVERWRITE OR DELETE RO OR RA VARIABLE
9 - MACRO NOT DEFINED
10 - OUTPUT HARDWARE ERROR
11 - WRONG FORMAT OF FORTRAN LINE
14 - MAX. NUMBER OF POINTERS TO SYMBOL TABLE EXCEEDED
15 - UNEXPECTED CHDS
16 - MAX. VALUE OF LABEL EXCEEDED
17 - UNEXPECTED CHDIR
20 - SYNTAX ERROR
21 - ’(’ EXPECTED
22 - ’(’ EXPECTED
23 - MACRO NAME EXPECTED
24 - APOSTROPHE EXPECTED
25 - EOL EXPECTED
26 - INTEGER CONSTANT EXPECTED
27 - MEMORY EXHAUSTED
28 - INCLUDED FILE DOES NOT EXIST OR I/O ERROR
29 - ’=’ EXPECTED
30 - IDENTIFIER, STRING, INTEGER OR LOGICAL CONSTANT EXPECTED
31 - ’,’ EXPECTED
32 - ERROR IN DIRECTIVE OPTION
33 - UNEXPECTED ’ENDSET’
34 - UNEXPECTED ’ENDADD’
35 - UNEXPECTED ’ENDIF’
36 - UNEXPECTED ’ELSE’
37 - UNEXPECTED ’ELSEIF’
38 - TOO MANY NESTED ’IF-ENDIF’
39 - REWIND - I/O ERROR
40 - TOO MANY NESTED ’SUBST(FILE)’
41 - SUBSTITUTED FILE DOES NOT EXIST OR I/O ERROR
42 - TOO MANY NESTED ’REPEAT-UNTIL’
43 - UNEXPECTED ’UNTIL’
44 - IN DO(I=IND1,IND2,IND3) IS IND3=0
45 - UNEXPECTED ’ENDDO’
46 - TOO MANY NESTED ’DO-ENDDO’
47 - UNEXPECTED END OF FILE
48 - AUTOMATICAL DIFFERENTIATION ERROR

200

B.6 Organization and compilation of the UFO source modules

The BEL interpreter driven by the special input template UZDPRE.I can be used for preprocessing UFO
source modules. The UFO source modules *.I usually consist of two parts. The first part is a template
written in the UFO control language. This template, which begins with substitution $INTERFACE and
terminates by directive $EXIT, serves for generation of the UFO source program by the UFO control
language preprocessor (described in Section B.7). The second part is an actual source module which can
contain statements of the UFO control language, e.g., substitutions $FLOAT, $P, $DBLE for defining
the precision of the final Fortran 77 source code (single or double). The BEL interpreter driven by
template UZDPRE.I skips the interface template and starts the processing on the line containing remark
*IMPLEMENTATION. If the first part is missing, the remark *IMPLEMENTATION can be omitted. If
the second part is missing, the macrovariable $INTERFACE and directive $EXIT need not be used. The
more details can be obtained by reading template UZDPRE.I:

$REM +---+
$REM + TEMPLATE: UZDPRE 01/12/89 +
$REM + +
$REM + PURPOSE: DRIVER FOR UFO SOURCE-MODULE PREPROCESSOR +
$REM +---+

$REM +----+ INSTALATION +--+

$P=’D’
$FLOAT=’REAL*8’
$DBLE=’DBLE’
$GRAPHICS=6
$OPENFILE=.TRUE.
$OPTION(FN2=’.I’)

$REM +----+ INITIATION +---+

$OPTION(LFRFMT=.FALSE.)
$NEXT=0
$SET(INTERFACE)
$OPTION(LOUT=.FALSE.)
$OPTION(LSUBS=.FALSE.)
$OPTION(LFORTO=.FALSE.)
$OPTION(CHDIR=’*’)

$ENDSET
$IF($DEF(PREDAT))
$PREDAT

$ENDIF

$REM +----+ GRAPHIC INTERFACE +--------------------------------------+

$SET(FIFAC)
$IF(GRAPHICS=0)
$ELSEIF(GRAPHICS=1)

INCLUDE ’FGRAPH.FI’
INCLUDE ’FLIB.FI’

$ELSEIF(GRAPHICS=4)
INCLUDE ’FGRAPH.FI’

201

INCLUDE ’FLIB.FI’
$ELSE
$ENDIF

$ENDSET
$SET(FDECL)
$IF(GRAPHICS=0)
$ELSE

$IF(GRAPHICS=1)
INCLUDE ’FGRAPH.FD’
INCLUDE ’FLIB.FD’

