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Lukšan, Ladislav
2004
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1 Introduction

Modern numerical methods for unconstrained optimization have been studied and de-
veloped since the sixties of the last century. Nevertheless, many new problems and
approaches have appeared only recently. It especially concerns general large-scale prob-
lems, which challenged the development of limited-memory variable metric methods
[24], and structured large-scale problems, which stimulated the development of variable
metric methods for partially separable problems [11] and hybrid methods for sparse
least-square problems [17]. Additional approaches arose in connection with nonsmooth
unconstrained optimization. In this case, various bundle-type methods [14], [15], [22]
were developed including variable-metric bundle methods [20], [29], which substantially
reduce the size of bundles and, therefore, the number of constraints in the quadratic
programming subproblems. Variable-metric bundle methods were recently generalized
to solve large-scale nonsmooth problems using a limited-memory variable metric ap-
proach [12], [13] or a partially-separable variable metric framework [21]. Furthermore,
new methods [10], [18] for solving large-scale trust-region subproblems were proposed,
which can be used in connection with the Newton method for general sparse uncon-
strained optimization or with the Gauss-Newton method for sparse nonlinear least
squares.

In this contribution, we deal with the local minimization of the objective function
F : Rn → R. In Section 2, the function F is assumed to be twice continuously differen-
tiable and limited-memory methods are reviewed, including the most recent methods
proposed in [30] and [31]. Section 3 is devoted to the nonsmooth optimization. After
introducing basic principles of the bundle methods and describing variable-metric bun-
dle methods, we focus our attention on methods for large-scale nonsmooth problems.
Section 4 contains a description of hybrid methods for nonlinear least squares and
Section 5 is devoted to efficient methods for solving large-scale trust-region subprob-
lems. All the methods presented were carefully tested and compared using extensive
computational experiments

2 Limited-memory variable metric methods

Limited-memory variable metric methods can be efficiently used for large-scale un-
constrained optimization in case the Hessian matrix is not known or is not sparse.
These methods are usually realized in the line-search framework so that they generate
a sequence of points xk ∈ Rn, k ∈ N , by the simple process

xk+1 = xk + tkdk, (2.1)

where dk = −Hkgk is a direction vector, Hk is a positive definite approximation of the
inverse Hessian matrix and tk > 0 is a scalar step-size chosen in such a way that

Fk+1 − Fk ≤ ε1 tk dT
k gk, dT

k gk+1 ≥ ε2 dT
k gk (2.2)

(the weak Wolfe conditions), where Fk = F (xk), gk = ∇F (xk) and 0 < ε1 < 1/2,
ε1 < ε2 < 1. Matrices Hk, k ∈ N , are computed either by using a limited (small)
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number of variable metric updates applied to the unit matrix or by updating low
dimension matrices. First, we shortly describe two known limited-memory variable
metric methods. Then we focus our attention on new shifted limited-memory variable
metric methods.

2.1 Limited memory BFGS method

The most known and commonly used limited-memory BFGS (L-BFGS) method [24]
works with matrices Hk = Hk

k , where Hk
k−m = γkI (usually γk = bk−1/ak−1) and

Hk
j+1 = V T

j Hk
j Vj +

ρj

bj

sjs
T
j , Vj = I − 1

bj

yjs
T
j (2.3)

for k − m ≤ j ≤ k − 1. Here sj = xj+1 − xj, yj = gj+1 − gj, aj = yT
j Hjyj, bj = yT

j sj

and ρj are correction parameters. Matrix Hk = Hk
k need not be constructed explicitly

since we need only vector dk = −Hk
kgk, which can be computed using two recurrences

(the Strang formula). First, vectors

uj = −
(

k−1∏
i=j

Vi

)
gk,

k − 1 ≥ j ≥ k − m, are computed using the backward recurrence

σj = sT
j uj+1/bj,

uj = uj+1 − σjyj,

where uk = −gk. Then vectors

vj+1 =
bk−1

ak−1

(
j∏

i=k−m

Vi

)T

uk−m +

j∑
l=k−m

ρl

bl

(
j∏

i=l+1

Vi

)T

sls
T
l ul+1,

k − m ≤ j ≤ k − 1, are computed using the forward recurrence

vj+1 = vj + (ρjσj − yT
j vj/bj)sj,

where vk−m = (bk−1/ak−1)uk−m. Finally we set dk = vk. Note that 2m vectors sj, yj,
k − m ≤ j ≤ k − 1 are used and stored.

Matrix Hk = Hk
k , obtained by updates (2.3), can be expressed in the compact form

using low order matrices [2]. In this case

Hk = γkI − [Sk, γkYk]Mk[Sk, γkYk]
T , (2.4)

where Sk = [sk−m, . . . , sk−1], Yk = [yk−m, . . . , yk−1], and

Mk =

[
(R−1

k )T (Ck + γkY
T
k Yk)R

−1
k −(R−1

k )T

−R−1
k 0

]
, (2.5)
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where Ck is a diagonal matrix containing the diagonal part of ST
k Yk, and Rk is an upper

triangular matrix containing the upper triangular part of ST
k Yk. Again 2m vectors sj,

yj, k − m ≤ j ≤ k − 1 are used and stored.
The above way can be used for some other variable metric updates. The symmetric

rank-one (SR1) update can be expressed in the form

Hk = γkI + (Sk − γkYk)(Rk + RT
k − Ck − γkY

T
k Yk)

−1(Sk − γkYk)
T . (2.6)

It is necessary to note that update (2.3) with Strang recurrences is more stable than
expressions (2.4)–(2.5). On the other hand, compact-form formulas are very important,
since they can be easily inverted (using duality) and applied directly to Bk = H−1

k ,
which is necessary in trust-region approach or in constrained optimization.

2.2 Methods based on reduced Hessian matrices

Another limited-memory variable metric method, proposed in [7], is based on updating
reduced Hessian matrices. Let Bk, k ∈ N , be approximations of Hessian matrices
obtained by the BFGS method (with B1 = I). If Gk and Dk are linear subspaces
spanned by the columns of matrices Gk = [g1, . . . , gk] and Dk = [d1, . . . , dk], then
Dk = Gk. Moreover, Bkv ∈ Gk for v ∈ Gk and Bkw = w for w ∈ G⊥

k . Let Zk be a
matrix whose columns form an orthonormal basis in Gk and let Qk = [Zk,Wk] be a
square orthogonal matrix. The above consideration implies that

QT
k BkQk =

[
ZT

k BkZk 0
0 I

]
, QT

k gk =

[
ZT

k gk

0

]

and the direction vector can be obtained from the reduced system

dk = Zkd̃k, ZT
k BkZkd̃k = −g̃k, g̃k = ZT

k gk. (2.7)

Thus complete information concerning the variable metric update is contained in the
reduced Hessian approximation ZT

k BkZk. We usually use the Choleski decomposition
RT

k Rk = ZT
k BkZk and update the upper triangular matrix Rk. More details can be

found in [6].
Consider now a limited-dimension subspace Dk spanned by the columns of matrix

Dk = [dk−m+1, . . . , dk]. This subspace is changed on every iteration. Let Zk be a
matrix whose columns form an orthonormal basis in Dk. In efficient implementations
of limited-memory methods based on reduced Hessians, matrices Zk and ZT

k BkZk are
not used explicitly. An upper triangular matrix Tk such that Dk = ZkTk and the
Choleski decomposition RT

k Rk = ZT
k BkZk are used instead. At the first iteration, we

set
D1 = [g1], T1 = [‖g1‖], R1 = [1], g̃1 = [‖g1‖].

