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Abstract:

This paper presents two classes of propositional logics (understood as a consequence relation). First of
them is called weakly implicative logics. This class of logics generalizes the well-known Rasiowa’s class
of implicative logics. This class is broad enough to contain many “usual” logics, yet easily manageable
with nice logical properties. Then we introduce a subclass of weakly implicative logics—the class of weakly
implicative fuzzy logics. This class contains majority of logics studied in the literature under the name fuzzy
logic. We present many general theorems for both classes, demonstrating their usefulness and importance.
We also provide a uniform way how to define first-order calculi for weakly implicative logics and an additional
(different) way how to do it for fuzzy logics.
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Introduction

This paper presents two interesting classes of propositional logics (by logic we understand a conse-
quence relation). First of them is called weakly implicative logics. This class of logics generalizes the
well-known class of implicative logics of Rasiowa (see [7]). We will see that this class is broad enough
to contain many “usual” logics (of course this class is rather narrow from the perspective of abstract
algebraic logic), yet easily manageable with nice logical properties. Then we introduce a subclass of
weakly implicative logics—the class of fuzzy logics (or better: of weakly implicative fuzzy logics).

Fuzzy logic is a very fancy term. Many “things” are known as fuzzy logic, some of them are very
distant from the subject usually understood under the name “logic”. In this work we identify a class
of objects which “deserve” the name fuzzy logic. Of course, such a bold statement can be easily
objected and so we restrict ourselves a little and we will try to describe which weakly implicative logic
could (and should) be considered fuzzy. It turns out that “fuzzy logics” is the class of logics which
is complete w.r.t. linearly ordered matrices. Then we show several equivalent definition of this class,
and so we demonstrate the “robustness” of this class.

However, the goal of this paper is not to present any philosophical, pragmatical or methodological
reasons to support this claim. We concentrate on the mathematical properties of our fuzzy logics. We
only notice that nearly all particular logics studied in literature under the name fuzzy logics which
are weakly implicative are fuzzy logics in our formal sense as well. Thus our development of general
tools to work with our class of fuzzy logics is applicable in these particular logics as well.

Anyway, we present many general theorems for both classes, which, we hope, will demonstrate
usefulness and importance of studying them. We also provide a uniform way how to define first-order
calculi for weakly implicative logics and an additional (different) way how to do it for fuzzy logics.

1 General theory for propositional logic

We start with some obligatory introductory definitions. However, we will use rather non-standard
approach towards propositional logic. Of course, it turns out to be equivalent (or nearly equivalent)
to the known ones, but here we put stress on some issues, concerning mainly the notion of proof and
meta-rule. For the comprehensive survey (with the standard terminology) into the problematic of
general approach towards logic, consequence relation, logical matrices, etc. see the survey to Abstract
algebraic logic (AAL) [3].

In the first subsection we introduce weakly implicative logics. Then, in the second subsection, we
present the semantic for them (using well-known notion of logical matrix). The third subsection is
the core part of this work. There we introduce the class of fuzzy logic (or better: weakly implicative
fuzzy logics).

1.1 Syntax

Definition 1.1 (Propositional language) A propositional language L is a triple (VAR,C, a),
where VAR is a non-empty set of the (propositional) variables, C is a non-empty set of the (proposi-
tional) connectives, and a is a function assigning to each element of C a natural number. A connective
c for which a(c) = 0 is called a truth constant.

The set VAR is usually taken as fixed countable set, and so we usually define the propositional
language L is a pair (C, a). Later on we fix symbols for some basic connectives (→,∧,⊥) together
with their arities and then we define propositional language just as a set of connectives.
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Definition 1.2 (Formula) Let L be a propositional language. The set of (propositional) formulas
FORL is the smallest set which contains the set VAR and is closed under connectives from C, i.e.,
for each c ∈ C, such that a(c) = n, and for each ϕ1, . . . , ϕn ∈ FORL we have c(ϕ1, . . . , ϕn) ∈ FORL.

Definition 1.3 (Substitution) Let L be a propositional language. A substitution is a mapping
σ : FORL → FORL, such that σc(ϕ1, . . . , ϕn) = c(σ(ϕ1), . . . σ(ϕn)). The set of all substitutions will
be denoted as SUBL

Of course a substitution is fully determined by its values on propositional variables. Let v ∈ VAR
and ϕ,ψ ∈ FORL, by ψ[v :=ϕ] we understand the formula σ(ψ), where σ is the substitution mapping
v to ϕ and mapping all the remaining propositional variables to itself.

The term consecution in the following definition is from the Restall’s book [8]. However, we use it
in very simplified version.

Definition 1.4 (Consecution) A consecution in propositional language L is a pair <X, ϕ >, where
X ⊆ FORL and ϕ ∈ FORL. The set of all consecutions will be denoted as CONL.

Of course we have P(FORL)× FORL=CONL.

Convenction 1.5 Let X ⊆ FORL, X ⊆ CONL and σ a substitution.

• By σ(X) we understand the set {σ(ϕ) | ϕ ∈ X},

• By σ(X ) we understand the set {<σ(X), σ(ϕ) > | <X, ϕ> ∈ X}.

• By SUBL(X ) we denote the set
⋃

σ∈SUBL
σ(X )

Definition 1.6 (Axiomatic system) Let L be a propositional language. The axiomatic system AS
in language L is a non-empty set AS ⊆ CONL, which is closed under arbitrary substitution (i.e.,
SUBL(AS) = AS).

The elements of AS of the form < X,ϕ > ∈ AS are called axioms for X = ∅, n-ary deduction
rules for |X| = n, and κ-infinitary deduction rules for X being of infinite cardinality κ.

The axiomatic system is said to be finite if there is a finite set X ⊆ AS such that SUBL(X ) = AS.
Furthermore, the axiomatic system is said to be finitary if all its deduction rules are finite. Finally,
the axiomatic system is said to be strongly finite if it is finite and finitary.

The usual way of presenting an axiomatic system is in form of schemata.

Definition 1.7 (Consequence) Let L be a propositional language and AS an axiomatic system in
L. Theory T in L is a subset of FORL. The set CNSAS(T ) of all provable formulas in T is the
smallest set of formulas, which contains T , axioms of AS and is closed under all deduction rules of
AS (i.e., if X ⊆ CNSAS(T ) and <X, ϕ > ∈ AS then ϕ ∈ CNSAS(T ). We shall write T `AS ϕ to
denote ϕ ∈ CNSAS(T ) and `AS ϕ to denote ϕ ∈ CNSAS(∅).

Notice that the relation `AS can be understood as a subset of CONL and AS ⊆ `AS .

Definition 1.8 (Logic) Let L be a propositional language. A non-empty set L ⊆ CONL is called a
logic in language L if it is closed under arbitrary substitution and `L = L

Logic is a consequence relation in the usual sense. The elements of a logic are consecutions and
we write X `L ϕ instead of <X, ϕ> ∈ L. Sometimes when the logic L is clear from the context, we
write just ` instead of `L. Observe that `AS is the smallest logic containing AS

Definition 1.9 (Presentation) Let L be a propositional language, AS an axiomatic system in L,
and L a logic in L. We say that AS is an axiomatic system for (a presentation of) the logic L iff
L = `AS . We denote the set CNSAS(∅) as T HM(L). Logic is said to be finite (finitary, strongly
finite) if it has some finite (finitary, strongly finite) presentation.
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Later on we show that our notion of finitary logic coincides with the usual one. Observe that each
logic has at least one presentation.

Definition 1.10 (Proof) Let L be a propositional language and AS an axiomatic system in L. A
proof of the formula ϕ in theory T is a founded tree labelled by formulas; the root is labelled by ϕ and
leaves by either axioms or elements of T; and if a node is labelled by ψ and its preceding nodes are
labelled by ψ1, ψ2, . . . then <{ψ1, ψ2, . . .}, ψ> ∈ AS. We shall write T `p

AS ϕ if there is a proof of ϕ
in T .

We understand the tree in an top-to-bottom fashion: the leaves are at the top and the root is at
the bottom of the tree, so the fact that tree is founded just means that there is no infinitely long
branch.

Theorem 1.11 Let L be a propositional language and AS an axiomatic system in L. Then T `AS ϕ
iff T `p

AS ϕ.

Proof: Let us define the set CNSp(T ) = {ϕ | T `p
AS ϕ}. If we show that CNSAS(T ) = CNSp

AS(T )
for each T the proof is done. Obviously CNSp

AS(T ) contains T , axioms of AS and is closed under all
deduction rules of AS, thus CNSAS(T ) ⊆ CNSp

AS(T ). Reverse direction is trivial using the induction
over well-founded relation. QED

Lemma 1.12 (Finitary logic) Let L be a logic. Then L is finitary iff for each theory T and formula
ϕ we have: if T ` ϕ then there is finite T ′ ⊆ T such that T ′ ` ϕ.