$ELSEIF(GRAPHICS=4)
INCLUDE ’FGRAPH.FD’
INCLUDE ’FLIB.FD’

$ELSE
USE DFLIB

$ENDIF
STRUCTURE /MYITEM/
CHARACTER*10 NAZEV
INTEGER POZICE
INTEGER*2 DELKA
INTEGER BARVA
INTEGER HI
ENDSTRUCTURE

$ENDIF
$ENDSET

$REM +----+ INITIATION OF SPECIAL MACROVARIABLES +-------------------+

$SUBST(’UZSETM’)

$OPTION(IUNIT=9)

The first several statements of this template are system dependent and define an individual UFO
installation. Here $FLOAT=’REAL*8’, $P=’D’, $DBLE=’DBLE’ correspond to double precision Fortran
77 source code and $GRAPHICS=6 defines the graphics library used. Option $OPTION(FN2=’.I’) defines
extensions of source modules which have names *.I.

Another part of template UZDPRE.I contains the initiation of important macrovariables used. Option
$OPTION(LFRMT=.FALSE.) means that the input file is written in the free Fortran format (with possi-
ble non-Fortran characters). Options contained in macrovariable $INTERFACE have the following mean-
ing: $OPTION(LOUT=.FALSE.) means that the interface will be ignored, $OPTION(LSUBS=.FALSE.)
means that substitutions are not carried out, $OPTION(LFORTO=.FALSE.) means that the temporary
output is written in the free format (with possible non-Fortran characters) and $OPTION(CHDIR=’*’)
means that the directive character CHDIR will be ’*’ (thus remark *IMPLEMENTATION is interpreted
as the directive, which switches the BEL interpreter into the normal mode (with substitutions and records
into the output file).

Finally, $FIFAC and $FDECL define the graphic interfaces and $OPTION(IUNIT=9) means that the
input unit IUNIT is changed in such a way that the subsequent input data are read from file BEL.DAT
(where source module *.I has to be copied).

If a source module *.I consists of two parts, the above process has one disadvantage. If the interface
template contains remark

* remark

202

which should be copied into the UFO source program, then $OPTION(CHDIR=’*’) causes that it is
understood as a directive. Therefore the above remark has to be replaced by the sequence of statements

$CHPOM=’$$’
$IF(.FALSE.)
*IF(.TRUE.)
CHPOM=’’
*OPTION(CHDIR=’$’)
$ENDIF
* remark
$OPTION(CHDIR=CHPOM)

in the interface template. This is unnecessary if the processed template has only one part and substitution
$INTERFACE is not used.

The output file BEL.OUT obtained by the BEL interpreter contains a resulting source module written
in the standard Fortran format, which can be copied into corresponding file *.FOR and compiled. All
required steps, i.e., copying *.I into BEL.DAT, processing of BEL interpreter, copying BEL.OUT into *.FOR
and compilation *.FOR to *.OBJ is realized by using the batch file PRE.BAT. The object module *.OBJ is
added to the UFO library of object modules by using the batch file UF.BAT.

B.7 The UFO control language preprocessor

The UFO system is organized in such a way that the UFO source program P.FOR (or P.F) need not be
written in Fortran 77 immediately. Instead, the procedure written in the UFO control language is supplied
and the UFO control language preprocessor (UFOCLP), which is the BEL interpreter driven by the special
input template UZDCLP.I, generates the resulting Fortran 77 source program. Besides template UZDCLP.I,
UFOCLP uses many additional templates: user supplied template P.UFO, system templates UZ*.I, drivers
for individual classes of methods U0*.I, U1*.I, U2*.I and other templates, the interfaces of files *.I,
which realize various parts of the source program. Basic properties of UFOCLP can be understood by
reading template UZDCLP.I:

$REM +---+
$REM + TEMPLATE: UZDCLP 01/12/98 +
$REM + +
$REM + PURPOSE: DRIVER FOR UFO CONTROL LANGUAGE PREPROCESSOR +
$REM +---+

$REM +----+ INSTALATION +--+

$OPTION(MODERW=3)
$OPTION(ILNLEN=200)
$OPTION(OLNLEN=200)
$OPTION(FN2=’.I’)
$P=’D’
$USERUNIT=12
$OUTPUTUNIT=11
$FLOAT=’REAL*8’
$DBLE=’DBLE’
$GRAPHICS=6
$OPTION(DIALGR=.TRUE.)