On every iteration, we first solve two equations RT
k Rkd̃k = −g̃k, Tkvk = d̃k and set dk =

Dkvk. Then the line-search is performed to obtain a new point xk+1 = xk + tkdk and
matrices Dk, Tk are changed to correspond to the subspace Dk. Therefore, we replace
the last column of Dk by dk and the last column of Tk by d̃k. Now a representation of
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the subspace Dk+1 has to be formed. First, we project the new gradient gk+1 = g(xk+1)
into the subspace Dk by solving the equation T T

k rk+1 = DT
k gk+1. Then we determine

the quantity ρk+1 = ‖gk+1‖ − ‖rk+1‖, set Dk+1 = [Dk, gk+1] and

Tk+1 =

[
Tk rk+1

0 ρk+1

]
, g̃k+1 =

[
rk+1

ρk+1

]
.

Thus we obtain a temporary representation of the reduced Hessian approximation in
the form ZT

k+1BkZk+1 = RT
k+1R+1, where

Rk+1 =

[
Rk 0

0
√

1/γk+1

]
, g̃k+1 =

[
rk+1

ρk+1

]
.

This factorization has to be updated to satisfy the quasi-Newton condition RT
k+1Rk+1s̃k =

ỹk, where

s̃k = tk

[
d̃k

0

]
, ỹk = g̃k+1 −

[
g̃k

0

]
,

Numerically stable methods described in [9] can be used for this purpose. If the sub-
space Dk+1 has dimension m + 1, then it has to be reduced before the new iteration
is started. Denote the matrices after such reduction by D̄k+1, T̄k+1, R̄k+1. Then D̄k+1

is obtained from Dk+1 by deleting its first column and matrices T̄k+1, R̄k+1 can be
constructed by using elementary Givens rotations (see [7] for more details).

2.3 Shifted variable metric methods

Consider line-search methods of the form (2.1)–(2.2). Limited-memory variable metric
methods based on reduced Hessians use low-rank matrices Hk = Zk(Z

T
k BkZk)

−1ZT
k =

UkU
T
k , where Uk has m columns at most. Thus Hk is singular and the case when dk

is almost perpendicular to gk can occur. For this reason, it is advantageous to set
Hk = ζkI + UkU

T
k , where ζk > 0 is a parameter, which is carefully selected in every

iteration. In this subsection, we assume that the rank of Ak = UkU
T
k is min(k, n) (i.e.,

m = n).
Shifted variable metric methods use matrices Hk = ζkI + Ak, k ∈ N , where ζk > 0

and Ak is positive semidefinite. Starting from the zero matrix, these methods generate
a sequence of positive semidefinite matrices Ak, k ∈ N , satisfying the (modified)
quasi-Newton condition Ak+1yk = �ks̃k, where sk = xk+1 − xk, yk = gk+1 − gk and
s̃k = sk − ζk+1yk. Here �k is a correction parameter and ζk+1 > 0 is a shift parameter.
Update

Ak+1 = Ak + �k
s̃ks̃

T
k

b̃k

− Akyky
T
k Ak

āk

+
ηk

āk

(
āk

b̃k

s̃k − Akyk

)(
āk

b̃k

s̃k − Akyk

)T

(2.8)

is used, where āk = yT
k Akyk and b̃k = yT

k s̃k. The shifted BFGS method corresponds to
ηk = 1. The following theorem is proved in [30].

Theorem 1. Let Ak be positive semidefinite and ηk ≥ 0. If 0 < ζk+1 < yT
k sk/y

T
k yk,

then Ak+1 is positive semidefinite.
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A crucial part of shifted variable metric methods is the determination of the shift
parameter. Theorem 1 implies condition

ζk+1 = μk bk/âk, 0 < μk < 1,

where bk = yT
k sk and âk = yT

k yk. If μk is too small, then matrix Hk is unsuitable,
especially in the first n iterations, when Ak is singular. If μk is too large, the stability is
usually lost (numerical explosion). Two basic choices were tested. The simplest choice
uses constant μk = μ, 0 < μ < 1/2, in every iteration. If μ → 1/2, then the shifted
BFGS method becomes unstable. Efficient values lie in the interval 0.20 ≤ μ ≤ 0.25,
e.g., μ = 0.22. A more sophisticated choice, derived by using a theoretical investigation
of stability and global convergence (see [30]), is given by the formula

μk =
√

1 − āk/ak

/(
1 +

√
1 − b2

k/(âk|sk|2)
)

(2.9)

(the numerator assures the global convergence and the denominator assures the stabil-
ity).

For proving the global convergence, we need the following assumptions.

Assumption 1. The objective function f : Rn → R is uniformly convex and has
bounded second-order derivatives, i.e.

0 < G ≤ λ(G(x)) ≤ λ(G(x)) ≤ G < ∞
for all x ∈ Rn, where λ(G(x)) and λ(G(x)) are the lowest and the greatest eigenvalues
of the Hessian matrix G(x).

Assumption 2. Parameters �k and μk of the shifted VM method are uniformly
positive and bounded, in the sense that

0 < � ≤ �k ≤ �,

0 < μ ≤ μk ≤ μ < 1,

for every k ≥ 1.

The following theorem is proved in [31].

Theorem 2. Consider a shifted variable metric method satisfying Assumption 2 with
the line-search fulfilling the weak Wolfe conditions. Let the objective function satisfy
Assumption 1. Then, if 0 ≤ ηk ≤ 1 and μ2

k ≤ 1 − āk/ak, one has

lim inf
k→∞

‖gk‖ = 0.

Remark 1. Condition μ2
k ≤ 1 − âk/ak has been used for the choice of the numerator

in (2.9). The denominator in (2.9) minimizes the condition number of Hk+1 in the first
iteration.

Shifted variable metric methods were tested by using a set of 92 relatively difficult
test problems with 50 and 200 variables implemented in subroutine TEST28, which can
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be downloaded from www.cs.cas.cz/~luksan/test.html. The results are presented
in Table 1, where N is the number of variables, MET is the method used (SBFGS - the
shifted BFGS method, SDFP - the shifted DFP method, BFGS - the standard BFGS
method, DFP - the standard DFP method), NIT is the total number of iterations, NEV
is the total number of function and gradient evaluations, NF is the number of failures
for a given set (i.e., the number of problems which were not successfully solved) and
TIME is the total computational time in seconds.

