
LSA: Algorithms for Large-Scale Optimization

Lukšan, Ladislav
2004

Dostupný z http://www.nusl.cz/ntk/nusl-19555

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 10.04.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-19555
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

LSA: Algorithms for large-scale
optimization

Ladislav Lukšan, Ctirad Matonoha, Jan Vlček

Technical report No. 896

October 30, 2004

Pod Vodárenskou věž́ı 2, 182 07 Prague 8 phone: +420 2 688 42 44, fax: +420 2 858 57 89,
e-mail:e-mail:ics@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

LSA: Algorithms for large-scale
optimization

Ladislav Lukšan, Ctirad Matonoha, Jan Vlček 1

Technical report No. 896

October 30, 2004

Abstract:

Abstract. We present eleven basic FORTRAN subroutines for large-scale optimization with
simple bounds and large-scale systems of nonlinear equations. Subroutines PLIS and PLIP,
intended for dense general optimization problems, are based on limited-memory variable metric
methods. Subroutines PNED and PNEC, intended for sparse general optimization problems, are
based on modifications of the discrete Newton method. Subroutine PSEP, intended for partially
separable optimization problems is based on partitioned variable metric updates. Subroutines
PGAM and PGAN, intended for sparse nonlinear least squares problems, are based on modifica-
tions and corrections of the Gauss-Newton method. Subroutines PEQN and PEQL, intended for
sparse systems of nonlinear equations, are based on the discrete Newton method and the in-
verse column-update quasi-Newton method. Subroutines PIND and PNUL, intended for sparse
equality constrained nonlinear programming problems, are based on the indefinitely precondi-
tioned conjugate gradient method applied to the linear KKT system or to the reduced system
obtained by a null-space approach. Besides the description of methods and codes, we propose
computational experiments which demonstrate the efficiency of the proposed algorithms.

Keywords:
Large-scale optimization, large-scale nonlinear least squares, large-scale systems of nonlinear
equations, large-scale nonlinear programming, sparse problems, partially separable problems,
limited-memory methods, discrete Newton methods, quasi-Newton methods, KKT systems,
indefinite preconditioners.

1This work was supported by the Grant Agency of the Czech Academy of Sciences, project code
IAA1030405, and by the Ministry of Education of the Czech Republic, project code MSM 242200002.
Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou věž́ı 2, 182
07 Praha 8 and Technical University of Liberec, Hálkova 6, 461 17 Liberec

1 Introduction

We propose eleven basic subroutines which implement selected large-scale optimization
algorithms. The double-precision FORTRAN 77 subroutines PLIS, PLIP, PNED, PNEC are
designed to find a close approximation to a local minimum of a general twice continuously
differentiable function F : Rn → R. Subroutines PLIS, PLIP, based on limited-memory
variable metric updates, are intended for general problems with unknown or dense Hessian
matrices. Subroutine PLIS uses Strang recurrences [12], [23]. Subroutine PLIP uses shifted
limited-memory variable metric updates [28], [29]. Subroutines PNED, PNEC, based on the
inexact discrete Newton method [6], [4], are intended for problems with sparse Hessian
matrices. Subroutine PNED uses Moré-Sorensen direct-elimination trust-region strategy
[22]. Subroutine PNEC uses Steihaug-Toint [25], [26] or shifted Steihaug-Toint [15] iterative
trust-region strategy.

The double-precision FORTRAN 77 subroutine PSEP is designed to find a close ap-
proximation to a local minimum of a special partially separable objective function

F (x) =
na∑
i=1

fi(x).

Here x ∈ Rn is a vector of n variables and fi : Rn → R, 1 ≤ i ≤ na, are twice continuously
differentiable functions. Subroutine PSEP is based on partitioned variable metric updates
[11], [16].

The double-precision FORTRAN 77 subroutines PGAM, PGAN are designed to find a close
approximation to a local minimum of a special least-square function

F (x) =
1

2

na∑
i=1

f 2
i (x).

Here x ∈ Rn is a vector of n variables and fi : Rn → R, 1 ≤ i ≤ na, are twice continu-
ously differentiable functions. Subroutines PGAM, PGAN are based on hybrid methods that
combine the Gauss-Newton method with the Newton or the variable metric corrections
[14], [16].

The double-precision FORTRAN 77 subroutines PEQN, PEQL are designed to find a
solution to a system of nonlinear equations

fi(x) = 0, 1 ≤ i ≤ n.

Here x ∈ Rn is a vector of n variables and fi : Rn → R, 1 ≤ i ≤ n, are continuously
differentiable functions. Subroutine PEQN is based on the inexact discrete Newton method
[2], [5], [18]. Subroutine PEQL is based on the inverse column-update quasi-Newton method
[21], [18].

The double-precision FORTRAN 77 subroutines PIND, PNUL are designed to find a close
approximation to a local minimum of a general twice continuously differentiable function
F : Rn → R under equality constraints

ci(x) = 0, 1 ≤ i ≤ nc.

Here x ∈ Rn is a vector of n variables and ci : Rn → R, 1 ≤ i ≤ nc ≤ n, are twice
continuously differentiable functions. Subroutines PIND, PNUL are based on the inexact

1

discrete Newton method applied to nonlinear KKT equations. Subroutine PIND uses
the indefinitely preconditioned conjugate gradient method for solving the indefinite linear
KKT system [19], [20]. Subroutine PNUL uses null-space transformations and the standard
conjugate gradient method applied to reduced system [9], [20].

Subroutines PLIS, PLIP, PNED, PNEC, PSEP, PGAM, PGAN allow us to work with simple
bounds. Simple bounds are assumed in the form

xi − unbounded , Ix
i = 0,

xl
i ≤ xi , Ix

i = 1,

xi ≤ xu
i , Ix

i = 2,

xl
i ≤ xi ≤ xu

i , Ix
i = 3,

xi = xl
i = xu

i , Ix
i = 5,

where 1 ≤ i ≤ n (Ix corresponds to array IX in Section 8).
To simplify the user’s work, additional easy-to-use subroutines are added. These sub-

routines call general subroutines PLIS, PLIP, PNED, PNEC, PSEP, PGAM, PGAN, PEQN, PEQL,
PIND, PNUL:

PLISU,PLIPU,PNEDU,PNECU,PSEPU,PGAMU,PGANU – unconstrained optimization.
PLISS,PLIPS,PNEDS,PNECS,PSEPS,PGAMS,PGANS – optimization with simple bounds.
PEQNU,PEQLU – solution of systems of nonlinear equations.
PINDU,PNULU – optimization with general equality constrains.

Each subroutine contains a description of formal parameters and extensive comments.
Moreover, text files PLIS.TXT, PLIP.TXT, PNED.TXT, PNEC.TXT, PSEP.TXT, PGAM.TXT,
PGAN.TXT, PEQN.TXT, PEQL.TXT, PIND.TXT, PNUL.TXT are added, which contain a de-
tailed description of all important subroutines (including indications of required storage).
Finally, test programs TLISU, TLISS, TLIPU, TLIPS, TNEDU, TNEDS, TNECU, TNECS, TSEPU,
TSEPS, TGAMU, TGAMS, TGANU, TGANS, TEQNU, TEQLU, TINDU, TNULU are included, which
contain sets of test problems. These test programs serve as examples for using the sub-
routines, verify their correctness and demonstrate their efficiency.

For a better orientation, Table 1 contains the numbers of sections, where direction de-
termination, step-size selection and sparsity pattern are described for a given subroutine.
The active set strategy for constraint handling, which is the same for all subroutines that
use box constraints, is described in Section 2.

2 Limited-memory variable metric methods for general problems

Consider a general continuously differentiable function F : Rn → R, where n is large,
and assume that the Hessian matrix of F is not known. In this case, limited-memory
variable metric methods can be efficiently used for seeking a local minimum of F . These
methods are realized in the line-search framework so that they generate a sequence of
points xk ∈ Rn, k ∈ N , by the simple process

xk+1 = xk + αkdk, (1)

where dk = −Hkgk is a direction vector, Hk is a positive definite approximation of the
inverse Hessian matrix and 0 < αk ≤ αk is a scalar step-size chosen in such a way that

Fk+1 − Fk ≤ ε1 αk dT
k gk, dT

k gk+1 ≥ ε2 dT
k gk (2)

2

subroutine direction step-size pattern

PLIS 2.1 2 -
PLIP 2.2 2 -
PNED 3.1 3 3
PNEC 3.3 3 3
PSEP 4 2 4
PGAN 3.1 3 4
PGAM 3.2 3 4
PEQN 6.1 6 4
PEQL 6.2 6 4
PIND 7.1 7 3
PNUL 7.2 7 3

Table 1: Description of subroutines

(the weak Wolfe conditions), where Fk = F (xk), gk = ∇F (xk), 0 < ε1 < 1/2 is a tolerance
for the function value decrease (parameter TOLS in our subroutines) and ε1 < ε2 < 1 is a
tolerance for the directional derivative increase (parameter TOLP in our subroutines). The
maximum step-size αk is given by formula αk = Δ/‖dk‖, where Δ is an upper bound for
difference xk+1−xk (parameter XMAX in our subroutines). Step-size αk is chosen iteratively
either by a bisection (MES = 1), or by a two-point quadratic interpolation (MES = 2), or by
a three-point quadratic interpolation (MES = 3), or by a three-point cubic interpolation
(MES = 4). We start with the initial estimate αk = 1 if INITS = 0 or the initial estimate is
derived by using the lower bound for F (parameter TOLB in our subroutines) if INITS = 1.
Matrices Hk, k ∈ N , are computed recursively either by using a limited (small) number of
variable metric updates applied to the scaled unit matrix or by updating low dimension
matrices. In the first iteration or after restart, we set Hk = I (the unit matrix) and k = k.
Restart is performed if −dT

k gk ≤ ε‖dk‖‖gk‖, where ε is a restart tolerance (parameter TOLD
in our subroutines).

If box constraints are considered, then a simple active set strategy is used. To simplify
the notation, we omit iteration index k in the following description. Every iteration is
started by detection of active constraints. Thus we set

xi = xl
i, Ix

i = −1 if Ix
i = 1, xi ≤ xl

i + εc max(xl
i, 1),

xi = xu
i , Ix

i = −2 if Ix
i = 2, xi ≥ xu

i − εc max(xu
i , 1),

xi = xl
i, Ix

i = −3 if Ix
i = 3, xi ≤ xl

i + εc max(xl
i, 1),

xi = xu
i , Ix

i = −4 if Ix
i = 3, xi ≥ xu

i − εc max(xu
i , 1),

xi = xl
i = xu

i , Ix
i = −5 if Ix

i = 5

for 1 ≤ i ≤ n, where εc is a required precision (we use value εc = 10−8 in our subroutines).
After computing gradient g = g(x), we determine projected gradient gp and chopped
gradient gc in such a way that

3

gp
i = 0, gc

i = max(0, gi) for Ix
i = −1 or Ix

i = −3,

gp
i = 0, gc

i = min(0, gi) for Ix
i = −2 or Ix

i = −4,

gp
i = 0, gc

i = 0 for Ix
i = −5,

gp
i = gi, gc

i = gi for Ix
i = 0,

gp
i = gi, gc

i = 0 for Ix
i > 0.

If max1≤i≤n |gc
i | > max1≤i≤n |gp

i | and α > 0, we delete redundant active constraints in such
a way that

Ix
i = 1 if Ix

i = −1 and gi > 0,

Ix
i = 2 if Ix

i = −2 and gi < 0,

Ix
i = 3 if Ix

i = −3 and gi > 0,

Ix
i = 3 if Ix

i = −4 and gi < 0.

Note that the iterative process is always restarted after a constraint deletion to assure
the validity of condition dT g < 0. Direction vector d has to be determined in such a
way that di = 0 if Ix

i < 0. If d is computed by a matrix multiplication or by solving a
system of linear equations, the matrix used can be changed by deleting rows and columns
corresponding to active constraints. This is realized by changing signs of elements of
arrays JH or JAG in our subroutines. Before step-size selection, we have to determine
the maximum step-size α to assure the feasibility. This is computed by the formula
α = min(α1, α2, α3, α4, Δ/‖d‖), where

α1 = min
Ix
i =1,di<0

xl
i − xi

di

, α2 = min
Ix
i =2,di>0

xu
i − xi

di

,

α3 = min
Ix
i =3,di<0

xl
i − xi

di

, α4 = min
Ix
i =3,di>0

xu
i − xi

di

(if a corresponding set is empty we use the value ∞). This simple active set strategy is also
used in a trust region framework. Thus the above process is also utilized in subroutines
described in Sections 3-5 if box constraints are considered.

2.1 Limited-memory BFGS method

Subroutine PLIS is an implementation of the limited-memory BFGS method proposed
in [12], [23]. This method works with matrices Hk = Hk

k , where Hk
k−m = γkI (we use

γk = bk−1/ak−1 in our implementation) and

Hk
j+1 = V T

j Hk
j Vj +

1

bj

sjs
T
j , Vj = I − 1

bj

yjs
T
j (3)

for k−m ≤ j ≤ k− 1. Here sj = xj+1 −xj, yj = gj+1 − gj, aj = yT
j Hjyj, bj = yT

j sj. Thus

Hk
j+1 =

bk−1

ak−1

(
j∏

i=k−m

Vi

)T (j∏
i=k−m

Vi

)
+

j∑
l=k−m

1

bl

(
j∏

i=l+1

Vi

)T

sls
T
l

(
j∏

i=l+1

Vi

)
gk. (4)

4

Matrix Hk = Hk
k need not be constructed explicitly since we need only vector dk = −Hk

kgk,
which can be computed by using two recurrences (the Strang formula). First, vectors

uj = −
(

k−1∏
i=j

Vi

)
gk,

k − 1 ≥ j ≥ k − m, are computed by using the backward recurrence

σj = sT
j uj+1/bj,

uj = uj+1 − σjyj,

where uk = −gk. Then vectors

vj+1 =
bk−1

ak−1

(
j∏

i=k−m

Vi

)T

uk−m +

j∑
l=k−m

1

bl

(
j∏

i=l+1

Vi

)T

sls
T
l ul+1,

k − m ≤ j ≤ k − 1, are computed by using the forward recurrence

vj+1 = vj + (σj − yT
j vj/bj)sj,

where vk−m = (bk−1/ak−1)uk−m. Finally we set dk = vk. Note that 2m vectors sj, yj,
k−m ≤ j ≤ k−1 are used and stored. The number of consecutive variable metric updates
is defined as m = min(m, k−k) where m = MF (MF is a parameter of the subroutine PLIS)
and k is an index of the iteration corresponding to the last restart.

