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Trust-region methods are globally convergent techniques widely used, for example, in connec-
tion with the Newton’s method for unconstrained optimization. The most commonly-used
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region subproblem to compute an approximation of the Lagrange multiplier. Then we solve
the shifted system by the Steihaug-Toint method. This report contains a complete theory
concerning properties of the Lagrange multipliers and proves that the new method is globally
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preconditioning is used.
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1 Introduction

Basic optimization methods can be realized in various ways which differ in direction
determination and step-size selection. Line-search and trust-region globalization strategies
are most popular. Trust-region methods [11] can be advantageously used when the Hessian
matrix of the objective functions (or its approximation) is indefinite, ill conditioned or
singular. This situation often arises in connection with the Newton’s method for general
objective function (indefiniteness) or with the Gauss-Newton’s method for nonlinear least-
squares problems (near singularity).

Consider the problem
min F (x), x ∈ Rn,

where F : Rn → R is twice continuously differentiable objective function. Basic opti-
mization methods (trust-region and line-search methods) generate points xi ∈ Rn, i ∈ N ,
in such a way that x1 is arbitrary and

xi+1 = xi + αidi, i ∈ N , (1)

where di ∈ Rn are direction vectors and αi > 0 are step sizes.
For a description of trust-region methods we define the quadratic function

Qi(d) =
1

2
dT Bid + gT

i d

which locally approximates the difference F (xi + d) − F (xi), the vector

ωi(d) = (Bid + gi)/‖gi‖
for the accuracy of computed direction, and the number

ρi(d) =
F (xi + d) − F (xi)

Qi(d)

for the ratio of actual and predicted decrease of the objective function. Here gi = g(xi) =
∇F (xi) and Bi ≈ ∇2F (xi) is an approximation of the Hessian matrix of function at the
point xi ∈ Rn.

Trust-region methods are based on approximate minimizations of Qi(d) on the balls
‖d‖ ≤ Δi followed by updates of radii Δi > 0. Thus direction vectors di ∈ Rn are chosen
to satisfy the conditions

‖di‖ ≤ Δi, (2)

‖di‖ < Δi ⇒ ‖ωi(di)‖ ≤ ω, (3)

−Qi(di) ≥ σ‖gi‖min(‖di‖, ‖gi‖/‖Bi‖), (4)

where 0 ≤ ω < 1 and 0 < σ < 1. Step sizes αi ≥ 0 are selected so that

ρi(di) ≤ 0 ⇒ αi = 0, (5)

ρi(di) > 0 ⇒ αi = 1. (6)

Trust-region radii 0 < Δi ≤ Δ are chosen in such a way that 0 < Δ1 ≤ Δ is arbitrary and

ρi(di) < ρ ⇒ β‖di‖ ≤ Δi+1 ≤ β‖di‖, (7)

ρi(di) ≥ ρ ⇒ Δi ≤ Δi+1 ≤ Δ, (8)

1



where 0 < β ≤ β < 1 and 0 < ρ < 1. The following theorem, see [13], establishes the
global convergence of trust-region methods.

Theorem 1 Let the objective function F : Rn → R be bounded from below and have
bounded second-order derivatives. Consider the trust-region method (2)-(8) and denote
Mi = max(‖B1‖, . . . , ‖Bi‖), i ∈ N . If

∑
i∈N

1

Mi
= ∞, (9)

then lim infi→∞ ‖gi‖ = 0.

Note that (9) is satisfied if there exist a constant B and an infinite set M ⊂ N such
that ‖Bi‖ ≤ B ∀i ∈ M.

A crucial part of each trust region method is the direction determination. There are
various commonly known methods for computing direction vectors satisfying conditions
(2)-(4) which we now mention briefly. To simplify the notation, we omit the index i and
write B 
 0 or B � 0 to indicate that the matrix B is positive semidefinite or positive
definite, respectively.

The most sophisticated method is based on a computation of the optimal locally con-
strained step. In this case, the vector d ∈ Rn is obtained by solving the subproblem

minimize Q(d) =
1

2
dT Bd + gTd subject to ‖d‖ ≤ Δ. (10)

Necessary and sufficient conditions for this solution are

‖d‖ ≤ Δ, (B + λI)d = −g, B + λI 
 0, λ ≥ 0, λ(Δ − ‖d‖) = 0. (11)

The Moré-Sorensen method [10] is based on solving the nonlinear equation 1/‖d(λ)‖ =
1/Δ with (B +λI)d(λ)+ g = 0 by the Newton’s method, possibly the modified Newton’s
method [17] using the Choleski decomposition of B +λI. This method is very robust but
requires 2-3 Choleski decompositions for one direction determination on the average.

