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1 Introduction

Consider the general nonlinear programming problem

x = arg min
x∈FNP

f(x), (NP)

where
FNP = {x ∈ Rn : cI(x) ≤ 0, cE(x) = 0}.

Here cI(x) = [ci(x) : i ∈ I]T , cE(x) = [ci(x) : i ∈ E]T , where I = {1, . . . ,mI}, E = {mI +
1, . . . ,mI + mE = m}. We assume that the functions f(x) : Rn → R, cI(x) : Rn → RmI ,
cE(x) : Rn → RmE are twice continuously differentiable.

The necessary KKT (Karush-Kuhn-Tucker) conditions for the solution of problem (NP)
(if the standard constraint qualifications hold) have the following form

g(x, u) = 0,

cI(x) ≤ 0, uI ≥ 0, uT
I cI(x) = 0,

cE(x) = 0,

where
g(x, u) = ∇f(x) + AI(x)uI + AE(x)uE,

and AI(x) = [∇ci(x) : i ∈ I], AE(x) = [∇ci(x) : i ∈ E]. Here uI = [ui(x) : i ∈ I]T ,
uE = [ui(x) : i ∈ E]T are vectors of Lagrange multipliers.

We use the idea of interior point methods, which is based on the introduction of a slack
vector sI = [si(x) : i ∈ I]T and the transformation of the original problem to the sequence
of problems with the logarithmic barrier function

x = arg min
(x,sI)∈FIP

(
f(x) − μeT ln(SI)e

)
, (IP)

where μ > 0 is a barrier parameter and

FIP = {(x, sI) ∈ Rn × RmI : cI(x) + sI = 0, cE(x) = 0}.

Here e is the vector with unit elements and SI = diag(si : i ∈ I). The logarithmic barrier
term is used to ensure the inequality sI ≥ 0 implicitly.

The choice of a barrier parameter μ plays an essential role in interior point methods.
If μ = 0, then the KKT conditions for (IP) coincide with the KKT conditions for (NP).
Therefore μ → 0 is assumed. At the same time, the efficiency of interior point methods
strongly depends on the rate at which μ tends to zero. This leads to special strategies,
which are shortly discussed in Section 4.

The necessary KKT conditions for the solution of problem (IP) (if the standard con-
straint qualifications hold) are usually written in the primal or primal-dual formulations.

Primal formulation: Primal-dual formulation:
g(x, u) = 0, g(x, u) = 0,

UIe − μS−1
I e = 0, SIUIe − μe = 0,

cI(x) + sI = 0, cI(x) + sI = 0,
cE(x) = 0, cE(x) = 0,
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where g(x, u) and SI have the same meaning as above and UI = diag(ui : i ∈ I). In-
equalities si > 0 and ui > 0 are required in all iterations. Condition sI > 0 is necessary
for the definition of the logarithmic barrier function and condition uI > 0 improves the
properties of the linear system solved and is necessary for the construction of an efficient
preconditioner. The primal-dual formulation leads to more effective algorithms. One rea-
son for this claim is the fact that primal-dual equations are better scaled: the right hand
side μe approaches zero as μ → 0, but μS−1

I e can have elements bounded from zero, since
si → 0 if the i-th inequality constraint is active at the solution point.

Linearizing the primal-dual equations, we get one step of the Newton method

⎡
⎢⎢⎣

G 0 AI AE

0 UI SI 0
AT

I I 0 0
AT

E 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Δx
ΔsI

ΔuI

ΔuE

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

g
SIUIe − μe

cI + sI

cE

⎤
⎥⎥⎦ , (1)

where g = g(x, u) and G = G(x, u) = ∇2f(x) +
∑

i∈I ui∇2ci(x) +
∑

i∈E ui∇2ci(x). In
practice, the Hessian matrix G(x, u) is not usually given analytically, but automatic or
numerical differentiation is used instead. If G(x, u) is sparse, the numerical differentiation
based on the method given in [9] is very effective. We assume that the matrix of system (1)
is nonsingular (this is practically always the case if the standard constraint qualifications
hold).

The algorithm for an interior point method can be roughly described in the following
form. For given vectors x ∈ Rn, sI ∈ RmI , uI ∈ RmI , uE ∈ RmE such that sI > 0, uI > 0
and a given barrier parameter μ > 0, we determine direction vectors Δx, ΔsI , ΔuI ,
ΔuE by solving a linear system equivalent to (1). Furthermore, we choose step-length
0 < α ≤ α, and set x := x + αΔx, sI := sI(α, ΔsI), uI := uI(α, ΔuI), uE := uE + αΔuE,
where sI(α, ΔsI) > 0 and uI(α, ΔuI) > 0 are functions of α depending on ΔsI and ΔuI ,
which are chosen by a suitable strategy. Finally, we determine a new barrier parameter
μ > 0.

