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Abstract 
 

Feature selection serves for both reduction of the total amount of available data (removing of valueless data) and 
improvement of the whole behavior of a given induction algorithm (removing data that cause deterioration of the 
results). This paper discusses this problem in more detail. A method of proper selection of features for an inductive 
algorithm is discussed. The main idea behind the method consists in proper descending ordering of features ac-
cording to a measure of new information contributing to previous valuable set of features. The measure is based on 
comparing of statistical distributions of individual features including mutual correlation. A mathematical theory of 
the approach is described. Results of the method applied to real-life data are shown 
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1   Introduction 

Feature selection is a process of data preparation for their consequential processing. Simply said, the feature 
selection filters out unnecessary variables. There are two aspects for feature selection. The first one and much 
older aspect is the time requirement for processing of large amount of data during learning as well as recall 
phases of machine learning [7]. The other aspect is a finding that results of the induction algorithm (classifica-
tion, recognition or also approximation and prediction) may be worse due to the presence of unnecessary features 
than with optimal feature selection [3]. 

There exist two essentially different views, so called filter model and wrapper model [6]. In filter model fea-
tures are selected independent of the induction algorithm. Wrapper models (methods) are tightly bound to an 
induction algorithm. Another approach can be more quantitative stating that each feature has some "weight" for 
its use by induction algorithm. There are lots of approaches trying to define and evaluate feature weights, usually 
without any relation to induction algorithm, e.g. [3], [7], [8]. 

2   Problem Formulation 

The suggested method is based on a selection of relevant (appropriate) feature set from a given set. This can be 
achieved without the need of a metric on the feature sets. In fact a proper ordering of features or feature sets is 
sufficient. There should be a measure for this ordering. The measure need not be necessarily a metrics in pure 
sense. It should give a tool for evaluating how much a particular feature brings new information to the set of 
features already selected. 

Two problems then arise. First, to find a proper measure mentioned and second, to find a criterion or level of 
this measure below which the corresponding features can be omitted without loss of information. 

3   The Method 

The suggested method consideres features with relation to classification into one of two classes. It means that to 
each data sample corresponds a feature more, the class to which it belongs. We denote classes by 0 and 1 here. 
For each sample of so-called learning set the class is known. The method for stating the measure of feature 
weight utilizes comparisons of statistical distributions of individual features and for each feature separately for 
each class. Comparison of distributions is derived from testing hypothesis whether two probability distributions 
are from the same source or not. The higher the probability that these distributions are different the higher is the 
influence of particular feature (variable) to proper classification. In fact, we do not evaluate correlation probabil-
ity between a pair of features, but between subsets corresponding to the same class only. 

After these probabilities are computed, the ordering of features is possible. The first feature should bring 
maximal information for good classification, the second one a little less including ("subtracting") also correlation 
with the first, the third again a little less including correlations with two preceding features etc. 

3.1   Outline - Feature Weights 

 
 
The standard hypothesis testing is based on the following considerations: Given some hypothesis, e.g. two dis-

tributions are the same, or two variables are correlated. To this hypothesis some variable V is defined, e.g. the 
maximal difference between probability distribution functions or correlation coefficient. To this variable a prob-
ability p is assigned; its value is computed from value of V and often using some other information or assump-
tions. Then some level (threshold) P is chosen. If p ≥ P the hypothesis is assured, otherwise rejected. Sometimes 
instead of p the 1 – p is used and thus P and the test must be modified properly. 

The logic used in this paper is based on somethig “dual” to the considerations above: Let q = 1 – p be some 
probability (we call it the probability levels of rejection of hypothesis), Q = 1 – P be some level. If q < Q the 
hypothesis is assured, otherwise rejected. The larger q, the more likely the hypothesis is rejected (for the same 
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level Q or P). It is just what we need. In fact, the weights assigned to individual features are probability levels q 
related to rejection of hypotheses that distributions are the same and variables are correlated. 

 
Let Fi be feature. For the first ordering of individual features (variables) F1 , F2 , ... as to their influence on 
proper classification we use the probability levels of rejection pii of the hypothesis that the probability distribu-
tions of the feature Fi for the class 0 and for the class 1 are the same. This first ordering does not respect any 
correlation of variables. 