Proof: Then L is finitary then there is its finitary presentation AS. Observe that for each finitary
AS the proofs are always finite (because the tree has no infinite branch and because AS is finitary
each node has finitely many preceding nodes and so we can use König’s Lemma to get that the tree
is finite). The reverse direction is almost straightforward. QED

Observe that in finitary case we can linearize the tree, i.e., define the notion of the proof in
the usual way. The notion of proof allows us to illustrate one important (and usually overlooked)
feature of our way of introducing logic. The deduction rule <{ψ1, ψ2, . . .}, ϕ >, or better written as
ψ1, ψ2, . . . ` ϕ gives us a way how to construct proof of ϕ using proofs of ψ1, ψ2, . . .. However, the
meta-rule: from ` ψ1, ` ψ2, . . . get ` ϕ only tells us that if there are proof of ψ1, ψ2, . . ., then there
is proof of ϕ, without any hint how to construct it. When we introduce semantics, we will se that
the former corresponds to the so-called local and the latter to the global consequence. This distinction
deserves more treatment! Also rules are rules of inference between formulas, whereas meta-rules are
rules of inference between consecutions. Both our definitions hide (in some sense) the default rules of
consequence (thinning, permutation, contraction, and cut).

Definition 1.13 A logic L is an extension of a logic L′ iff L′ ⊆ L. The extension is axiomatic if the
logic L is axiomatized by logic L′ (understood as an axiomatic system) with some additional axioms.
The extension is conservative if for each theory T and formula ϕ in the language of L′ we have:
T `L ϕ entails T `L′ ϕ.

Notice, that the above definition does not mention the language of the logic in question. However,
it is obvious that if L is an extension of the logic L′ then the language of L has to be larger than
the language of L′. If the language is strictly larger we speak about expansion rather than about
extension.

Now we define the crucial concept of this paper: the notion of weakly implicative logic. We assume
that there is a binary connective → in the propositional language. There is an obvious generalization
of this concept, if we drop the condition of the presence of the connective → in language, and following
AAL tradition we would understand the term ϕ → ψ as a set of formulas of two propositional variables,
where the formula ϕ is substituted for the first one and the formula ψ for the second one. Observe
that some of theorems proven in this paper remain theorems under this interpretation. It is easy to
see, that in this more general approach (which we will not pursuit in this paper) the defined class of
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logics would be a subclass of so-called equivalential logics, and in the more specific approach (we use
in this paper) the class of logics defined by the following definition is a subclass of so-called finitely
equivalential logics. The name weakly implicative logics is inspired by the notion of implicative logics
by Helena Rasiowa (see [7]). As you will see our notion is really a generalization of her notion.

Definition 1.14 (Weakly implicative logics) Let L be a propositional language, such that →∈ L
and let L be a logic in L. We say that L is a weakly implicative logic iff the following consecutions
are elements of L:

(Ref) `L ϕ → ϕ

(MP) ϕ,ϕ → ψ `L ψ

(WT) ϕ → ψ, ψ → χ `L ϕ → χ

(CON) ϕ → ψ, ψ → ϕ `L c(χ1, . . . , χi−1, ϕ, . . . , χn) → c(χ1, . . . , χi−1, ψ, . . . , χn) for each n-ary connec-
tive c in L and each i ≤ n.

The (Ref) is for reflexivity, (MP) is for modus ponens, (WT) is for weak transitivity, and (CON)
is for congruence. Let ϕ ↔ ψ be a shortcut for {ϕ → ψ, ψ → ϕ}. Observe that we assume nei-
ther Exchange nor Weakening nor Contraction as a rules for implication. However, we have all of
them as meta-rules, i.e., the connective → is by no means an internalization of `. This approach is
usually called Hilbert’s style calculus, and it is defined in the same fashion as the Hilbert calculi for
particular substructural logics. This paper can be seen as a contribution to the general (universal,
abstract) theory of these calculi. For another general treatment of this topic see Restall’s book [8].
Our approaches are rather incomparable in generality, I will comment more on this approach in the
subsequent sections.

Lemma 1.15 (Alternative definition) The condition (CON) from the definition of weakly implica-
tive logic can be equivalently replaced by one of the conditions:

• ϕ1 ↔ ψ1, . . . ϕn ↔ ψn `L c(ϕ1, . . . , ϕn) → c(ψ1, . . . , ψn) for each n-ary connective c in L.

• ϕ ↔ ψ `L χ → χ′ for each formula χ, where χ′ is a result of replacing arbitrary occurrence of
subformula ϕ with formula ψ in formula χ.

Proof: We show only the first part, the second one is analogous. Assume (for simplicity) that c is a
binary connective,

1. ϕ1 ↔ ψ1 `L c(ϕ1, ϕ2) → c(ψ1, ϕ2) ((CON) for χ2 being ϕ2)
2. ϕ2 ↔ ψ2 `L c(ψ1, ϕ2) → c(ψ1, ψ2) ((CON) for χ1 being ψ1)
3. ϕ1 ↔ ψ1, ϕ1 ↔ ψ2 `L c(ϕ1, ϕ2) → c(ψ1, ψ2) (1., 2., and WT)

The other direction is trivial (just take ψ2 = ϕ2 and use (Ref)) QED

Observe that the second part of this lemma can be understood as a substitution rule and thus we
will use it heavily in the formal proof in this paper. Now we list several lemmata with rather trivial
proofs.

Lemma 1.16 Let L be a weakly implicative logic in language L and L′ a logic in language L′, which
is an extension of L. Then L′ is weakly implicative logic iff for each n-ary connective c in L′ \ L and
each i ≤ n we have ϕ → ψ, ψ → ϕ `L′ c(χ1, . . . , χi−1, ϕ, . . . , χn) → c(χ1, . . . , χi−1, ψ, . . . , χn)

Lemma 1.17 (Intersection) The intersection of an arbitrary system of weakly implicative logics is
a weakly implicative logic.

Lemma 1.18 (Extension) Arbitrary axiomatic extension of an arbitrary of weakly implicative logic
is a weakly implicative logic.
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Definition 1.19 (Consistency) Let L be a weakly implicative logic in L, T a theory in L. A theory
T is consistent if there is formula ϕ such that T 6` ϕ. A logic L is consistent iff the theory ∅ is
consistent.

Definition 1.20 (Linear theory) Let L be a weakly implicative logic in L, T a theory in L. A
theory T is linear if T is consistent and T ` ϕ → ψ or T ` ψ → ϕ for each formulae ϕ,ψ.

Definition 1.21 Let m be a natural number and ϕ and ψ formulas. Then the formula ϕm → ψ is
defined inductively as: ϕ0 → ψ = ψ and ϕi+1 → ψ = ϕ → (ϕi → ψ)

Observe that ϕ3 → ψ = ϕ → (ϕ → (ϕ → ψ))

1.2 Semantics

We start be recalling some well-known definitions. The completeness theorem for weakly implicative
logics (which we prove in this section) is a consequence of some more general theorem known in AAL.
However, our concern is not to reprove known facts, we concentrate on the notion of linearity of a
logical matrix, which (as far as I know) was not so deeply studied.

Definition 1.22 (Algebra and matrix) Let L be a propositional language. An algebra A = (A,C)
with signature (C, a) is called L-algebra. Let us denote the realization of c in A as cA.

A pair B = (AB, DB), where AB is L-algebra and DB is a subset of A is called L-matrix.

The elements of the set D are called designated elements. Notice that substitution can be under-
stand as a endomorphism of the absolutely free L-algebra. We shall write cB instead of cAB

Definition 1.23 (Evaluation) Let L be a propositional language and A an L-algebra. Then the
A-evaluation is a mapping e: FORL → A, such that e(c(ϕ1, . . . , ϕn)) = cA(e(ϕ1), . . . e(ϕn).

Of course, each A-evaluation is fully determined by its values on propositional variables. We can
understand the A-evaluation as a homomorphism from the absolutely free L-algebra to A. Again, we
speak about B-evaluation instead of AB-evaluation.

Definition 1.24 (Models) Let L be a propositional language, T a theory in L, and B an L-matrix.
We say that B-evaluation is an B-model of T if for each ϕ ∈ T holds e(ϕ) ∈ DB. We denote the
class of B-models of T by MOD(T,B).

Definition 1.25 (Semantical consequence) Let L be a logic in L, T a theory in L, and K a class
of L-matrices. We say that ϕ is a semantical consequence of the T w.r.t. class K if MOD(T,B) =
MOD(T ∪ {ϕ},B) for each B ∈ K; we denote it by T |=K ϕ. By T AUT (K) we understand the set
{ϕ | ∅ |=K ϕ}

Observe that |=K⊆ CONL and that it is a logic in language L.

Definition 1.26 (Soundness and completeness) We say that the logic L is sound w.r.t. class K
iff |=K⊇ L. We say that the logic L is complete w.r.t. class K iff |=K⊆ L.

Definition 1.27 (L-matrices) Let L be a logic in L, T a theory in L, and B an L-matrix. We say
that B is an L-matrix if L ⊆ |={B}. We denote the class of L-matrices by MAT(L). Finally, we
write T |=L ϕ instead of T |=MAT(L) ϕ and T AUT (L) instead of T AUT (MAT(L))

Observe that for each presentation AS of L holds: L ⊆ |={B} iff AS ⊆ |={B}. The proof of the
following lemma is almost straightforward.