This contribution contains a survey of results proved in [19], new results concerning the
use of filters described in [4] and a new algorithm based on these results. This algorithm
was tested and compared with the algorithm proposed in [19] by using three collections
of large scale nonlinear programming problems.

2 Direction determination

System (1) is nonsymmetric with the dimension n + mE + 2mI . This system can be
symmetrized and reduced by the elimination of the vector ΔsI . One has

ΔsI = −U−1
I SI(uI + ΔuI) + μU−1

I e (2)

so that ⎡
⎣ G AI AE

AT
I −U−1

I SI 0
AT

E 0 0

⎤
⎦

⎡
⎣ Δx

ΔuI

ΔuE

⎤
⎦ = −

⎡
⎣ g

cI + μU−1
I e

cE

⎤
⎦ . (3)

This system has one disadvantage: elements of matrix U−1
I SI can be unbounded, since

ui → 0 if the i-th inequality constraint is inactive at the solution point. To avoid this
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situation, we split the set of inequality constraints to the active subset, where ŝI ≤ εI ûI ,
and the inactive subset, where šI > εI ǔI (here εI > 0 is a suitable parameter). In the
same way, we split and denote other quantities corresponding to inequality constraints.
By elimination of inactive equations we obtain

ΔǔI = Š−1
I ǓI(čI + ǍT

I Δx) + μŠ−1
I e (4)

so that ⎡
⎣ Ĝ ÂI AE

ÂT
I −Û−1

I ŜI 0
AT

E 0 0

⎤
⎦

⎡
⎣ Δx

ΔûI

ΔuE

⎤
⎦ = −

⎡
⎣ ĝ

ĉI + μÛ−1
I e

cE

⎤
⎦ , (5)

where

Ĝ = G + ǍI Š
−1
I ǓIǍ

T
I ,

ĝ = g + ǍI Š
−1
I ǓI čI + μǍI Š

−1
I e.

Both matrices Ĝ and Û−1
I ŜI are bounded (if G and A are bounded) and if the strict

complementarity conditions limμ→0(si + ui) > 0, i ∈ I, hold (recall that si > 0 and

ui > 0), then one has limμ→0 Û−1
I ŜI = 0. Similarly, we can split equality (2) into two

equalities to obtain

ΔŝI = −Û−1
I ŜI(ûI + ΔûI) + μÛ−1

I e, (6)

ΔšI = −(čI + ǍT
I Δx + šI) (7)

after re-arrangements. Vector ΔûI is determined by solving system (5) and vector ΔǔI is
computed from (4). Matrix Š−1

I ǓI is bounded and if the strict complementarity conditions
hold, then limμ→0 Š−1

I ǓI = 0. It can be seen the elimination of inactive constraints is not
necessary if (3) is solved by a direct method or if we use a suitable preconditioner. At
any rate, this elimination can decrease the number of operations in an iterative method.

To simplify the notation in the subsequent analysis, we rewrite system (5) in the form

Kd̄ =

[
Ĝ Â
ÂT −M̂

] [
d
d̂

]
=

[
b
b̂

]
= b̄, (8)

where Â = [ÂI , AE] and M̂ = diag(M̂I , 0). Here M̂I = Û−1
I ŜI is a positive definite

diagonal matrix. We assume that matrix K is nonsingular, which implies that AE has a
full column rank.

System (8) is symmetric but indefinite. It can be solved either directly by using the
sparse Bunch-Parlett decomposition or iteratively by using Krylov-subspace methods for
symmetric indefinite systems. Motivated by [17] (see also [2], [3], [5], [11], [16], [20], [21])
we use the preconditioner

C =

[
D̂ Â

ÂT −M̂

]
, (9)

where D̂ is a positive definite diagonal matrix derived from the diagonal of Ĝ (C is
nonsingular if AE has a full column rank). Then

C−1 =

[
P̂ Q̂

Q̂T −(ÂT D̂−1Â + M̂)−1

]
(10)
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and

KC−1 =

[
I + (Ĝ − D̂)P̂ (Ĝ − D̂)Q̂

0 I

]
, (11)

where P̂ = D̂−1 − D̂−1Â(ÂT D̂−1Â + M̂)−1ÂT D̂−1, Q̂ = D̂−1Â(ÂT D̂−1Â + M̂)−1. This
preconditioner has an important property. If it is used, the preconditioned conjugate
gradient method can be efficiently applied to (8), even if matrix K is indefinite. This
fact follows from the three theorems below, which are proved in [19] (we restrict to the
situation when the matrix Ĝ − D̂ is nonsingular, which is a common situation and also
the worst case in some sense, see [16]). Notice that the preconditioned conjugate gradient
method can be written in the following algorithmic form.