2.2 Shifted limited-memory variable metric methods

Subroutine PLIP is an implementation of shifted limited-memory variable metric methods
proposed in [28], [29]. These methods work with matrices Hk = ζkI +UkU

T
k , where n×m

matrix Uk is updated by formula Uk+1 = VkUk with a low rank matrix Vk chosen in such a
way that the (modified) quasi-Newton condition Uk+1U

T
k+1yk = ρks̃k with s̃k = sk−ζk+1yk

is satisfied (we use the same notation, namely sk, yk, ak, bk, as in Section 2.1). This
condition can be replaced by equations

UT
k+1yk = zk, Uk+1zk = ρks̃k, ‖zk‖2 = ρky

T
k s̃k. (5)

where zk is an optional vector parameter. Note that the last equality, which is a conse-
quence of the first two equalities, is the only restriction laid on the vector z. To simplify
the notation, we define vectors uk = UT

k yk and vk = UT
k H−1

k sk = −αkU
T
k gk.

The choice of shift parameter ζk+1 is a crucial part of shifted limited-memory variable
metric methods. The value

ζk+1 = μk
bk

‖yk‖2
, μk =

√
1 − ‖uk‖2/ak

1 +
√

1 − b2
k/(‖sk‖2‖yk‖2)

. (6)

is used in subroutine PLIP. The most efficient shifted limited-memory variable metric
methods can be derived by a variational principle. Let Tk be a symmetric positive definite

5

matrix. It can be shown (see [29]) that the Frobenius norm ‖T−1/2
k (Uk+1−Uk)‖2

F is minimal
on the set of all matrices satisfying quasi-Newton condition (5) if and only if

Uk+1 = Uk − Tkyk

yT
k Tkyk

yT
k Uk +

(
ρks̃k − Ukzk +

yT
k Ukzk

yT
k Tkyk

Tkyk

)
zT

k

‖zk‖2
. (7)

Here Tkyk and zk are vector parameters defining a class of shifted limited-memory variable
metric methods. Using suitable values of these vectors, we obtain particular methods of
this class.

Assuming that Tkyk and ρks̃k − Ukzk are linearly dependent and setting

zk = ϑkvk, ϑk = ±
√

ρkyT
k s̃k/‖vk‖2 (8)

we obtain rank 1 variationally derived method (VAR1), where

Uk+1 = Uk − ρks̃k − ϑkUkvk

ρkyT
k s̃k − ϑkuT

k vk

(uk − ϑkvk)
T , (9)

which gives the best results for the choice sgn(ϑku
T
k vk) = −1. Method VAR1 is chosen

if MET = 1 in the subroutine PLIP. Using zk given by (8) and setting Tkyk = s̃k, which
corresponds to the BFGS method in the full-memory case, we obtain rank 2 variationally
derived method (VAR2), where

Uk+1 = Uk − s̃k

yT
k s̃k

uT
k +

(
ρk

s̃k

ϑk

− Ukvk +
uT

k vk

yT
k s̃k

s̃k

)
vT

k

‖vk‖2
. (10)

Method VAR2 is chosen if MET = 2 in the subroutine PLIP. The efficiency of both these
methods depends on the value of correction parameter ρk. Value of this parameter is
determined by variable MEC. If MEC = 1, then ρk = 1. If MEC = 2, then ρk = νk. If MEC = 3,
then ρk = εk. If MEC = 4, then ρk =

√
νkεk. If MEC = 5, then ρk = ζk/(ζk + ζk+1). Here

νk = μk/(1 − μk), μk is a relative shift parameter defined by (6) and

εk =
√

1 − ‖uk‖2/ak

is the damping factor of μk (nominator in (6)). The number of columns of matrix Uk is
defined as m = min(m, k − k) where m = MF (MF is a parameter of the subroutine PLIP)
and k is an index of the iteration corresponding to the last restart.

3 Inexact discrete Newton methods for sparse problems

Consider a general twice continuously differentiable function F : Rn → R, where n is
large, and assume that the Hessian matrix G(x) = [Gij(x)] = [∂2F (x)/(∂xi∂xi)] is sparse.
In this case, discrete versions of the Newton method can be efficiently used for seeking a
local minimum of F . These methods are based on the fact that sufficiently sparse Hessian
matrices can be estimated by using a small number of gradient differences [4]. We use
the algorithm proposed in [27] in subroutines PNED, PNEC. The sparsity pattern of the

6

Hessian matrix (only the upper part) is stored in the standard compressed row format
using arrays IH and JH. For example, if the Hessian matrix has the following pattern

G =

⎡
⎢⎢⎢⎢⎣

∗ ∗ ∗ 0 ∗
∗ ∗ 0 ∗ 0
∗ 0 ∗ 0 ∗
0 ∗ 0 ∗ 0
∗ 0 ∗ 0 ∗

⎤
⎥⎥⎥⎥⎦

(asterisks denote nonzero elements), then arrays IH and JH contain elements

IH =
[

1 5 7 9 10 11
]
, JH =

[
1 2 3 5 2 4 3 5 4 5

]
,

i.e., IH contains pointers of the diagonal elements in the upper part of the Hessian matrix
and JH contains column indices of the nonzero elements stored. Note that IH has NF+1
elements and the last element is equal to MH+1, where MH is the number of nonzero elements
stored. This convention is also used in subroutines PIND, PNUL described in Section 7.

Since the Hessian matrix can be indefinite, discrete versions of the Newton method are
realized in the trust-region framework. Let Bk be a gradient-difference approximation of
the Hessian matrix Gk = G(xk). Denote

Qk(d) =
1

2
dT Bkd + gT

k d

the quadratic function which locally approximates difference F (xk + d) − F (xk),

ωk(d) = (Bkd + gk)/‖gk‖
the accuracy of direction determination and

ρk(d) =
F (xk + d) − F (xk)

Qk(d)

the ratio of actual and predicted decrease of the objective function. Trust-region methods
(used in subroutines PNED, PNEC, PGAM, PGAN) generate points xk ∈ Rn, k ∈ N , in such a
way that x1 is arbitrary and

xk+1 = xk + αkdk, k ∈ N, (11)

where dk ∈ Rn are direction vectors and αk ≥ 0 are step-sizes. Direction vectors dk ∈ Rn

are chosen to satisfy conditions

‖dk‖ ≤ Δk, (12)

‖dk‖ < Δk ⇒ ‖ωk(dk)‖ ≤ ωk, (13)

−Qk(dk) ≥ σ‖gk‖min(‖dk‖, ‖gk‖/‖Bk‖), (14)

where 0 ≤ ωk ≤ ω < 1 and 0 < σ < 1 (we use value ω = 0.9 in our subroutines; σ is a
theoretical value given implicitly). Step-sizes αk ≥ 0 are selected so that

ρk(dk) ≤ 0 ⇒ αk = 0, (15)

ρk(dk) > 0 ⇒ αk = 1. (16)

7

Trust-region radii 0 < Δk ≤ Δ are chosen in such a way that 0 < Δ1 ≤ Δ (Δ1 and Δ are
given by parameters XDEL and XMAX of our subroutines) and

ρk(dk) < ρ ⇒ β‖dk‖ ≤ Δk+1 ≤ β‖dk‖, (17)

ρ ≤ ρk(dk) ≤ ρ ⇒ Δk+1 = Δk, (18)

ρ < ρk(dk) ⇒ Δk+1 = min(γΔk+1, Δ), (19)

where 0 < β ≤ β < 1 < γ and 0 < ρ < ρ < 1 (we use values β = 0.05, β = 0.75,
γ = 2, ρ = 0.1, ρ = 0.9 in our subroutines). Note that the initial trust-region radius Δ1

is computed by a special formula when XDEL = 0. This formula contains lower bound for
F (parameter TOLB in our subroutines) if INITS = 1. If INITS = 0, parameter TOLB need
not be defined.

To simplify the description of individual methods for computing a trust-region step,
we omit the outer index k and denote the inner index by i.

3.1 Direct Moré-Sorensen trust region method

Subroutine PNED is based on the computation of the optimum locally constrained step.
In this case, vector d ∈ Rn is obtained by solving subproblem

minimize Q(d) =
1

2
dT Bd + gT d subject to ‖d‖ ≤ Δ. (20)

Necessary and sufficient conditions for this solution are

‖d‖ ≤ Δ, (B + λI)d + g = 0, B + λI � 0, λ ≥ 0, λ(Δ − ‖d‖) = 0 (21)

(we use symbol � for ordering by positive semidefiniteness). The Moré-Sorensen method
[22] is based on solving nonlinear equation 1/‖d(λ)‖ = 1/Δ with (B +λI)d(λ)+ g = 0 by
the Newton method using the sparse Choleski decomposition of B + λI. More precisely,
we determine μ

1
as the maximal diagonal element of matrix −B, set

λ1 = max(μ
1
, 0), λ1 = ‖g‖/Δ + ‖B‖, λ1 = λ1

and for i = 1, 2, 3, . . . we proceed in the following way. Carry out the Gill-Murray [8]
decomposition B + λiI + Ei = RT

i Ri. If Ei = 0, determine vector vi ∈ Rn such that
‖vi‖ = 1 and vT

i (B + λiI)vi < 0, set μ
i
= λi − vT

i (B + λiI)vi, λi = μ
i
, λi = λi and repeat

this process (i.e., carry out the new Gill-Murray decomposition B + λiI + Ei = RT
i Ri). If

Ei = 0, compute vector di ∈ Rn by solving the equation RT
i Ridi + g = 0. If ‖di‖ > δΔ,

set λi+1 = λi and λi+1 = λi. If δΔ ≤ ‖di‖ ≤ δΔ or ‖di‖ < δΔ and λi = 0, set d = di and
terminate the computation. If ‖di‖ < δΔ and λi = 0, set λi+1 = λi, λi+1 = λi, determine
vector vi ∈ Rn such that ‖vi‖ = 1 and vT

i di ≥ 0, which is a good approximation of the
eigenvector of matrix B corresponding to its minimal eigenvalue, and compute number
αi ≥ 0 such that ‖di + αivi‖ = Δ. If

α2
i ‖Rivi‖2 ≤ (1 − δ2)(‖Ridi‖2 + λiΔ

2),

set d = di + αivi and terminate the computation, otherwise set μi = λi −‖Rivi‖2. In this

case or if ‖di‖ > δΔ, compute vector vi ∈ Rn by solving the equation RT
i vi = di and set

λi+1 := λi +
‖di‖2

‖vi‖2

(‖di‖ − Δ

Δ

)
.

8

If λi+1 < λi+1, set λi+1 = λi+1. If λi+1 > λi+1, set λi+1 = λi+1. We use values δ = 0.9 and
δ = 1.1 in our subroutines.

3.2 Direct dog-leg trust region method

The Moré-Sorensen method is very robust but requires 2-3 Choleski decompositions per
iteration on average. Simpler methods are based on minimization of Q(d) on the two-
dimensional subspace containing Cauchy step dC = −(gT g/gT Bg)g and Newton step
dN = −B−1g. Subroutine PGAM described in Section 5.2 is based on the dog-leg method
proposed in [24]. This method uses vectors d = dN if ‖dN‖ ≤ Δ or d = (Δ/‖dC‖)dC if
‖dC‖ ≥ Δ. In the remaining case (i.e., if ‖dC‖ < Δ < ‖dN‖), d is a convex combination
of dC and dN such that ‖d‖ = Δ. This method requires only one Choleski decomposition
per iteration.

3.3 Iterative shifted Steihaug-Toint trust region method

If B is not sufficiently sparse, then the sparse Choleski decomposition of B is expensive.
In this case, methods based on preconditioned conjugate gradient (CG) iterations are
more suitable. Steihaug [25] and Toint [26] proposed a method based on the fact that
Q(di+1) < Q(di) and ‖di+1‖C > ‖di‖C (where ‖di‖2

C = dT
i Cdi) hold in the preconditioned

CG iterations if CG coefficients are positive. We either obtain an unconstrained solution
with a sufficient precision or stop on the trust-region boundary if a negative curvature is
indicated or if the trust-region is left. More precisely, we set d1 = 0, g1 = g, p1 = C−1g
and for i = 1, 2, 3, . . . we proceed in the following way. If ‖gi‖ ≤ ω‖g‖, then set d = di

and terminate the computation, otherwise set

qi = Bpi, αi = gT
i C−1gi, /p

T
i qi.

If αi ≤ 0, determine αi ≥ 0 in such a way that ‖di + αipi‖ = Δ, set d := di + αipi

and terminate the computation, otherwise compute di+1 = di + αipi. If ‖di+1‖ ≥ Δ,
determine αi ≥ 0 in such a way that ‖di + αipi‖ = Δ, set d := di + αipi and terminate
the computation, otherwise compute

gi+1 = gi + αiqi, βi = gT
i+1C

−1gi+1/g
T
i C−1gi

pi+1 = −C−1gi+1 + βipi

Matrix C serves as a preconditioner. The choice C = I is used if MOS2 = 0 or an
incomplete Choleski decomposition of matrix B is used if MOS2 = 0 (MOS2 is a parameter
of the subroutine PNEC). If MOS2 > 0, a preliminary solution obtained by the incomplete
Choleski decomposition can be accepted. In this case, we first compute p1 = −C−1g. If
‖Bp1 + g‖ ≤ ω‖g‖, we set d = p1 and terminate the computation, otherwise we continue
by CG iterations as above.