$REM +----+ OUTPUT UNIT FOR ERROR MESSAGES +-------------------------+

203

$SET(ERROR)
$OPTION(OUNIT=6)
ERROR:
$ENDSET

$REM +----+ INITIATION +---+

$OPTION(LSUBS=.FALSE.)

$REM +----+ INITIATION OF THE SYSTEM MACROVARIABLES +----------------+

$SET(BATCH)
$OPTION(DIALOG=0)
$OPTION(DIALGR=.FALSE.)
$DIA=0

$ENDSET

$SET(GDIALOGUE)
$OPTION(DIALOG=1)
$OPTION(DIALGR=.TRUE.)
$DIA=1

$ENDSET

$SET(TDIALOGUE)
$OPTION(DIALOG=1)
$OPTION(DIALGR=.FALSE.)
$DIA=1

$ENDSET

$DIALOGUE=GDIALOGUE

$SET(STANDARD)
$SUBST(’UZSTAN’)

$ENDSET

$SET(METHOD)
$SUBST(’UZMETH’)

$ENDSET

$SET(TSTART)
CALL UYTIM1(ITIME)
$ADD(INTEGER,’\ITIME’)

$ENDSET

$SET(TSTOP)
CALL UYTIM2(ITIME)

$ENDSET

$NUMBERS=’1\2\3\4\5\6\7\8\9\0’

$SET(VARERASE)

204

CALL UYCLEA
$ENDSET

$SET(INITIATION)
$SUBST(’UZINIT’)

$ENDSET

$SET(LABEL)
$L CONTINUE
$IF(TRACE=’YES’) $SUBST(’UZTPNT’)

$ENDSET

$INTERFACE=’$REM’

$SUBST(’UZSETM’)

$OPTION(MODERW=2)

$INTEGER=’.END’
$INTEGER2=’.END’
$LOGICAL=’.END’
$REAL=’.END’
$REAL4=’.END’

$OPTION(MODERW=1)
$DIA=1

$SET(MODERASE)
$SUBST(’UZMDER’)

$ENDSET
$SET(METERASE)
$SUBST(’UZMTER’)

$ENDSET

$SET(GLOBAL)
$OPTION(LFORTO=.FALSE.)
$$SUBST(’UZDECL’)
$OPTION(LFORTO=.TRUE.)
$ERASE(GLOBAL)
$SET(UFOINPUT)

$SUBST(’UZINPT’)
$ENDSET

$ENDSET

$REM $INPUT=’ ’

$SET(SUBROUTINES)

$ENDSET

$NEXT=0
$METHODINIT=.FALSE.

205

$OPTION(LSUBS=.TRUE.)

$REM +----+ 1. PASS +--+

$TMPUNIT=$OUNIT
$INITUNIT=$IUNIT
$OPTION(IUNIT=USERUNIT)
$OPTION(LFORTO=.FALSE.)
$$SUBST(’UZIPAR’)
$$SUBROUTINES

$REM +----+ 2. PASS +--+

$OPTION(LFORTO=.TRUE.)
$OPTION(OUNIT=OUTPUTUNIT)
$REWIND(TMPUNIT)
$OPTION(IUNIT=TMPUNIT)

The first several statements of this template are system dependent and define an individual UFO in-
stallation. Here $FLOAT=’REAL*8’, $P=’D’, $DBLE=’DBLE’ correspond to double precision Fortran 77
source code and $GRAPHICS=6 defines the graphics library used (option $OPTION(DIALGR=.TRUE.)
determines the graphic dialogue). Option $OPTION(MODERW=3) means that the subsequent macrovari-
ables cannot be rewritten in the symbol table, ILNLEN and OLNLEN are lengths of input line and output
line, respectively and $OPTION(FN2=’.I’) defines extensions of intermediate templates which have names
*.I. Option $OPTION(LSUBS=.FALSE.) means that substitutions are not carried out.

Another part of template UZDCLP.I contains initiation of system macrovariables:

$BATCH - Switch to the batch mode.
$DIALOGUE - Switch to the default dialogue mode (text or graphic).
$TDIALOGUE - Switch to the text dialogue mode.
$GDIALOGUE - Switch to the graphic dialogue mode.
$STANDARD - Standard frame of the UFO source program.
$METHOD - Generation of the optimization method.
$TSTART - Start of the time measurement.
$TSTOP - Termination of the time measurement and print of the measured time.
$VARERASE - Clearing the common variables.
$INITIATION - Initiation of the global variables.
$LABEL - Labelling in the UFO source program with possible tracing.
$MODERASE - Cancellation of the current model.
$METERASE - Cancellation of the current method.
$GLOBAL - Global declarations.
$SUBROUTINES - User supplied subroutines.