Algorithm PCG
d − given, d̂ := 0,

r := b − Ĝd − Âd̂, r̂ := b̂ − ÂT d + M̂d̂,
β := 0,

while ‖r‖ > ω‖b‖ or ‖r̂‖ > ω min(‖b̂‖, ‖ĉ‖) do

t̂ := (ÂT D̂−1Â + M̂)−1(ÂT D̂−1r − r̂),

t := D̂−1(r − Ât̂),
γ := rT t + r̂T t̂, β := βγ,
p := t + βp, p̂ := t̂ + βp̂,

q := Ĝp + Âp̂, q̂ := ÂT p − M̂p̂,
α := pT q + p̂T q̂, α := γ/α,

d := d + αp, d̂ := d̂ + αp̂,
r := r − αq, r̂ := r̂ − αq̂,
β := 1/γ

end while.

In this algorithm, the parameter ω represents precision of the inner iteration. According
to the theory proposed in [10], this parameter should satisfy the inequality 0 ≤ ω ≤ ω < 1,
which is necessary for the global convergence, and also ω → 0 as ‖b̄‖ → 0 should hold for
assuring the superlinear rate of convergence. Algorithm PCG terminates if ‖r‖ ≤ ω‖b‖,
‖r̂‖ ≤ ω‖b̂‖, ‖r̂‖ ≤ ω‖ĉ‖ hold simultaneously, where

ĉ =

[
ĉI + ŝI

ĉE

]
.

Inequality ‖r̂‖ ≤ ω‖ĉ‖ plays an essential role if εI is large. In this case, elements of ûI can
be small enough, implying a large norm of ĉI + μÛ−1

I e. Thus the resulting equations are

badly scaled and the precision ‖r̂‖ ≤ ω‖b̂‖ is insufficient. Moreover, inequality ‖r̂‖ ≤ ω‖ĉ‖
is used in the proof of Theorem 6.

Theorem 1. Consider preconditioner C applied to system Kd̄ = b̄ and assume that Ĝ−D̂
is nonsingular. Then matrix KC−1 has at least m̂I + 2mE unit eigenvalues but at most
m̂I + mE linearly independent eigenvectors corresponding to these eigenvalues exist. The
other eigenvalues of matrix KC−1 are exactly eigenvalues of matrix ZT

EG̃ZE(ZT
ED̃ZE)−1,

where [ZE, AE] is a nonsingular square matrix, ZT
EAE = 0, ZT

EZE = I and where G̃ =
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Ĝ+ÂIM̂
−1
I ÂT

I and D̃ = D̂+ÂIM̂
−1
I ÂT

I . If ZT
EG̃ZE is positive definite, then all eigenvalues

are positive.

Theorem 2. Consider preconditioner C applied to system Kd̄ = b̄ and assume that
Ĝ − D̂ is nonsingular. Then the Krylov subspace K defined by matrix KC−1 and vector
r̄ ∈ Rn+m̂, where m̂ = m̂I + mE, has a dimension of at most min(n + 1, n − mE + 2).

Theorem 3. Consider the conjugate gradient method with preconditioner C applied to
system Kd̄ = b̄. Assume that the initial d̄ is chosen in such a way that r̂ = 0 at the start
of the algorithm. Let matrix ZT

EG̃ZE be positive definite. Then:

(a) Vector d∗ (the first part of vector d̄∗ which solves equation Kd̄ = b̄) is found after
n − mE iterations at most.

(b) The algorithm cannot break down before d∗ is found.

(c) Error ‖d − d∗‖ converges to zero at least R-linearly with quotient

√
κ − 1√
κ + 1

,

where κ is the spectral condition number of matrix ZT
EG̃ZE(ZT

ED̃ZE)−1.

(d) If d = d∗, then also d̂I = d̂∗
I and d∗

E can be determined by the formula

d∗
E = dE + (AT

ED̃−1AE)−1AT
ED̃−1r.

Theorem 3 assumes that the initial d̄ is chosen in such a way that r̂ = 0 at the start of
the algorithm. Equation (8) implies that this condition is satisfied if we set d̂ = 0 and

d = D̂−1Â(ÂT D̂−1Â)−1b̂.