Preconditioned CG method gives the monotone increasing sequence ‖di‖C , i ∈ N , but
we use sequence ‖di‖, i ∈ N , to satisfy constraint ‖d‖ ≤ Δ. Thus the solution on the
trust-region boundary obtained by the preconditioned CG method can be farther from
the optimal locally constrained step than that obtained without preconditioning. This
insufficiency is usually compensated by the rapid convergence of the preconditioned CG
method.

9

Subroutine PNEC is based on the Steihaug-Toint method described above if MOS3 = 0
or on a slightly more complicated shifted Steihaug-Toint method proposed in [13], [15]
if MOS3 > 0 (MOS3 is a parameter of the subroutine PNEC). The shifted Steihaug-Toint
method consists of the three steps:

1. Let m = MOS3 (the default value is MOS3 = 5). Determine tridiagonal matrix T of
order m by using m steps of the (unpreconditioned) Lanczos method (described,
e.g., in [10], [13]) applied to matrix B with the initial vector g.

2. Solve subproblem

minimize
1

2
d̃T T d̃ + ‖g‖eT

1 d̃ subject to ‖d̃‖ ≤ Δ (22)

by using the method of Moré and Sorensen described in Section 3.1 to obtain La-
grange multiplier λ̃.

3. Apply the (preconditioned) Steihaug-Toint method described above to subproblem

minimize
1

2
dT (B + λ̃I)d + gT d subject to ‖d‖ ≤ Δ (23)

to obtain direction vector d = d(λ̃).

Let λ̃ be the Lagrange multiplier of small-size subproblem (22) and λ be the Lagrange
multiplier obtained by the Moré-Sorensen method applied to the original trust-region
subproblem (20). It can be shown (see [15]) that 0 ≤ λ̃ ≤ λ. This inequality assures
that λ = 0 implies λ̃ = 0 so ‖d‖ < Δ implies λ̃ = 0. Thus the shifted Steihaug-Toint
method reduces to the standard one in this case. At the same time, if B is positive
definite and λ̃ > 0, then one has Δ ≤ ‖(B + λ̃I)−1g‖ < ‖B−1g‖. Thus the unconstrained
minimizer of the shifted quadratic function (23) is closer to the trust-region boundary
than the unconstrained minimizer of the original quadratic function (20) and we can
expect that d(λ̃) is closer to the optimal locally constrained step than d(0). Finally, if
λ̃ > 0, then matrix B + λ̃I is better conditioned than B and we can expect that the
shifted Steihaug-Toint method will converge more rapidly than the original one.

4 Variable metric methods for partially separable problems

Consider functions of the form

F (x) =
m∑

i=1

fi(x), (24)

where fi(x), 1 ≤ i ≤ m (m is usually large), are smooth particular functions depending
on a small number of variables (ni, say). In this case, the Jacobian matrix J(x) =
[Jij(x)] = [∂fi(x)/∂xj] is sparse. The sparsity pattern of the Jacobian matrix is stored
in the standard compressed row format using arrays IAG and JAG. For example, if the
Jacobian matrix has the following pattern

J =

⎡
⎢⎢⎢⎢⎣

∗ ∗ 0 ∗
∗ ∗ ∗ 0
∗ 0 0 ∗
0 ∗ ∗ 0
∗ 0 ∗ 0

⎤
⎥⎥⎥⎥⎦

10

(asterisks denote nonzero elements) then arrays IAG and JAG contain elements

IAG =
[

1 4 7 9 11 13
]
, JAG =

[
1 2 4 1 2 3 1 4 2 3 1 3

]
,

i.e., IAG contains pointers of the first elements in rows of the Jacobian matrix and JAG

contains column indices of the nonzero elements. Note that IAG has NA+1 elements and
the last element is equal to MA+1, where MA is the number of nonzero elements. This
convention is also used in subroutines PGAM, PGAN, PEQN, PEQL described in Sections 5-6.

Using the sparsity pattern of the Jacobian matrix, we can define packed gradients
ĝi(x) ∈ Rni and packed Hessian matrices Ĝi(x) ∈ Rni×ni of functions fi(x), 1 ≤ i ≤ m,
as dense but small-size vectors and matrices. Subroutine PSEP is based on partitioned
variable metric updates, which consider each particular function separately. Thus approx-
imations B̂i, 1 ≤ i ≤ m, of the packed Hessian matrices Ĝi(x) are updated by using the
quasi-Newton conditions B̂+

i ŝi = ŷi, where ŝi ∈ Rni is a part of the vector s consisting of
components corresponding to variables of fi and ŷi = ĝ+

i − ĝi (we omit outer index k and
replace index k +1 by + in this section). Therefore, a variable metric update can be used
for each of the particular functions. However, there is a difference between the classic and
the partitioned approach. Denoting b̂i = ŷT

i ŝi, ĉi = ŝT
i B̂iŝi, we can observe that b̂i ≥ 0

does not have to be guaranteed for all 1 ≤ i ≤ m. This difficulty is unavoidable and an
efficient algorithm has to handle this situation. Subroutine PSEP uses two strategies. If
MET = 1, then the safeguarded partitioned BFGS method with updates

B̂+
i = B̂i +

1

b̂i

ŷiŷ
T
i − 1

ĉi

B̂iŝi

(
B̂iŝi

)T

, b̂i > 0, (25)

B̂+
i = B̂i, b̂i ≤ 0.

is used. If MET = 2, then the BFGS updates are combined with the rank-one updates

B̂+
i = B̂i +

1

b̂i − ĉi

(
ŷi − B̂iŝi

)(
ŷi − B̂iŝi

)T

, |b̂i − ĉi| = 0, (26)

B̂+
i = B̂i, |b̂i − ĉi| = 0.

We use a strategy, which is based on the observation that (25) usually fails in the case
when too many particular functions have indefinite Hessian matrices. We start with the
partitioned BFGS update (25). If mneg ≥ θm, where mneg is a number of particular
functions with a negative curvature and θ is a threshold value, then (26) is used for all
particular functions in all subsequent iterations (we use value θ = 1/2 in the subroutine
PSEP).

A disadvantage of partitioned variable metric methods is the fact that approximations
of packed Hessian matrices need to be stored. Therefore, the number of stored elements
can be much greater than the number of nonzero elements in the Hessian pattern. More-
over, a partitioned structure cannot be used for sparse elimination directly. Thus the
standard sparse Hessian representation is constructed in subroutine PSEP before solving
linear systems. Variable metric methods for partially separable problems are implemented
in the line-search framework described in Section 2.

11

5 Hybrid methods for nonlinear least-squares

Consider functions of the form

F (x) =
1

2

m∑
i=1

f 2
i (x) =

1

2
fT (x)f(x)

(sum of squares), where fi(x), 1 ≤ i ≤ m (m is usually large), are smooth functions
depending on a small number of variables (ni, say). In this case, the Jacobian matrix
J(x) = [Jij(x)] = [∂fi(x)/∂xj] is sparse. The sparsity pattern of the Jacobian matrix
is stored in the standard compressed row format using arrays IAG and JAG in the way
described in Section 4.

Using the Jacobian matrix, we can express gradient g(x) and Hessian matrix G(x) in
the form

g(x) =
m∑

i=1

fi(x)gi(x) = JT (x)f(x),

G(x) =
m∑

i=1

(
gi(x)gT

i (x) + fi(x)Gi(x)
)

= JT (x)J(x) + C(x)

(Gi(x) are Hessian matrices of fi(x), 1 ≤ i ≤ m). The well-known Gauss-Newton method
uses matrix JT (x)J(x) instead of the Hessian matrix G(x) = JT (x)J(x) + C(x) (i.e., it
omits the second order information contained in C(x)). We assume that matrix JT (x)J(x)
is sparse (then also C(x) is sparse). Matrix JT (x)J(x) is frequently ill-conditioned (even
singular) so that the Gauss-Newton method requires a trust-region realization.

If the minimum value F (x∗) is large (large residual problem), the Gauss-Newton
method can be inefficient. Therefore, modifications based on the estimation of the second-
order term have been developed. These modifications are based on the fact (proved in
[1]) that (Fk − Fk+1)/Fk → 1 if Fk → 0 Q-superlinearly and (Fk − Fk+1)/Fk → 0 if
Fk → F ∗ > 0. Thus we can use the following philosophy. Direction vector dk is obtained
by the trust-region strategy described in Section 3. If xk+1 = xk (i.e., if (16) holds), we
compute Fk+1 = F (xk+1), Jk+1 = J(xk+1) and set

Bk+1 = JT
k+1Jk+1, Fk − Fk+1 > ϑFk,

Bk+1 = JT
k+1Jk+1 + Ck+1, Fk − Fk+1 ≤ ϑFk,

where Ck+1 is an approximation of the second order term and ϑ is a suitable value (pa-
rameter ETA in subroutines PGAM and PGAN).

For medium-size problems, matrix Ck+1 is usually obtained by dense variable metric
updates [1], which are unsuitable in the large-scale case. Fortunately, simple corrections
utilizing sparsity considerably increase the efficiency of the Gauss-Newton method. We
have implemented two hybrid methods proposed in [14].

5.1 Gauss-Newton method with the Newton corrections

Subroutine PGAN is based on the Newton corrections. In the first iteration (or after a
restart) we use matrix Bk = JT

k Jk. In the subsequent iterations we set

12

Bk+1 = JT
k+1Jk+1, Fk − Fk+1 > ϑFk,

Bk+1 = JT
k+1Jk+1 +

m∑
i=1

fi(xk+1)Gi(xk+1), Fk − Fk+1 ≤ ϑFk,

where Gi(xk+1), 1 ≤ i ≤ m, are approximations of Hessian matrices determined by using
gradient differences at the point xk+1. Subroutine PGAN uses the Moré-Sorensen trust-
region strategy described in Section 3.1.

5.2 Gauss-Newton method with the Marwil corrections

Subroutine PGAM is based on the Marwil variable metric corrections. In the first iteration
(or a after restart) we use matrix Bk = JT

k Jk. In the subsequent iterations we set

Bk+1 = JT
k+1Jk+1, Fk − Fk+1 > ϑFk,

Bk+1 = PSPQG(JT
k+1Jk+1), Fk − Fk+1 ≤ ϑFk,

where PS realizes an orthogonal projection into the subspace of symmetric matrices of
order n and PQG realizes an orthogonal projection into the intersection of the subspace
of matrices having the same sparsity pattern as JT J and the linear manifold of matrices
satisfying quasi-Newton condition Wsk = yk with sk = xk+1 − xk, yk = gk+1 − gk. Thus

PSW = (W + W T)/2,

(PGW)ij = Wij, (JT J)ij = 0,

(PGW)ij = 0, (JT J)ij = 0,

for a given square matrix W and

PQG(JT
k+1Jk+1) = PG(JT

k+1Jk+1 + uks
T
k),

where uk ∈ Rn is a solution to the linear system Dkuk = yk − JT
k+1Jk+1sk with diagonal

matrix Dk such that
(Dk)ii =

∑
(JT J)ij �=0

(eT
j sk)

2

(ej is the j-th column of the unit matrix). Subroutine PGAM uses the dog-leg trust-region
strategy described in Section 3.2.

6 Methods for sparse systems of nonlinear equations

Consider the system of nonlinear equations

f(x) = 0,

where f : Rn → Rn is a continuously differentiable mapping and assume that the Jacobian
matrix J(x) = [Jij(x)] = [∂fi(x)/∂xj] is sparse. The sparsity pattern of the Jacobian

13

matrix is stored in the standard compressed-row format using arrays IAG and JAG in the
way described in Section 4. Let A be an approximation of the Jacobian matrix J = J(x)
and let F = F (x) = (1/2)‖f(x)‖2. Methods considered in this section are realized in the
line-search framework. They generate a sequence of points xi ∈ Rn, i ∈ N , such that

xk+1 = xk + αkdk, k ∈ N, (27)

where dk ∈ Rn is the direction vector determined as an approximate solution of the linear
system Akd + fk = 0 such that

‖Akdk + fk‖ ≤ ωk‖fk‖ (28)

with the precision 0 ≤ ωk ≤ ω < 1 and αk is the step-size chosen in such a way that it is
the first member of the sequence αj

k, j ∈ N , where α1
k = 1 and βαj

k ≤ αj+1
k ≤ βαj

k with

0 < β ≤ β < 1, satisfying

Fk+1 − Fk ≤ −ε1αkf
T
k Akdk,

with the line search parameter 0 < ε1 < 1/2 (parameter TOLS in the subroutines PEQN

and PEQL). We use values β = 0.1 and β = 0.9 in our subroutines. The value αj+1
k

can be chosen either by a bisection (MES = 1) or by a two-point quadratic interpolation
(MES = 2) or by a three-point quadratic interpolation (MES = 3) or by a three-point cubic
interpolation (MES = 4) (MES is a parameter of the subroutines PEQN and PEQL).

To obtain a superlinear rate of convergence, the condition ωk → 0 has to be satisfied.
Therefore, we choose ωk = min(max(‖fk‖ν , γ(‖fk‖/‖fk−1‖)α), 1/k, ω), with the values
ν = 1/2, γ = 1, α = (1 +

√
5)/2 and ω = 1/2.