N MET NIT NEV NF TIME
50 SBFGS 11256 12178 - 1.03

SDFP 46010 48237 8 3.78
BFGS 14958 16474 1 1.26
DFP 79486 84215 35 6.66

200 SBFGS 30429 36080 1 25.11
SDFP 92799 100461 15 74.88
BFGS 36099 39991 2 27.21
DFP 146851 158979 32 113.75

Table 1

The results presented in this table imply the following conclusions:

• The shifted VM methods are competitive with the classic VM methods. They
are more efficient than standard implementations of the classic VM methods.
However, the classic VM methods can be improved by a suitable scaling, which
is problematic in the case of shifted VM methods.

• The shifted VM methods are not intended for solving problems, which can be
successfully solved by the classic VM methods. However, these methods are ideal
as starting methods for the shifted limited-memory VM methods, which are based
on the same idea.

2.4 Shifted limited-memory variable metric methods

Shifted limited-memory variable metric methods use recurrences (2.1)–(2.2) with ma-
trix Hk = ζkI + Ak = ζkI + UkU

T
k , where n × m matrix Uk is updated by formula

Uk+1 = VkUk with a low rank matrix Vk chosen in such a way that the (modified)
quasi-Newton condition Ak+1yk = Uk+1U

T
k+1yk = ρks̃k is satisfied. This condition can

be replaced by equations

UT
k+1yk = zk, Uk+1zk = �ks̃k, zT

k zk = �kb̃k. (2.10)

The following theorem is proved in [31].

Theorem 3. Let Tk be a symmetric positive definite matrix and zk ∈ Rm. Denote U
the set of n × m matrices. Then the unique solution to

min{yT
k Tkyk ‖T−1/2

k (Uk+1 − Uk)‖2
F : Uk+1 ∈ U}
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s.t. (2.10) is

Uk+1 = Uk − Tkyk

yT
k Tkyk

yT
k Uk + (�ks̃k − Ukzk +

yT
k Ukzk

yT
k Tkyk

Tkyk)
zT

k

zT
k zk

(2.11)

(Tkyk and zk are vector parameters defining a class of shifted limited-memory variable
metric methods).

Remark 2. Formula (2.11) can be writen in the form

Uk+1 =
s̃kz

T
k

b̃k

+

(
I − Tkyky

T
k

yT
k Tkyk

)
Uk

(
I − zkz

T
k

zT
k zk

)
,

which implies

Uk+1U
T
k+1 = ρk

s̃ks̃
T
k

b̃k

+

(
I − Tkyky

T
k

yT
k Tkyk

)
Uk

(
I − zkz

T
k

zT
k zk

)
UT

k

(
I − yky

T
k Tk

yT
k Tkyk

)
.

Usually Tkyk = s̃k. This choice gives the (full) shifted BFGS method if term zkz
T
k /zT

k zk

is omitted.

Using suitable values of the vector parameters we obtain particular methods. As-
suming that Tkyk and ρks̃k − Ukzk are linearly dependent and setting

zk = ϑkU
T
k Bksk, ϑk = ±

√
�kb̃k/c̄k. (2.12)

we obtain rank 1 variationally derived method (VAR1), where

Uk+1 = Uk − �ks̃k − ϑkAkBksk

�kb̃k − ϑkb̄k

(yk − ϑkBksk)
T Uk, (2.13)

which gives the best results for the choice sgn(ϑkb̄k) = −1.
Using zk given by (2.12) and setting Tkyk = s̃k, we obtain rank 2 variationally

derived method (VAR2), where

Uk+1 = Uk − s̃k

b̃k

yT
k Uk +

(
�k

s̃k

ϑk

− AkBksk +
b̄k

b̃k

s̃k

)
sT

k BkUk

c̄k

. (2.14)

The efficiency of both these methods significantly depends on the value of the correction
parameter �k. Very good results were obtained with choices �k = νk, �k = εk, �k =√

νkεk and �k = ζk/(ζk + ζk+1), where νk = μk/(1−μk), μk is a relative shift parameter

and εk =
√

1 − āk/ak is the damping factor of μk.
Using the above formulas, the following theorem assuring the global convergence of

VAR1 and VAR2 is a consequence of Theorem 2 (see [31]).

Theorem 4. Consider a shifted variable metric method VAR1 or VAR2 satisfying
Assumption 2 and inequality μ2

k ≤ ζkâk/ak together with the line search (2.1)–(2.2).
Let the objective function satisfy Assumption 1. Then if

ϑk = −sgn b̄k min

(
C,

√
�kb̃k/c̄k

)
or ϑk = ±

√
�kb̃k/c̄k
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(for VAR1 or VAR2) hold in all iterations (C > 0 can be chosen arbitrarily), one has

lim inf
k→∞

‖gk‖ = 0.

Shifted limited-memory variable metric methods were tested by using a set of 22
test problems with 1000 and 5000 variables implemented in subroutine TEST14, which
can be downloaded from www.cs.cas.cz/~luksan/test.html. Always 10 vectors (or
pairs) were stored for N = 1000 and 5 vectors (or pairs) were stored for N = 5000. The
results are presented in Table 2, where N is the number of variables, MET is the method
used (VAR1 - the rank 1 variationally derived method, VAR2 - the rank 2 variationally
derived method, LBFGSS - the limited-memory BFGS method with Strang recurrences,
LBFGSC - the limited-memory BFGS method with compact matrices, LBFGSR - the
limited-memory BFGS method with reduced Hessians, CG - the nonlinear conjugate
gradient method), NIT is the total number of iterations, NEV is the total number of
function and gradient evaluations, NF is the number of failures for a given set (i.e.,
the number of problems which were not successfully solved) and TIME is the total
computational time in seconds.

N Method NIT NEV NF TIME
1000 VAR1 19317 19680 - 13.86

VAR2 18227 18546 - 13.76
LBFGSS 20427 21456 - 15.17
LBFGSC 20555 26003 1 16.55
LBFGSR 22385 33181 - 24.09

CG 20520 41049 - 17.91
5000 VAR1 94801 97858 - 8:02.1

VAR2 85662 87483 - 7:22.6
LBFGSS 108315 111456 2 9:33.8
LBFGSC 102313 105828 1 10:32.6
LBFGSR 98046 154931 - 10:41.4

CG 69805 168471 1 6:45.3

Table 2

The results presented in this table and our other extensive experiments imply the
following conclusions:

• Methods VAR1, VAR2 and LBFGSS are very robust. Methods LBFGSC and
LBFGSR are more sensitive to round-off errors and their stability decreases as
the number of stored vectors increases.

• Methods VAR1 and VAR2 are very efficient, competitive with the LBFGSS
method, for our set of test problems. The LBFGSS method can be better than
VAR1 and VAR2 for very ill-conditioned problems.
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• Method CG is very efficient for extremely large problems, but it frequently ter-
minates before a required precision is achieved.

• Shifted limited-memory VM methods are still under development. Our limited
computational experience indicates that they could be improved by using a more
suitable choice of parameters.