Matrix (ÂT D̂−1Â + M̂)−1 used in Algorithm PCG is not computed, but the sparse Gill-
Murray [15] decomposition (complete or incomplete) is used instead. Unfortunately, the
matrix ÂT D̂−1Â + M̂ can be dense when Â has dense rows. To avoid this situation, we
assume (without loss of generality) that ÂT = [ÂT

s , ÂT
d ] and D̂ = diag(D̂s, D̂d), where

M̂s = ÂT
s D̂−1

s Âs + M̂ is sparse and Âd consists of dense rows. Then

(ÂT D̂−1Â + M̂)−1 = (M̂s + ÂT
d D̂−1

d Âd)
−1 = M̂−1

s − M̂−1
s ÂT

d M̂−1
d ÂdM̂

−1
s ,

where
M̂d = D̂d + ÂdM̂

−1
s ÂT

d

is a (low-dimensional) dense matrix. Again the sparse Gill-Murray decomposition of
matrix M̂s is used instead of its inversion. Notice that this approach is not quite reliable,
since matrix ÂT

s D̂−1
s Âs + M̂ can be singular, even if ÂT D̂−1Â + M̂ is nonsingular. In this

case, the Gill-Murray decomposition can change the matrix ÂT
s D̂−1

s Âs + M̂ considerably,
which can deteriorate the properties of the method. However, we can use the Bunch-
Parlett decomposition of matrix C alternatively if this situation arises.
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3 Step-length selection

Let α = min(1, Δ/‖Δx‖) (Δ serves as a safeguard and has a similar significance as a
trust-region radius). Step-length 0 < α < α and new vectors x := x + αΔx, sI :=
sI(α, ΔsI), uI := uI(α, ΔuI), uE := uE +αΔuE can be determined in many ways, but it is
necessary to satisfy conditions sI > 0 (which is necessary for definition of the logarithmic
barrier function) and uI > 0 (which guarantees positive definiteness of matrix MI =
U−1

I SI). We have used two simple strategies for computation of sI(α, ΔsI) and uI(α, ΔuI).
Strategy 1 handles individual components separately setting si(α, ΔsI) = si +αsi

Δsi and
ui(α, ΔuI) = ui + αui

Δui, i ∈ I, where

αsi
= α, Δsi ≥ 0,

αsi
= min

(
α,−γ

si

Δsi

)
, Δsi < 0,

αui
= α, Δui ≥ 0,

αui
= min

(
α,−γ

ui

Δui

)
, Δui < 0,

and 0 < γ < 1 is a coefficient close to unity. Strategy 2 uses bounds

αs = γ min
i∈I,Δsi<0

(
− si

Δsi

)
,

αu = γ min
i∈I,Δui<0

(
− ui

Δui

)
,

where 0 < γ < 1 is a coefficient close to unity, and defines sI(α, ΔsI) = sI+min(α, αs)ΔsI ,
uI(α, ΔuI) = uI + min(α, αu)ΔuI .

3.1 Line-search with a merit function

A further requirement for the selection of a step-length is satisfying a suitable goal cri-
terion. This criterion is usually a merit function, which is a combination of the barrier
function and a measure of constraint violation. Motivated by [17], we use the following
function

Pμ,σ(α) = f(x + αΔx) − μeT ln(SI(α, ΔsI))e

+ (uI + ΔuI)
T (cI(x + αΔx) + sI(α, ΔsI))

+ (uE + ΔuE)T cE(x + αΔx)

+
σ

2
‖cI(x + αΔx) + sI(α, ΔsI))‖2

+
σ

2
‖cE(x + αΔx)‖2, (12)

where μ > 0 and σ ≥ 0. The following theorem is proved in [19].

Theorem 4. Let sI > 0, uI > 0 and let the triple Δx, ΔûI , ΔuE be an inexact solution
of system (5) so that⎡

⎣ Ĝ ÂI AE

ÂT
I −Û−1

I ŜI 0
AT

E 0 0

⎤
⎦

⎡
⎣ Δx

ΔûI

ΔuE

⎤
⎦ +

⎡
⎣ ĝ

ĉI + μÛ−1
I e

cE

⎤
⎦ =

⎡
⎣ r

r̂I

rE

⎤
⎦ , (13)
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where r, r̂I , rE are parts of the residual vector, and let ΔǔI and ΔsI be given by (4) and
(2), respectively. Then

P ′
μ,σ(0) = −(Δx)T GΔx − (ΔsI)

T S−1
I UIΔsI − σ(‖cI + sI‖2 + ‖cE‖2)

+ (Δx)T r + σ((ĉI + ŝI)
T r̂I + cT

ErE).

If

σ > −(ΔxT )GΔx + (ΔsI)
T S−1

I UIΔsI

‖cI + sI‖2 + ‖cE‖2
(14)

and if (5) is solved with a sufficient precision, namely if

(Δx)T r + σ((ĉI + ŝI)
T r̂I + cT

ErE) < (Δx)T GΔx + (ΔsI)
T S−1

I UIΔsI

+ σ(‖cI + sI‖2 + ‖cE‖2), (15)

then P ′
μ,σ(0) < 0.