To include influence of correlations let us denote by  pij0 and pij1 probability levels of rejection that distribu-
tions of variables for class 0 are correlated and that distributions of variables for class 1 are correlated, respec-
tively. Moreover, let pii be probability level of rejection that distributions of the feature Fi for the class 0 and for 
the class 1 are the same. How to get these numbers is discussed in the next section. Taking all probability levels 
together, we have two triangular matrices, one for pij0 and another for pij1, i,j = 1, 2, ..., n. All results of pairwise 
distribution comparisons or correlations can be written in square matrix n×n as follows 
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In this matrix in diagonal entries are probability levels of rejection of hypothesis that that for feature of a given 
index and for class 0, and class 1 the distributions are the same. In the upper triangular part there are probability 
levels pij0 for class 0, and in the bottom triangular part the probability levels pij1 for class 1. 

In the beginning the ordering of features is arbitrary. We now sort rows and columns in descending order ac-
cording to diagonal elements piiof the matrix M. After it, first, we reassign indexes according to this ordering (and 
store information about original ordering of features, i.e. original indexes). The first feature now is a feature 
having the largest difference in distributions for both classes. The second feature has lesser difference in distribu-
tions for both classes and can be possibly somehow correlated to the preceding feature, etc.. Then, first, we state 
correlation coefficient for class 0 of variables 1 and 2, second, correlation coefficient for class 1 of variables 1 
and 2 getting then probability levels p120 and p211 of rejection that distributions are correlated. The lesser these 
probabilities, the stronger correlation between features F1 and F2 exists. Mutual relations for first two features are 
shown in Table 1. 
 
Table 1. Mutual relations for first two features 

feature class 0  class 1 
F1 distribution of F1 for class 0 ←  p11  →  distribution of F1 for class 1 
 β  p120 β  √(p120 p211) β  p211 

F2 distribution of F2 for class 0 ←  p22 →  distribution of F2 for class 1 
 
In this table it is shown that the mutual dependence between features F1 and F2 for different classes is expressed 
as the geometric mean of probability levels p120 and p211. 

Let us define independence level of feature Fi on preceding features Fk, k < i by formula: 
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According to this formula the probability level of rejection that distributions for class 0 and 1 are the same is 
modified by measure of dependence on preceding variables. In fact, we define independence level as probability 
levels of rejection that classes are the samemultiplied by the geometric mean of probability levels pik0 and pki1 . of 
rejection that one or the other class is correlated to preceding features. 

We associate these probability levels to corresponding rows and columns and again we sort rows and columns 
according to πi in descending order. After it we again compute πi according to (1) using new ordering and new 
indexing of variables. This step is repeated until no change in ordering occurs. It was found that this process 
converges fast but we have no convergence proof up to now. 

By this procedure features are reordered from original arbitrary ordering to new ordering such that the first 
feature has the largest πi , and the last the smallest πi . 

In this context the variable πi is a measure of how much new information we get using variable i or how much 
information we loose when deleting it. It has been seen that this measure includes probability of correlation be-
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tween variables as well as noise which causes lessening of pii similar way as smaller difference between distribu-
tions for class 0 and class 1. Differentiation between classes is essential here. We cannot use simply pij between 
features because information on classes would be lost. 

4   Theory 

4.1   Measure of new information 

Unlike methods published we do not group features into different feature sets but we would like to order them 
according to some measure. The measure should express how much the next feature brings new information to 
the preceding collection of features. We speak about measure of information but it need not be just entropy; we 
propose to use some probability. 

Definition 
Let an ordered feature set of F1, F2, ... and two classes { }1,0∈c  be given. The measure of new information from 
the feature Fi is given by 
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where pii is probability level of rejection that distributions of Fi for class 0 and for class 1 are the same, and pik0 
and pki1, k = 1, 2, ...., i-1 are probability levels of rejection that features Fi and Fk for class 0 and class 1 are corre-
lated. pii is probability level of rejection resulting from a corresponding test, e.g. . Kolmogorov - Smirnov test [9] 
or Cramér – von Mises test [1]. Determination of the probability levels 0ikp  and 1kip  is described in the next 
subsection. 

The iπ  is, in fact, our measure that distributions of the feature Fi are different and, at the same time, the fea-
ture for one and for the other class are not correlated with corresponding parts of all preceding features. 

Correlation probability 
For calculation of the probability levels 0ikp  and 1kip  we use a standard approach [4]. First we transform a 
correlation coefficient of two features into probability that corresponding features are correlated. Let the distribu-
tion of these two features be a two-dimensional normal distribution with parameters u1, u2, s1, s2 and ρ , where 
u1, u2 are means, s1, s2 dispersions of the two features, and ρ  is (a priori known) correlation coefficient between 
these two features. The pairs of features in individual samples are, in fact, selection from this two-dimensional 
distribution and the statistical distributions of features F1 and F2 are marginal distributions of the two-
dimensional distribution. Let there be n random selections of pairs F1 and F2, and let empirical correlation coeffi-
cient be r. 