If Ak = Jk, then a safeguard based on restarts is used. It consists in setting Ak+1 = Jk+1

if j > j or Ak = Jk (with repeating the k-th iteration) if j > j, where 0 < j < j. We

use the values j = 1 and j = 5. The restart of the form Ak = Jk is also used whenever

−dT
k JT

k fk ≤ ε‖dk‖‖JT
k fk‖, where 0 < ε < 1 is a restart tolerance (parameter TOLD in the

subroutines PEQN and PEQL).
The direction vector dk (an approximate solution of the linear system Akd + fk =

0) is determined by using the preconditioned smoothed CGS method. To simplify the
description of this method, we omit the outer index k and denote the inner index by i.
Let h = AT f . We set s1 = 0, s1 = 0, r1 = f , r1 = f , p1 = f , u1 = f and for i = 1, 2, 3, . . .
we proceed in the following way. If ‖ri‖ ≤ ω‖f‖, then set d = si and terminate the
process. Otherwise compute

vi = AC−1pi, αi = hT ri/h
T vi,

qi = ui − αivi,

si+1 = si + αiC
−1(ui + qi),

ri+1 = ri + αiAC−1(ui + qi), βi = hT ri+1/h
T ri,

ui+1 = ri+1 + βiqi,

pi+1 = ui+1 + βi(qi + βipi),

[λi, μi]
T = arg min

[λ,μ]T∈R2
‖ri+1 + λ(ri − ri+1) + μvi‖,

si+1 = si+1 + λi(si − si+1) + μiC
−1pi,

ri+1 = ri+1 + λi(ri − ri+1) + μivi.

14

Matrix C serves as a preconditioner. The choice C = I is used if MOS2 = 0 or C is
defined as an incomplete LU decomposition of matrix A if MOS2 = 0 (MOS2 is a parameter
of the subroutines PEQN and PEQL). If MOS2 > 0, a preliminary solution obtained by the
incomplete Choleski decomposition can be accepted. In this case, we first compute vectors
d1 = −C−1f , r1 = Ad1+f . If ‖r1‖ ≤ ω‖f‖, then we set d = d1 and terminate the process,
otherwise we continue by CGS iterations as above.

More details concerning globally convergent line-search methods for systems of nonlin-
ear equations can be found in [18].

6.1 Inexact discrete Newton method

Subroutine PEQN is an implementation of the inexact discrete Newton method. This simple
method is based on elementwise differentiation. We always set Ak = J(xk), where

Jij(x) =
fi(x + δjej) − fi(x)

δj

for all pairs (i, j) corresponding to structurally nonzero elements of J(x). Thus we need
m scalar function evaluations (i.e. m/n equivalent vector function evaluations), where m
is the number of structurally nonzero elements of J(x).

6.2 Inverse column-update quasi-Newton method

Subroutine PEQL is an implementation of the inverse column update method, which is
introduced in [21]. This method uses an approximation Sk = A−1

k of the inverse Jaco-
bian matrix J−1

k in (28). Therefore, we simply set dk := −Skfk instead of using the
preconditioned smoothed CGS method if the restart is not used (if Ak = Jk). Denote
by sk = xk+1 − xk, sk−1 = xk − xk−1, . . ., sk−m = xk−m+1 − xk−m and yk = fk+1 − fk,
yk−1 = fk − fk−1, . . ., yk−m = fk−m+1 − fk−m the last m differences of points and function
vectors, respectively, where the lower index k − m corresponds to the iteration with the
restart. Let ek−1 = arg maxei

|eT
i yk−1|, . . ., ek−m = arg maxei

|eT
i yk−m| (arg max is taken

over all columns ei, 1 ≤ i ≤ n, of the unit matrix). Then the vector Skfk can be computed
by the formula

Skfk = Sk−mfk +
eT

k−1fk

eT
k−1yk−1

vk−1 + . . . +
eT

k−mfk

eT
k−myk−m

vk−m,

where vk−1 = dk−1 − Sk−1yk−1, . . ., vk−m = dk−m − Sk−myk−m are vectors computed
recursively by the formula

Skyk = Sk−myk +
eT

k−1yk

eT
k−1yk−1

vk−1 + . . . +
eT

k−myk

eT
k−myk−m

vk−m.

In both of these formulae we use the matrix Sk−m = (Lk−mUk−m)−1, where Lk−mUk−m is
the incomplete LU decomposition of the Jacobian matrix J(xk−m). Note that the vectors
ek−1, . . ., ek−m do not need to be stored. We only use indices of their unique nonzero
elements. The limited memory column update method needs to be restarted periodically
after m iterations (parameter MF in the subroutine PEQL), since at most m vectors can be
stored.

15

7 Inexact discrete Newton methods for equality constrained non-

linear programming problems

Consider a general twice continuously differentiable function F : Rn → R and a twice
continuously differentiable mapping c : Rn → Rm and assume that the Hessian matrix
of F and the Jacobian matrix of c are both sparse. In this case, discrete versions of the
Newton method can be efficiently used for seeking a local minimum of F on the manifold
defined by equality constraints c(x) = 0. The sparsity pattern of the Hessian matrix (only
the upper part) is stored in the standard compressed row format using arrays IH and JH

in the way described in Section 3. The sparsity pattern of the Jacobian matrix is stored
using arrays ICG and JCG, where ICG contains pointers of the first elements in rows of
the Jacobian matrix and JCG contains column indices of the nonzero elements. Note that
ICG has NC+1 elements and the last element is equal to MC+1, where MC is the number of
nonzero elements.

Applying the Newton method to the system

F (x) + A(x)u = 0,

c(x) = 0

of n + m nonlinear equations for unknown vectors x ∈ Rn and u ∈ Rm (first-order
necessary conditions), where A(x) is the Jacobian matrix of c(x), we obtain the iterative
process

xk+1 = xk + αkd
x
k,

uk+1 = uk + αkd
u
k ,

where dx
k, du

k are direction vectors obtained by solving the linear KKT system[
G(xk, uk) A(xk)
A(xk)

T 0

] [
dx

k

du
k

]
= −

[
g(xk, uk)

c(xk)

]
, (29)

and αk > 0 is a scalar step-size. Here

g(x, u) = ∇F (x) +
m∑

i=1

ui∇ci(x), G(x, u) = ∇2F (x) +
m∑

i=1

ui∇2ci(x)

is the gradient and the Hessian matrix of the Lagrangian function L(x, u) = F (x)+uT c(x),
respectively.

Various penalty functions can be used for obtaining step-size αk. We use augmented
Lagrangian function

Pk(α) = F (xk + αdx
k) + (uk + du

k)
T c(xk + αdx

k) +
σ

2
‖c(xk + αdx

k)‖2 (30)

in our subroutines, where σ ≥ 0 is a penalty parameter (parameter RPF1 in subroutines
PIND and PNUL). It can be shown (see [19]) that if system (30) is solved in such a way
that ‖Gkd

x
k + Akd

u
k + gk‖ ≤ ωk‖gk‖ and ‖AT

k dx
k + ck‖ ≤ ωk‖ck‖ with 0 < ωk < 1 and if

σ > −(dx
k)

T Gkd
x
k/ ((1 − ωk)‖ck‖), then P ′

k(0) (first order derivative of Pk(α) at α = 0) is
negative so that Pk(α) decreases in direction dx

k. By our experience, it is not advantageous

16

to recompute σ in every iteration. A more efficient way is to use a constant value σ ≥ 0
and replace Gk by a diagonal positive definite matrix Dk (restart) if P ′

k(0) ≥ 0. Using
this Dk for the construction of an indefinite preconditioner (see Section 7.1), we obtain
the exact solution of (30) in the first iteration of an inner Krylov-subspace method and,
moreover, (dx

k)
T Dkd

x
k > 0. Thus P ′

k(0) < 0 holds for any value σ ≥ 0. This procedure
allows us to choose sufficiently small values of σ, which decreases the Maratos-like effects
(step-size reduction) considerably. Assuming P ′

k(0) < 0, the step-size αk is chosen in
such a way that it is the first member of the sequence αj

k, j ∈ N , where α1
k = 1 and

βαj
k ≤ αj+1

k ≤ βαj
k with 0 < β ≤ β < 1, satisfying

P (αk) − P (0) ≤ ε1αkP
′
k(0)

with the line search parameter 0 < ε1 < 1/2 (parameter TOLS in the subroutines PIND

and PNUL). We use values β = 0.1 and β = 0.9 in our subroutines. The value αj+1
k

can be chosen either by a bisection (MES = 1) or by a two-point quadratic interpolation
(MES = 2) or by a three-point quadratic interpolation (MES = 3) or by a three-point cubic
interpolation (MES = 4) (MES is a parameter of the subroutines PIND and PNUL).

To simplify the description of individual methods for computing direction vectors, we
omit the outer index k and denote the inner index by i. Thus the linear KKT system
(29) can be written in the form

Kd =

[
B A
AT 0

] [
dx

du

]
=

[
bx

bu

]
= b, (31)

where B is an approximation of G(x, u) computed by using differences of gradients of
the Lagrangian function in the same way as in subroutines PNED and PNEC described in
Section 3 (the algorithm proposed in [27] is again used).

7.1 Methods utilizing indefinite preconditioners

In subroutine PIND, directions dx and du are computed directly from linear KKT system
(31) by the preconditioned conjugate gradient method. The indefinite preconditioner

C =

[
D A
AT 0

]
(32)

investigated in [19] is used, where D is a positive definite diagonal matrix derived from
the diagonal of B. Thus multiplication by C−1 can be expressed in the form

C−1r =

[
D−1 − D−1A(AT D−1A)−1AT D−1 D−1A(AT D−1A)−1

(AT D−1A)−1AT D−1 −(AT D−1A)−1

] [
rx

ru

]

=

[
D−1(rx − Atu)

tu

]
, tu = (AT D−1A)−1(AT D−1rx − ru). (33)

More precisely, we set d1 = 0, r1 = b, tu1 = (AT D−1A)−1(AT D−1rx
1 − ru

1), p1 = t1,
tx1 = D−1(rx

1 −Atu1) and for i = 1, 2, 3, . . . we proceed in the following way. If ‖rx
i ‖ ≤ ω‖bx‖

and ‖ru
i ‖ ≤ ω‖bu‖, then set d = di and terminate the computation. Otherwise compute

17

qi = Kpi, αi = rT
i ti/p

T
i qi,

di+1 = di + αipi, ri+1 = ri − αiqi,

tui+1 = (AT D−1A)−1(AT D−1rx
i+1 − ru

i+1),

txi+1 = D−1(rx
i+1 − Atui+1),

βi = rT
i+1ti+1/r

T
i ti, pi+1 = ti+1 + βipi.

(we use vectors

r =

[
rx

ru

]
t =

[
tx

tu

]
p =

[
px

pu

]
q =

[
qx

qu

]

in this description).
In the above algorithm, multiplication by matrix (AT D−1A)−1 is used. This matrix is

not computed explicitly, but the sparse Choleski decomposition is used instead. Unfor-
tunately, matrix AT D−1A can be dense if A has dense rows. To eliminate this situation,
we assume that AT = [AT

s , AT
d] where AT

s D−1
s As is sparse and Ad consists of dense rows.

Then

(AT D−1A)−1 = (AT
s D−1

s As + AT
d D−1

d Ad)
−1

= (AT
s D−1

s As)
−1 − (AT

s D−1
s As)

−1AT
d M−1

d Ad(A
T
s D−1

s As)
−1,

where
Md = Dd + Ad(A

T
s D−1

s As)
−1AT

d

is a (low-dimensional) dense matrix. Again the sparse Choleski decomposition is used
instead of (AT

s D−1
s As)

−1. To realize this elimination effectively, we need to define the
maximum number of dense rows (parameter MD in subroutine PIND) and the maximum
number of elements in sparse rows (parameter MDE in subroutine PIND).

7.2 Methods based on null-space transformation

Consider the unique representation dx = Zdz + D−1Ada, where

dz = (ZT DZ)−1ZT Ddx, da = (AT D−1A)−1AT dx

and where Z is a matrix whose columns form an orthogonal basis in the subspace of
vectors v ∈ Rn satisfying equation AT v = 0 (thus ZT A = 0). Using the second equation
in (31), we get da = (AT D−1A)−1bu and the first one implies BZdz = bx−BD−1Ada−Adu,
which after premultiplying by ZT gives

ZT BZdz = bz, (34)

where bz = ZT (bx − BD−1Ada). Thus dz can be obtained by the conjugate gradient
method with preconditioner ZT DZ applied to equation (34). Unfortunately, matrix Z
is not usually known (its computation is time-consuming and difficult for large sparse A
because of fill-in). For this reason, we use a modification proposed in [9]. In subroutine

18

PNUL, conjugate gradient iterations are modified in such a way that they use vectors
d̃ = Zdz, t̃ = Ztz, p̃ = Zpz and vectors r̃, q̃, such that rz = ZT r̃, qz = ZT q̃. After this
transformation, multiplication tz = (ZT DZ)−1rz can be replaced by the formula

t̃ = Z(ZT DZ)−1ZT r̃ = (D−1 − D−1A(AT D−1A)−1AT D−1)r̃

so that matrix Z need not be used explicitly. Since d̃ does not influence formulas in
conjugate gradient iterations directly, we can use dx = d̃ + D−1Ada instead of d̃. Since du

cannot be obtained from conjugate gradient iterations, it has to be estimated in another
way. The most natural choice is the weighted least-square minimization of the total
residual r̃ − Adu. This choice leads to the formula du = (AT D−1A)−1AT D−1r̃.