Simpler methods are based on minimization of Q(d) on the two-dimensional subspace
containing the Cauchy step dC = −(gT g/gTBg)g and the Newton step dN = −B−1g. The
most popular is the dogleg method [3],[12], where d = dN if dN ≤ Δ and d = (Δ/‖dC‖)dC

if ‖dC‖ ≥ Δ. In the remaining case, d is a combination of dC and dN such that ‖d‖ = Δ.
This method requires only one Choleski decomposition for one direction determination.

If B is not sufficiently small or sparse, or explicitly available, then it is either too
expensive or not possible to compute its Choleski factorization. In this case, methods
based on matrix-vector multiplications are more convenient.

Steihaug [18] and Toint [19] proposed a technique for finding an approximate solution of
(10) that do not require exact solution of a linear system but still produce an improvement
on the Cauchy point. This implementation is based on the conjugate gradient algorithm
[11] for solving the linear system Bd = −g. We either obtain an unconstrained solution
with a sufficient precision or stop on the trust-region boundary. The latter possibility
occurs if either a negative curvature is encountered or the constraint is violated. This
method is based on the fact that Q(dk+1) < Q(dk) and ‖dk+1‖ > ‖dk‖ hold in the
subsequent CG iterations if the CG coefficients are positive and preconditioning is not
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used. Note that the inequality ‖dk+1‖ > ‖dk‖ does not hold in general if a general
preconditioner C (symmetric and positive definite) is used. In this case, ‖dk+1‖C > ‖dk‖C

(where ‖dk‖2
C = dT

k Cdk) holds.
There are two possibilities how the Steihaug-Toint method can be preconditioned. The

first way uses norms ‖di‖Ci
(instead of ‖di‖) in (2)–(8), where Ci are preconditioners cho-

sen. This possibility has been tested in [5] and showed that such a way is not always
efficient. This is caused by the fact that norms ‖di‖Ci

, i ∈ N , vary considerably in the
major iterations and preconditioners Ci, i ∈ N , can be ill-conditioned. The second way
uses Euclidean norms in (2)–(8) even if arbitrary preconditioners Ci, i ∈ N , are used. In
this case the trust region can be leaved prematurely and the direction vector obtained
can be farther from the optimal locally-constrained step than that obtained without pre-
conditioning. This shortcoming is usually compensated by the rapid convergence of the
preconditioned CG method. Our computational experiments indicated that the second
way is more efficient in general. Thus we confine our attention to this technique in the
subsequent considerations.

The CG steps can be combined with the Newton step dN = −B−1g in the multiple
dogleg method [18]. Let k � n (usually k = 5) and dk be a vector obtained after k CG
steps of the Steihaug-Toint method. If ‖dk‖ < Δ, we use dk instead of dC = d1 in the
dogleg method.

Although the Steihaug-Toint method is certainly the most commonly used in trust
region methods, the resulting direction vector may be rather far from the optimal solution
even in the unpreconditioned case. This drawback can be overcome by using the Lanczos
process [5], as we now explain. Initially, the conjugate gradient algorithm is used as in the
Steihaug-Toint method. At the same time, the Lanczos tridiagonal matrix is constructed
from the CG coefficients. If a negative curvature is encountered or the constraint is
violated, we switch to the Lanczos process. In this case, d = Zd̃, where d̃ is obtained by
minimizing the quadratic function

1

2
d̃T T d̃ + ‖g‖eT

1 d̃ (12)

subject to ‖d̃‖ ≤ Δ. Here T = ZT BZ (with ZT Z = I) is the Lanczos tridiagonal matrix
and e1 is the first column of the unit matrix. Using preconditioner C, the preconditioned
Lanczos method generates basis such that ZT CZ = I. Thus we have to use norms ‖di‖Ci

in (2)–(8), i.e., the first way of preconditioning, which can be inefficient when Ci vary
considerably in the trust-region iterations or are ill-conditioned.

There are several recently developed techniques for large scale trust region subproblems
that are not based on conjugate gradients. Hager [6] developed a method that solves (10)
with the additional constraint that d is contained in a low-dimensional subspaces. The
subspaces are modified in successive iterations to obtain quadratic convergence to the
optimum and they are designed to contain both the prior iterate and the iterate that is
generated by applying one step of the sequential quadratic programming algorithm [1]
to (10). At first the Lanczos method is used to generate an orthonormal basis for the
k−dimensional Krylov subspace (usually k = 10). Then the problem (10) is reduced to
the k−dimensional one to obtain an initial iterate. The main loop consists in seeking
vectors d ∈ S where S contains the following four vectors:

• The previous iterate. This causes that the value of the cost function can only
decrease in consecutive iterations.
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• The multiple Bd + g of the cost function gradient. It ensures descent if the current
iterate does not satisfy the first-order optimality conditions.