We need probability levels pij0 and pij1 of rejection that features i and j for class 0 and for class 1 are corre-
lated. Each of these probability levels is calculated as 1 – p, where p is the probability that corresponding pair of 
features Fi and Fj for classes 0 and 1 are correlated.  The procedure for quantifying p is described below. 

Let 0=ρ , then the statistics 212 rnrt −−=  has the Student's distribution ( )2−nt  with 2−n  degrees 
of freedom and does not depend on parameters u1, u2, s1, s2, [4]. 

More general approach according to Fischer [4] takes into account nonzero value of ρ . Let us use a transfor-
mation 
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This random variable has approximately normal distribution with mean value  
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and dispersion 
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for n > 10 and ρ  not too close to 1. The random variable 
 

 { }( )ZEZnU −−= 3  (4) 
 

has approximately normal distribution ( )1,0N  for 10>n . Note that Z and U have these approximately normal 
distributions for any distribution of original random variables with finite means and dispersions. 

There is one problem. Even for really uncorrelated distributions for limited number of samples a nonzero cor-
relation coefficient 0ρ  is found. Consecutively, from the distributions above a nonzero probability p0 that fea-
tures are correlated follows. We solve this by introducing two steps. In the first step we compute the mean half-
with of the correlation coefficient 0ρ  under the assumption of uncorrelated distributions. This is done simply 
stating probability p = 0.75. In fact, we consider the mean of the right hand half of distribution here. From this 
probability and number n of samples at hand it follows 
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where ( ) 30
1 −Φ= − npz  and ( ) 674490.00

1 =Φ − &p  is the inverse value of standard normal distribution for 

probability 75.00 =p . The interval <- 0ρ , 0ρ > contains 0ρ  with probability 0.5 . 
From it follows that variables with absolute value of empirical correlation coefficient r equal to or close to 

0ρ , are, in fact, probably uncorrelated. So we set value of 0ρ  as a priori correlation coefficient ρ  of the two-
dimensional normal distribution above. Using this value as ρ  in (3) and as value of empirical correlation coeffi-
cient r to (2), we get probability p = 0.5 from (4). This value follows intuitive consideration that in this case we 
have truly no information whether features are correlated or not, both cases are equally possible. The procedure 
for computation is simple, p = Φ(U) is the probability for standard normal distribution, where U is given by (4) 
using (3), (2) and ρ  is computed as 0ρ  using (5). 

4.2   Local Geometry of Feature Space and Dimensionality-induced Degradation 

We will analyze behavior of the simplest nearest neighbor method (k-NN method) with respect to the presence of 
some irrelevant features. Let us have n dimensional space and j relevant features, n-j irrelevant features, and k 
nearest neighbors to point x. The most distant k-th neighbor let be X and its distance from point x be dX. 

The distance of the i-th neighbor ni=(ni1,ni2, ..., nin) from point x is 
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The second sum is a random variable. Its distribution approaches to normal distribution with the number of ir-
relevant features going to infinity and is independent of particular neighbor. When using relevant features only, it 
holds 
 

 ( ) Xr

j

i
iiir dxnd ≤−= �

=1

2  , (7) 

 

where dXr is the distance of the farthest of all k neighbors from point x in this case.  
The problem is that dir's are different from di's and the difference is caused by random part in (6). This has two 

consequences. First, sets of k neighbors are different. For some neighbors both (6) and (7) are valid, for some 
points it holds either (6) or (7) only. When k neighbors according to (7) are considered relevant, then not all k 
neighbors according to (6) can be relevant. Second, it has been shown [5] that for limited number of samples 
even for small dimensions the position of neighbors can be influenced by boundary effect. Irrelevant features 
make dimension larger and also strengthen the boundary effect. In the final effect it again influences which k 
points are selected as nearest neighbors.  
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Considering relevant features only, we expect that ratio of number of points of one and of the other class gives 
good estimation about ratio of corresponding probability densities. Irrelevant features cause that this is valid for 
part, say k1 neighbors of all k neighbors selected according to (6). For other (k-k1) neighbors it need not hold 
because selection of these points is influenced by some random number without connection to true probability 
density distribution. We can estimate that the estimation of the probability distribution function or classification 
gets the worse the larger difference between dX and dXr, i.e. the larger number of irrelevant features.  

Even for relevant features with smaller influence the boundary effect may cause that such features may behave 
as irrelevant. The error caused by boundary effect may be larger than error when such features are not used. So, 
the monotonicity assumption [2] is not valid even if weighting assigns nonzero influence to all features. 