3 Methods for large-scale nonsmooth optimization

We assume that objective function F : Rn → R is locally Lipschitz and we are able
to compute a (Clarke) subgradient g ∈ ∂F (x) at any point x ∈ Rn. Since a locally
Lipschitz function is differentiable almost everywhere by the Rademacher theorem,
then usually g = ∇F (x). A special feature of nonsmooth problems is the fact that
the gradient ∇F (x) changes discontinuously and is not small in the neighborhood of a
local extremum. Thus the standard optimization methods cannot be used efficiently.

3.1 Principles of bundle methods

Values F (xk), g(xk) ∈ ∂F (xk) at a single point xk do not suffice for describing the
local properties of the nonsmooth objective function. A bundle of values F j = F (yj),
gj ∈ ∂F (yj) obtained at trial points yj, j ∈ Jk ⊂ {1, . . . , k}, gives much better
information. These values serve for the construction of the piecewise linear function

F k
L(x) = max

j∈Jk

{F j + (x − yj)T gj} = max
j∈Jk

{F (xk) + (x − xk)T gj − αk
j},

where αk
j = F (xk) − F k

j , j ∈ Jk, are linearization errors and F k
j = F j + (xk − xj)T gj,

j ∈ Jk. In the convex case, this piecewise linear function is majorized by the objective
function and, moreover, αk

j ≥ 0 for j ∈ Jk. To guarantee nonnegativity of these
numbers in the nonconvex case, the subgradient locality measures

αk
j = max

{|F (xk) − F k
j |, γ(sk

j )
ν
}

,

where γ > 0, ν ≥ 1 and

sk
j = ‖xj − yj‖ +

k−1∑
i=j

‖xi+1 − xi‖

for j ∈ Jk, are used instead of linearization errors. Since we can only work with
limited-size bundles where |Jk| ≤ m (|Jk| is the cardinality of set Jk), the set Jk

is usually determined in such a way that Jk = {1, . . . , k} for k ≤ m, and Jk+1 =
Jk ∪ {k + 1}\{k + 1 − m} for k ≥ m. In this case, one possibility guaranteeing the
global convergence of the bundle method is the use of transformed aggregate values
F k

a , gk
a , sk

a and
αk

a = max
{|F (xk) − F k

a |, γ(sk
a)

ν
}

,

which accumulate information from the previous iterations. These values represent a
linear function which is added to the set of linear functions contained in the bundle.
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New aggregate values F̃ k
a , g̃k

a , s̃k
a are obtained by solving the quadratic programming

subproblem (see (3.4)) and are transformed to the next iteration by (3.10).
Direction vector dk ∈ Rn is usually obtained as a minimum of the piecewise

quadratic function

F k
Q(x) =

1

2
(x − xk)T Gk(x − xk) + max{F k

L(x), F (xk) + (x − xk)T gk
a − αk

a},

where (1/2)(x−xk)T Gk(x−xk) is the regularizing term with symmetric positive definite
matrix Gk. This term restricts the size of the direction vector (in a similar way as in
the trust region methods). This minimization problem is equivalent to the quadratic
programming problem: Minimize function

1

2
dT Gkd + v (3.1)

subject to
−αk

j + dT gj ≤ v, j ∈ Jk, −αk
a + dT gk

a ≤ v (3.2)

(v is an extra variable). The solution of the primal QP subproblem can be expressed
in the form

dk = −(Gk)−1g̃k
a , vk = −(dk)T Gkdk − α̃k

a, (3.3)

where
g̃k

a =
∑

j∈Jk

λk
j g

j + λk
ag

k
a ,

(α̃k
a, F̃

k
a , s̃k

a) =
∑

j∈Jk

λk
j (α

k
j , F

k
j , sk

j ) + λk
a(α

k
a, F

k
a , sk

a)
(3.4)

and where λk
j , j ∈ Jk, λk

a, are corresponding Lagrange multipliers. These Lagrange
multipliers are also solutions of the dual QP problem: Minimize function

1

2

(∑
j∈Jk

λjg
j + λag

k
a

)T

(Gk)−1

(∑
j∈Jk

λjg
j + λag

k
a

)
+
∑
j∈Jk

λjα
k
j + λaα

k
a (3.5)

subject to
λj ≥ 0, j ∈ Jk, λa ≥ 0,

∑
j∈Jk

λj + λa = 1. (3.6)

The minimum value of the dual function is

wk =
1

2
(g̃k

a)T (Gk)−1g̃k
a + α̃k

a = −vk − 1

2
(g̃k

a)T (Gk)−1g̃k
a . (3.7)

Using direction vector dk, we can compute a new approximation of the minimizer
of the objective function. It is usually not possible to just set xk+1 = xk + dk. To
guarantee the global convergence of the bundle method, we use a line search procedure
which generates two points

xk+1 = xk + tkLdk,

yk+1 = xk + tkRdk,
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where 0 ≤ tkL ≤ tkR ≤ 1 are stepsizes, in such a way that exactly one of the two
possibilities, the descent step or the zero step, occurs. The descent step implies the
conditions

tkR = tkL > 0, F (xk + tkLdk) ≤ F (xk) − εLtkLwk, (3.8)

while the zero step implies the conditions

tkR > tkL = 0, (dk)T g(xk + tkRdk) ≥ αk+1 − εRwk (3.9)

with

αk+1 = max
{|F (xk) − F (xk + tkRdk) + tkR(dk)T g(xk + tkRdk)|, γ|tkRdk|ν} .

Here 0 < εL < 1/2 and εL < εR < 1.
After determining xk+1, it is necessary to transform all values to this point. This

is realized by the formulas

F k+1
j = F k

j + (xk+1 − xk)T gj, j ∈ Jk,

F k+1
a = F̃ k

a + (xk+1 − xk)T g̃k
a ,

F k+1
k+1 = F k+1 + (xk+1 − yk+1)gk+1,

gk+1
a = g̃k

a , (3.10)

sk+1
j = sk

j + ‖xk+1 − xk‖, j ∈ Jk,

sk+1
a = s̃k

a + ‖xk+1 − xk‖,
sk+1

k+1 = ‖xk+1 − yk+1‖.

It remains to specify the way for determining matrices Gk. To ensure the global
convergence of a bundle method, we assume for simplicity that matrices Gk are uni-
formly positive definite and uniformly bounded (their eigenvalues are positive and lie
in the compact interval that does not contain zero). Moreover, if the k-th step is a
zero step, then we assume that Gk+1 −Gk is positive semidefinite. These assumptions
are relatively strong, but they can be weakened for individual bundle methods. In the
most frequently used proximal bundle method, where matrix Gk is a diagonal of the
form Gk = σkI, the above assumptions are satisfied if weights σk are positive and lie in
the compact interval that does not contain zero and σk+1 ≥ σk holds in the zero step.
Note that the proximal bundle method requires relatively large bundles (m ∼ n) to be
computationally efficient so that the solution of the quadratic programming subprob-
lem (3.1)–(3.2) is time consuming.