• An estimate for an eigenvector of B associated with the smallest eigenvalue. It will
dislodge the iterates from a nonoptimal stationary point.

• The SQP iterate. The convergence is locally quadratic if the subspace S contains
the iterate generated by one step of the sequential quadratic programming algorithm
applied to (10).

An orthonormal basis for the subspace S is constructed, the original problem (10) is
reduced to the 4−dimensional one, and a new iterate d is found via this small subproblem.
The iteration is finished as soon as ‖(B +λI)d+ g‖ with Lagrange multiplier λ is smaller
than some sufficiently small tolerance (usually 10−4 or 10−6 suffices). The SQP method
is equivalent to the Newton’s method applied to the nonlinear system

(B + λI)d + g = 0,
1

2
dT d − 1

2
Δ2 = 0.

The Newton iterate can be expressed in the following way:

dSQP = d + z, λSQP = λ + ν,

where z and ν are solutions of the linear system

(B + λI)z + d ν = −(
(B + λI)d + g

)
,

dT z = 0,

which can be solved by preconditioned MINRES or CG methods. The latter case with the
incomplete Choleski-type decomposition of matrix B + λI has shown to be more efficient
in practice.

Another approach for finding the direction vector d is based on the idea of Sorensen
[15],[16]. Consider the bordered matrix

Bα =

(
α gT

g B

)

where α is a real number and observe that

α

2
+ Q(d) =

1

2
(1, dT )Bα

(
1
d

)
.

Therefore, there exists a value of the parameter α such that we can rewrite problem (10)
as

minimize
1

2
dT

αBαdα subject to ‖dα‖2 ≤ 1 + Δ2, eT
1 dα = 1, (13)

where dα = (1, dT ) and e1 is the first canonical unit vector in Rn+1. This formulation
suggests that we can find the desired solution in terms of an eigenpair of Bα. The resulting
algorithm is superlinearly convergent.

Several more techniques for computing a trust region step concerning semidefinite
programming approach can be found in [4], [14].
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In this report, we apply the Steihaug-Toint method to the subproblem

minimize Q̃(d) = Qλ̃(d) =
1

2
dT (B + λ̃I)d + gTd s.t. ‖d‖ ≤ Δ. (14)

The number λ̃ ≥ 0, which approximates λ in (11), is found by solving a small-size sub-
problem of type (12) with the tridiagonal matrix T obtained by using a small number
of Lanczos steps. This method, like method [5], combines good properties of the Moré-
Sorensen and the Steihaug-Toint methods. Moreover, it can be successfully preconditioned
by the second way. The point on the trust-region boundary obtained by this method is
usually closer to the optimal solution in comparison with the point obtained by the original
Steihaug-Toint method. We restrict our attention to problems with large dimensions.

The report is organized as follows. Section 2 contains theoretical background concern-
ing this method with global convergence proved in Section 3. Computational results are
given in Section 4 and some concluding remarks are reported in Section 5.

2 A shifted Steihaug-Toint method

A shifted Steihaug-Toint method differs from the standard one by using the shifted sub-
problem (14), where the number λ̃ approximates λ in (11). The number λ̃ should be
chosen in such a way that λ̃ = 0 if ‖d‖ < Δ, where d is a solution of (10). This is
true if 0 ≤ λ̃ ≤ λ, since λ = 0 if ‖d‖ < Δ. In this section, we prove a theorem, which
allows us to obtain a suitable λ̃ by a limited number of the Lanczos steps. To make the
proof clearer, we first prove four lemmas. The first lemma shows a simple property of the
conjugate gradient method, the second one compares Krylov subspaces of the matrices B
and B + λI. The third lemma relates properties of matrices B1 −B2 and B−1

2 −B−1
1 and

the last one states a relation between sizes of the Lagrange multipliers and the norms of
directions vectors. In this section, we denote by Kk = span{g, Bg, . . . , Bk−1g} the Krylov
subspace of dimension k defined by the matrix B and the vector g, and by Zk ∈ Rn×k a
matrix whose columns form an orthonormal basis for Kk.

Lemma 1 Let B be a symmetric and positive definite matrix, let

Kj = span{g, Bg, . . . , Bj−1g}, j ∈ {1, . . . , n},
be the j-th Krylov subspace given by the matrix B and the vector g. Let

dj = arg min
d∈Kj

Q(d), where Q(d) =
1

2
dT Bd + gTd.

If 1 ≤ k ≤ l ≤ n, then
‖dk‖ ≤ ‖dl‖.

Especially
‖dk‖ ≤ ‖dn‖, where dn = arg min

d∈Rn
Q(d).