The above considerations form a basis for an efficient preconditioned conjugate gradient
algorithm. More precisely, we set dx

1 = D−1A(AT D−1A)−1bu, r̃1 = bx − Bdx
1 , du

1 =
(AT D−1A)−1AT D−1r̃1, t̃1 = D−1(r̃1 − Adu

1), γ = r̃T
1 t̃1, p̃1 = t̃1 and for i = 1, 2, 3, . . . we

proceed in the following way. If r̃T
i t̃i ≤ ωγ, then set dx = dx

i , du = du
i and terminate the

computation. Otherwise compute

q̃i = Bp̃i, αi = r̃T
i t̃i/p̃

T
i q̃i,

dx
i+1 = dx

i + αip̃i, r̃i+1 = r̃i − αiq̃i,

du
i+1 = (AT D−1A)−1AT D−1r̃i+1,

t̃i+1 = D−1(r̃i+1 − Adu
i+1),

βi = r̃T
i+1t̃i+1/r̃

T
i t̃i, p̃i+1 = t̃i+1 + βip̃i.

In these computations, multiplication by matrix (AT D−1A)−1 is again used. Thus we
proceed in the same way as in Section 7.1 if A has dense rows (subroutine PNUL also uses
parameters MD and MDE) .

8 Description of subroutines

In this section we describe easy-to-use subroutines PLISU, PLISS, PLIPU, PLIPS, PNEDU,
PNEDS, PNECU, PNECS, PSEPU, PSEPS, PGAMU, PGAMS, PGANU, PGANS, PEQNU, PEQLU, PINDU,
PNULU which can be called from the user’s program. In the description of formal pa-
rameters we introduce a type of the argument denoted by two letters. The first letter is
either I for integer arguments or R for double-precision real arguments. The second letter
specifies whether the argument must have a value defined on the entry to the subroutine
(I), whether it is a value which will be returned (O), or both (U), or whether it is an aux-
iliary value (A). Beside the formal parameters, we use a COMMON /STAT/ block containing
statistical information. This block, used in each subroutine, has the following form:

COMMON /STAT/ NRES,NDEC,NIIT,NIT,NFV,NFG,NFH

Its elements have the following meanings:

19

Element Type Significance

NRES IO Number of restarts.

NDEC IO Number of matrix decompositions.

NIIT IO Number of inner iterations (for solving linear systems).

NIT IO Number of iterations.

NFV IO Number of function evaluations.

NFG IO Number of gradient evaluations.

NFH IO Number of Hessian evaluations.

Easy-to-use subroutines are called by the following statements:

CALL PLISU(NF,X,RA,NRA,IPAR,RPAR,F,GMAX,MF,ITERM)
CALL PLISS(NF,NB,X,IX,XL,XU,RA,NRA,IPAR,RPAR,F,GMAX,MF,ITERM)
CALL PLIPU(NF,X,RA,NRA,IPAR,RPAR,F,GMAX,MF,ITERM)
CALL PLIPS(NF,NB,X,IX,XL,XU,RA,NRA,IPAR,RPAR,F,GMAX,MF,ITERM)
CALL PNEDU(NF,X,IH,JH,NH,IA,NIA,RA,NRA,IPAR,RPAR,F,GMAX,ITERM)
CALL PNEDS(NF,NB,X,IX,XL,XU,IH,JH,NH,IA,NIA,RA,NRA,IPAR,RPAR,F,GMAX,ITERM)
CALL PNECU(NF,X,IH,JH,NH,IA,NIA,RA,NRA,IPAR,RPAR,F,GMAX,ITERM)
CALL PNECS(NF,NB,X,IX,XL,XU,IH,JH,NH,IA,NIA,RA,NRA,IPAR,RPAR,F,GMAX,ITERM)
CALL PSEPU(NF,NA,X,AF,IAG,JAG,IA,NIA,RA,NRA,IPAR,RPAR,F,GMAX,ITERM)
CALL PSEPS(NF,NA,NB,X,IX,XL,XU,AF,IAG,JAG,IA,NIA,RA,NRA,IPAR,RPAR,F,GMAX,ITERM)
CALL PGAMU(NF,NA,X,AF,IAG,JAG,IA,NIA,RA,NRA,IPAR,RPAR,F,GMAX,ITERM)
CALL PGAMS(NF,NA,NB,X,IX,XL,XU,AF,IAG,JAG,IA,NIA,RA,NRA,IPAR,RPAR,F,GMAX,ITERM)
CALL PGANU(NF,NA,X,AF,IAG,JAG,IA,NIA,RA,NRA,IPAR,RPAR,F,GMAX,ITERM)
CALL PGANS(NF,NA,NB,X,IX,XL,XU,AF,IAG,JAG,IA,NIA,RA,NRA,IPAR,RPAR,F,GMAX,ITERM)
CALL PEQNU(NF,X,IAG,JAG,IA,NIA,RA,NRA,IPAR,RPAR,AF,F,GMAX,ITERM)
CALL PEQLU(NF,X,IAG,JAG,IA,NIA,RA,NRA,IPAR,RPAR,AF,F,GMAX,MF,ITERM)
CALL PINDU(NF,NC,X,IH,JH,NH,CF,ICG,JCG,IA,NIA,RA,NRA,IPAR,RPAR,F,GMAX,CMAX,ITERM)
CALL PNULU(NF,NC,X,IH,JH,NH,CF,ICG,JCG,IA,NIA,RA,NRA,IPAR,RPAR,F,GMAX,CMAX,ITERM)

Their arguments have the following meanings:

Argument Type Significance

NF II Number of variables of the objective.

NA II Number of particular functions.

NB II Specification whether the simple bounds are suppressed (NB = 0) or ac-
cepted (NB > 0).

NC II Number of constraints.

X(NF) RU On input, vector with the initial estimate to the solution. On output, the
approximation to the minimum.

IX(NF) II Vector containing the simple bound types (significant only if NB > 0):
IX(I) = 0: the variable X(I) is unbounded,
IX(I) = 1: the lower bound X(I) ≥ XL(I),
IX(I) = 2: the upper bound X(I) ≤ XU(I),

20

IX(I) = 3: the two-side bound XL(I) ≤ X(I) ≤ XU(I),
IX(I) = 5: the variable X(I) is fixed (given by its initial estimate).

XL(NF) RI Vector with lower bounds for variables (significant only if NB > 0).

XU(NF) RI Vector with upper bounds for variables (significant only if NB > 0).

F RO Value of the objective function at the solution X.

IH(NF+1) IA Pointers of the diagonal elements in the upper part of the Hessian matrix.

JH(NH) IA Column indices of the nonzero elements and additional working space for
the Choleski decomposition of the Hessian matrix.

NH II Dimension of array JH(NH). Since this array is also used for storing the
Choleski decomposition, NH has to be greater than MH=IH(NF+1)-1 (the
number of nonzero elements in the sparse Hessian matrix). We recommend
the value NH=3*MH

AF(NA) RO Vector which contains values of particular functions.

IAG(NA+1) IA Pointers of the first elements in rows of the Jacobian matrix.

JAG(MA) IA Column indices of nonzero elements of the Jacobian matrix.

CF(NC+1) RA Vector which contains values of constraint functions (significant only if
NC > 0).

ICG(NC+1) IA Pointers of the first elements in rows of the constraint Jacobian matrix.

JCG(MC) IA Column indices of nonzero elements of the constraint Jacobian matrix.

IA(NIA) IA Working array of the dimension NIA (see Table 2).

RA(NRA) RA Working array of the dimension NRA (see Table 2).

IPAR(8) IA Integer parameters (see Table 3).

RPAR(9) RA Real parameters (see Table 3).

GMAX RO Maximum absolute value of a particular derivative of the Lagrangian func-
tion.

CMAX RO Maximum constraint violation.

MF II The number of limited-memory variable metric updates in each iteration.

ITERM IU Variable that indicates the cause of termination:

ITERM = 1: if |X−Xold| was less than or equal to TOLX in two subsequent
iterations,

ITERM = 2: if |F−Fold| was less than or equal to TOLF in two subsequent
iterations,

ITERM = 3: if F is less than or equal to TOLB,
ITERM = 4: if GMAX is less than or equal to TOLG,
ITERM = 11: if NIT exceeded MIT,
ITERM = 12: if NFV exceeded MFV,
ITERM = 13: if NFG exceeded MFG,
ITERM < 0: if the method failed.

Dimension NH of array JH has to be sufficiently large to include indices of new nonzero elements
of the Choleski factor. This value should be greater than 3 ∗ MH, where MH = IH(NF + 1) − 1 is
the number of nonzero elements in the original pattern. Dimensions NIA and NRA of working
arrays IA and RA should be greater than values introduced in Table 2. When NH, NIA, NRA are

21

not sufficiently large, then a message containing the required values is printed and computation
is terminated. This standard action can be suppressed by the input choice ITERM < 0 (this
is advantageous in case the recommended values are too large). Sometimes, when the number
of new nonzero elements is too large, the recommended values can be insufficient. In this
case, which is detected by the output value ITERM (ITERM > 30), values NH and NRA should
be increased. Table 2 contains additional values which are not input parameters. Thus MA =
IAG(NA + 1) − 1 and MC = ICG(NC + 1) − 1 are numbers of nonzero elements in the Jacobian
patterns (dimensions of arrays JAG and JCG). Moreover, denoting KA(I) = IAG(I + 1) − IAG(I)
and KC(I) = ICG(I+ 1)− ICG(I) the numbers of nonzero elements in the corresponding rows of
Jacobian matrices, we define

KH =
NA∑
I=1

KA(I) ∗ (KA(I) − 1)/2,

KA = MAX(KA(I) ∗ (KA(I) − 1)/2, 1 ≤ I ≤ NA),
KC = MAX(KC(I) ∗ (KC(I) − 1)/2, 1 ≤ I ≤ NC).

Value MD is described in Table 3.

subroutine NIA NRA

PLIS - 2*(MF+1)*NF+2*MF

PLIP - (MF+5)*NF+2*MF

PNED 8*NF+6 5*NF+1+3*NH

PNEC 4*NF+3 7*NF+1+2*NH

PSEP 8*NF+NA+6+2*KH 5*NF+2*MA+3*KH

PGAN 8*NF+6+2*KH 6*NF+2*KH+KA

PGAM 8*NF+6+2*KH 6*NF+2*KH

PEQN 5*NF 11*NF+2*MA

PEQL 6*NF 11*NF+2*MA+(NF-1)*MF

PIND 4*NF+6*(NC+1)+2*KC 7*NF+(MD+8)*NC+MC+MD*(MD+3)/2+2*(MH+KC+1)

PNUL 4*NF+6*(NC+1)+2*KC 7*NF+(MD+5)*NC+MC+MD*(MD+3)/2+2*(MH+KC+1)

Table 2: Dimensions of working arrays

The integer and real parameters listed in Table 3 have the following meanings:

Argument Type Significance

IPRNT II Print specification:

IPRNT = 0: print is suppressed,
IPRNT = 1: basic print of final results,
IPRNT = −1: extended print of final results,
IPRNT = 2: basic print of intermediate and final results,
IPRNT = −2: extended print of intermediate and final results.

MIT II Maximum number of iterations; the choice MIT = 0 causes that the default
value MIT = 9000 in PLIS, PLIP, PSEP or MIT = 5000 in PNED, PNEC,
PGAM, PGAN or MIT = 1000 in the other subroutines will be taken.

MFV II Maximum number of function evaluations; the choice MFV = 0 causes that
the default value MIT = 9000 in PLIS, PLIP, PSEP or MIT = 5000 in PNED,
PNEC, PGAM, PGAN or MIT = 1000 in the other subroutines will be taken.

22

Parameter PLIS PLIP PNED PNEC PSEP
PGAM
PGAN

PEQN
PEQL

PIND
PNUL

IPAR(1) IPRNT IPRNT IPRNT IPRNT IPRNT IPRNT IPRNT IPRNT

IPAR(2) MIT MIT MIT MIT MIT MIT MIT MIT

IPAR(3) MFV MFV MFV MFV MFV MFV MFV MFV

IPAR(4) MFG MFG MFG MFG MFG MFG MES MFG

IPAR(5) IEST IEST IEST IEST IEST IEST MOS1 MES

IPAR(6) MES MES - MOS2 MES - MOS2 MOS

IPAR(7) - MEC - MOS3 MET - MOS3 MD

IPAR(8) - MET - - - - - MDE

RPAR(1) XMAX XMAX XMAX XMAX XMAX XMAX XMAX XMAX

RPAR(2) TOLX TOLX TOLX TOLX TOLX TOLX TOLX TOLX

RPAR(3) TOLF TOLF TOLF TOLF TOLF TOLF TOLF TOLC

RPAR(4) TOLB TOLB TOLB TOLB TOLB TOLB TOLB TOLG

RPAR(5) TOLG TOLG TOLG TOLG TOLG TOLG TOLG TOLD

RPAR(6) TOLD TOLD XDEL XDEL TOLD XDEL TOLD TOLS

RPAR(7) TOLS TOLS FMIN FMIN TOLS FMIN TOLS RPF1

RPAR(8) TOLP TOLP - - TOLP ETA ETA2 -

RPAR(9) FMIN FMIN - - FMIN - - -

Table 3: Integer and real parameters

MFG II Maximum number of gradient evaluations; the choice MFG = 0 causes that
the default value MFG = 10000 will be taken.

IEST II Estimation of the minimum function value for the line search:

IEST = 0: estimation is not used,
IEST = 1: lower bound FMIN is used as an estimation for the minimum

function value.
MES II Variable that specifies the interpolation method selection in a line search:

MES = 1: bisection,
MES = 2: two-point quadratic interpolation,
MES = 3: three-point quadratic interpolation,
MES = 4: three-point cubic interpolation.
The choice MES = 0 causes that the default value MES = 4 in PLIS, PLIP,
PSEP or MES = 1 in PEQN, PEQL, PIND, PNUL will be taken.

MEC II Variable that determines the correction parameter:

MEC = 1: unit value,
MEC = 2: balancing value,
MEC = 3: square root,
MEC = 4: geometric mean,
MEC = 5: ratio of shift parameters.

23

The choice MEC = 0 causes that the default value MEC = 4 will be taken.