It can be proved under mild assumptions (see e.g. [14]) that the number of consecu-
tive zero steps is finite and that every cluster point of the sequence {xk} is a stationary
point of the objective function. This follows from the fact that the norms of aggregate
subgradients tend to zero implying 0 ∈ ∂F (xk), if the number of consecutive zero steps
is infinite. An infinite sequence of the descent steps can be investigated by the standard
way.
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3.2 Variable metric methods for nonsmooth problems

Standard bundle methods require relatively large bundles to be computationally effi-
cient. Therefore, we need to solve quadratic programming subproblems with a rela-
tively large number of constraints. At the same time, standard variable metric meth-
ods successfully solve many nonsmooth problems. For this reason, it is advantageous
to develop special variable metric methods, which combine good properties of both
mentioned approaches. Following [29], we apply variable metric updates with current
subgradients to matrix Hk = (Gk)−1 (used in (3.5)), which allows us to decrease the
bundle dimension significantly. At the same time, we use aggregate subgradients after
zero steps and a line search described in the previous subsection to guarantee the global
convergence.

Variable metric methods described in this subsection use, for the direction deter-
mination, the current subgradient after a descent step and the aggregate subgradient
after a zero step. The aggregation procedure uses only three subgradients gm ∈ ∂F (xk),
gk+1 ∈ ∂F (yk+1), g̃k and three subgradient locality measures αm = 0, αk+1 ≥ 0, α̃k ≥ 0
(m is the index of the last descent step and the tilde denotes aggregate quantities).
The quadratic programming subproblem (3.5)-(3.6) reduces to the minimization of the
function

ϕ(λ1, λ2, λ3) =
1

2

∥∥(Hk)1/2(λ1g
m + λ2g

k+1 + λ3g̃
k)
∥∥2

+ λ2α
k+1 + λ3α̃

k, (3.11)

where λi ≥ 0, i ∈ {1, 2, 3} and λ1 + λ2 + λ3 = 1. The optimal values λk
i ≥ 0,

i ∈ {1, 2, 3} can be computed in a simple way. The new aggregate subgradient and the
new aggregate subgradient locality measure are computed from the formulas

g̃k+1 = λk
1g

m + λk
2g

k+1 + λk
3 g̃

k, α̃k+1 = λk
2α

k+1 + λk
3α̃

k. (3.12)

In the first iteration or after a descent step, we set g̃k = gk, α̃k = 0 and m = k. The
direction vector is determined by formula dk = −Hkg̃k. At the same time, we set
wk = (1/2)(g̃k)T Hkg̃k + α̃k. If wk is sufficiently small, then an approximate solution is
found.

Positive semidefiniteness of Hk − Hk+1 (which is equivalent to positive semidef-
initeness of Gk+1 − Gk) after a zero step is usually guaranteed by the SR1 update.
Therefore, we use the BFGS update after a descent step and the SR1 update after a
zero step. The BFGS update

Hk+1 = Hk +

(
tkL +

(uk)T Hkuk

(uk)T dk

)
dk(dk)T

(uk)T dk
− Hkuk(dk)T + dk(uk)T Hk

(uk)T dk
,

where uk = gk+1 − gm, is used only if (uk)T dk > 0. Otherwise we set Hk+1 = Hk. The
SR1 update

Hk+1 = Hk − vk(vk)T /(uk)T vk,

where vk = Hkuk − tkRdk, is used only if (vk)T g̃k < 0 (which implies (uk)T vk > 0).
Otherwise we set Hk+1 = Hk.

Detailed descriptions of variable metric methods for nonsmooth functions can be
found in [20] and [29]. The following result is proved in [29].
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Theorem 5. Assume that function F : Rn → R is locally Lipschitz and the level set
{x ∈ Rn : F (x) ≤ F (x1)} is bounded. Then every cluster point of sequence {xk}
generated by the nonsmooth variable metric method is stationary for F .

Two methods for nonsmooth optimization (PBM - the proximal bundle method,
NVM - the nonsmooth variable metric method) were tested by using a set of 25 test
problems with 2–50 variables implemented in subroutine TEST19, which can be down-
loaded from www.cs.cas.cz/~luksan/test.html. The results are presented in Ta-
ble 3, where P is the number of the problem, NIT is the total number of iterations,
NEV is the total number of function and subgradient evaluations and F is the reached
function value. The last row contains the summary values and the total computational
time (in seconds).

Table 3 demonstrates the high efficiency of the nonsmooth variable metric method.
It is competitive with the proximal bundle method measured by the number of itera-
tions, even if it uses bundles of dimension at most 2. Moreover, it is more efficient than
the proximal bundle method measured by the computational time, since it does not
use the time consuming quadratic programming subproblem (with m ∼ n constraints).

PBM NVM
P NIT NEV F NIT NEV F
1 42 45 .38117064D-06 34 34 .27598807D-10
2 18 20 .46154993D-08 15 16 .94894120D-10
3 31 33 1.9522245 17 17 1.9522247
4 14 16 2.0000000 17 17 2.0000000
5 17 19 -3.0000000 20 20 -2.9999996
6 13 15 7.2000014 19 19 7.2000000
7 11 12 -1.4142135 10 10 -1.4142133
8 66 68 -.99999940 55 59 -.99999247
9 13 15 -1.0000000 37 37 -.99999979

10 43 46 -7.9999999 14 14 -7.9999998
11 43 45 -43.999999 38 38 -43.999999
12 27 29 22.600162 40 40 22.600162
13 60 62 -32.348678 52 53 -32.348678
14 154 155 -2.9196975 32 32 -2.9197003
15 92 93 .55981566 81 83 .55981553
16 74 75 -.84140828 89 89 -.84140570
17 160 162 9.7857723 241 241 9.7858732
18 128 143 16.703861 88 89 16.703838
19 150 151 .16712381D-06 123 123 .14683215D-05
20 39 40 .12440972D-12 23 23 .00000000
21 245 251 -638530.48 357 359 -638564.91
22 52 53 .11665945D-11 358 360 .41534959D-05
23 19 20 .51313988D-08 65 66 .32729678D-05
24 27 28 .23412735D-07 67 67 .94570857D-06
25 428 450 32.349182 313 315 32.349159
Σ 1966 2046 TIME = 1.48 2205 2221 TIME = 0.93

Table 3
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3.3 Variable metric methods for large-scale nonsmooth problems

Proximal bundle methods are not suitable for solving large-scale nonsmooth problems,
since they lead to large-scale quadratic programming subproblems, where constraint
Jacobian matrices are usually dense. Nonsmooth variable metric methods described
in the previous subsection are also unsuitable, since they use dense variable metric
updates. Fortunately, these updates can be replaced by updates based on a limited-
memory approach or by updates which utilize sparsity. All other algorithmic details
can remain unchanged.

A limited-memory approach is investigated in [12]. The resulting method utilizes
matrix (2.4)–(2.5) after a descent step and matrix (2.6) after a zero step. Neverthe-
less, the updating strategy is not quite simple, since the condition requiring positive
semidefiniteness of Hk−Hk+1 after a zero step considerably complicates a logical struc-
ture of the algorithm. Algorithmic details of this method together with encouraging
computational results are given in [12]. Global convergence of this method is proved
in [13].