Proof. The assertion of the lemma holds for vectors dj, j ≥ 1, generated by the
conjugate gradient method starting from d0 = 0 (see [18]). These vectors are minimizers
of Q(d) on Krylov subspaces Kj , j ≥ 1.
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Corollary 2 Let B be symmetric and positive definite and let Zk ∈ Rn×k be a matrix
whose columns form an orthonormal basis for Kk. Then

gT Zk(Z
T
k BZk)

−2ZT
k g ≤ gTB−2g.

Proof. The vector dn = −B−1g minimizes Q(d) on Rn. Furthermore, if d = Zkd̃,
then

Q(d) = Q(Zkd̃) =
1

2
d̃TZT

k BZkd̃ + gTZkd̃.

Thus a minimizer of Q(d) on Kk has the form

dk = Zkd̃k = −Zk(Z
T
k BZk)

−1ZT
k g (15)

and since ZT
k Zk = I, Lemma 1 implies that

‖dk‖2 ≤ ‖dn‖2 ⇒ gT Zk(Z
T
k BZk)

−2ZT
k g ≤ gTB−2g.

Lemma 2 Let λ ∈ R and

Kk(λ) = span{g, (B + λI)g, . . . , (B + λI)k−1g}, k ∈ {1, . . . , n},
be the k-dimensional Krylov subspace generated by the matrix B + λI and the vector g.
Then

Kk(λ) = Kk(0). (16)

Proof. Equality (16) immediately follows for k = 1 because K1(λ) = span{g} =
K1(0). Suppose now that (16) holds for some k. Then

(B + λI)kg = (B + λI)(B + λI)k−1g = (B + λI)v = Bv + λv,

where v ∈ Kk(λ) = Kk(0). As λv ∈ Kk(0) and Bv ∈ Kk+1(0), we can write (B + λI)kg ∈
Kk+1(0). Thus Kk+1(λ) ⊂ Kk+1(0). Similarly

Bkg = BBk−1g = [(B + λI) − λI]u = (B + λI)u − λu,

where u ∈ Kk(0) = Kk(λ). As λu ∈ Kk(λ) and (B + λI)u ∈ Kk+1(λ), we can write
Bkg ∈ Kk+1(λ). Thus Kk+1(0) ⊂ Kk+1(λ).

Lemma 3 Let B1 and B2 be symmetric and positive definite matrices. Then

B1 − B2 
 0 if and only if B−1
2 − B−1

1 
 0, and

B1 − B2 � 0 if and only if B−1
2 − B−1

1 � 0.

Proof. The result follows from the relations

B1 − B2 = B
1
2
2 (B

− 1
2

2 B1B
− 1

2
2 − I)B

1
2
2 , B−1

2 − B−1
1 = B

− 1
2

1 (B
1
2
1 B−1

2 B
1
2
1 − I)B

− 1
2

1

and from the fact that the matrices B
− 1

2
2 B1B

− 1
2

2 and B
1
2
1 B−1

2 B
1
2
1 have the same eigenvalues

because
B

− 1
2

2 B
1
2
1 B

1
2
1 B

− 1
2

2 x = λx ⇔ B
1
2
1 B

− 1
2

2 B
− 1

2
2 B

1
2
1 y = λy,

where y = B
1
2
1 B

− 1
2

2 x.
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Lemma 4 Let ZT
k BZk + λiI, λi ∈ R, i ∈ {1, 2}, be symmetric and positive definite. Let

dk(λi) = arg min
d∈Kk

Qλi
(d), where Qλ(d) =

1

2
dT (B + λI)d + gT d.

Then
λ2 ≤ λ1 ⇔ ‖dk(λ2)‖ ≥ ‖dk(λ1)‖.

Proof. It follows from (15) that

‖dk(λi)‖2 = gTZk(Z
T
k (B + λiI)Zk)

−2ZT
k g = gT Zk(Z

T
k BZk + λiI)−2ZT

k g

with ZT
k BZk + λiI positive definite. Thus

‖dk(λ2)‖2 − ‖dk(λ1)‖2 = gTZk

[
(ZT

k BZk + λ2I)−2 − (ZT
k BZk + λ1I)−2

]
ZT

k g.

Letting B̃2 = ZT
k BZk + λ2I and assuming that λ2 ≤ λ1 we can write

(ZT
k BZk + λ1I)2 − (ZT

k BZk + λ2I)2 = (B̃2 + (λ1 − λ2)I)2 − B̃2
2

= 2(λ1 − λ2)B̃2 + (λ1 − λ2)
2I 
 0.

Therefore
(ZT

k BZk + λ2I)−2 − (ZT
k BZk + λ1I)−2 
 0

by Lemma 3, which gives ‖dk(λ2)‖2 − ‖dk(λ1)‖2 ≥ 0. Using the same procedure and the
second assertion of Lemma 3 (with λ1 and λ2 changed) one can prove that λ1 < λ2 ⇒
‖dk(λ1)‖2 > ‖dk(λ2)‖2 or ‖dk(λ2)‖ ≥ ‖dk(λ1)‖ ⇒ λ2 ≤ λ1.