Condition (14) restricts the choice of the parameter σ weakly. If matrix G is positive
semidefinite, any value σ ≥ 0 satisfies this condition. In the opposite case, the second
term, which is always positive, decreases the value of P ′

μ,σ(0) and partially eliminates the
influence of the first term.

Inequality (14) gives one possibility for the computation of the parameter σ, which
implies that P ′

μ,σ(0) < 0 if (15) holds. But it is usually more efficient in practical compu-
tations to choose parameter σ as a constant and replace matrix G by a positive definite
diagonal matrix D if the condition P ′

μ,σ(0) < 0 does not hold. If all constraints are active,

then Ĝ = G = D = D̂ and the following theorem, proved in [19], can be used.

Theorem 5. Consider Algorithm PCG with preconditioner C applied to system Kd̄ = b̄
with Ĝ replaced by D̂. Then this algorithm finds the exact solution of Kd̄ = b̄ in its first
iteration and P ′

μ,σ(0) < 0 for any value σ ≥ 0.

If P ′
μ,σ(0) < 0, we can use a line-search technique. In this case, we set α = βlα,

where 0 < β < 1 is a line-search parameter and l ≥ 0 is a minimum nonnegative integer
such that Pμ,σ(βlα) < Pμ,σ(0). After determination of α ≤ α, we set x := x + αΔx,
sI := sI(α, ΔsI), uI := uI(α, ΔuI), uE := uE + αΔuE.

The above line-search technique is not always advantageous, since step-length α = βlα
can be too short. Therefore, we have tested an additional possibility. We have used the
simple choice α = α (the first step accepted). In this case, the merit function (12) serves
only as indication of restarts. Surprisingly, this simple choice is very efficient in practice
as is demonstrated in Table 1 – Table 3.

3.2 Line-search with a filter structure

When solving problem (IP), we need to decrease values of functions

Bμ(x, sI) = f(x) − μeT ln(SI)e

and

P (x, sI) =
1

2

(‖cI(x) + sI‖2 + ‖cE(x)‖2
)
.
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The use of a suitable merit function guarantees that at least one of these values is de-
creased. Unfortunately, this simple criterion can lead to cycling. Therefore, Fletcher and
Leyffer [13] proposed a new idea based on a filter principle. Suppose that Bμ(xi, si

I) ≤
Bμ(xj, sj

I) and P (xi, si
I) ≤ P (xj, sj

I) for i ∈ N and j ∈ N . Then we say that pair
(xi, si

I) dominates pair (xj, sj
I). In the k-th iteration, the filter is a set of pairs (xi, si

I),
i ∈ Fk ⊂ {1, 2, . . . , k}, such that no pair dominates any other. Letting xk+1 = xk +αkΔxk

and sk+1
I = sI(α

k, Δsk
I ) we seek a step-length αk > 0 in such a way that no pair in the

filter dominates pair (xk+1, sk+1
I ). If this is true, then pair (xk+1, sk+1

I ) is acceptable and
is added to the filter.

Our strategy is based on the following theorem.

Theorem 6. Let the assumptions of Theorem 4 be satisfied and let Bμ(α) = Bμ(x +
αΔx, sI(α, ΔsI)) and P (α) = P (x + αΔx, sI(α, ΔsI)). Then

P ′(0) ≤ −2(1 − ω)P (0)

and if P (0) = 0, then

B′
μ(0) = −(Δx)T GΔx − (ΔsI)

T S−1
I UIΔsI + (Δx)T r

If (Δx)T GΔx+(ΔsI)
T S−1

I UIΔsI > 0 and (5) is solved with a sufficient precision, namely
if

(Δx)T r < (Δx)T GΔx + (ΔsI)
T S−1

I UIΔsI ,

then B′
μ(0) < 0.

Proof. Since sI > 0 and uI > 0, one has sI(α, ΔsI) = sI + αΔsI and uI(α, ΔuI) =
uI + αΔuI for sufficiently small values of α. Thus differentiating P (α), we obtain

P ′(0) = (cI + sI)
T (AT

I Δx + ΔsI) + cT
EAT

EΔx. (16)

Using the equality

⎡
⎢⎢⎣

G 0 AI AE

0 S−1
I UI I 0

AT
I I 0 0

AT
E 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Δx
ΔsI

ΔuI

ΔuE

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

g
UIe − μS−1

I e
cI + sI

cE

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

r
0
rI

rE

⎤
⎥⎥⎦ , (17)

which is equivalent to (4)–(7), we obtain

(cI + sI)
T (AT

I Δx + ΔsI) = −‖cI + sI‖2 + (ĉI + ŝI)
T r̂I ,

cT
EAT

EΔx = −‖cE‖2 + cT
ErE

(since řI = 0 by (4)). Since Algorithm PCG and the Schwarz inequality guarantee that
(ĉI + ŝI)

T r̂I + cT
ErE = ĉT r̂ ≤ ω‖ĉ‖2 ≤ ω(‖cI + sI‖2 + ‖cE‖2), equality (16) implies that

P ′(0) ≤ −(1 − ω)(‖cI + sI‖2 + ‖cE‖2) = −2(1 − ω)P (0).