Lemma 1.28 Let L be a weakly implicative logic and B an L-matrix. Then relation ≤B defined as
x ≤B y iff x →B y ∈ DB is a preorder. Furthermore, its symmetrization x ∼B y iff x ≤B y and
y ≤B x is a congruence on A. Finally, the set DB is a cone w.r.t. ≤B, i.e., if x ∈ DB and x ≤B y
then y ∈ DB.
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Definition 1.29 (Matrix preorder) Let L be a weakly implicative logic and B an L-matrix. The
relation ≤B defined in the previous lemma is called matrix preorder of B.

The matrix is said to be ordered iff the relation ≤B is order. We denote the class of ordered
L-matrixes by o−MAT(L).

The matrix is said to be linearly ordered (or just linear) iff the relation ≤B is linear order. We
denote the class of linearly ordered L-matrixes by l−MAT(L).

Matrices for weakly implicative logics coincide with the class of so-called prestandard matrices
(see Dunn) [2], whereas the ordered matrices coincides with so-called standard matrices. Obviously,
l−MAT(L) ⊆ o−MAT(L) ⊆ MAT(L). The proofs of the following lemma is trivial.

Lemma 1.30 (Soundness) The logic L is sound w.r.t. class MAT(L) (i.e., T `L ϕ, then T |=L ϕ).
Furthermore, MAT(L) is the greatest class w.r.t. which is the logic L sound.

An interesting question is where the opposite hold, i.e., when the logic L is complete w.r.t. class
MAT(L). To answer this question we recall the well-known concept of a Lindenbaum matrix (some-
times also called Lindenbaum-Tarski matrix).

Definition 1.31 (Lindenbaum matrix) Let L be a weakly implicative logic in L, T be a theory in
L. We define [ϕ]T = {ψ | T ` ϕ ↔ ψ} and LT = {[ϕ]T | ϕ ∈ FORL}. We define L-matrix LinT ,
where the L-algebra has the domain LT , operations cLinT

([ϕ1]T , . . . [ϕn]T ) = [c(ϕ1, . . . ϕn)]T and the
designated set D = {[ϕ]T | T `L ϕ}.

It is obvious that the definition is sound.

Lemma 1.32 Let L be a weakly implicative logic in L, T a theory in L, and e an LinT -evaluation
defined as e(ϕ) = [ϕ]T . Then:

(1) LinT ∈ MAT(L),

(2) e ∈ MOD(T,LinT),

(3) [ϕ] ≤LinT
[ψ]T iff T ` ϕ → ψ,

(4) LinT ∈ o−MAT(L),

(5) LinT ∈ l−MAT(L) iff T is a linear theory.

Proof:

(1) We show that if X `L ϕ then X |=LinT
ϕ, i.e., if X `L ϕ and f ∈ MOD(X,LinT) then

f(ϕ) ∈ DLinT
. Recall that f(ϕ) = [ψ]T for some formula ψ.

Let us define substitution σ by setting σ(v) be some ψ ∈ f(v). Next we show that for each ϕ
we get σ(ϕ) ∈ f(ϕ): let ϕ = c(ϕ1, . . . , ϕn), from the induction property σ(ϕi) ∈ f(ϕi) we get
σ(c(ϕ1, . . . , ϕn)) = c(σ(ϕ1), . . . σ(ϕn)) ∈ cLinT

(f(ϕ1), . . . , f(ϕn)) = f(c(ϕ1, . . . , ϕn)). Thus we
know that for each ϕ we get f(ϕ) = [σ(ϕ)]T
From f ∈ MOD(X,LinT) we get that f(ψ) ∈ DLinT

for each ψ ∈ X and thus T ` σ(ψ). From
X ` ϕ we get σ(X) ` σϕ. Thus together we have T ` σ(ϕ) and so f(ϕ) = [σ(ϕ)]T ∈ DLinT

.

(2) Trivial.

(3) [ϕ] ≤LinT
[ψ]T iff [ϕ] →LinT

[ψ]T ∈ DLinT
iff [ϕ → ψ]T ∈ DLinT

iff T ` ϕ → ψ.

(4) Since [ϕ] ≤LinT
[ψ]T and [ψ] ≤LinT

[ϕ]T entails T ` ϕ ↔ ψ the proof is obvious.

(5) Straightforward.

QED
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Theorem 1.33 (Completeness) Let L be a weakly implicative logic in L. Then for each theory T
and formula ϕ holds: T ` ϕ iff T |=L ϕ.

Proof: One direction is Lemma 1.30. Reverse direction: from Lemma 1.32 we get LinT ∈ MAT(L)
and for the LinT -evaluation e defined as e(ψ) = [ψ]T holds e ∈ MOD(T,LinT). Thus from T |=L ϕ
we get that [ϕ]T = e(ϕ) ∈ DLinT

and so T ` ϕ. QED

The proofs of the following two corollaries are trivial.

Corollary 1.34 Let L be a weakly implicative logic. Then T HM(L) = T AUT (L).

Corollary 1.35 Let L be a weakly implicative logic in L, T a theory in L. Then for each formula ϕ
holds T ` ϕ iff T |=L ϕ iff T |=o−MAT(L) ϕ.

Now we recall the definition of a direct and subdirect product of matrices. This definitions are ob-
vious, if we understand matrix as a first-order structure with functions corresponding to the operations
and one unary predicate, whose realization is the set of designated elements.

Definition 1.36 Let L = (VAR,C, a) be a propositional language and I a class of L-matrices.
The direct product of matrices from I is a matrix X =

∏
B∈I

B = (X, (cX)c∈C, DX), where X is a

cartesian product od domain of matrices from I, operations are defined pointwise, and (xB)B∈I ∈ DX

iff xB ∈ DB for each B ∈ I.
Furthermore, we say that the matrix X is a subdirect product of matrices from I if there is an

embedding f : X → ∏
B∈I

B, such that for each B ∈ I holds πB(f(X)) = B.

By πB we mean the projection to the component B.

Lemma 1.37 Let L be a logic and I a class of L-matrices. Then each matrix X which is a subdirect
product of matrices from I is an L-matrix.

Proof: Trivial. QED

1.3 Fuzzy logic

In the previous section we have seen that each weakly implicative logic is sound and complete w.r.t.
class of its ordered matrices. There is an obvious question, which (if not all) of them are complete
w.r.t. class of its linearly ordered matrices. This will lead us to the second central definition of this
paper: the notion of weakly implicative fuzzy logics.

Definition 1.38 (Fuzzy logics) Weakly implicative logic L in language L is called fuzzy logic if
L = |=l−MAT(L) (i.e., if the logic L is sound and complete w.r.t. linearly ordered L-matrices.)

The full proper name of the above defined class of logics if weakly implicative fuzzy logics, however
since all the logics we encounter from now on are weakly implicative, we just say that a logic is fuzzy.
There is a joint paper by the author and Libor Běhounek [1] given philosophical, methodological, and
pragmatical reasons for using the term fuzzy, and for formal delimitation of the existing informal class
of fuzzy logic.

Corollary 1.39 (Completeness) Let L be a fuzzy logic in L. Then T HM(L) = T AUT (L) =
T AUT (l−MAT(L)).

We are going to show the equivalent definitions the class of weakly implicative fuzzy logics.

Definition 1.40 (Linear extension) A weakly implicative logic L has the Linear Extension Prop-
erty (LEP) if for each theory T formula ϕ such that T 6` ϕ there is a linear theory T ′, such that
T ⊆ T ′ and T ′ 6` ϕ.
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Definition 1.41 (Prelinearity) A weakly implicative logic L has the Prelinearity Property (PP) if
for each theory T we get T ` χ whenever T, ϕ → ψ ` χ and T, ψ → ϕ ` χ.

Definition 1.42 (Subdirect Decomposition) A weakly implicative logic L has the Subdirect De-
composition Property (SDP) if each ordered L-matrix is a subdirect product of linear L-matrices.

Theorem 1.43 (Characterization of fuzzy logics) A weakly implicative logic is fuzzy iff it has
LEP.

Proof: Assume that L is fuzzy logic. If L and T 6` ϕ then there is linear L-matrix B and B-evaluation
e such that e(ϕ) 6∈ DB. Let us define T ′ = T ∪{ψ | e(ψ) ∈ DB}. Obviously T ⊆ T ′ and T ′ 6` ϕ. Since
≤B is linear order we get e(χ) ≤B e(δ) or e(δ) ≤B e(χ) for each χ and δ. Thus either e(χ → δ) ∈ DB

or e(δ → χ) ∈ DB.
Reverse direction: we need to prove that `L = |=l−MAT(L). One inclusion is trivial consequence

of Theorem 1.33, the reverse one we prove by contradiction: assume that T 6` ϕ. Let us take a linear
supertheory T ′ 6` ϕ. From Lemma 1.32 we know that LinT ′ ∈ l−MAT(L), LinT ′ is linearly ordered
and for the LinT ′-evaluation e defined as e(ψ) = [ψ]T ′ holds e ∈ MOD(T ′,LinT′). This entails that
also e ∈ MOD(T,LinT′). The rest of the proof is analogous to the one for weakly implicative logics.

QED

Lemma 1.44 Let L be a weakly implicative logic with LEP. Then L has PP.

Proof: We argument contrapositively: let T 6` χ, then (using LEP) there is linear theory T ′, such
that T ′ 6` χ. Assume that T ′ ` ϕ → ψ, then obviously T, ϕ → ψ 6` χ QED

To reverse this lemma it seems that we need one additional assumption: the logic has to be finitary.
However, it is obvious that for some infinitary rules the equivalence will hold as well, the question
exactly for which subclass of weakly implicative logics the equivalence holds seems to be interesting
open problem.