Now we are in a position to prove the main theorem.

Theorem 3 Let dj, j ∈ {1, . . . , n}, be solutions of the minimization problems

dj = arg min
d∈Kj

Q(d) subject to ‖d‖ ≤ Δ, where Q(d) =
1

2
dT Bd + gTd,

with corresponding Lagrange multipliers λj, j ∈ {1, . . . , n}. If 1 ≤ k ≤ l ≤ n, then

λk ≤ λl.

Proof. The vector dj is a minimizer of the j-th trust-region subproblem if and only
if ‖dj‖ = ‖Zjd̃j‖ ≤ Δ, where

ZT
j (B + λjI)Zjd̃j = −ZT

j g, ZT
j (B + λjI)Zj 
 0, λj ≥ 0, λj(Δ − ‖dj‖) = 0,

see (11). This minimizer is unconstrained (i.e. the same result is obtained without
assuming any trust-region constraint) if and only if λj = 0. If λl = 0, which means
that dl is the unconstrained minimizer, Lemma 1 implies that ‖dk‖ ≤ ‖dl‖ ≤ Δ for the
unconstrained minimizer dk, so λk = 0. If λl > 0 and λk = 0, there is nothing to prove.
Let’s now suppose that λl > 0 and λk > 0, which means that ‖dl‖ = ‖dk‖ = Δ. First,
assume that ZT

k (B + λkI)Zk is singular and λl < λk. Then there exists v ∈ Kk such that
vT (B +λlI)v < 0 and, since Kk ⊂ Kl, ZT

l (B +λlI)Zl 
 0 cannot hold. This contradiction
proves that λl ≥ λk. Assume now that ZT

k (B +λkI)Zk � 0 and ZT
l (B +λlI)Zl � 0. Since
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Kk(λk) = Kk by Lemma 2, the vector dk is a solution of the unconstrained minimization
problem

dk = arg min
d∈Kk

Qλk
(d), where Qλ(d) =

1

2
dT (B + λI)d + gT d.

Assume that λk > λl, which implies that ZT
l (B + λkI)Zl � 0. Let

dl(λk) = arg min
d∈Kl

Qλk
(d).

Then ‖dl(λk)‖ ≥ ‖dk‖ = Δ follows from Lemma 1. Since

dl = arg min
d∈Kl

Qλl
(d)

and ‖dl‖ = Δ ≤ ‖dl(λk)‖, Lemma 4 implies that λk ≤ λl which is a contradiction. Thus
λk ≤ λl has to hold. Finally, assume that ZT

l (B +λlI)Zl is singular. In this case, we have
‖dl(λl + ε)‖ ≤ Δ for arbitrary ε > 0. Since ZT

l (B + (λl + ε)I)Zl is positive definite, also
ZT

k (B +(λl + ε)I)Zk is positive definite and ‖dk(λl + ε)‖ ≤ ‖dl(λl + ε)‖ ≤ Δ by Lemma 1.
Since ‖dk‖ = Δ, Lemma 4 implies that λk ≤ λl + ε and, since ε is arbitrary, λk ≤ λl.

Now we return to subproblem (14). If we set λ̃ = λk for some k ≤ n, then Theorem 3
implies that 0 ≤ λ̃ = λk ≤ λn = λ. As a consequence of this inequality, one has that λ = 0
implies λ̃ = 0 so that ‖d‖ < Δ implies λ̃ = 0. Thus the shifted Steihaug-Toint method
reduces to the standard one in this case. At the same time, if B is positive definite and
0 < λ̃ ≤ λ, then one has Δ = ‖(B + λI)−1g‖ ≤ ‖(B + λ̃I)−1g‖ < ‖B−1g‖ by Lemma 4.
Thus the unconstrained minimizer of (14) is closer to the trust-region boundary than
the unconstrained minimizer of (10) and we can expect that d(λ̃) is closer to the optimal
locally constrained step than d. Finally, if B is positive definite and λ̃ > 0, then the matrix
B + λ̃I is better conditioned than B and we can expect that the shifted Steihaug-Toint
method will converge more rapidly than the original one. The shifted Steihaug-Toint
method consists of the three major steps.

Algorithm 2.1 The preconditioned shifted Steihaug-Toint method.

Step 1: Carry out k � n steps of the unpreconditioned Lanczos method (described, e.g.,
in [5]) to obtain the tridiagonal matrix T = Tk = ZT

k BZk.