MET II In PLIP: Variable that specifies the limited-memory method:

MET = 1: rank-one method,
MET = 2: rank-two method.
The choice MET = 0 causes that the default value MET = 2 will be taken.
In PSEP: Variable that specifies partitioned variable metric update:

MET = 1: the BFGS update,
MET = 2: combination of the BFGS and the rank-one updates.
The choice MET = 0 causes that the default value MET = 2 will be taken.

MOS II Choice of preconditioning strategy:

MOS = 1: preconditioning by the constraint preconditoner with com-
plete Gill-Murray decomposition.

MOS = −1: preconditioning by the constraint preconditioner with incom-
plete Gill-Murray decomposition,

The choice MOS = 0 causes that the default value MOS = 1 will be taken.

MOS1 II Variable that specifies dual vector in the CGS method:

MOS1 = 1: gradient of the objective function is used,
MOS1 = 2: vector containing values of particular functions is used.
The choice MOS1 = 0 causes that the default value MOS1 = 1 in PEQN and
MOS1 = 2 in PEQL will be taken.

MOS2 II Choice of preconditioning strategy:

MOS2 = 0: preconditioning is not used,
MOS2 = −1: in PNEC: preconditioning by the incomplete Gill-Murray de-

composition,
MOS2 = −1: in PEQN, PEQL: preconditioning by the incomplete LU de-

composition,
MOS2 = 1: in PNEC: preconditioning by the incomplete Gill-Murray de-

composition combined with preliminary solution of the pre-
conditioned system.

MOS2 = 1: in PEQN, PEQL: preconditioning by the incomplete LU de-
composition combined with preliminary solution of the pre-
conditioned system.

MOS3 II In PNEC: Number of Lanczos steps for determination of the Levenberg-
Marquardt parameter (recommended value is MOS3 = 5).
In PEQN, PEQL: Variable that specifies the smoothing strategy for the CGS
method:
MOS3 = 1: smoothing is not used,
MOS3 = 2: single smoothing strategy is used,
MOS3 = 3: double smoothing strategy is used.
The choice MOS3 = 0 causes that the default value MOS3 = 3 will be taken.

MD II Maximum number of the dense rows; the choice MD = 0 causes that the
default value MD = 10 will be taken.

MDE II Maximum number of nonzero elements in sparse rows; the choice MDE = 0
causes that the default value MDE = 50 will be taken.

XMAX RI Maximum stepsize; the choice XMAX = 0 causes that the default value
XMAX = 105 in PEQN, PEQL or XMAX = 103 in the other subroutines will
be taken.

24

TOLX RI Tolerance for the change of the coordinate vector X; the choice TOLX = 0
causes that the default value TOLX = 10−16 in PEQN, PEQL, PIND, PNUL
or TOLX = 10−12 in the other subroutines will be taken.

TOLF RI Tolerance for the change of function values; the choice TOLF = 0 causes that
the default value TOLF = 10−16 in PEQN, PEQL or TOLF = 10−15 in PGAM,
PGAN or TOLF = 10−14 in the other subroutines will be taken.

TOLC RI Tolerance for the constraint violation; the choice TOLC = 0 causes that the
default value TOLC = 10−6 will be taken.

TOLB RI Minimum acceptable function value; the choice TOLB = 0 causes that the
default value TOLB = 10−16 in PEQN, PEQL or TOLB = FMIN + 10−15 in the
others subroutines will be taken.

TOLG RI Tolerance for the Lagrangian function gradient; the choice TOLG = 0 causes
that the default value 10−5 in PGAM, PGAN or TOLG = 10−6 in the other
subroutines will be taken.

TOLD RI Tolerance for a descent direction; the choice TOLD = 0 causes that the
default value TOLD = 10−4 in PLIS, PLIP, PSEP, or TOLD = 10−15 in
PEQN,PEQL or TOLD = 10−5 in PIND, PNUL will be taken.

TOLS RI Tolerance parameter for a function decrease in the line search; the choice
TOLS = 0 causes that the default value TOLS = 10−4 will be taken.

TOLP RI Tolerance parameter for directional derivative increase in the line search;
the choice TOLP = 0 causes that the default value TOLP = 0.8 in PLIS or
TOLP = 0.9 in PLIP, PSEP will be taken.

XDEL RI Trust region step-size; the choice XDEL = 0 causes that a suitable default
value will be computed.

FMIN RI Lower bound for the minimum function value.

ETA RI Parameter for switch between the Gauss-Newton method and variable
metric correction; the choice ETA = 0 causes that the default value
ETA = 1.5 · 10−4 will be taken.

ETA2 RI Damping parameter for an incomplete LU preconditioner.

RPF1 RI Value of the penalty parameter in the merit function; the choice RPF1 = 0
causes that the default value RPF1 = 10−4 will be taken.

The subroutines PLISU,PLISS,PLIPU,PLIPS,PNEDU,PNEDS,PNECU,PNECS require the user
supplied subroutines OBJ,DOBJ that define the objective function and its gradient and have
the form

SUBROUTINE OBJ(NF,X,F)
SUBROUTINE DOBJ(NF,X,G)

The subroutines PSEPU,PSEPS,PGAMU,PGAMS,PGANU,PGANS require the user supplied subroutines
FUN,DFUN that define particular functions and their gradients and have the form

SUBROUTINE FUN(NF,KA,X,FA)
SUBROUTINE DFUN(NF,KA,X,GA)

The subroutines PEQNU,PEQLU require the user supplied subroutine FUN that defines particular
functions and has the form

SUBROUTINE FUN(NF,KA,X,FA)

25

The subroutines PINDU,PNULU require the user supplied subroutines OBJ,DOBJ that define the
objective function and its gradient and subroutines CON,DCON that define constraint functions
and their gradients. These subroutines have the form

SUBROUTINE OBJ(NF,X,F)
SUBROUTINE DOBJ(NF,X,G)
SUBROUTINE CON(NF,KC,X,FC)
SUBROUTINE DCON(NF,KC,X,GC)

The arguments of the user supplied subroutines have the following meanings:

Argument Type Significance

NF II Number of variables of the objective function.

KA II Index of the particular function.

KC II Index of the constraint function.

X(NF) RI An estimate to the solution.

F RO Value of the objective function at the point X.

FA RO Value of the KA-th particular function at the point X.

FC RO Value of the KC-th constraint function at the point X.

G(NF) RO Gradient of the objective function at the point X.

GA(NF) RO Gradient of the KA-th particular function at the point X.

GC(NF) RO Gradient of the KC-th constraint function at the point X.

9 Verification of subroutines

In this section we report the results obtained by using test programs TLISU, TLISS, TLIPU, TLIPS,
TNEDU, TNEDS, TNECU, TNECS, TSEPU, TSEPS, TGAMU, TGAMS, TGANU, TGANS, TEQNU, TEQLU, TINDU,
TNULU which serve for demonstration, verification and testing of subroutines PLISU, PLISS,
PLIPU, PLIPS, PNEDU, PNEDS, PNECU, PNECS, PSEPU, PSEPS, PGAMU, PGAMS, PGANU, PGANS, PEQNU,
PEQLU, PINDU, PNULU. These results are listed in the following tables (rows corresponding to
individual test problems contain the number of iterations NIT, the number of function evaluations
NFV, the number of gradient evaluations NFG, the final value of the objective function F, the value
of the termination criterion constraint C, the value of the termination criterion G and the cause
of termination ITERM). All computations reported were performed on a Pentium PC computer,
under the Windows 2000 system using the Digital Visual Fortran (Version 6) compiler, in double-
precision arithmetic. All subroutines were checked with a Fortran verifier and also implemented
and tested on various UNIX workstations (Digital, Silicon Graphics, Hewlet Packard).

26

Problem NIT NFV NFG F G ITERM

1 4988 5554 5554 0.96378001D−14 0.8905D−06 4
2 411 440 440 0.35727672D+01 0.1559D−05 2
3 74 78 78 0.65510169D−09 0.5391D−06 4
4 103 112 112 0.26949954D+03 0.8990D−06 4
5 24 26 26 0.13063928D−11 0.6711D−06 4
6 30 31 31 0.21610223D−10 0.9461D−06 4
7 38 43 43 0.33513743D+03 0.7296D−06 4
8 29 33 33 0.76177495D+06 0.4315D−03 2
9 13 16 16 0.31643614D+03 0.3686D−06 4
10 1540 1582 1582 −0.12463000D+03 0.1240D−04 2
11 107 116 116 0.10776588D+02 0.1754D−05 2
12 366 376 376 0.98227362D+03 0.1215D−04 2
13 36 37 37 0.87510394D−14 0.2230D−07 4
14 10 12 12 0.12872917D−08 0.9163D−06 4
15 2092 2157 2157 0.19240160D+01 0.9344D−06 4
16 193 203 203 −0.42740448D+03 0.8227D−05 2
17 1007 1032 1032 −0.37992109D−01 0.8761D−06 4
18 1449 1474 1474 −0.24574119D−01 0.8616D−06 4
19 1393 1431 1431 0.59598624D+02 0.2592D−05 2
20 2129 2191 2191 −0.10001352D+01 0.9083D−06 4
21 3090 3166 3166 0.21386638D+01 0.9973D−06 4
22 1305 1346 1346 0.10000000D+01 0.9817D−06 4

Table 4: Results obtained by program TLISU

Problem NIT NFV NFG F G ITERM

1 5063 5738 5738 0.00000000D+00 0.0000D+00 3
2 3167 4664 4664 0.39264596D+04 0.6260D−04 2
3 113 124 124 0.45950339D−12 0.6001D−06 4
4 59 64 64 0.26952269D+03 0.8381D−06 4
5 24 26 26 0.13063928D−11 0.6711D−06 4
6 30 31 31 0.21610223D−10 0.9461D−06 4
7 33 40 40 0.33772248D+03 0.5918D−06 4
8 50 55 55 0.76192573D+06 0.2319D−03 2
9 505 508 508 0.42805692D+03 0.3340D−07 4
10 1176 1242 1242 −0.81091359D+02 0.1585D−04 2
11 17 18 18 0.96517295D+05 0.1714D−05 2
12 173 177 177 0.49942141D+04 0.5035D−05 2
13 36 37 37 0.87510394D−14 0.2230D−07 4
14 10 12 12 0.12872917D−08 0.9163D−06 4
15 2092 2157 2157 0.19240160D+01 0.9344D−06 4
16 178 184 184 −0.42739165D+03 0.1069D−04 2
17 1007 1032 1032 −0.37992109D−01 0.8761D−06 4
18 1449 1474 1474 −0.24574119D−01 0.8616D−06 4
19 1561 1595 1595 0.16549452D+04 0.1117D−04 2
20 2075 2121 2121 −0.10001352D+01 0.9157D−06 4
21 1181 1205 1205 0.24135487D+01 0.9447D−06 4
22 1562 1598 1598 0.10000000D+01 0.7856D−06 4

Table 5: Results obtained by program TLISS

27

Problem NIT NFV NFG F G ITERM

1 5383 5417 5417 0.60102266D−13 0.5992D−06 4
2 541 571 571 0.35727672D+01 0.1404D−05 2
3 125 128 128 0.33827028D−12 0.5181D−06 4
4 109 114 114 0.26949954D+03 0.6692D−06 4
5 26 27 27 0.71007240D−11 0.9508D−06 4
6 35 36 36 0.14294227D−10 0.7368D−06 4
7 36 41 41 0.33693718D+03 0.9561D−06 4
8 33 36 36 0.76177495D+06 0.1925D−02 2
9 15 18 18 0.31643614D+03 0.2636D−06 4
10 1941 1957 1957 −0.12495000D+03 0.2178D−04 2
11 140 146 146 0.10776588D+02 0.5924D−06 4
12 415 418 418 0.98227362D+03 0.1279D−04 2
13 40 41 41 0.49777715D−12 0.8522D−06 4
14 8 10 10 0.12883424D−08 0.9771D−06 4
15 1239 1294 1294 0.19240160D+01 0.9144D−06 4
16 248 253 253 −0.42740448D+03 0.5924D−05 2
17 598 604 604 −0.37992109D−01 0.9079D−06 4
18 989 998 998 −0.24574119D−01 0.9751D−06 4
19 1261 1272 1272 0.59598624D+02 0.4099D−05 2
20 2336 2360 2360 −0.10001352D+01 0.8626D−06 4
21 2489 2519 2519 0.21386638D+01 0.8705D−06 4
22 1261 1292 1292 0.10000000D+01 0.9269D−06 4

Table 6: Results obtained by program TLIPU

Problem NIT NFV NFG F G ITERM

1 5263 5321 5321 0.53013200D−13 0.3705D−05 2
2 2293 2447 2447 0.39304496D+04 0.2507D−04 2
3 127 132 132 0.21055015D−11 0.4368D−06 4
4 70 72 72 0.26952269D+03 0.7939D−06 4
5 26 27 27 0.71007240D−11 0.9508D−06 4
6 35 36 36 0.14294227D−10 0.7368D−06 4
7 38 44 44 0.33693718D+03 0.8210D−06 2
8 59 68 68 0.76192573D+06 0.6760D−03 2
9 508 510 510 0.42805692D+03 0.7761D−06 4
10 1299 1327 1327 −0.82540057D+02 0.1576D−04 2
11 16 17 17 0.96517295D+05 0.1463D−03 2
12 181 184 184 0.49942141D+04 0.1045D−04 2
13 40 41 41 0.49777715D−12 0.8522D−06 4
14 8 10 10 0.12883424D−08 0.9771D−06 4
15 1239 1294 1294 0.19240160D+01 0.9144D−06 4
16 227 228 228 −0.42739165D+03 0.9524D−05 2
17 598 604 604 −0.37992109D−01 0.9079D−06 4
18 989 998 998 −0.24574119D−01 0.9751D−06 4
19 1367 1383 1383 0.16549452D+04 0.1053D−04 2
20 2284 2297 2297 −0.10001352D+01 0.8125D−06 4
21 1184 1190 1190 0.24135487D+01 0.9597D−06 4
22 1361 1381 1381 0.10000000D+01 0.9624D−06 4