We have tested another simple strategy based on a shifted limited-memory variable
metric update. In this case, update VAR2 (see (2.14)) is applied after every descent
step. It is also used after a zero step if (g̃k)T Hk+1g̃k ≤ (g̃k)T Hkg̃k. In the opposite
case, matrix Hk is kept unchanged.

An efficient method based on partitioned variable metric updates is proposed in
[21]. This method has been developed for minimizing partially separable functions of
the form

F (x) =
m∑

i=1

fi(x)

where fi(x), 1 ≤ i ≤ m (m is usually large), are nonsmooth functions depending on a
small number of variables (ni, say). A typical example is

F (x) =
m∑

i=1

|fi(x)|

(sum of absolute values). If ni 
 n for 1 ≤ i ≤ m, subgradients gi, generalized
Hessian matrices Gi and their approximations Bi are sparse. To simplify the notation,
we introduce packed subgradients ĝi ∈ Rni , packed generalized Hessian matrices Ĝi ∈
Rni×ni and their approximations B̂i ∈ Rni×ni . Defining vectors x̂i ∈ Rni as parts of
vector x ∈ Rn, we can write packed quasi-Newton conditions in the form B̂k+1

i ŝk
i = ŷk

i ,
where ŝk

i = x̂k+1
i −x̂k

i and ŷk
i = ĝk+1

i −ĝk
i . Packed quasi-Newton conditions imply packed

quasi-Newton updates, which are used instead of dense variable metric updates.
Matrices Bk

i and subgradients gk
i (determined from packed matrices B̂k

i and packed
subgradients ĝk

i ) define matrix Bk and subgradient gk as sums

Bk =
m∑

i=1

Bk
i , g̃k =

m∑
i=1

gk
i .
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Denoting by g̃k =
∑m

i=1 g̃k
i the corresponding aggregate subgradient (see (3.14)), direc-

tion vector dk is determined by solving the equation

Bkdk = −g̃k. (3.13)

Furthermore, we define wk = −(1/2)(sk)T g̃k + α̃k. Since matrix Bk is large and sparse,
we use a sparse Choleski (or Gill-Murray [8]) decomposition Bk = LkDk(Lk)T . This
decomposition is also used in the quadratic programming subproblem (3.11) instead of
Hk. Thus matrix multiplications are replaced by solutions of systems with triangular
matrices (back elimination). Solving (3.11) we obtain Lagrange multipliers λ1, λ2, λ3.
The aggregate subgradients are obtained by the formula

g̃k+1
i = λk

1g
k
i + λk

2g
k+1
i + λk

3 g̃
k
i , 1 ≤ i ≤ m. (3.14)

Packed matrices B̂k
i , 1 ≤ i ≤ m, are updated by packed variable metric updates. We

use the packed BFGS update

B̂k+1
i = B̂k

i +
ŷk

i (ŷk
i )T

(ŝk
i )

T ŷk
i

− B̂k
i ŝk

i (B̂
k
i ŝk

i )
T

(ŝk
i )

T B̂k
i ŝk

i

, (ŝk
i )

T ŷk
i > 0

B̂k+1
i = B̂k

i , (ŝk
i )

T ŷk
i ≤ 0

after a descent step and symmetric rank-1 update

B̂k+1
i = B̂k

i +
v̂k

i (v̂k
i )T

(ŝk
i )

T v̂k
i

, (ŝk
i )

T v̂k
i > 0

B̂k+1
i = B̂k

i , (ŝk
i )

T v̂k
i ≤ 0

with v̂k
i = ŷk

i − B̂k
i ŝk

i after a zero step.
Methods for large-scale nonsmooth optimization were tested by using a set of 22

test problems with 50, 500 and 1000 variables implemented in subroutine TEST15,
which can be downloaded from www.cs.cas.cz/~luksan/test.html. The results are
presented in Table 4, where N is the number of variables, MET is the method used
(PBM - the proximal bundle method, NVM - the nonsmooth variable metric method,
SNVM - the shifted limited-memory nonsmooth variable metric method, PNVM - the
partitioned nonsmooth variable metric method), NIT is the total number of iterations,
NEV is the total number of function and subgradient evaluations, NF is the number
of failures for a given set (i.e., the number of problems which were not successfully
solved) and TIME is the total computational time in seconds.

N MET NIT NEV NF TIME
50 PBM 55960 56854 3 29.61

NVM 28325 28405 - 4.06
SNVM 42243 42326 - 4.50
PNVM 13421 13557 - 2.53

500 NVM 91832 91973 2 1281.74
SNVM 88389 88409 3 119.91
PNVM 15294 15369 - 32.74

1000 PNVM 14951 14976 - 166.13

Table 4
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The results presented in this table imply the following conclusions:

• Nonsmooth variable metric method NVM is more efficient than proximal bundle
method for small-size partially separable sums of absolute values.

• Partitioned nonsmooth variable metric method PNVM is very robust, much more
efficient than other methods used for solving our set of test problems.

3.4 Variable metric methods for partially separable minimax problems

Consider functions of the form

F (x) = max
1≤i≤m

fi(x)

where fi(x), 1 ≤ i ≤ m (m is usually large), are nonsmooth functions depending on
a small number of variables (ni, say). Let F (x) = fi(x) for some 1 ≤ i ≤ m. Then
any subgradient of fi(x) is a subgradient of F (x). Thus we can easily found a sparse
subgradient g(x) = gi(x) (containing only ni nonzero elements) at an arbitrary point
x ∈ Rn and the corresponding quadratic programming subproblem: minimize

1

2
dT Gkd + v

subject to
−αk

j + dT gj ≤ v, j ∈ Jk, −αk
a + dT gk

a ≤ v

has sparse constraints (note that aggregate subgradient gk
a need not be sparse, which

implies that the constraint Jacobian matrix can have one dense row). If Gk = σkI, we
obtain a sparse quadratic programming subproblem. Thus having an efficient sparse
QP solver, we can use the proximal bundle method.

Let
F (x) = max

1≤i≤m
|fi(x)|,

where fi(x), 1 ≤ i ≤ m, are smooth functions depending on a small number of variables.
Then minimization of F is equivalent to the sparse nonlinear programming problem
with n + 1 variables x ∈ Rn, z ∈ R: Minimize z subject to

−z ≤ fi(x) ≤ z, 1 ≤ i ≤ m.