Lemma 1.45 Let L be a finitary weakly implicative logic with PP, T a theory, and ϕ a formula, such
that T 6` ϕ. Then there is a linear theory T ′, such that T ⊆ T ′ and T ′ 6` ϕ.

Proof: Let ||L|| = κ. Let us enumerate all tuples of formula by ordinals < κ. Let T0 = T . We
construct theories Tµ using transfinite induction. Let T̂µ =

⋃
ν<µ

Tν .

Observe that if Tν 6` ϕ for each ν < µ then T̂µ 6` ϕ as well (the logic is finitary). We know that
either T̂µ ∪ {ϕµ → ψµ} 6` ϕ or T̂µ ∪ {ψµ → ϕµ} 6` ϕ (otherwise using PP we get contradiction with
T̂µ 6` ϕ), define Tµ accordingly. Finally, define T ′ = T̂κ; obviously T ′ 6` ϕ and T ′ is linear. QED

Theorem 1.46 (Equivalent characterization) Let L be a finitary weakly implicative logic. Then
the following are equivalent:

(1) L is a fuzzy logic,

(2) L has LEP,

(3) L has PP,

(4) L has SDP.

Proof: (1) → (2) : C.f. Theorem 1.43.
(2) → (3) : C.f. Lemma 1.44.
(3) → (4) : Let us denote the language of L as L = (VAR,C, a). Let B = (A, D) be an ordered

L-matrix and ≤ its matrix order. Let us take VAR′ = A, for clearness we will use va ∈ VAR′ and
a ∈ A. We define the propositional language L′ = (VAR′,C, a) and the logic L′ as `SUBL′ (L). The
logic L′ has obviously PP as well and thus it has LEP (using Lemma 1.45). Notice, that here we use
the assumption that L is finitary.
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Let T = {c(va1 , . . . van) ↔ vcB(a1,...an) | c ∈ C,a(c) = n, and a1, . . . , an ∈ A} ∪ {va | a ∈ D}.
Observe that B is an L′-matrix. Let us define B-evaluation e(va) = a and observe that {e} =
MOD(T, B). Now we show T ` va → vb iff a ≤ b: one direction is simple (from e ∈ MOD(T, B) we
get that e(va) →B e(vb) ∈ D and so a ≤ b); the other direction is similar (if a ≤ b then a → b ∈ D
thus T ` va→b and so T ` va → vb). Finally, we observe that for each formula ϕ there is a ∈ A, such
that T ` ϕ ↔ va

Let us define the set I of all linear theories extending T . Next we define L-matrix X =
∏

S∈I
LinS

(direct product of Lindenbaum matrices). Finally, we define f(a) = ([va]S)S∈I .
Now we show that f is an embedding of B into X: since for each S ∈ I we have [vcB(a1,...,an)]S =

[c(va1 , . . . van)]S = cLinS
([va1 ]S , . . . [van ]S) we get f(cB(a1, . . . , an)) = (cLinS

([va1 ]S , . . . [van ]S))S∈I =
cX(f(a1), . . . f(an)). Since obviously a ∈ D entails f(a) ∈ DX (from a ∈ D we have T ` va and so
S ` va and thus [va]S ∈ DLinS

for each S ∈ I) we know that f is a morphism. It remains to be
shown that f is one-one: from a 6= b we get that either a 6≤ b or b 6≤ a. Let us assume that a 6≤ b then
T 6` va → vb, using Lemma 1.45 we know that there is a linear theory S ∈ I such that S 6` va → vb

thus [va]S 6≤LinS
[vb]S and so f(a) 6≤X f(b).

Finally, we observe that for each S we have πS(f(A)) = LS (just recall that for each ϕ there is
a ∈ A, such that T ` ϕ ↔ va).

Since LinS is linearly ordered L-matrix for each S ∈ I and B can be embedded into direct product
of (LinS)S∈I in the way that πS(f(A)) = LS . We conclude that B is a subdirect product of linearly
ordered L-matrices.

(4) → (1) : Trivial.
QED

Lemma 1.47 Let L be a fuzzy logic. Then (ϕ → ψ)i → χ, (ψ → ϕ)j → χ `L χ for each naturals i
and j.

Proof: Let T = {(ϕ → ψ)i → χ, (ψ → ϕ)j → χ}. Obviously T, ϕ → ψ ` χ and T, ψ → ϕ ` χ (using
(MP)). Since each fuzzy logic has PP the proof is done. QED

The proofs of the following lemmata are obvious.

Lemma 1.48 (Intersection) The intersection of an arbitrary system of fuzzy logics is a fuzzy logic.

Lemma 1.49 (Conservative expansion) Let L′ be a conservative expansion of a finitary fuzzy
logic L. Then L is fuzzy logic as well.

Lemma 1.50 (Axiomatic extension) An axiomatic extension of arbitrary fuzzy logic in the same
language is a fuzzy logic.

The assumption of being in the same language can be omitted if we assume some additional
properties of the logic in question.

Proof: We know that L′ has PP, we show that L has PP as well and because L is finitary we get that
L is fuzzy. Let us take theory T and formulae ϕ,ψ, χ in language of L. Assume that T, ϕ → ψ `L χ
and T, ψ → ϕ `L χ, then also T, ϕ → ψ `L′ χ and T, ψ → ϕ `L′ χ. Using PP for L′ we get T `L′ χ.
Conservativeness completes the proof. QED

2 Special propositional logics

In this section we introduce some additional rules (see Tables 2.1) and 2.2) and some additional
connectives (see table 2.3) and prove some facts about these extensions. It is just a sketch of a huge
work to be done. The ultimate goal is to characterize known logics and put them into our context with
modularly designed Hilbert’s style calculi. Having this done, we identify which of them are fuzzy, or
we find minimal fuzzy logics extending some known logics (eg. minimal fuzzy logic over intuitionistic
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Table 2.1: Structural rules

consecution symbol name
ϕ ` ψ → ϕ W Weakening

ϕ → (ψ → χ) ` ψ → (ϕ → χ) E Exchange
ϕ → (ϕ → ψ) ` ϕ → ψ C Contraction

Table 2.2: Addition rules

consecution symbol name
` ϕ → ((ϕ → ψ) → ψ) As assertion

ϕ → ψ ` (ψ → χ) → (ϕ → χ) Sf suffixing
ψ → χ ` (ϕ → ψ) → (ϕ → χ) Pf prefixing

` ϕ → (ϕ → ϕ) M mingle

logic is Gödel logic, minimal fuzzy logic over Full Lambek calculus with exchange and weakening is
MTL logic, etc.)

Having stronger logic/language can lead to simplified semantics, eg. having 1 we can replace
matrices with ordered structures (the designated set will be the upper cone of 1B), having one of
the lattice connectives we can even work with algebras, thus being able to use powerful methods of
Abstract Algebraic Logics (which, of course, we can do anyway, but some theorems of ALL hold in
algebraizable logics only). There are other possible simplification of the semantics allowed be adding
some structural rules (weakening leads to algebraic semantics, exchange to ordered structures, with ϕ
being valid iff e(ϕ → ϕ) ≤ e(ϕ), etc.).

2.1 Adding rules

In this section we restrict ourselves to the propositional languages with implication only. The basic
rules correspond to the structural rules are exchange, contraction and weakening (see Table 2.1),
extended by some additional important rules summarized in Table 2.2. We formulate them as rules,
however in some situation we can use their stronger forms—we formulate then as axioms. To do this
in a general way we present the following definition.

Definition 2.1 Let R be a unary deduction rule of the form ϕ ` ψ. By the corresponding axiom we
understand axiom ` ϕ → ψ, we will denote it as ax (R).

Table 2.3: Propositional connectives

Symbol Arity Name Alternative name
> 0 verum additive truth
1 0 one multiplicative truth
0 0 zero multiplicative falsum
⊥ 0 falsum additive falsum
4 1 Baaz delta globalization
∧ 2 min-conjunction additive conjunction
∨ 2 max-disjunction additive disjunction
& 2 strong conjunction fusion, multiplicative conjunction
Ã 2 c-implication reverse implication

10



Of course if L is weakly implicative logic then `L ϕ → ψ entails ϕ `L ψ, i.e., if ax (R) ∈ L then
R ∈ L. Recall, that in the literature some of the axioms are known under different names.

Definition 2.2 (Adding rules) Let L be a weakly implicative logic in language {→} and Q be a sub-
set of {W,E, C, Pf, Sf, ax (W), ax (E), ax (C), ax (Pf), ax (Sf), As}. We say that L is an Q-implication
fragment if the consecutions from Q are elements of L.

We say that L is an fuzzy Q-implication fragment if L is fuzzy logic and L is Q-implication
fragment.

Definition 2.3 The weakest Q-implication fragment is denoted as MIN (Q). Furthermore, the weak-
est fuzzy Q-implication fragment is denoted as FUZZ(Q)

Both definition are sound thanks to the Lemma 1.17 and 1.48. The following lemma show interplay
between transitivity and exchange.