Table 7: Results obtained by program TLIPS

28

Problem NIT NFV NFG F G ITERM

1 1419 1423 5680 0.39866239D+01 0.1307D−09 4
2 39 45 200 0.23140639D−14 0.3499D−06 4
3 17 18 108 0.83978290D−09 0.9328D−06 4
4 24 25 100 0.26949954D+03 0.6658D−10 4
5 11 12 72 0.79510946D−10 0.4730D−06 4
6 13 16 196 0.12594486D−10 0.8150D−06 4
7 12 13 78 0.33693718D+03 0.3004D−06 4
8 4 5 90 0.76177495D+06 0.2155D−06 4
9 7 9 16 0.31643614D+03 0.1464D−06 4
10 78 80 711 −0.12523000D+03 0.2705D−09 4
11 67 68 408 0.10776588D+02 0.1987D−06 4
12 127 128 512 0.98227362D+03 0.4950D−09 4
13 6 7 28 0.59899867D−10 0.6926D−06 4
14 2 3 18 0.12901360D−08 0.7917D−06 4
15 9 10 40 0.19240160D+01 0.1999D−06 4
16 7 8 48 −0.42740448D+03 0.5655D−07 4
17 8 9 54 −0.37992109D−01 0.3144D−10 4
18 7 8 48 −0.24574119D−01 0.2184D−09 4
19 6 7 42 0.59598624D+02 0.9516D−08 4
20 14 15 90 −0.10001352D+01 0.1388D−08 4
21 11 12 72 0.21386638D+01 0.3314D−08 4
22 30 34 186 0.10000000D+01 0.1636D−08 4

Table 8: Results obtained by program TNEDU

Problem NIT NFV NFG F G ITERM

1 1420 1424 5680 0.00000000D+00 0.0000D+00 3
2 128 130 640 0.19800505D+04 0.9110D−10 4
3 17 19 108 0.18935586D−09 0.3399D−06 4
4 10 12 44 0.26952269D+03 0.3280D−09 4
5 13 15 84 0.39190563D−12 0.5364D−06 4
6 13 14 196 0.13639663D−11 0.9010D−06 4
7 30 32 186 0.33692005D+03 0.1514D−05 2
8 37 38 684 0.76192573D+06 0.1187D−06 4
9 530 531 1062 0.42805692D+03 0.3267D−13 4
10 109 127 990 −0.80451821D+02 0.6391D−06 4
11 27 28 168 0.72291495D+05 0.3918D−08 4
12 519 520 2080 0.49942141D+04 0.2361D−06 4
13 3 4 16 0.66054208D−23 0.3631D−11 3
14 2 3 18 0.12901360D−08 0.7917D−06 4
15 9 10 40 0.19240160D+01 0.1999D−06 4
16 10 12 66 −0.42739165D+03 0.2023D−07 4
17 8 9 54 −0.37992109D−01 0.3144D−10 4
18 7 8 48 −0.24574119D−01 0.2184D−09 4
19 13 16 84 0.16549452D+04 0.1738D−08 4
20 14 15 90 −0.10001352D+01 0.1388D−08 4
21 9 10 60 0.24135487D+01 0.3885D−08 4
22 30 34 186 0.10000000D+01 0.1636D−08 4

Table 9: Results obtained by program TNEDS

29

Problem NIT NFV NFG F G ITERM

1 1436 1439 5748 0.39866239D+01 0.1375D−08 4
2 79 89 400 0.16914409D−20 0.3819D−09 3
3 18 19 114 0.18069232D−09 0.3157D−06 4
4 24 25 100 0.26949954D+03 0.1357D−08 4
5 11 12 72 0.99092247D−10 0.5108D−06 4
6 17 21 252 0.16690487D−10 0.8977D−06 4
7 11 12 72 0.33693718D+03 0.6291D−06 4
8 5 6 108 0.76177495D+06 0.3794D−06 4
9 7 8 16 0.31643614D+03 0.3617D−08 4
10 66 72 603 −0.13351000D+03 0.1935D−06 4
11 71 72 432 0.10776588D+02 0.2373D−10 4
12 133 134 536 0.98227362D+03 0.2030D−07 4
13 7 8 32 0.40253017D−26 0.1527D−13 3
14 2 3 18 0.12902879D−08 0.8199D−06 4
15 10 11 44 0.19240160D+01 0.7151D−07 4
16 12 15 78 −0.42740448D+03 0.8938D−09 4
17 8 9 54 −0.37992109D−01 0.3913D−09 4
18 8 9 54 −0.24574119D−01 0.7054D−10 4
19 7 8 48 0.59598624D+02 0.1064D−08 4
20 10 11 66 −0.10001352D+01 0.2766D−11 4
21 11 12 72 0.21386638D+01 0.1542D−06 4
22 46 51 282 0.10000000D+01 0.3761D−08 4

Table 10: Results obtained by program TNECU

Problem NIT NFV NFG F G ITERM

1 1433 1438 5736 0.00000000D+00 0.0000D+00 3
2 294 321 1470 0.39185930D+04 0.5125D−06 4
3 17 19 108 0.19126360D−09 0.3492D−06 4
4 10 12 44 0.26952269D+03 0.7327D−08 4
5 13 15 84 0.30904440D−13 0.1936D−06 4
6 13 14 196 0.32809593D−12 0.4112D−06 4
7 19 27 120 0.33741307D+03 0.3848D−06 4
8 37 38 684 0.76192573D+06 0.5363D−06 4
9 583 584 1168 0.42805692D+03 0.3174D−12 4
10 115 145 1044 −0.79522041D+02 0.5355D−07 4
11 29 30 180 0.72291495D+05 0.1091D−10 4
12 199 200 800 0.49942141D+04 0.2376D−06 4
13 4 5 20 0.65098612D−23 0.5040D−11 3
14 2 3 18 0.12902879D−08 0.8199D−06 4
15 10 11 44 0.19240160D+01 0.7151D−06 4
16 14 17 90 −0.42739165D+03 0.3095D−12 4
17 8 9 54 −0.37992109D−01 0.3913D−09 4
18 8 9 54 −0.24574119D−01 0.7054D−10 4
19 13 16 84 0.16549452D+04 0.1545D−08 4
20 10 11 66 −0.10001352D+01 0.2766D−11 4
21 9 10 60 0.24135487D+01 0.5172D−06 4
22 46 51 282 0.10000000D+01 0.3761D−08 4

Table 11: Results obtained by program TNECS

30

Problem NIT NFV NFG F G ITERM

1 2654 3627 3627 0.79478973D−16 0.2128D−06 3
2 105 179 179 0.83316140D+02 0.4982D−06 4
3 40 45 45 0.26700768D−12 0.8234D−06 4
4 47 58 58 0.27358820D+03 0.2785D−06 4
5 16 17 17 0.10602671D−11 0.7283D−06 4
6 38 40 40 0.54696139D−11 0.8818D−06 4
7 22 26 26 0.33525262D+03 0.1048D−06 4
8 26 40 40 0.76177495D+06 0.2954D−04 2
9 185 194 194 0.31643614D+03 0.1559D−05 2
10 214 245 245 −0.12255000D+03 0.2694D−04 2
11 92 115 115 0.86867306D+02 0.2975D−07 4
12 141 142 142 0.98227362D+03 0.8385D−06 4
13 36 37 37 0.79413669D−12 0.3125D−06 4
14 25 28 28 0.10428935D−08 0.9268D−06 4
15 8 14 14 0.19240160D+01 0.6038D−07 4
16 30 39 39 −0.42740448D+03 0.1512D−05 2
17 15 17 17 −0.37992109D−01 0.1413D−06 4
18 5 11 11 −0.24574119D−01 0.1165D−06 4
19 19 23 23 0.59598624D+02 0.4658D−06 4
20 42 98 98 −0.10001352D+01 0.5952D−07 4
21 37 40 40 0.21386638D+01 0.7673D−06 4
22 55 211 211 0.10000000D+01 0.6104D−07 4

Table 12: Results obtained by program TSEPU

Problem NIT NFV NFG F G ITERM

1 2591 3322 3322 0.00000000D+00 0.0000D+00 3
2 344 347 347 0.35121131D+02 0.1068D−06 4
3 39 43 43 0.44169182D−12 0.4247D−06 4
4 18 21 21 0.26952269D+03 0.1540D−06 4
5 13 16 16 0.41704722D+01 0.4256D−06 4
6 32 33 33 0.95952646D−11 0.8013D−06 4
7 19 21 21 0.33772248D+03 0.2470D−06 4
8 52 56 56 0.76192573D+06 0.7796D−04 2
9 1001 1003 1003 0.42805692D+03 0.1760D−06 4
10 147 180 180 −0.77737596D+02 0.1441D−04 2
11 27 28 28 0.72291495D+05 0.5862D−10 4
12 228 235 235 0.49942141D+04 0.3035D−06 4
13 36 37 37 0.79413669D−12 0.3125D−06 4
14 25 28 28 0.10428935D−13 0.9268D−06 4
15 8 14 14 0.19240160D+01 0.3871D−07 4
16 21 22 22 −0.42739165D+03 0.7595D−06 4
17 15 17 17 −0.37992109D−01 0.2986D−06 4
18 5 10 10 −0.24574119D−01 0.1933D−07 4
19 20 25 25 0.16549452D+04 0.3506D−06 4
20 78 130 130 −0.10001352D+01 0.1963D−06 4
21 27 31 31 0.24135487D+01 0.2021D−06 4
22 52 190 190 0.10000000D+01 0.4184D−06 4

Table 13: Results obtained by program TSEPS

31

Problem NIT NFV NFG F G ITERM

1 1905 1907 1906 0.11113065D−16 0.5358D−07 3
2 196 202 197 0.10350094D−21 0.1407D−09 3
3 9 10 10 0.16141497D−07 0.8566D−05 4
4 23 28 24 0.13474977D+03 0.4995D−05 4
5 4 5 5 0.19859476D−14 0.9279D−07 4
6 5 6 6 0.49896319D−21 0.4526D−10 3
7 49 53 50 0.60734855D+05 0.5068D−05 4
8 44 54 45 0.17502221D−06 0.5161D−05 4
9 18 19 19 0.22198067D+04 0.6387D−05 4
10 41 49 42 0.19151134D+03 0.8357D−05 4
11 3764 3768 3765 0.96014265D−19 0.4404D−08 3
12 37 57 38 0.10030058D+05 0.1040D−04 1
13 19 22 20 0.13123402D+06 0.6887D−05 4
14 45 57 46 0.10851789D+03 0.3943D−05 4
15 15 18 16 0.18176315D+02 0.5262D−06 4
16 46 57 47 0.25110968D+01 0.7028D−05 4
17 10 12 11 0.28493252D−11 0.1007D−05 4
18 12 13 13 0.95556791D−19 0.5474D−08 3
19 14 15 15 0.11850699D−11 0.4660D−05 4
20 17 18 18 0.22432820D−12 0.1210D−07 4
21 34 37 35 0.64769614D+03 0.5217D−05 4
22 60 74 61 0.44869702D+04 0.6894D−05 4

Table 14: Results obtained by program TGAMU

Problem NIT NFV NFG F G ITERM

1 1038 1042 1038 0.00000000D+00 0.0000D+00 3
2 247 247 247 0.19572970D+04 0.4746D−05 4
3 9 11 10 0.12549679D−07 0.6944D−05 4
4 19 23 20 0.13476134D+03 0.6597D−05 4
5 17 18 18 0.21443411D+01 0.1162D−05 4
6 6 7 7 0.79146071D−17 0.9336D−08 3
7 33 34 34 0.14581400D+06 0.0000D+00 4
8 61 76 62 0.59435758D−06 0.4930D−05 4
9 48 49 49 0.22201788D+04 0.4641D−06 4
10 33 40 34 0.19151134D+03 0.5164D−05 4
11 3867 2873 2870 0.00000000D+00 0.0000D+00 3
12 422 427 423 0.67887239D+05 0.1847D−06 4
13 21 22 22 0.14790600D+06 0.0000D+00 4
14 5 6 6 0.12669056D+03 0.0000D+00 4
16 12 16 13 0.35907414D+01 0.6644D−06 4
17 11 16 12 0.74191693D−10 0.5264D−05 4
18 0 1 1 0.00000000D+00 0.0000D+00 3
19 25 29 26 0.40187989D−12 0.2714D−05 4
20 963 964 964 0.49880012D+03 0.9445D−05 4
21 349 353 350 0.64960140D+03 0.6027D−05 4
22 63 75 64 0.44889615D+04 0.5376D−05 4

Table 15: Results obtained by program TGAMS

32

Problem NIT NFV NFG F G ITERM

1 1377 1379 1379 0.69739198D−22 0.1298D−09 3
2 41 46 46 0.21657216D−16 0.1536D−06 3
3 10 11 13 0.21877074D−08 0.1864D−05 4
4 13 16 21 0.13474977D+03 0.2795D−06 4
5 4 5 7 0.11105836D−10 0.8867D−06 4
6 5 6 12 0.11841738D−11 0.3956D−05 4
7 10 12 23 0.60734855D+05 0.6483D−07 4
8 20 25 23 0.22988283D−07 0.5944D−05 4
9 14 15 31 0.22164587D+04 0.3465D−05 4
10 12 18 21 0.19151134D+03 0.5242D−07 4
11 2586 2592 2648 0.39784315D−12 0.8406D−05 4
12 13 17 19 0.22287907D+05 0.5451D−06 4
13 17 21 28 0.13123402D+06 0.7836D−08 4
14 5 8 18 0.10851789D+03 0.2265D−08 4
15 6 7 15 0.18176315D+02 0.2904D−06 4
16 15 21 40 0.25110968D+01 0.7243D−06 4
17 14 19 18 0.40185937D−10 0.4226D−05 4
18 42 44 45 0.15151799D−24 0.1223D−10 3
19 13 14 21 0.27214150D−11 0.7062D−05 4
20 26 27 29 0.37816152D−10 0.4067D−07 4
21 9 10 15 0.64782852D+03 0.2886D−05 4
22 26 32 45 0.44869702D+04 0.6023D−07 4