Similarly, differentiating Bμ(α), we obtain

B′
μ(0) = (Δx)T∇f(x) − μ(ΔsI)

T S−1
I e. (18)
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If P (0) = 0, then ‖ĉ‖ = 0 and, therefore, ‖r̂‖ ≤ ω‖ĉ‖ = 0. Thus ‖r̂I‖ = 0, ‖rE‖ = 0 and
(17) implies that [

ÂT
I I

AT
E 0

] [
Δx
ΔsI

]
= 0

and [
G 0
0 S−1

I UI

] [
Δx
ΔsI

]
+

[
AI AE

I 0

] [
uI + ΔuI

uE + ΔuE

]
=

[
r
0

]
−

[ ∇f(x)
−μS−1

I e

]

Multiplying the second equality by
[
(Δx)T , (ΔsI)

T
]

and using the first one, we obtain

(Δx)T GΔx + (ΔsI)
T S−1

I UIΔsI = (Δx)T r − (Δx)T∇f(x) + μ(ΔsI)
T S−1

I e,

which after substituting into (18) proves the second assertion. �

Theorem 6 implies several conclusions, which can be used for the construction of the
corresponding algorithm.

• Directions Δx, ΔsI obtained by Algorithm PCG imply the inequality P ′(0) ≤
−2(1 − ω)P (0) < 0. Thus, choosing an arbitrary 0 < ε1 < 1, there is a num-
ber 0 < α ≤ 1 such that P (α) ≤ P (0) − 2αε1(1 − ω)P (0) for all 0 < α ≤ α (since
usually ω ≤ 1/2, we can write P (α) ≤ P (0) − αε1P (0)).

• If standard constraint qualifications (LICQ or MFCQ, see [14]) are satisfied, then the
Lagrange multipliers are bounded and (Δx)T GΔx + (ΔsI)

T S−1
I UIΔsI > 0 implies

B′
μ(0) < 0 also for small but nonzero P (0). If P (0) is small and B′

μ(0) ≥ 0, we can
replace G by a positive definite diagonal matrix D. If all constraints are active, then
Ĝ = G = D and if we use the preconditioner (9) with D̂ = D, then (Δx)T GΔx +
(ΔsI)

T S−1
I UIΔsI > 0 and r = 0 by Theorem 5 and we can expect that new Δx, ΔsI

are descent directions for Bμ. Note that (Δx)T GΔx + (ΔsI)
T S−1

I UIΔsI > 0 holds
in a neighborhood of the solution satisfying the second order sufficient conditions.

• The above considerations form a basis for a suitable restart strategy. We need to
replace G by D if P (0) is small and B′

μ(0) ≥ 0. These two conditions can be replaced
by one condition using a suitable merit function. We have chosen function Pμ,σ

described in the previous subsection, which is extremely suitable for the detection
of indefiniteness (Theorem 4). Thus G is replaced by D in case Pμ,σ(0) ≥ 0.

• The above strategy guarantees that pair (xk+1, sk+1
I ) is acceptable for the so-called

Markov filter [4], which contains only one pair (xk, sk
I ). For assuring the global

convergence, it is necessary to use larger number of pairs. In this case, values
Bμk(xi, si

I), i ≤ k have to be recomputed to Bμk+1(xi, si
I), i ≤ k after changing μk

to μk+1. Therefore, we need to store values f(xi) and eT ln(Si
I)e for i ∈ Fk.

4 Computation of the barrier parameter

Most implementations of interior point methods choose the value μ in such a way that
0 < μ < sT

I uI/mI (or μ = λsT
I uI/mI , where 0 < λ < 1). This case is analyzed in [12]

and used in [22]. Computational experience has shown that the algorithm performs best
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when components siui of the dot-product in the numerator approach zero at a uniform
rate. The distance from uniformity can be measured by the ratio


 =
mini∈I(siui)

sT
I uI/mI

.

Clearly, 0 < 
 ≤ 1 and 
 = 1 if and only if condition SIUIe − μe = 0 holds. The value
λ is then computed from 
. Usually heuristic formulas are used for this purpose. In our
implementation, we have used the formula

λ = 0.1 min

(
0.05

1 − 




, 2

)3

(19)

proposed in [22]. We have also tested other possibilities, e.g., formulas given in [1], but
formula (19) has shown to be best.