Lemma 2.4 The following logics are equivalent:

(1) BCI logic (implicational fragment of linear logic)

(2) MIN ({ax (Sf), As})
(3) MIN ({ax (Sf), ax (E)})
(4) MIN ({ax (Pf), ax (E)})
(5) MIN ({Pf, ax (E)})
(6) MIN ({ax (Sf), E})
(7) MIN ({ax (Pf),E})

Proof: We show that each logic is stronger than the next one (cyclicly):
(1) ⊇ (2): recall that BCI logic is axiomatized by ax (Sf), As, (Ref), and (MP). So all we have to

do is to show (CON) for → but this is almost straightforward.
(2) ⊇ (3): All we need to show is `MIN ({ax(Sf),As}) ax (E)

(i) ψ → ((ψ → χ) → χ) As
(ii) (ψ → ((ψ → χ) → χ)) → ((((ψ → χ) → χ) → (ϕ → χ)) → (ψ → (ϕ → χ))) ax (Sf)
(iii) (((ψ → χ) → χ) → (ϕ → χ)) → (ψ → (ϕ → χ)) (i), (ii), (MP)
(iv) (ϕ → (ψ → χ)) → (((ψ → χ) → χ) → (ϕ → χ)) ax (Sf)
(v) (ϕ → (ψ → χ)) → (ψ → (ϕ → χ)) (iv), (iii), (WT)

(3) ⊇ (4): trivial
(4) ⊇ (5): trivial
(5) ⊇ (6): All we need to show is `MIN ({Pf,ax(E)}) ax (Sf)

(i) (ψ → χ) → (ψ → χ) (Ref)
(ii) ψ → ((ψ → χ) → χ) (i), axE, (MP)
(iii) (ϕ → ψ) → (ϕ → ((ψ → χ) → χ)) (ii),Pf
(iv) (ϕ → ((ψ → χ) → χ)) → ((ψ → χ) → (ϕ → χ)) ax (E)
(v) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ)) (iii), (iv),Pf

(6) ⊇ (7): trivial
(7) ⊇ (1): trivial

QED

Notice two open problems: what about logics MIN ({Sf, ax (E)}) and MIN ({ax (Pf), As})?
Table 2.4 puts some known logics into our context (we list axioms which has to be added to

MIN (ax (Sf), E)). We can add all of them as rules or axioms—in the presence of exchange these two
options are equivalent—as shown by the following observation:
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Table 2.4: Known implicational fragments

consecutions implicational fragment of
∅ linear logic
C relevance logic

C, M relevance logic with mingle
W affine linear logic

W, C intuitionistic logic

1. MIN (ax (Sf), E) = MIN (ax (Sf), ax (E))

2. MIN (ax (Sf), E, W) = MIN (ax (Sf), ax (E), ax (W))

3. MIN (ax (Sf), E, C) = MIN (ax (Sf), ax (E), ax (C))

Proof: Part 1. was shown in Lemma 2.4. Part 2. is trivial. To prove part 3. we only show that
`MIN (ax(Sf),E,C) ax (C)

(i) (ϕ → (ϕ → ψ)) → (ϕ → (ϕ → ψ)) (Ref)
(ii) ϕ → ((ϕ → (ϕ → ψ)) → (ϕ → ψ)) (i) and E.
(iii) ϕ → (ϕ → ((ϕ → (ϕ → ψ)) → ψ)) (ii), ax (E), ax (Sf)
(iv) ϕ → ((ϕ → (ϕ → ψ)) → ψ) (iii) and C
(v) (ϕ → (ϕ → ψ)) → (ϕ → ψ) (iv) and E

QED

Before we proceed further we observe some properties of BCI.

Lemma 2.5 It holds:

1. `BCI (ϕn → (ψm → χ)) → (ψm → (ϕn → χ))

2. `BCI (ϕn → ψ) → ((ψ → χ) → (ϕn → χ))

Now we present an important definition—the deduction theorem—for rather wide class of weakly
implicative logic. We present it in a rather strange strong form. Our formulation allows us to show
exactly which logics have this deduction theorem.

Definition 2.6 Let L be a language and L a logic in L, such that L has a presentation AX , where
(MP) is the only deduction rule. We say that L has Implicational Deduction Theorem (DT→) if for
each, theory T , formulas ϕ,ψ, and proof P of ψ in theory T, ϕ (in presentation AX ) we have: T, ϕ ` ψ
iff T ` ϕn → ψ, where n is a number of occurrences of ϕ in the leaves of the proof P and there is a
proof P ′ of ϕn → ψ in T , such that each ψ ∈ T occurs in the leaves of P same number of times as in
the leaves of P ′.

Observe that each logic with DT→ has also the “standard” form of the deduction theorem.

Corollary 2.7 Each logic with DT→ has so called Local Deduction Theorem (LDT): for each theory
T and formulas ϕ,ψ: T, ϕ ` ψ iff there is n such that T ` ϕn → ψ.

Now we present sufficient and necessary condition for L to have DT→.

Theorem 2.8 (Deduction theorem) Let L be a language and L a logic in L, such that L has a
presentation, where (MP) is the only deduction rule. Then L has DT→ iff implicational fragment of
L is an extension of BCI.
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Proof: First direction: All we have to do is to show that `L ax (Sf) and `L ax (E). Observe that
ϕ,ψ, ϕ → (ψ → χ) `L χ and each of the premises is used exactly once, applying DT→ three times
we get `L ax (E). Observe that ϕ, ϕ → ψ, ψ → χ `L χ and each of the premises is used exactly once,
applying DT→ three times we get `L ax (Sf).

Reverse direction: we need to prove two directions. One is obvious. To prove the other one we use
the induction over the proof of ψ in T, ϕ (in AX ). We show that it holds for each χ in the proof P ′:

• χ is a leaf of P, i.e., χ ∈ T , χ is an axiom, or χ = ϕ: trivial

• χ has predecessors ψ2 = ψ1 → χ and ψ1, using the induction property we get T ` ϕn → (ψ1 → χ)
and T ` ϕm → ψ1 (and the number of occurrences of formulas from T is the same), we distinguish
two cases

– ψ2 = ϕ, using Lemma 2.5 (2) we know that `BCI (ϕm → ψ1) → ((ψ1 → χ) → (ϕm → χ)),
thus we get T ` ϕ → (ϕm → χ) and so T ` ϕm+1 → χ.

– ψ2 6= ϕ, using Lemma 2.5 (1) we get T ` ψ1 → (ϕn → χ). From Lemma 2.5 (2) we obtain
T ` ϕm → (ϕn → χ). Thus T ` ϕm+n → χ.

In both cases the number of occurrences of formulas from T is not changed.

QED

We have proved even more: given proof of ψ in T, ϕ, we construct the proof of ϕn → ψ in T .

Corollary 2.9 Let L be a language and L a logic in L, such that L has a presentation, where (MP)
is the only deduction rule and implicational fragment of L is an extension of BCI. Then L has LDT.

In the presence of LDT we can prove the “converse” of Lemma 1.47. Thus having an equivalent
definition of fuzzy logics in some class of logics.

Lemma 2.10 Let L be a finitary logic with LDT. Then `L (ϕ → ψ)i → χ, (ψ → ϕ)j → χ `L χ iff L
is fuzzy.

Proof: One direction is just Lemma 1.47. To prove the other direction we only show that L has
PP. Assume that T, ϕ → ψ ` χ and T, ϕ → ψ ` χ. By LDT we get T ` (ϕ → ψ)i → χ and
T ` (ψ → ϕ)j → χ and so we have T ` χ. QED

At the end of this section we present an axiomatic system for the minimal fuzzy {ax (Sf), E,W}-
implication fragment. We decided to use classical names for axioms ax (Sf), ax (E), and ax (W).

Definition 2.11 The fuzzy BCK logic (FBCK) has the following presentation:

B ` (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))
C ` (ϕ → (ψ → χ)) → (ψ → (ϕ → χ))
K ` ϕ → (ψ → ϕ)
Fn ` ((ϕ → ψ)n → χ) → (((ψ → ϕ)n → χ) → χ)
(MP) ϕ,ϕ → ψ ` ψ

Observe that FBCK = MIN (ax (Sf), E, W,F) (observe that having exchange we can easily get
ax (W) from W). Using Lemma 2.4 we could write several different equivalent axiomatic systems.
Also observe that ordered FBCK-matrices are exactly BCK-algebras satisfying axioms Fn.

Theorem 2.12 FBCK = FUZZ({ax (Sf),E, W})
Proof: First, we show that FBCK, is fuzzy logic. Using Theorem 1.46 it is enough to show that
FBCK has PP. Let T, ϕ → ψ ` χ and T, ψ → ϕ ` χ then using DT→ we get that T ` (ϕ → ψ)m → χ
and T ` (ψ → ϕ)n → χ for some n and m. Let us take t = max(m,n), using Weakening we get the
T ` (ϕ → ψ)t → χ and T ` (ψ → ϕ)t → χ, axiom Ft completes the proof.