For quantitative estimation let us consider slightly different nearest-neighbor method. Let all features be stan-
dardized (normalized) to zero mean and unit dispersion. Let us consider that we have unlimited number of data 
samples. Let us consider most simple approach, the (most) naive nearest neighbor approach using L2 metrics, i.e. 
Euclidean space. Let there be a point x of unknown class. Let us build two balls around this point, one of radius 
r0 equal to the distance to the nearest point of one class 0, and the other of radius r1 equal to the distance to the 
nearest point of the other class 1. Let us consider r0 and r1 as average values of these radii. The probability that 
point x belongs to the class 0 is equal to ( )1000 VVVp += , where V0 and V1 are volumes of the corresponding 
balls. After simple arrangement we obtain  
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We could also use so-called Bayes ratio nn
BAYES rrVVp 10100 == . The radii ri, { }1,0∈i , are given by for-

mula 
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where xk is the k-th coordinate of point x, and fki is k-th feature of the nearest point of class i. 
Let features with indexes 1, 2, ..., j be relevant and features with indexes j+1, ..., n be irrelevant. Then (9) can 

be rewritten as follows 
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The second sum corresponds to irrelevant features. If for each irrelevant feature distributions for class 0 and 
class 1 are the same, then the second terms for both classes are the same. Omitting the second term, we can get 
radius of the ball in j-dimensional space of relevant features and using (8) we get estimation of probability 
needed. By the use of (10) additional terms cause that some constants are added and value of p0(x) is thus dis-
torted. The larger number of irrelevant features, the larger is the second term in (10) in comparison to the first 
term, and the larger is the distortion of p0(x). 

Induction – classification algorithms need not use or assume just Euclidean geometry in the feature space. Let 
us assume metrics Ls, ( )∞∈ ;0s . Some well-known metrics are L1 – absolute, L2 – Euclidean, and ∞L  - max. For 
all cases, except the last the (10) has now form 
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It is seen again that the term corresponding to irrelevant features distorts the estimation. In the case of ∞L  - max 
metrics, the maximal difference can arise from irrelevant features the more often the larger number of irrelevant 
features occurs. The final consequence is the same. 

5   Results 

The suggested method is demonstrated on a task of feature ordering of UCI MLR real-life databases [10]. Ta-
ble 2 gives reordering of features and corresponding probabilities that particular feature brings new information 
to the preceding set of features. It is given for Heart, Vote, Splice, Spam, Shuttle, Ionosphere, German, and Adult 
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databases. In all cases the set of data normally used for learning was used for features reordering. In table num-
bers of features in the original data set are given but ordered in diminishing influence, i.e. descending 
Pcor( lk SS ≠ ). Pcor( lk SS ≠ ) denotes our measure that distributions of the feature Fi are different and, at the 
same time, the feature for one and for the other class are not correlated with corresponding parts of all preceding 
features (in the table all features above the feature considered), see (1). In Fig. 1 Pcor( lk SS ≠ ) is given for fea-
tures in the same order. 
 

Table 2. Reordering of features for eight data bases from UCI MLR 

Data-
base 

Heart Vote Splice Spam Shut-
tle 

Iono-
sphere 

Ger-
man 

Adult 

1 13 3 29 52 9 6 1 6 
2 12 7 30 53 1 12 3 8 
3 3 6 34 7 7 4 6 5 
4 9 8 32 16 3 32 21 10 
5 8 11 31 57 8 14 20 1 
6 10 5 28 5 5 20 9 4 
7 11 4 36 19 2 33 14 13 
8 1 12 25 21 6 22 2 11 
9 2 14 26 55 4 16 10 9 

10 5 15 23 25  18 17 2 
11 4 13 40 2  28 4 7 
12 7 1 41 56  10 12 12 
13 6 10 24 3  24 23 3 
14  9 22 12  8 5 14 
15  2 48 11  2 ...  
16   43 9  26   
17   20 27  7   
18   21 17  21   
19   15 10  3   
20   19 1  9   

   ... ...  ...   
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Fig. 1. Dependence of the πi on feature number after reordering for eight databases from UCI MLR 
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6   Conclusion 

We have presented a procedure for evaluating feature weights based on the idea that we need not evaluate subsets 
of features or build some metrics in the space of feature subsets. It was shown that instead of metrics some order-
ing would suffice. This is much weaker condition then metric. In fact, we need ordering of features from the point 
of view of the ability of feature possibly bring something new to the set of features already selected. If features 
are properly ordered we need not measure any distance. Knowledge that one feature is more important than the 
other should be sufficient. Having features already ordered, the question on proper feature set selection is re-
duced from combinatorial complexity to linear or at worst polynomial complexity – depending on the induction 
algorithm. 
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