Concerning the local convergence analysis of interior point methods with various choices
of the barrier parameter, we refer to [7] and [12]. It is necessary to note that slow decrease
of μ can lead to a considerable increase of the total number of iterations, i.e., to a long
computational time, but its rapid decrease can lead to a failure of the method.

5 Description of the algorithm

The above considerations can be summarized in the algorithmic form. Algorithm based
on a merit function is proposed in [19], here we propose an algorithm based on a filter
structure.

Algorithm 1.

Data: Parameter for the active constraint definition εI (e.g. εI = 0.1). Minimum
precision for the direction determination 0 < ω < 1 (e.g. ω = 0.9). Line-search
parameters 0 < β < 1 (e.g. β = 0.5) and l > 0 (e.g. l = 20). Maximum
step-length reduction 0 < γ < 1 (e.g. γ = 0.95 when barrier function (12) is
used and γ = 0.99 otherwise). Step bound Δ > 0 (e.g. Δ = 1000).

Input: Sparsity pattern of matrices ∇2F and A. Initial choice of vector x.

Step 1: Initiation. Choose the values μ > 0 (e.g. μ = 1) and σ > 0 (e.g. σ = 1). For
i ∈ I set si := max(−ci(x), δs) and ui := δu, where δs > 0 (e.g. δs = 0.1) and
δu > 0 (e.g. δu = 0.1). For i ∈ E set ui := 0. Compute value f(x) and vectors
cI(x), cE(x). Include the pair (x, sI) into the filter. Set k := 0.

Step 2: Termination. Compute matrix A := A(x) and vector g := g(x, u). If KKT
conditions (derived by the primal-dual formulation) with μ sufficiently small
are satisfied with a sufficient precision, then terminate the computation. Oth-
erwise set k := k + 1.

Step 3: Approximation of the Hessian matrix. Compute approximation G of the Hes-
sian matrix G(x, u) by using differences of gradient g(x, u) as in [9].
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Step 4: Direction determination. Define active and inactive constraints, build linear
system (8) and choose preconditioner (9). Determine positive definite diagonal
matrix D̂ as an approximation of the diagonal of Ĝ and factorize the matrix
ÂT D̂−1Â+M̂ by using the complete or incomplete Gill-Murray decomposition
to obtain (10). Set ω = min(‖b̄‖, 1/k, ω) and determine direction vector d̄ (i.e.
vectors Δx, ΔûI and ΔuE) as an inexact solution of (8) (with the precision
ω) by Algorithm PCG. Compute vectors ΔǔI , ΔŝI , ΔšI by (4), (6), (7),
respectively. Compute directional derivative P ′

μ,σ(0) of the merit function
Pμ,σ(α). If P ′

μ,σ(0) < 0 go to Step 6.

Step 5: Restart. If G = D (i.e., if restart was already used), then terminate the
computation (the algorithm fails), else determine positive definite diagonal
matrix D by the procedure given in [17], set G = D and go to Step 4.

Step 6: Step-length selection. Define maximum step-length α and functions
sI(α, ΔsI), uI(α, ΔuI) by one of the strategies described in Section 3. Find
the minimum integer 0 ≤ l ≤ l such that the pair (x, sI) is not dominated by
any pair from the filter. If such l does not exist go to Step 5, else set α = βlα,
x := x + αΔx, sI := sI(α, ΔsI), uI := uI(α, ΔsI), uE := uE + αΔuE and
include the pair (x, sI) into the filter.

Step 7: Barrier parameter. Determine parameter λ by (19), set μ = λsT
I uI/mI , re-

compute barrier terms in the filter and go to Step 2.

Algorithm 1 can theoretically fail in Step 5 in case the filter contains more than one pair,
but this situation never arose in our computational experiments.

6 Numerical experiments

The above algorithm was tested and compared with the algorithm proposed in [19] by
using three sets of test problems. These sets were obtained as modifications of 18 test
problems for equality constrained minimization given in [17], [18], which can be down-
loaded (together with [18]) from http://www.cs.cas.cz/~luksan/test.html (we ex-
cluded Problem 5.8 from the first two sets, since it consumed more than 50% of the total
CPU time). In Set 1, equalities c(x) = 0 are replaced by inequalities c(x) ≥ 0. In Set 2,
equalities c(x) = 0 are replaced by inequalities c(x) ≤ 0 (i.e., this set contains prob-
lems LUKVLI1–LUKVLI18 from the CUTE collection [6]). Set 3 contains inequalities
−1 ≤ x ≤ 1 and −1 ≤ c(x) ≤ 1. All problems used have optional dimension; we have
chosen dimension with 1000 variables. We have tested six interior point methods differing
by line-search strategies. The first three methods, which use various merit functions, are
based on Algorithm 1 proposed in [19]. The last three methods, which use various filters
introduced in [4], are based on Algorithm 1 described above.