Next, we have to show that each fuzzy logic extending BCK proves Fn. We recall that each fuzzy
logic has PP. Now observe that
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Table 2.5: Rules

Consecution symbol Name match for
ψ&ϕ → χ a` ϕ → (ψ Ã χ) ÃR Ã-Residuation Ã
ϕ → (ψ → χ) a` ϕ&ψ → χ R Residuation &

ϕ → ψ a` ϕ Ã ψ Imp Implications Ã
` ϕ → > Tr veritas ex quolibet >
` ⊥ → ϕ Fa ex-falso quodlibet ⊥

ϕ a` 1 → ϕ ? ? 1
ϕ → χ, ψ → χ ` ϕ ∨ ψ → χ ∨1 supremum ∨

` ϕ → ϕ ∨ ψ ∨2 idempotency ∨
` ϕ ∨ ψ → ψ ∨ ϕ ∨3 commutativity ∨

χ → ϕ, χ → ψ ` χ → ϕ ∧ ψ ∧1 infimum ∧
` ϕ ∧ ψ → ϕ ∧2 idempotency ∧

` ϕ ∧ ψ → ψ ∧ ϕ ∧3 commutativity ∧

Table 2.6: Matching rules for 4

Consecution symbol Name
` 4(ϕ → ψ) → (4ϕ →4ψ) 41 4-monotonicity

` 4ϕ → ϕ 42 4-reflexivity
` 4ϕ →44ϕ 43 4-transitivity

` 4ϕ → (4ψ → ϕ) 4W 4-weakening
` 4(4ϕ → (4ϕ → ψ)) → (4ϕ → ψ) 4C 4-contraction

` 4(4ϕ → (4ψ → χ)) → (4ψ → (4ϕ → χ)) 4E 4-exchange
ϕ ` 4ϕ (NEC) necessitation

(i) ((ϕ → ψ)n → χ) → ((ϕ → ψ)n → χ) (Ref)
(ii) (ϕ → ψ)n → (((ϕ → ψ)n → χ) → χ) (i) and Lemma 2.5 1.
(iii) ϕ → ψ ` (((ϕ → ψ)n → χ) → χ) (ii)
(iv) ϕ → ψ ` ((ψ → ϕ)n → χ) → (((ϕ → ψ)n → χ) → χ) (iii) and K
(v) ϕ → ψ ` ((ϕ → ψ)n → χ) → (((ψ → ϕ)n → χ) → χ) (iv) and C

By replacing ϕ and ψ in (iv) we get:

(vi) ψ → ϕ ` ((ϕ → ψ)n → χ) → (((ψ → ϕ)n → χ) → χ)

Since we L has PP we get ` Fn QED

Since obviously BCK = MIN (ax (Sf),E, W) we get the following corollary.

Corollary 2.13 FBCK is the weakest fuzzy logic stronger than BCK.

We can alter the axioms Fn by using two different natural number m,n as “exponents”, we get
axioms Fm,n. If we add axioms Fm,n to the BCI logic, we get fuzzy logic (by Lemma 2.10). However,
we are not able to the prove the converse statement, i.e., that this logic is minimal fuzzy logic over
BCI.

2.2 Adding connectives

As mentioned before, we consider the connectives from Table 2.3. For the matching rules for the
particular connective see Tables 2.5 and 2.6. There are many interesting interplays between them and
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Table 2.7: Known logics

L Q MINL(Q)
⊥, & ∨ ax (Sf),E, W, C Intuitionistic logic

Ã, ⊥, 1, 0, &, ∧, ∨ Sf, Pf Full Lambek
⊥, & ax (Sf), E,W, C, PL Gödel logic
⊥, &, ∧ ax (Sf), E,W, PL MTL logic

&, ∧ ax (Sf), E,W, PL MTLH logic

the matching consecution (eg. in the presence of residuation rule we can prove that the residuation
axiom is equivalent to the associativity axiom for &). Again, we present only the basic definitions, a
lot of work is to be done yet.

Definition 2.14 (Adding connectives) A logic L is Q-weakly implicative logic in L if its impli-
cation fragment is Q-implication fragment and if some of the connectives {>,0,1,⊥,∧,∨, &, Ã,4}
are in L, then their matching rules and instances of (CON) rules for the connectives in question are
elements of L. We say that L is an Q-fuzzy logic if L is fuzzy logic and L is Q-weakly implicative
logic.

To simplify things we will write that L is Q-logic instead of L is Q-weakly implicative logic.

Definition 2.15 Let L be a propositional language. We denote the weakest Q-logic in L as MINL(Q)
and the weakest fuzzy Q-logic is denoted as FUZZL(Q)

Table 2.7 puts some known logics into our context. The only thing we need to observe is the fact
that in presence of ax (Sf) and E we get from the residuation rules the residuation axioms (having this
it is easy to show that & is associative. We show one direction:

(i) (ϕ → (ψ → χ)) → (ϕ → (ψ → χ)) (Ref)
(ii) ϕ → ((ϕ → (ψ → χ)) → (ψ → χ)) (i) and E
(iii) ϕ → (ψ → ((ϕ → (ψ → χ)) → χ)) (ii), ax (E), (WT)
(iv) ϕ&ψ → ((ϕ → (ψ → χ)) → χ) (iii) and residuation rule
(v) (ϕ → (ψ → χ)) → (ϕ&ψ → χ) (iv),E.

The logic FUZZ{&}(ax (dT ), E,W) is the newest logic of Petr Hájek—the quasihoop logic (for
details see [5]).

Definition 2.16 The quasihoop logic (QH) has the following presentation:

(1) ` (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))
(2) ` ϕ&ψ → ψ&ϕ
(3) ` ϕ&ψ → ϕ
(4) ` (ϕ → (ψ → χ)) → (ϕ&ψ → χ)
(5) ` (ϕ&ψ → χ) → (ϕ → (ψ → χ))
Fn ` ((ϕ → ψ)n → χ) → (((ψ → ϕ)n → χ) → χ)
(MP) ϕ,ϕ → ψ ` ψ

Observe that axiom (2) corresponds to E axiom (3) to W. Axioms (4) and (5) are axiomatic
version of residuation rules R. The ordered QH-matrices are just BCK(RP)-algebras.

2.3 The connective ∨
Having disjunction in the language, we can express several concepts of this paper in more common
ways. In this subsection we assume that ∨ ∈ L for each logics we encounter here.
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Lemma 2.17 Let L be a weakly implicative logic. Then ϕ ∨ ψ,ϕ → ψ ` ψ.

Proof: We give a formal proof:

(i) ϕ → ψ,ψ → ψ ` ϕ ∨ ψ → ψ ∨1
(ii) ϕ ∨ ψ,ϕ → ψ ` ϕ ∨ ψ → ψ (i)
(iii) ϕ ∨ ψ, ϕ → ψ ` ψ (ii) and (MP)

QED

Now we define the notion of prime theory. This is more known concept than the concept of linear
theory. However, we will see that in fuzzy logics both notions coincide.

Definition 2.18 (Prime theory) Let L be a weakly implicative logic. A theory T is prime if from
T ` ϕ ∨ ψ we get T ` ϕ or T ` ψ.

Definition 2.19 (Prime extension) A weakly implicative logic L has the Prime Extension Property
(PEP) if for each theory T formula ϕ such that T 6` ϕ there is a prime theory T ′, such that T ⊆ T ′

and T ′ 6` ϕ.

Definition 2.20 (Proof by cases) A weakly implicative logic L has the Proof by Cases Property
(PCP) if for each theory T we get T, ϕ ∨ ψ ` χ whenever T, ϕ ` χ and T, ψ ` χ.

Observe that above defined principles PCP and PEP differ from seemingly analogous principles
PP and LEP. For example Intuitionistic logic has both PCP and PEP but doesn’t have the other
two. Let us examine this in more details:

Lemma 2.21 Let L be a weakly implicative logic. Then:

1. each linear theory is prime;

2. if L has PP we have ` (ϕ → ψ) ∨ (ψ → ϕ);

3. if ` (ϕ → ψ) ∨ (ψ → ϕ) then each prime theory is linear;

4. if L has PP then L has PCP;

5. if ` (ϕ → ψ) ∨ (ψ → ϕ) and L has PCP then L has PP.

Proof:

1. Let T ` ϕ ∨ ψ. Since T is linear we know that T ` ϕ → ψ or T ` ψ → ϕ. Thus (using Lemma
2.17) we get T ` ψ or T ` ϕ.

2. Trivial.

3. Trivial.

4. From PP and ∨2 we easily get `L (ϕ → ψ)∨ (ψ → ϕ). Now let T be a theory such that T, ϕ ` χ
and T, ψ ` χ. Using Lemma 2.17 we know that T, ϕ ∨ ψ,ϕ → ψ ` ψ and T, ϕ ∨ ψ, ψ → ϕ ` ϕ.
Thus T, ϕ ∨ ψ, ϕ → ψ ` χ and T, ϕ ∨ ψ,ψ → ϕ ` χ. PP completes the proof.

5. just observe that from T, ϕ → ψ ` χ and T, ψ → ϕ ` χ we get T, (ϕ → ψ) ∨ (ψ → ϕ) ` χ.
Knowing that `L (ϕ → ψ) ∨ (ψ → ϕ) we get T ` χ.

QED

This lemma has three interesting corollaries.

Corollary 2.22 In fuzzy logic the theory T is prime iff T is linear.

Corollary 2.23 A logic L is fuzzy iff L has PEP and ` (ϕ → ψ) ∨ (ψ → ϕ).