This problem can be solved by an arbitrary nonlinear programming method utilizing
sparsity (SQP, interior point, nonsmooth equation). A special form of this problem
allows us to use some simplifications in comparison with general problems. Choosing a
suitable initial value of z we obtain a feasible starting point. Moreover, function F (x)
is an ideal merit function for the above problem. Now we are developing computer
codes for an implementation of this approach.
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4 Hybrid methods for large-scale nonlinear least

squares

Consider functions of the form

F (x) =
1

2

m∑
i=1

f 2
i (x) =

1

2
fT (x)f(x)

(sum of squares), where fi(x), 1 ≤ i ≤ m (m is usually large), are smooth functions
depending on a small number of variables (ni, say). In this case, the Jacobian matrix
J(x) = [Jij(x)] = [∂fi(x)/∂xj] is sparse. Using the Jacobian matrix, we can express
gradient g(x) and Hessian matrix G(x) in the form g(x) = JT (x)f(x) and

G(x) =
m∑

i=1

(
gi(x)gT

i (x) + fi(x)Gi(x)
)

= JT (x)J(x) + C(x)

(Gi(x) are Hessian matrices of fi(x), 1 ≤ i ≤ m).
The most known Gauss-Newton method uses matrix B(x) = JT (x)J(x) instead of

the Hessian matrix G(x) = JT (x)J(x)+C(x) (i.e., it omits the second order information
contained in C(x)). We assume that matrix JT (x)J(x) is sparse (then also C(x)
is sparse). Matrix JT (x)J(x) is frequently ill-conditioned (even singular), thus the
Gauss-Newton method requires a trust-region realization. If the minimum value F (x∗)
is large (large residual problem), then the Gauss-Newton method can be inefficient.
Therefore, modifications based on variable metric updates has been developed. The
following theorem is proved in [1].

Theorem 5. If Fk → 0 Q-superlinearly, then (Fk − Fk+1)/Fk → 1. If Fk → F ∗ > 0,
then (Fk − Fk+1)/Fk → 0.

Theorem 5 implies the following philosophy of hybrid Gauss-Newton methods with
second order corrections. Direction vector d is obtained by a trust-region strategy
using the quadratic model (1/2)dT Bd + fT Jd and the constraint ‖d‖ ≤ Δ. Then
x+ = x + d, F+ = F (x+) and J+ = J(x+). If F − F+ > ϑF , then B+ = JT

+J+

(Gauss-Newton method). If F − F+ ≤ ϑF , then B+ = JT
+J+ + C+, where C+ is an

approximation of the second order term. Usually ϑ ≈ 10−4.
For medium-size problems with dense matrices, matrix C is usually obtained by

variable metric updates [1] [3], which are unsuitable in the large-scale case. For-
tunately, simple corrections utilizing sparsity considerably increase efficiency of the
Gauss-Newton method. We shortly describe two hybrid methods proposed in [17].

• Gauss-Newton method with the Newton corrections. In the first iteration we use
matrix B = JT J . In the subsequent iterations, we set

B+ = JT
+J+ , F − F+ > ϑF,

B+ = JT
+J+ +

m∑
k=1

f+
k G+

k , F − F+ ≤ ϑF,
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where f+
k = fk(x+), G+

k ≈ Gk(x+), 1 ≤ k ≤ m, (G+
k is a difference approximation

of the Hessian matrix Gk(x+)).

• Gauss-Newton method with the Marwil corrections. In the first iteration we use
matrix B = JT J . In the subsequent iterations, we set

B+ = JT
+J+ , F − F+ > ϑF,

B+ = PSPQG(JT
+J+) , F − F+ ≤ ϑF,

where
PSW = (W + W T )/2

for a given square matrix W and

PQGM = PG(M + usT ).

for a given symmetric positive semidefinite matrix M . Here u ∈ Rn solves linear
system Du = y − Ms with diagonal matrix D such that

Dii =
∑

Mij �=0

s2
j

and

(PGW )ij = Wij, (JT J)ij �= 0,

(PGW )ij = 0, (JT J)ij = 0

(PG is the so-called gangster operator).

Methods for large-scale nonlinear least squares were tested by using a set of 52
test problems with 1000 variables implemented in subroutines TEST15 and TEST18,
which can be downloaded from www.cs.cas.cz/~luksan/test.html. The results are
presented in Table 5, where SL is the strategy for step-length selection (MS - the
optimum trust-region step of Moré and Sorensen [23], DL - the dog-leg strategy of
Powell [25], LS - the standard line-search procedure), MET is the method used (GN -
the Gauss-Newton method, GNN - the Gauss-Newton method with the Newton correc-
tions, GNM - the Gauss-Newton method with the Marwil corrections, DN - the discrete
Newton method, where the second order derivatives are approximated by differences,
PVM - the partitioned variable metric method), NIT is the total number of iterations,
NEV is the total number of function evaluations, NF is the number of failures for a
given set (i.e., the number of problems which were not successfully solved) and TIME
is the total computational time in seconds.
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SL MET NIT NEV NF TIME
MS GN 8542 8929 1 72.00

GNN 5499 5801 - 51.94
GNM 6434 6801 - 62.88
DN 7804 52398 1 202.07

DL GN 9244 9602 - 38.84
GNN 7767 8216 - 35.68
GNM 6851 7029 - 25.87
DN 10326 91181 - 171.98

LS PVM 12093 16285 1 99.17

Table 5

The results presented in this table imply the following conclusions:

• Modifications of the Gauss-Newton method implemented with the trust-region
strategy are very robust for our set of test problems, much better than discrete
versions of the Newton method and more efficient than partitioned variable metric
methods.

• The Newton corrections or the Marwil variable metric updates improve the ef-
ficiency of the Gauss-Newton method especially if direct methods for solving
trust-region subproblems are used. Hybrid methods GNN and GNM are shown
to be the most efficient methods for solving our set of test problems.

5 Methods for solving large-scale trust-region sub-

problems

Trust-region methods can be used when the Hessian matrix (or its approximation)
is known. These methods are very convenient when this matrix is indefinite, ill-
conditioned or singular. This situation often arises in connection with the New-
ton method for general objective function (indefiniteness) or with the Gauss-Newton
method for nonlinear least-squares (near-singularity).

The crucial part of each trust region method is the direction determination. We
restrict our attention to problems with large dimensions. To simplify the notation, we
omit index k and use symbol � for ordering by positive semidefiniteness. Let

Q(d) =
1

2
dT Bd + gT d.

We seek a direction vector d ∈ Rn in such a way that

‖d‖ ≤ Δ, (5.1)

‖d‖ < Δ ⇒ ‖Bd + g‖ ≤ ω‖g‖ (5.2)

with 0 ≤ ω < 1 and

Q(d) ≥ σ‖g‖min

(
Δ,

‖g‖
‖B‖

)
(5.3)
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with 0 < σ ≤ 1/2. It can be shown [26] that conditions (5.1)–(5.3) guarantee that the
trust-region method is globally convergent if matrices B are uniformly bounded (or
the sum of the reciprocal values of its norms is equal to infinity). There are various
commonly known methods for computing direction vectors satisfying conditions (5.1)-
(5.3) which we now shortly mention.

The most sophisticated method is based on the computation of the optimal locally
constrained step. In this case, vector d ∈ Rn is obtained by solving subproblem

minimize Q(d) =
1

2
dT Bd + gT d subject to ‖d‖ ≤ Δ. (5.4)

Necessary and sufficient conditions for this solution are

‖d‖ ≤ Δ, (B + λI)d + g = 0, B + λI � 0, λ ≥ 0, λ(Δ − ‖d‖) = 0. (5.5)

The Moré-Sorensen method [23] is based on solving nonlinear equation 1/‖d(λ)‖ = 1/Δ
with (B + λI)d(λ) + g = 0 by the Newton method using the sparse Choleski decompo-
sition of B + λI. This method is very robust but requires 2-3 Choleski decompositions
per iteration.