Step 2: Solve the subproblem

minimize (1/2)d̃TT d̃ + ‖g‖eT
1 d̃ subject to ‖d̃‖ ≤ Δ, (17)

using the method of Moré and Sorensen [10], to obtain the Lagrange multiplier
λ̃.

Step 3: Apply the (preconditioned) Steihaug-Toint method to subproblem (14) to obtain
the direction vector d = d(λ̃).

3 Global convergence

Now we show that the trust region method (2)–(8) with direction vectors di determined
by the shifted Steihaug-Toint method is globally convergent. Since conditions (2) and (3)
are satisfied automatically, it suffices to prove inequality (4) and Theorem 1 can be used
(see Corollary 5).
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Theorem 4 Let d ∈ Rn be a direction vector obtained by the shifted Steihaug-Toint
method with a preconditioner C. Then (4) holds with

σ = 1/(8κ(C)),

where κ(C) is the spectral condition number of the preconditioner C.

Proof. (a) First, consider the CG method with the preconditioner C (symmetric
and positive definite) applied to subproblem (14). This method is equivalent to the
(unpreconditioned) CG method applied to a quadratic function Q̂(d̂) = (1/2)d̂T B̂d̂+ ĝT d̂,
where d̂ = C1/2d, ĝ = C−1/2g and B̂ = C−1/2(B + λ̃I)C−1/2. If at least one CG step is
performed, then

−Q̃(d) = −Q̂(d̂) ≥ ‖ĝ‖2

2‖B̂‖ =
gT C−1g

2‖C−1/2(B + λ̃I)C−1/2‖ ≥ ‖g‖2

2κ(C)‖B + λ̃I‖
(the first inequality is proved in [18]). If the first CG step lies outside the trust-region,
then

d1 = C−1/2d̂1 = − ĝT ĝ

ĝT B̂ĝ
C−1/2ĝ = − gTC−1g

gTC−1(B + λ̃I)C−1g
C−1g

implies that

gT C−1g
√

gTC−2g

gT C−1(B + λ̃I)C−1g
≥ Δ ⇒ gTC−1(B + λ̃I)C−1g√

gTC−2g
Δ ≤ gTC−1g.

In this case, d = (Δ/‖d1‖)d1 = −(Δ/
√

gTC−2g)C−1g and we can write

−Q̃(d) =
gTC−1g√
gTC−2g

Δ − 1

2

gT C−1(B + λ̃I)C−1g

gT C−2g
Δ2

≥ 1

2

gTC−1g√
gT C−2g

Δ ≥ ‖g‖
2κ(C)

Δ.

Using both inequalities above we obtain

−Q̃(d) ≥ ‖g‖
2κ(C)

min

(
Δ,

‖g‖
‖B + λ̃I‖

)
.

(b) Since ZT
k Zk = I implies

max
‖ṽ‖=1

ṽT T ṽ = max
‖ṽ‖=1

ṽTZT
k BZkṽ ≤ max

‖v‖=1
vTBv

(ṽ ∈ Rk and v ∈ Rn), we can write ‖T‖ ≤ ‖B‖. If λ̃ > 0, then ‖d̃(λ̃)‖ = Δ, where
(T + λ̃I)d̃(λ̃) = −‖g‖e1 with ‖e1‖ = 1 (see (17) and (11)). Thus

‖g‖2 = d̃(λ̃)T (T + λ̃I)2d̃(λ̃) ≥ Δ2 min
‖d̃‖=1

d̃T (T + λ̃I)2d̃ = Δ2(λ1 + λ̃)2,

where λ1 is the smallest eigenvalue of T . Since λ1 ≥ −‖T‖, we can substitute it into the
previous inequality to obtain

λ̃ ≤ 1

Δ
‖g‖ + ‖T‖ ≤ 1

Δ
‖g‖ + ‖B‖.
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Thus
‖B + λ̃I‖

‖g‖ ≤ 2‖B‖
‖g‖ +

1

Δ
≤ 2 max

(
2‖B‖
‖g‖ ,

1

Δ

)
⇒

‖g‖
‖B + λ̃I‖ ≥ 1

2
min

( ‖g‖
2‖B‖ , Δ

)
.

Using (a) and the inequality Q̃(d) = Q(d) + λ̃Δ2/2 ≥ Q(d), we can write

−Q(d) ≥ −Q̃(d) ≥ 1

2κ(C)
‖g‖min

(
Δ,

‖g‖
‖B + λ̃I‖

)

≥ 1

2κ(C)
‖g‖min

(
Δ,

1

2
min

( ‖g‖
2‖B‖ , Δ

))
≥ 1

8κ(C)
‖g‖min

(
Δ,

‖g‖
‖B‖

)

and (4) holds with σ = 1/(8κ(C)).