Corollary 2.24 A finitary logic L is fuzzy iff L has PCP and ` (ϕ → ψ) ∨ (ψ → ϕ).
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2.4 The connective 4
The connective 4 is a special one, in intuitionistic logic it is known as globalization (with some
additional assumptions); in linear logic it is a kind of exponential; and in fuzzy logics it is known as
Baaz delta. Roughly speaking, this connective allows us controlled use of structural rules. In this
subsection we assume that 4 is an element of all the propositional languages L (unless the opposite
is explicitly mentioned)

Now we present the analog of Definition 2.6 and prove the analog of Theorem 2.8. However,
the 4 connective allows us much simpler formulations. In the following definition and theorem we
understand L as arbitrary weakly implicative logic (not necessarily with matching rules 41, 42,
43,4W, 4C,4E, and (NEC)).

Definition 2.25 Let L a weakly implicative logic. We say that L has Delta Deduction Theorem
(DT4) if for each theory T and formulas ϕ,ψ we have: T, ϕ ` ψ iff T ` 4ϕ → ψ.

Now we present sufficient and necessary condition for L to have DT4. And we also show that in
each weakly implicative logic with DT4 the matching rules for 4 hold.

Theorem 2.26 (Deduction theorem) Let Lbe a finitary logic. Then L has DT4 iff L has some
presentation AX , where (MP) and (NEC) are the only deduction rules and all the matching axioms
for 4 hold.

Proof: First direction: Assume that L has DT4, then obviously L has presentation where (MP) and
(NEC) are the only deduction rules (just replace each rule ϕ1, . . . ϕn ` ψ with the following axiom
` 4ϕ1 → (. . . → (4ϕn → ψ) . . .)). All we have to do is to show that the matching rules for 4 hold:

• (NEC): From ` 4ϕ →4ϕ we get ϕ ` 4ϕ (using DT4)

• 41: From ϕ, ϕ → ψ ` ψ we get ϕ,ϕ → ψ ` 4ψ (using (NEC)). Applying DT4 twice completes
the proof.

• 42: From ϕ ` ϕ we get ` 4ϕ → ϕ (using DT4)

• 43: From ϕ ` 4ϕ we get ` 4ϕ →44ϕ (using DT4)

• 4W: From ϕ, ψ ` ϕ we get ϕ ` 4ψ → ϕ (using DT4 twice)

• 4C: We know that ϕ,4ϕ → (4ϕ → ψ) ` ψ ((NEC) and (MP) twice). Applying DT4 twice
completes the proof.

• 4E: We know that ϕ,ψ,4ϕ → (4ψ → χ) ` χ ((NEC) twice and (MP) twice). Applying DT4
three times completes the proof.

Reverse direction: we need to prove two directions. One is obvious. To prove the other one we use
the induction over the proof of ψ in T, ϕ (in AX ). We show that it holds for each χ in the proof of ψ
in T, ϕ

• χ ∈ T , χ is an axiom - trivial using 4W

• χ = ϕ - trivial using 42

• χ = 4ψ1 is obtained from its predecessor ψ1 by (NEC). From the induction property for ψ2 we
know that T ` 4ϕ → ψ1. We apply (NEC), 41, and (MP) to get T ` 44ϕ →4ψ1. Using 43
and (WT) we get T ` 4ϕ →4ψ1.

• χ is obtained from its predecessors ψ2 = ψ1 → χ and ψ1 by (MP). From the induction property
for ψ2 we know that T ` 4ϕ → (ψ1 → χ). We apply41 twice to get T ` 44ϕ → (4ψ1 →4χ),
using 43 and 4E we get T ` 4ψ1 → (4ϕ →4χ).

From the induction property for ψ1 we know that T ` 4ϕ → ψ1. We apply 41 and 43 to get
T ` 4ϕ → 4ψ1. Now using (WT) we obtain T ` 4ϕ → (4ϕ → 4χ). Axiom 4C gets us
T ` 4ϕ →4χ and 42 completes the proof.
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QED

We can easily prove analogy of Lemmata 1.47 and 2.10. Thus having an equivalent definition of
fuzzy logics in some class of logics.

Lemma 2.27 Let L be a fuzzy logic. Then 4(ϕ → ψ) → χ,4(ψ → ϕ) → χ `L χ

Lemma 2.28 Let L be a finitary fuzzy logic with DT4. Then 4(ϕ → ψ) → χ,4(ψ → ϕ) → χ `L χ
iff L is fuzzy.

Unlike in Lemma 2.10, in this case the rule appearing in the previous lemma is equivalent to the
following axiom: `L 4(4(ϕ → ψ) → χ) → (4(4(ψ → ϕ) → χ) → χ). Having ∨ in the language we
can formulate even stronger claim.

Corollary 2.29 Let L be a language, ∨ ∈ L and L a finitary logic in L with DT4. Then L is fuzzy
iff `L 4(ϕ → ψ) ∨4(ψ → ϕ)

Now we observe that 4(ϕ → ϕ) can be used as definition of 1. Thus we may assume that whenever
4 ∈ L, then 1 ∈ L.

Lemma 2.30 It holds:

• ` 4(ϕ → ϕ) →4(ψ → ψ)

• ψ ` 4(ϕ → ϕ) → ψ

• 4(ϕ → ϕ) → ψ ` ψ

• ` 4(ϕ → ϕ)

Recall, the in presence of ⊥ we can define the derived connective negation as ¬ϕ = ϕ → ⊥. Now
we show some rather trivial properties of logics with 4 and ⊥ in the language.

Lemma 2.31 Let L be a language such that ⊥ ∈ L and L a logic in L. Then

1. `L 4(1 → ⊥) → ⊥
2. `L ⊥ ↔ 4⊥
3. `L 1 ↔41

4. `L (4ϕ → ¬4ϕ) → ¬4ϕ

Proof: The only non-trivial is Part 1. We give a formal proof.

(i) 4(1 → ⊥) →4(1 → ⊥) (Ref)
(ii) 4(1 → ⊥) → (41 →4⊥) (i), 41, and (WT)
(iii) 41 → (4(1 → ⊥) →4⊥) (ii), (NEC), 4E, (WT)
(iv) 4(1 → ⊥) →4⊥ (iii) and (MP)
(v) 4(1 → ⊥) → ⊥ (iv), 42 and (WT)

QED

The reader familiar with fuzzy logic with 4 can notice that matching rules are somehow “weak”,
4 has more properties in this case, which do not hold in general. In the rest of this section we add
some additional rules for 4 to get known fuzzy logics with 4. We start by showing that fuzzy logic
L, where `L (¬4ϕ →4ϕ) →4ϕ has some interesting properties.

Lemma 2.32 Let L be a language, ⊥ ∈ L, L a fuzzy logic in L, and `L (¬4ϕ →4ϕ) →4ϕ. Then:

1. For each linearly ordered L-matrix B holds: 4Bx = 1B if 1B ≤B x and 4Bx = ⊥B otherwise.
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2. L has DT4.

3. T,4ϕ ` χ and T,¬4ϕ ` χ entails T ` χ.

4. ` (1 → ⊥) → ⊥ iff ` ¬4ϕ →4¬4ϕ.

5. ` ¬4ϕ →4¬4ϕ iff ` ¬4(ϕ → ψ) →4(ψ → ϕ).

Proof: 1. We omit the subscripts B in this proof. Let 1 ≤ x, then obviously 1 ≤ 4x (using (NEC)).
Using 4W we get 1 ≤ 41 ≤ 4x → 1, thus 4x ≤ 1.

If x < 1 then 4x < 1 as well (because (42) we know 4x ≤ x). Since ¬4x →4x ≤ 4x we have
to have ¬4x > 4x (otherwise 1 ≤ ¬4x →4x and so 1 ≤ 4x—a contradiction). Observe that from
4C we get `L 4(4ϕ → (4ϕ → ⊥)) → (4ϕ → ⊥), i.e., 4(4x → ¬4x) ≤ ¬4x. We know that
4x ≤ ¬4x so 4(4x → ¬4x) = 1 and so 1 ≤ 4x → ⊥. Finally, 4x ≤ ⊥.

2. One direction is obvious. We show the reverse direction contrapositively: if T 6` 4ϕ → ψ,
then there is linearly ordered L-matrix B and B-model e of T and e(4ϕ → ψ) < 1 (again we omit
the subscripts B). Then obviously 1 ≤ e(ϕ) (otherwise e(4ϕ) = ⊥ and so 1 ≤ e(4ϕ → ψ)—a
contradiction), thus e(4ϕ) = 1 and so e(4ϕ → ψ) = 1 → e(ψ) = e(ψ). So we know that e is
B-model e of T, ϕ and e(ψ) < 1. Thus T, ϕ 6` ψ.

3. We observe that since ` 4(¬4ψ → 4ψ) → 4ψ and ` 4(4ψ → ¬4ψ) → 4¬4ψ (from
Lemma 2.31), whenever we prove T ` 4ψ → χ and T ` 4¬4ψ → χ then T ` χ (using Lemma 2.28
and the fact that L has DT4). Using DT4 once more completes the proof.