The substituted template UZSETM.I contains a definition of additional important macrovariables, e.g., $UK-
MAI1, $UKMCI1, $SETAG, $SETCG. Options $OPTION(MODERW=2) and $OPTION(MODERW =1)
mean that the subsequent macrovariables will be appended or rewritten in the symbol table, respectively.

After the initiation of system macrovariables, the first pass of UFOCLP is started. Thus the input unit
IUNIT is changed in such a way that the subsequent input data are read from file P.UFO and a temporary
output is written into BEL.OUT. Option $OPTION(LFORTO=.FALSE.) means that the temporary output
is written in the free format (with possible non-Fortran characters) and statements $$SUBST(’UZIPAR’),
$$SUBROUTINES mean that subroutines containing initiation of parameters and user supplied subrou-
tines will be added to the UFO source program in the second pass.

206

In the second pass, the output temporary file P.UFO is rewound and the input unit IUNIT is changed
in such a way that the subsequent input data are read from file P.UFO. The output unit OUNIT is changed
in such a way, that the final source program is written into P.FOR. Option $OPTION(LFORTO=.TRUE.)
means that the UFO source program is written in the standard Fortran format.

B.8 Basic templates and the UFO source program generation

This section contains information, which can be useful for UFO administrators and builders. As it is shown
in Section B.7, the generation of the UFO source program P.FOR (or P.F) starts by reading template P.UFO,
where basic macrovariables defining the problem and the method used are defined and a frame of the UFO
source program is described. The standard frame of the UFO source program is determined by substitution
of macrovariable $STANDARD (synonym for template UZSTAN.I) realizing the sequence $GLOBAL, $INI-
TIATION, $INPUT, $TSTART, $METHOD, $TSTOP, $OUTPUT. Here $INPUT contains user’s input
data (defined by using $SET(INPUT) and $ENDSET), $OUTPUT contains user’s output data (defined by
using $SET(OUTPUT) and $ENDSET), $TSTART and $TSTOP are points denoting start and stop of the
time measurement, $METHOD, $INITIATION, $MODERASE, $METERASE are synonyms for templates
UZMETH.I, UZINIT.I, UZMDER.I, UZMTER.I and $GLOBAL realizes global declarations by using template
UZDECL.I. Global declarations are defined by list of items $INTEGER, $INTEGER2, $LOGICAL, $REAL,
$REAL4 filled up in various templates by requirements of individual methods.

The UFO source program is generated by system templates UZ*.I, which call additional templates
(interfaces of the UFO source modules *.I, see Section B.6). The basic system templates are:

UZPROB.I - Problem definition. Here macrovariables described in Section 2 are determined.
UZMETH.I - Method selection. Here input specifications are defined, possible tests of external sub-

routines are performed and global or local optimization method (by using templates
UZGMIN.I or ULGMIN.I) is specified.

UZGMIN.I - Global optimization method selection. Here a particular global optimization method
and its parameters described in Section 3 are determined. Template UZGMIN.I usually
calls template UZLMIN.I

UZLMIN.I - Local optimization method selection. Here a particular local optimization method and
its parameters described in Section 3 are determined.

UZLINS.I - Step-size selection. Here a suitable line-search or trust-region method and its parameters
described in Section 3 are determined.

UZMODN.I - Objective function definition with the choice of a way for computation of derivatives. If
$NUMDER=1, first and second derivatives are computed by using the objective function.
If $NUMDER=2, first and second derivatives are computed by using the approximating
functions. This template usually calls template UZMODL.I.

UZMODL.I - Objective function definition. Here a suitable module is called, which is determined by
the model used (described in Section 2). Also a structure of this model, which can be
dense, sparse, partitioned, is taken into account.

There are many other system templates, which has to be modified only in case the UFO system is substan-
tially changed (e.g., templates UZMOD*.I, UZ*MOD.I, UZ*SET.I with ’*’ replaced by A,C,E,F,Y used for
objective function definition or templates UZMDER.I and UZMTER.I for cancellation of the current model
and method, respectively.) Template UZLMIN.I calls drivers for individual classes of methods, which have
the form

UdFscn.I or UdAmsn.I,

where letter ”d” corresponds to the degree of derivatives used (0, 1, 2), letter ”m” denotes the model used:

Q - sum of squares or powers,
M - minimum of functions (minimax),

letter ”s” denotes the problem structure:

D - methods for dense problems,

207

S - methods for sparse problems,
B - methods for partially separable problems,
L - limited memory methods,

letter ”c” corresponds to the type of constraints:

U - unconstrained problems,
L - linearly constrained problems,
N - nonlinearly constrained problems,
E - problems with equality constraints,
I - interior point methods for general nonlinear programming problems,
F - nonsmooth equation methods for general nonlinear programming problems

and letter ”n” corresponds to the driver number (1-5).