Table 16: Results obtained by program TGANU

Problem NIT NFV NFG F G ITERM

1 1010 1012 1012 0.43700268D−13 0.2956D−05 4
2 259 272 506 0.19592865D+04 0.3450D−05 4
3 9 11 12 0.12549679D−07 0.6944D−05 4
4 11 15 17 0.13476134D+03 0.1613D−07 4
5 16 17 23 0.21443411D+01 0.9701D−06 4
6 6 7 13 0.79146068D−17 0.9336D−08 3
7 22 23 61 0.14581400D+06 0.0000D+00 4
8 23 30 26 0.87935249D−05 0.7357D−05 4
9 43 44 148 0.22201788D+04 0.9390D−05 4
10 12 19 21 0.19151134D+03 0.3013D−07 4
11 3977 2992 2990 0.00000000D+00 0.0000D+00 3
12 251 261 496 0.67887239D+05 0.2461D−05 4
13 19 20 36 0.14790600D+06 0.0000D+00 4
14 1 2 6 0.12669056D+03 0.0000D+00 4
16 46 50 135 0.35907414D+01 0.4692D−10 4
17 10 11 17 0.64961579D−03 0.1197D−05 4
18 0 1 3 0.00000000D+00 0.0000D+00 3
19 24 28 32 0.15533910D−11 0.5336D−05 4
20 904 905 2705 0.49880012D+03 0.9716D−05 4
21 236 273 403 0.64961789D+03 0.6713D−07 4
22 24 31 55 0.44889615D+04 0.2424D−07 4

Table 17: Results obtained by program TGANS

33

Problem NIT NFV NFG F G ITERM

1 10 41 0 0.22453071D−22 0.1682D−07 3
2 9 46 0 0.10689671D−22 0.1635D−06 3
3 3 19 0 0.33398898D−19 0.2231D−06 3
4 7 23 0 0.34819642D−17 0.1771D−02 3
5 13 65 0 0.67103619D−17 0.1419D−05 3
6 17 52 0 0.11091879D−16 0.1676D−11 3
7 15 46 0 0.12424559D−27 0.8730D−05 3
8 13 73 0 0.12574803D−25 0.1939D−04 3
9 27 190 0 0.76273114D−23 0.7442D−04 3
10 5 41 0 0.80384581D−25 0.4160D−03 3
11 20 61 0 0.35889147D−17 0.3364D−02 3
12 18 55 0 0.12927197D−16 0.7133D−13 3
13 20 41 0 0.57649443D−16 0.1215D−12 3
14 4 13 0 0.77478267D−20 0.4420D−05 3
15 5 36 0 0.18256673D−17 0.4713D−03 3
16 53 319 0 0.46216910D−17 0.1540D+00 3
17 14 48 0 0.44914028D−22 0.1055D−03 3
18 27 82 0 0.24970821D−20 0.5717D−01 3
19 2 7 0 0.30932438D−21 0.3701D−09 3
20 13 43 0 0.42827885D−20 0.2034D−07 3
21 12 37 0 0.20062314D−20 0.2554D−10 3
22 7 49 0 0.16272096D−17 0.2452D−05 3
23 29 262 0 0.39032690D−17 0.2007D−10 3
24 6 31 0 0.82252601D−23 0.8125D−09 3
25 9 46 0 0.14712666D−23 0.3954D−09 3
26 12 61 0 0.60883681D−17 0.4209D−07 3
27 10 51 0 0.27507809D−20 0.1218D−06 3
28 10 60 0 0.22953247D−16 0.2138D−05 3
29 4 53 0 0.12454916D−19 0.1307D−05 3
30 12 162 0 0.22295860D−21 0.1079D−07 3

Table 18: Results obtained by program TEQNU

Problem NIT NFV NFG C G ITERM

1 9 10 60 0.17763568D−14 0.2022D−11 4
2 12 13 182 0.42525442D−10 0.6211D−07 4
3 10 11 66 0.17259527D−11 0.8428D−08 4
4 16 19 102 0.14170665D−10 0.4058D−09 4
5 18 19 190 0.64257735D−08 0.3115D−06 4
6 18 19 266 0.12585488D−11 0.7113D−08 4
7 9 11 70 0.11830537D−11 0.2215D−11 4
8 38 51 273 0.44408921D−15 0.1118D−07 4
9 38 80 273 0.26595347D−08 0.8717D−08 4
10 13 14 84 0.37190317D−09 0.1666D−08 4
11 9 10 60 0.26132430D−11 0.2995D−11 4
12 7 8 56 0.14357404D−11 0.2885D−10 4
13 15 17 128 0.17763568D−14 0.6419D−06 4
14 12 13 91 0.22916137D−07 0.2745D−07 4
15 19 35 120 0.55067062D−13 0.1278D−11 4
16 8 9 45 0.67985217D−09 0.6081D−07 4
17 9 10 50 0.22204464D−15 0.1776D−14 4
18 10 13 55 0.36846441D−08 0.8094D−06 4

Table 19: Results obtained by program TINDU

34

Problem NIT NFV NFG F G ITERM

1 30 64 0 0.32607863D−18 0.1541D−03 3
2 17 57 0 0.72005783D−19 0.2616D−07 3
3 5 11 0 0.86121959D−16 0.3664D−03 3
4 11 19 0 0.11506040D−18 0.3589D−01 3
5 24 59 0 0.71834973D−16 0.5648D−06 3
6 22 31 0 0.16737688D−16 0.8986D−08 3
7 25 42 0 0.13700399D−20 0.1859D−05 3
8 21 60 0 0.49624281D−28 0.1838D−07 3
9 32 71 0 0.22087587D−21 0.8006D−05 3
10 9 24 0 0.20231594D−20 0.1630D−03 3
11 23 32 0 0.25126998D−18 0.4444D−02 3
12 23 40 0 0.86169047D−16 0.1905D−08 3
13 27 33 0 0.16083597D−16 0.3499D−07 3
14 8 13 0 0.59697408D−21 0.8116D−05 3
15 12 28 0 0.12490051D−17 0.3059D+00 3
16 22 78 0 0.98484038D−20 0.1254D−03 3
17 17 43 0 0.13023526D−20 0.1547D−04 3
18 46 61 0 0.22479321D−17 0.1164D−01 3
19 2 5 0 0.70440283D−18 0.2216D−06 3
20 18 30 0 0.15878735D−16 0.3125D−03 3
21 25 34 0 0.23392501D−16 0.1351D−05 3
22 14 45 0 0.18986181D−17 0.1288D−01 3
23 23 106 0 0.19474244D−18 0.5505D−08 3
24 20 53 0 0.73749958D−17 0.6112D−08 3
25 29 50 0 0.20879439D−17 0.4136D−08 3
26 36 67 0 0.13205478D−17 0.4810D−08 3
27 40 75 0 0.65935599D−17 0.8620D−08 3
28 27 83 0 0.46185557D−18 0.2687D−08 3
29 12 95 0 0.20696250D−16 0.7540D−08 3
30 18 145 0 0.74053256D−16 0.1680D−07 3

Table 20: Results obtained by program TEQLU

Problem NIT NFV NFG C G ITERM

1 6 7 42 0.53601568D−12 0.7637D−08 4
2 11 12 168 0.26914207D−09 0.5633D−07 4
3 11 12 72 0.31512570D−11 0.4344D−09 4
4 20 21 126 0.28507863D−10 0.5560D−08 4
5 15 16 160 0.62633035D−08 0.1996D−06 4
6 18 19 266 0.10901857D−09 0.3841D−06 4
7 11 13 84 0.65206507D−10 0.3585D−09 4
8 40 54 287 0.23603342D−12 0.5699D−06 4
9 31 48 224 0.22057214D−07 0.3808D−07 4
10 18 42 114 0.86457730D−09 0.2428D−08 4
11 7 8 48 0.83872231D−09 0.2638D−09 4
12 6 7 49 0.30306333D−07 0.5700D−06 4
13 15 25 128 0.27860979D−07 0.9773D−06 4
14 13 14 98 0.52994054D−10 0.3464D−10 4
15 19 22 120 0.12468239D−07 0.4291D−06 4
16 7 8 40 0.11065371D−10 0.1421D−10 4
17 8 9 45 0.12153709D−12 0.1669D−11 4
18 11 17 60 0.75315815D−07 0.7684D−06 4

Table 21: Results obtained by program TNULU

35

References

[1] Al-Baali M., Fletcher R.: Variational methods for nonlinear least squares. Journal of Op-
timization Theory and Applications 36 (1985) 405-421.

[2] Brown, P.N., and Saad, Y.: Convergencet theory of nonlinear Newton-Krylov algorithms.
SIAM Journal on Optimization 4 (1994) 297-330.

[3] Byrd R.H., Nocedal J., Schnabel R.B.: Representation of quasi-Newton matrices and their
use in limited memory methods. Math. Programming 63 (1994) 129-156.

[4] Coleman, T.F., Moré J.J.: Estimation of sparse Hessian matrices and graph coloring prob-
lems. Mathematical Programming 28 (1984) 243-270.

[5] Curtis, A.R., and Powell, M.J.D., and Reid, J.K.: On the estimation of sparse Jacobian
matrices. IMA Journal of Aplied Mathematics 13 (1974) 117-119.

[6] Dembo, R.S, Eisenstat, S.C., and Steihaug T.: Inexact Newton Methods. SIAM J. on
Numerical Analysis 19 (1982) 400-408.

[7] Dennis J.E., Mei H.H.W: An unconstrained optimization algorithm which uses function
and gradient values. Report No. TR 75-246, 1975.

[8] Gill P.E., Murray W.: Newton type methods for unconstrained and linearly constrained
optimization. Math. Programming 7 (1974) 311-350.

[9] Gould N.I.M, Hribar M.E., Nocedal J.: On the solution of equality constrained quadratic
programming problems arising in optimization. Technical Report RAL-TR-1998-069,
Rutherford Appleton Laboratory, 1998.

[10] Gould N.I.M, Lucidi S., Roma M., Toint P.L.: Solving the trust-region subproblem using
the Lanczos method. Report No. RAL-TR-97-028, 1997.

[11] Griewank A., Toint P.L.: Partitioned variable metric updates for large-scale structured
optimization problems. Numer. Math. 39 (1982) 119-137.

[12] Liu D.C., Nocedal J.: On the limited memory BFGS method for large scale optimization.
Math. Programming 45 (1989) 503-528.

[13] Lukšan L.: Combined trust region methods for nonlinear least squares. Kybernetika 32
(1996) 121-138.

[14] Lukšan L.: Hybrid methods for large sparse nonlinear least squares. J. Optimizaton Theory
and Applications 89 (1996) 575-595.

[15] Lukšan L., Matonoha C., Vlček J.: A shifted Steihaug-Toint method for computing a trust-
region step Report V-914, Prague, ICS AS CR, 2004.

[16] Lukšan L., Spedicato E.: Variable metric methods for unconstrained optimization and
nonlinear least squares. Journal of Computational and Applied Mathematics 124 (2000)
61-93.

[17] Lukšan L., Vlček J. Sparse and partially separable test problems for unconstrained and
equality constrained optimization. Report V-767, Prague, ICS AS CR, 1998.

36

[18] Lukšan L., Vlček J.: Computational Experience with Globally Convergent Descent Methods
for Large Sparse Systems of Nonlinear Equations. Optimization Methods and Software 8
(1998) 201-223.

[19] Lukšan L., Vlček J.: Indefinitely Preconditioned Inexact Newton Method for Large Sparse
Equality Constrained Nonlinear Programming Problems. Numerical Linear Algebra with
Applications 5 (1998) 219-247.

[20] Lukšan L., Vlček J.: Numerical experience with iterative methods for equality constrained
nonlinear programming problems. Optimization Methods and Software 16 (2001) 257-287.

[21] Martinez, J.M., and Zambaldi, M.C.: An Inverse Column-Updating Method for Solving
Large-Scale Nonlinear Systems of Equations. Optimization Methods and Software 1 (1992)
129-140.

[22] Moré J.J., Sorensen D.C.: Computing a trust region step. SIAM Journal on Scientific and
Statistical Computations 4 (1983) 553-572.

[23] Nocedal J.: Updating quasi-Newton matrices with limited storage. Math. Comp. 35 (1980)
773-782.

[24] Powell M.J.D: A new algorithm for unconstrained optimization. In: Nonlinear Programming
(J.B.Rosen O.L.Mangasarian, K.Ritter, eds.) Academic Press, London 1970.

[25] Steihaug T.: The conjugate gradient method and trust regions in large-scale optimization.
SIAM Journal on Numerical Analysis 20 (1983) 626-637.

[26] Toint P.L.: Towards an efficient sparsity exploiting Newton method for minimization. In:
Sparse Matrices and Their Uses (I.S.Duff, ed.), Academic Press, London 1981, 57-88.

[27] Tůma M.: A note on direct methods for approximations of sparse Hessian matrices. Aplikace
Matematiky 33 (1988) 171-176.

[28] Vlček J., Lukšan L.: New variable metric methods for unconstrained minimization covering
the large-scale case. Report V-876, Prague, ICS AS CR, 2002.

[29] Vlček J., Lukšan L.: Additional properties of shifted variable metric methods. Report V-
899, Prague, ICS AS CR, 2004.

37