MM: Line-search without any merit function (the first step accepted).

OM: Line-search with the merit function

Pσ(α) = f(x + αΔx) + (uI + ΔuI)
T (cI(x + αΔx) + sI(α, ΔsI))

+ (uE + ΔuE)T cE(x + αΔx) + σP (α)

(barrier term excluded).
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BM: Line-search with the merit function

Pμ,σ(α) = Bμ(α) + (uI + ΔuI)
T (cI(x + αΔx) + sI(α, ΔsI))

+ (uE + ΔuE)T cE(x + αΔx) + σP (α)

MF: Line-search with the Markov filter containing only one pair (x, s) with the dominance
defined by Bμ(x) and P (x).

OF: Line-search with the objective filter containing at most 50 pairs with the dominance
defined by f(x) and P (x).

BF: Line-search with the barrier filter containing at most 50 pairs with the dominance
defined by Bμ(x) and P (x).

The results of the tests are listed in three tables, where M is the method inroduced above
(MM, OM, BM, MF, OF, BF), S is the strategy for the step-length restriction mentioned
in Section 3, NIT is the total number of iterations, NFV is the total number of function
evaluations, NFG is the total number of gradient evaluations (NFG is much greater than
NIT, since the second order derivatives are computed by using gradient differences), NCG
is the total number of CG iterations, NRS is the total number of restarts and NFAIL gives
the number of failures for a given set (the number of problems which have not been solved).
Each row of each table contains a summary of the results for all problems used.

Table 1: Set 1 of 17 problems with 1000 variables: εI = 10−1

M S NIT NFV NFG NCG NRS TIME NFAIL

MM 1 567 567 4137 24969 20 4.92 -

OM 2 592 763 4218 19505 18 4.31 -
BM 2 550 593 3936 21806 14 4.70 -
MF 2 580 606 4121 12841 6 3.78 -
OF 2 572 665 4073 12874 7 3.77 -
BF 2 583 669 4199 12983 10 3.91 -

Table 2: Set 2 of 17 problems with 1000 variables: εI = 10−1

M S NIT NFV NFG NCG NRS TIME NFAIL

MM 1 393 393 2823 10728 19 3.02 -

OM 2 392 939 2885 5322 31 2.58 1
BM 2 476 925 3403 5654 73 3.33 1
MF 2 419 457 3061 5722 10 2.42 -
OF 2 422 479 3074 5730 11 2.48 -
BF 2 417 469 3044 5691 10 2.41 -
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Table 3: Set 3 of 18 problems with 1000 variables: εI = 10−1

M S NIT NFV NFG NCG NRS TIME NFAIL

MM 1 571 571 3991 2731 13 6.83 1

OM 2 578 778 4195 3933 24 8.79 -
BM 2 572 699 4294 3670 25 7.55 -
MF 2 530 620 3882 2618 11 7.14 -
OF 2 534 640 3915 2668 12 6.66 -
BF 2 512 568 3772 2604 13 6.74 -

The last table demonstrates the influence of the parameter εI on the effectiveness of
the method. It contains results for the third set of problems corresponding to the choice
M=BF.

Table 4: Set 3 of 18 problems with 1000 variables: M=BF

εI S NIT NFV NFG NCG NRS TIME NFAIL

10−4 2 1204 1367 8722 17435 217 13.20 -

10−2 2 594 670 4302 3710 10 5.79 -
10−1 2 512 568 3772 2604 13 6.74 -

1 2 532 598 3909 3021 13 8.78 -
10+8 2 525 653 3907 2898 14 6.16 -

7 Conclusions

Result introduced in this contribution and similar results presented in [19] confirm our
effort to develop effective iterative methods for solving linear KKT systems (more detailed
conclusions are given in [19]). The above tables show that the use of a filter principle
combined with restarts and with strategies assuring positivity of slack variables and La-
grange multipliers leads to robust and efficient algorithms. These methods (MF, OF, BF)
are more efficient than methods based on an augmented-Lagrangian merit function (MM,
OM, BM) described in [19]. Surprisingly, the simplest method MM with a single-pair
filter is competitive with more sophisticated methods OF, BF that use standard multi-
pair filters. The last table shows that the new termination criterion used in Algorithm
PCG allows us to utilize large values of εI , so that the splitting on active and inactive
constrains is no more important.
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