A typical driver template has the following form:

$INTERFACE U0FDU1 97/12/01

$N=’N’
$ADD(INTEGER,’\IMD’)
$HELP

TYPE OF METHOD:
P - PATTERN SEARCH
S - SIMPLEX METHOD

$CHECK(TYPE,’P’,’P\S’,2,NO)
$IF(TYPE=’P’) $TYP=’PS’
$IF(TYPE=’S’) $TYP=’SM’
$IF(TYPE=’P’)

$HELP
NUMBER OF METHOD:
1 - BASIC PATTERN SEARCH WITH SORTING

$CHECK(NUMBER,’1’,’1’,2,NO)
$ELSE

$HELP
NUMBER OF METHOD:
1 - BASIC SIMPLEX METHOD

$CHECK(NUMBER,’1’,’1\2’,2,NO)
$ENDIF
$ISNF=0
$SUBST(’UO0FU1’)

*
* ----------------
* HEURISTIC METHOD
* TEMPLATE: U0FDU1
* ----------------
*
$LMD=$10
ASSIGN $20 TO IMD
CALL UYPRO1(’UXFU’,0)
CALL UYPRO2(FMIN,FO)
N=NF

$L=$10 ; $LABEL
$KD=0

208

$SUBST(’UZMODL’)
GO TO IMD

$L=$20 ; $LABEL
$SUBST(’UO2FU3’)
$SUBST(’UYFUT1’)
IF(ITERM.NE.0) GOTO $50

$L=$30 ; $LABEL
ASSIGN $30 TO IMD

*
* -----------------------
* DIRECTION DETERMINATION
* TEMPLATE : UDD(TYP)NUMBER
* -----------------------
*
$SUBST(’UDD$(TYP)$NUMBER’)

*
* ------------------------------
* END OF DIRECTION DETERMINATION
* ------------------------------
*
GOTO ($40,$10) ISB+1

$L=$40 ; $LABEL
ASSIGN $40 TO IMD
$SUBST(’US0$(TYP)$NUMBER’)
GOTO ($45,$10) ISB+1

$L=$45 ; $LABEL
TXFU=TUXX
IF(ITERM.EQ.0) GOTO $20
TXFU=TDXX

$L=$50 ; $LABEL
CALL UYEPI1(0)
$SUBST(’UO1FU2’)
$ADD(INIT)

NXFU=’U0FDU1’
$ENDADD
$EXIT

The first part of this template contains definition of important macrovariables (parameters of the
method selected), e.g., $TYPE and $NUMBER. The second part contains instructions for corresponding
parts of the UFO source program. Here the objective function is defined by UZMODL.I, direction is deter-
mined by UDDPS1.I or UDDSM1.I and step-size is selected by US0PS1.I or US0SM1.I. Statements $L=$10,
$L=$20 etc. define labels 11110, 11120 etc. in the generated source program and substitution $LABEL
defines possible tracing. Modules UO0FU1.I, UO1FU2.I and UO2FU3 serve for printing intermediate and
final results. Modules UYPRO1.I, UYPRO2.I, UYEPI1.I serve for defining and clearing system variables
and UYFUT1.I contains termination criteria. The form of the UFO source program is also influenced by
macrovariables $INIT, $SINIT, $SINID and $CONST, which are substituted into the UFO source pro-
gram by system templates UZINIT.I, UZINPT.I and UZMETH.I. The text from $INIT is substituted into
SUBROUTINE UYINT1, which is a part of the UFO source program. The texts from $SINIT and $SINID are
substituted before and after user’s input $INPUT, respectively. The text from $CONST is substituted in
such a way that statements of a generated method follow immediately.

209

C Graphic screen output

C.1 Nonlinear regression

210

211

212

C.2 Nonlinear minimax optimization

213

214

215

C.3 Transformer network design

216

217

218

219

C.4 Global optimization

220

C.5 Nonsmooth optimization

221

C.6 Rosenbrock function

222

C.7 Ordinary differential equations

223

C.8 The Lorenz attractor

224

225