Corollary 5 If there exist constants B and C such that the matrices Bi and the precon-
ditioners Ci satisfy the conditions ‖Bi‖ ≤ B, κ(Ci) ≤ C ∀i ∈ N , then the trust region
method (2)–(8) with the direction vectors di determined by the shifted Steihaug-Toint
method is globally convergent in the sense of Theorem 1.

4 Computational experiments

Now we present a numerical comparison of nine methods for computing direction vectors
satisfying conditions (2)-(4):

• MS - the method of Moré and Sorensen [10] for computing the optimal locally
constrained step.

• DL - the dogleg strategy of Powell [12] or Dennis and Mei [3].

• MDL - the multiple dogleg strategy mentioned in [18].

• ST - the basic (unpreconditioned) Steihaug [18] and Toint [19] method.

• SST - the basic (unpreconditioned) shifted Steihaug-Toint method described in this
report.

• GLRT - the method of Gould, Lucidi, Roma and Toint [5] which combines CG
method with the Lanczos process to give a good approximation of the optimal
locally constrained step.

• PH - the preconditioned Hager method mentioned in [6]. The incomplete Choleski
preconditioner is used.

• PST - the preconditioned Steihaug-Toint method. The incomplete Choleski precon-
ditioner is used.

• PSST - the preconditioned shifted Steihaug-Toint method. The incomplete Choleski
preconditioner is used.

These methods are implemented in the interactive system for universal functional opti-
mization UFO [9] as subroutines for solving trust-region subproblems. They have been
used in trust-region versions of the discrete Newton method. These realizations use the
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same modules for numerical differentiation, a stepsize selection and a trust-region up-
date. Thus the results are quite comparable. The methods listed above are implemented
in the original way in almost all cases (PH is an exception). Methods based on conjugate
gradient iterations are terminated whenever ωi(di) ≤ min(0.9,

√‖gi‖, 1/i), see (4). The
number of extra CG or Lanczos steps in MDL, SST and PSST methods is equal to 5
and the number of Lanczos vectors in the GLRT method is bounded from above by 100.
We devoted a considerable effort to the implementation of the PH method. Our first at-
tempt based on the SSOR-preconditioned MINRES method for a projected system, used
in [6], was unsuccessful. Therefore, we have chosen indefinitely preconditioned conjugate
gradient method for the full saddle-point system, described in [8], with the incomplete
Choleski-type decomposition of the matrix B + λI. The tolerance 10−4 (see Table 5.1 in
[6]) and the maximum dimension 10 of the subspace is used in our implementation of the
PH method.

The above methods were tested by using two collections of 22 sparse test problems with
1000 and 5000 variables (subroutines TEST14 and TEST15 described in [7], which can be
downloaded from www.cs.cas.cz/~luksan/test.html). The results are given in Tables
4.1 and 4.2, where NIT is the total number of iterations, NFV is the total number of function
evaluations, NFG is the total number of gradient evaluations, NDC is the total number
of Choleski-type decompositions (complete for methods MS, DL, MDL and incomplete
for methods PH, PST, PSST), NMV is the total number of matrix-vector multiplications
and Time is the total computational time in seconds (Table 4.2 concerns only 21 test
problems, since Problem 3.11 from [7] has not been solved by any realization of the
Newton method). Note that NFG is much greater than NFV in Table 4.1, since the Hessian
matrices are computed by using gradient differences. At the same time, the problems
referred in Table 4.2 are the sums of squares having the form F = (1/2)fT (x)f(x) and NFV

denotes the total number of vector f(x) evaluations. Since f(x) is used in the expression
g(x) = JT (x)f(x), where J(x) is the Jacobian matrix of f(x), NFG is comparable with
NFV in this case.

Results in Tables 4.1 and 4.2 require several comments. All problems are sparse with
a simple sparsity pattern. For this reason, the methods based on complete Choleski-type
decompositions (CD) are very efficient, much better than unpreconditioned methods based
on matrix-vector multiplications (MV). Since TEST14 contains reasonably conditioned
problems, the preconditioned MV methods are competitive with the CD methods. On
the contrary, TEST15 contains several very ill-conditioned problems (one of them had to
be removed) and thus the CD methods work better than the MV ones. Note that the CD
methods have also serious limitations, which are mentioned below.

For a better comparison of methods PST, PSST, GLRT, PH and MS, we have per-
formed additional tests with the problems from the widely used CUTE collection [2]. We
have selected only large-scale and sufficiently sparse problems. Tables 4.3a and 4.3b con-
tain a list of these problems together with their dimensions and the results obtained. The
values NIT, NFV, NFG and Time have the same meaning as in the previous tables.
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Table 1: Comparison of methods using TEST14.