Simpler methods are based on minimization of Q(d) on the two-dimensional sub-
space containing Cauchy step dC = −(gT g/gT Bg)g and Newton step dN = −B−1g.
The most popular is the dog-leg method [25], [4], where d = dN if dN ≤ Δ and
d = (Δ/‖dC‖)dC if ‖dC‖ ≥ Δ. In the remaining case, d is a convex combination of
dC and dN such that ‖d‖ = Δ. This method requires only one Choleski decomposition
per iteration.

If B is not sufficiently sparse, then the sparse Choleski decomposition of B is expen-
sive. In this case, iterative methods based on conjugate gradients are more suitable.
Steihaug [27] and Toint [28] proposed a method based on the fact that Q(dk+1) < Q(dk)
and ‖dk+1‖ > ‖dk‖ hold in the subsequent CG iterations if CG coefficients are pos-
itive. We either obtain an unconstrained solution with a sufficient precision or stop
on the trust-region boundary if a negative curvature is indicated or the trust-region
is left. This method is very efficient in practice especially when suitable precondition-
ing is used. Note that ‖dk+1‖C > ‖dk‖C (where ‖dk‖2

C = dT
k Cdk) holds instead of

‖dk+1‖ > ‖dk‖ if preconditioner C (symmetric and positive definite) is used. Thus the
solution on the trust-region boundary obtained by the preconditioned CG method can
be farther from the optimal locally constrained step than the solution obtained without
preconditioning. This insufficiency is usually compensated by the rapid convergence of
the preconditioned CG method.

The CG steps can be combined with Newton step dN in the multiple dog-leg method
[27], [16]. Let k 
 n (usually k = 5) and dk be a vector obtained after k CG steps of
the Steihaug-Toint method. If ‖dk‖ < Δ, we use dk instead of dC = d1 in the dog-leg
method.

The solution on the trust-region boundary obtained by the Steihaug-Toint method
can be rather far from the optimal solution. This insufficiency can be overcame by
using the Lanczos process [10]. Initially, the conjugate gradient algorithm is used as
in the Steihaug-Toint method. At the same time, the Lanczos tridiagonal matrix is
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constructed from the CG coefficients. If a negative curvature is indicated or the trust-
region is left, we turn to the Lanczos process. In this case, d = Zd̃, where d̃ is obtained
by minimizing quadratic function

1

2
d̃T T d̃ + ‖g‖eT

1 d̃

subject to ‖d̃‖ ≤ Δ. Here T = ZT BZ (with ZT Z = I) is the Lanczos tridiagonal
matrix and e1 is the first column of the unit matrix. This method cannot be successfully
preconditioned, since preconditioning changes the original trust-region subproblem to
‖d‖C ≤ Δ to ‖d‖C ≤ Δ, where C changes in each major iteration and can be ill-
conditioned.

To overcome the insufficiency of the previous method, the Lanczos process can
be combined with the Steihaug-Toint method. The shifted Steihaug-Toint method
proposed in [18] consists of three steps:

• Let m 
 n (usually m = 5). Determine tridiagonal matrix T of order m by m
steps of the (unpreconditioned) Lanczos method applied to matrix B with the
initial vector g.

• Solve subproblem

minimize
1

2
d̃T T d̃ + ‖g‖eT

1 d̃ subject to ‖d̃‖ ≤ Δ (5.6)

using the method of Moré and Sorensen to obtain Lagrange multiplier λ̃.

• Apply the (preconditioned) Steihaug-Toint method to subproblem

minimize
1

2
dT (B + λ̃I)d + gT d subject to ‖d‖ ≤ Δ (5.7)

to obtain direction vector d = d(λ̃).

The following theorem is proved in [18].

Theorem 6. Let λ̃ be the Lagrange multiplier of the small-size subproblem (5.6) and
λ be the Lagrange multiplier obtained by the Moré-Sorensen method applied to the
original problem. Then 0 ≤ λ̃ ≤ λ.

As a consequence of Theorem 6, one has that λ = 0 implies λ̃ = 0 so that ‖d‖ < Δ
implies λ̃ = 0. Thus the shifted Steihaug-Toint method reduces to the standard one
in this case. At the same time, if B is positive definite and λ̃ > 0, then one has
Δ ≤ ‖(B + λ̃I)−1g‖ < ‖B−1g‖. Thus the unconstrained minimizer of the shifted
quadratic function (5.7) is closer to the trust-region boundary than the unconstrained
minimizer of the original quadratic function (5.4) and we can expect that d(λ̃) is closer
to the optimal locally constrained step than d. Finally, if λ̃ > 0, then matrix B + λ̃I is
better conditioned than B and we can expect that the shifted Steihaug-Toint method
will converge more rapidly than the original one.
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Methods for solving large-scale trust-region subproblems were tested by using a set
of 22 sparse test problems with 1000 and 5000 variables implemented in subroutine
TEST14, which can be downloaded from www.cs.cas.cz/~luksan/test.html. The
results are presented in Table 6, where N is the number of variables, MET is the
method used (MS - the optimum trust-region step of Moré and Sorensen [23], DL - the
dog-leg strategy of Powell [25], MDL - the multiple dog-leg strategy [16] with m = 5,
ST - the basic Steihaug-Toint method, GLRT - the method of Gould, Lucidi, Roma
and Toint [10] based on the Lanczos process, PST - the preconditioned Steihaug-Toint
method (with the incomplete Choleski preconditioner), PSST - the preconditioned
shifted Steihaug-Toint method [18] with m = 5), NIT is the total number of iterations,
NEV is the total number of function evaluations, NCG is the total number of CG
iterations and TIME is the total computational time in seconds.

N MET NIT NEV NCG TIME
1000 MS 1918 1955 - 4.65

DL 2515 2716 - 4.42
MDL 2292 2456 12203 4.61
ST 3329 3784 53573 8.20

GLRT 3107 3444 55632 8.53
PST 2631 2823 910 5.14
PSST 1999 2046 1161 4.25

5000 MS 8391 8566 - 2:02.44
DL 9657 10133 - 1:55.77

MDL 8938 9276 47236 2:02.84
ST 16894 19163 358111 6:04:42

GLRT 14679 16383 366695 6:41.45
PST 10600 11271 3767 2:25.42
PSST 8347 8454 4329 1:48.87

Table 6

The results presented in this table imply the following conclusions:

• Direct methods MS and DL based on the sparse Choleski decomposition are
very efficient for our set of test problems. Iterative methods require a suitable
preconditioning.

• The Moré-Sorensen strategy MS gives the best approximation of the optimum
locally constrained step and decreases the number of the major iterations.

• New strategy PSST can be efficiently preconditioned. It gives a relatively good
approximation of the optimum locally constrained step. Method PSST is the
most efficient method for solving our set of test problems.
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