N Method NIT NFV NFG NDC NMV Time

1000 MS 1911 1952 8724 3331 1952 3.13
DL 2272 2409 10653 2195 2347 2.94
MDL 2132 2232 9998 1721 21670 3.17
ST 3475 4021 17242 0 63016 5.44
SST 3149 3430 15607 0 75044 5.97
GLRT 3283 3688 16250 0 64166 5.40
PH 1958 2002 8975 3930 57887 5.86
PST 2608 2806 12802 2609 5608 3.30
PSST 2007 2077 9239 2055 14440 2.97

5000 MS 8177 8273 34781 13861 8272 49.02
DL 9666 10146 42283 9398 9936 43.37
MDL 8913 9244 38846 7587 91784 48.05
ST 16933 19138 84434 0 376576 134.52
SST 14470 15875 70444 0 444142 146.34
GLRT 14917 16664 72972 0 377588 132.00
PH 8657 8869 37372 19652 277547 127.25
PST 11056 11786 53057 11057 23574 65.82
PSST 8320 8454 35629 8432 59100 45.57

Table 2: Comparison of methods using TEST15.

N Method NIT NFV NFG NDC NMV Time

1000 MS 1946 9094 9038 3669 2023 5.86
DL 2420 12291 12106 2274 2573 9.00
MDL 2204 10586 10420 1844 23139 7.86
ST 2738 13374 13030 0 53717 11.11
SST 2676 13024 12755 0 69501 11.39
GLRT 2645 12831 12547 0 61232 11.30
PH 1987 9491 9444 6861 84563 11.11
PST 3277 16484 16118 3278 31234 11.69
PSST 2269 10791 10613 2446 37528 8.41

5000 MS 7915 33607 33495 14099 8047 89.69
DL 9607 42498 41958 9299 9963 128.92
MDL 8660 37668 37308 7689 91054 111.89
ST 11827 54699 53400 0 307328 232.70
SST 11228 51497 50333 0 366599 231.94
GLRT 10897 49463 48508 0 300580 214.74
PH 8455 36434 36236 20538 281736 182.45
PST 9360 41524 41130 9361 179166 144.40
PSST 8634 37163 36881 8915 219801 140.44
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5 Conclusion

We have to stress that the considerations and the results in the previous section concern
trust-region versions of the Newton method. In this case, the Hessian matrices are fre-
quently indefinite and the trust region versions are very suitable. The variable metric
methods with positive definite approximations of the Hessian matrices can be efficiently
implemented in the line-search framework. Our conclusions concern large-scale problems
where the sparsity pattern plays a considerable role. First, we would like to point out
that it is advantageous to have several different procedures for computing trust-region
steps. The CD methods are very efficient for ill-conditioned but reasonably sparse prob-
lems, e.g., CHAINWOO and SBRYBND. If the problems do not have sufficiently sparse
Hessian matrices, then the CD methods can be much worse than the MV methods as is
demonstrated on problems EIGENALS, MSQRTALS, NONCVXU2, NONCVXUN and
SPARSINE. An efficiency of the MV methods strongly depends on a suitable precondi-
tioning as is demonstrated in Tables 4.1 and 4.2. There are two possibilities. The first
one mentioned in [5] changes the trust-region problem whereas the second one mentioned
in Section 1 deforms the trust region path in the original trust-region problem. Note
that the GLRT method cannot be preconditioned in the second way, since the precon-
ditioned Lanczos process does not generate an orthonormal basis related to the original
trust-region problem. Our preliminary tests have shown that the first preconditioning
technique is less efficient because it failed in many cases. Comparing ST and SST meth-
ods (Tables 4.1 and 4.2), we can see that SST does not improve efficiency of ST even if it
decreases the numbers of iterations and function evaluations. Similarly, we can conclude
that PSST is usually slightly worse than PST, measured by the computational time, since
it uses additional operations for determining the Lanczos matrix T and computing the
parameter λ̃. Nevertheless, if the problems are difficult as BROWNAL, CHAINWOO,
FMINSURF, MSQRTALS and NONCVXUN, then PSST is much better than PST. Thus
the total computational time can be lower for PSST as in Tables 4.1 and 4.2.

To sum up, our computational experiments indicate that the shifted Steihaug-Toint
method proposed in this report works well in the connection with the second way of
preconditioning. The trust region step reached in this case is usually close to the optimum
step obtained by the MS method. Furthermore, these experiments show that the PH
method sometimes uses more matrix-vector multiplications than the GLRT method, which
differs from the observation contained in [6]. This is caused by the fact that the results in
[6] concern accurate solutions of isolated trust-region problems while our tests are related
to unconstrained optimization where the methods based on conjugate gradient iterations
use limited accuracy ωi(di) ≤ min(0.9,

√‖gi‖, 1/i). This upper bound can be large enough
in many iterations when ‖gi‖ is large and i is small.
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