4. Assume that ` (1 → ⊥) → ⊥, then also ¬1 → χ. We use part 3 of this lemma: first notice that
4ϕ ` 1 ↔ 4ϕ and so 4ϕ ` ¬4ϕ → ¬1. Thus 4ϕ ` ¬4ϕ → 4¬4ϕ. Second, we also know that
¬4ϕ ` 1 ↔ ¬4ϕ and since ` 1 →41 we get ¬4ϕ ` ¬4ϕ →4¬4ϕ.

To prove the reverse direction just set ϕ = ⊥ and get ¬4⊥ → 4¬4⊥. Lemma 2.31 completes
the proof.

5. Observe that ψ → ϕ ` 4¬4(ϕ → ψ) → 4(ψ → ϕ) (using 4W, 43, and DT4) and so
ψ → ϕ ` ¬4(ϕ → ψ) → 4(ψ → ϕ) (using ` ¬4ϕ → 4¬4ϕ). Now ϕ → ψ ` 4(ϕ → ψ) ↔ 1 and
since we know ` (1 → ⊥) → χ (from part 4. of this lemma) we get ϕ → ψ ` ¬4(ϕ → ψ) →4(ψ → ϕ).

To prove the reverse direction just set ϕ = ⊥ and ψ = 1 and get ` ¬4(⊥ → 1) → 4(1 → ⊥).
Observe that ` 4(⊥ → 1) ↔ 1 (using DT4) and so we have ` (1 → ⊥) → 4(1 → ⊥). Lemma 2.31
and Part 4. of this lemma complete the proof. QED

Observe that the part 1. holds even without assumption that L is fuzzy and that part 2. has an
interesting corollary:

Corollary 2.33 Let L be a language such that ⊥ ∈ L, L a finitary fuzzy logic in L, such that
`L (¬4ϕ →4ϕ) →4ϕ. Then L has a presentation, where (MP) and (NEC) are the only deduction
rules.

Of course, we even know this presentation: just replace each rule ϕ1, . . . ϕn ` ψ with the axiom
` 4ϕ1 → (. . . → (4ϕn → ψ) . . .). Now we try to formulate the “essence” of the connective 4, when
used in fuzzy logics.

Definition 2.34 Let L be a language such that ⊥,4 ∈ L and L a fuzzy logic in L. We say that L is
logic with Baaz delta iff for each formula in language {→,⊥,1}, if we define substitution σ(v) = 4v
then `L σϕ iff ϕ is a theorem of classical logic.

Obviously, not all logics with 4 connective are logic with Baaz delta (take Intuitionistic logic, and
in all Heyting algebras interpret 4 as identity). Observe that if L is logic with Baaz delta it is con-
sistent. This definition can be viewed as rather peculiar, but we are going to present more convenient
alternative definition. The following lemma works for fuzzy logic only: even with Intuitionistic logic
fulfills the properties 1.–5. from the upcoming definition it is not a logic with Baaz delta, analogously
ÃLukasiewicz logic with globalization is not fuzzy logic and so it is not a logic with Baaz delta.

Lemma 2.35 Let L be a consistent fuzzy logic. Then L is a fuzzy logic with Baaz delta iff the following
hold:

19



1. ` (¬4ϕ →4ϕ) →4ϕ

2. ` (1 → 1) → 1

3. ` (⊥ → 1) → 1

4. ` (⊥ → ⊥) → 1

5. ` (1 → ⊥) → ⊥
Proof: One direction is obvious (only non-trivial part is to show ` (¬4ϕ →4ϕ) →4ϕ—to do this
just notice that (¬p → p) → p is a theorem of classical logic).

To prove converse direction we need to show two things: first, if ϕ is a theorem of the classical
logic, then ` σϕ. We prove this contrapositively: assume that 6` σϕ, then there is linear L-matrix B
and B-evaluation e such that e(σϕ) < 1. Observe that form Lemma 2.32 part 1. we know that e(4v)
is either 1 or ⊥, from the form of the formula σϕ and from theorems 2.–5. we know that e(σϕ) = ⊥
and if we define evaluation f(v) = e(4v) then ϕ is a classical evaluation not satisfying ϕ.

Second, we need to show that if ` σϕ then ϕ is a theorem of the classical logic. We prove this
by a contradiction: assume that there is a classical evaluation e, such that e(ϕ) = ⊥. Then there is
substitution ρ(v) = e(v) (we identify constants 1 and ⊥ with two truth values of classical logic) and
ρϕ → ⊥ is a theorem of the classical logic. Thus ` σ(ρϕ → ⊥). Because σ(ρϕ → ⊥) = ρϕ → ⊥ (there
are no variables in ρϕ → ⊥) and theorems 2.–5. we get ` ρϕ → ⊥ (using the previous direction).
Since we assume that ` σϕ we also have ` ρσϕ and so finally ` ρϕ (because 4⊥ ↔ ⊥ and 41 ↔ 1).
Thus together we have ` ⊥—a contradiction with consistency of L. QED

In the literature, it is common that for fuzzy logic L there is defined its conservative expansion by
the connective 4 (usually denoted as L4), which is fuzzy as well. It is usual that L4 is a logic with
Baaz delta and has DT4 (even if L has not some variant of deduction theorem). Now we introduce
general way of expanding the logic L into the logic L4. First we give an indirect definition and then
we show how to find a presentation of L4 based on the presentation of L4.

Definition 2.36 Let L be a consistent fuzzy logic in L, such that ⊥ ∈ L and 4 6∈ L By L4 we denote
the weakest fuzzy logic with Baaz delta in language L ∪ {4} expanding L.

Theorem 2.37 Let L be a consistent finitary fuzzy logic in L, such that ⊥ ∈ L and 4 6∈ L and let
AX be some finitary presentation of L. Then the following is a presentation of L4:

A axioms of AX ,
B ` 4ϕ1 → (. . . (4ϕn → ψ) for each n-ary deduction rule <ϕ1, . . . , ϕn, ψ > ∈ AX ,
C matching rules for 4,
(MP) ϕ,ϕ → ψ ` ψ
44 ` (¬4ϕ →4ϕ) →4ϕ,
45 ` ¬4(ϕ → ψ) →4(ψ → ϕ),
46 ` (1 → 1) → 1.

Proof: Let L′ be the logic with the above presentation presentation. We have to show that L′ is a
fuzzy logic with Baaz delta (it obviously extends L).

Since L is fuzzy we get (ϕ → ψ) → χ, (ψ → ϕ) → χ `L χ and so (ϕ → ψ) → χ, (ψ → ϕ) → χ `L′ χ.
From Lemma 2.31 and 44 we know that `L′ (¬4ϕ → 4ϕ) → 4ϕ and `L′ (4ϕ → ¬4ϕ) → ¬4ϕ.
Thus if we prove T `L′ 4ϕ → χ and T `L′ ¬4ϕ → χ we get T `L′ χ.

Let us denote T = {4(ϕ → ψ) → χ,4(ψ → ϕ) → χ}. Observe that T,4(ϕ → ψ) `L′ χ and
T,¬4(ϕ → ψ) `L′ χ (the first is obvious, to prove the second use 44). Thus T `L′ χ. From Theorem
2.26 we know that L′ has DT4 and from the fact T `L′ χ we know that L′ is fuzzy (using Lemma
2.28).

Now we observe that L′ is a conservative expansion of L (we can extend any linear L-matrix
B, which is counterexample to T ` ϕ, into the linear L′-matrix B4 and is is a counterexample as
well—since L′ is fuzzy). So we know that L′ is consistent (because L is consistent) .

Thus we can use Lemma 2.35 to prove that L′ is a logic with Baaz delta. Notice that all we need
to show is the following:
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1. ` (⊥ → 1) → 1

2. ` (⊥ → ⊥) → 1

3. ` (1 → ⊥) → ⊥

To prove 1. use theorem ` (¬4ϕ → 4ϕ) → 4ϕ for ϕ = 1, you get ` (¬41 → 41) → 41.
Lemma 2.31 completes the proof. To prove 2. use theorem ` ¬4(ϕ → ψ) → 4(ψ → ϕ) for ϕ = 1
and ψ = ⊥, you get ` ¬4(1 → ⊥) → 4(⊥ → 1). Lemma 2.31 completes the proof. To prove 3. use
theorem ` ¬4(ϕ → ψ) → 4(ψ → ϕ) for ϕ = ⊥ and ψ = 1, you get ` ¬4(⊥ → 1) → 4(1 → ⊥).
Lemma 2.31 completes the proof.

To complete the proof of this theorem we need to show that each fuzzy logic L′ with Baaz delta
proofs all formulas from our presentation. From Lemma 2.35 we know that `L′ 46, `L′ 44, and
`L′ (1 → ⊥) → ⊥. Observe that in this case we can use Lemma 2.32 Parts 4. and 5. to get `L′ 45.
Logic L′ obviously proves all consecution from the group A and B. So all we have to show are the
axioms from the group B: to do this just observe that L′ has DT4 (because L′ is fuzzy and `L′ 44
we can use Lemma 2.32) and since L ⊆ L′ the proof is done. QED

The presence of the axiom ` (1 → 1) → 1 seems to be unavoidable, however under some rather
weak additional assumptions we can omit it. One of them is of course the presence of weakening, the
other one is the presence of Sf (then we get ` (1 → 1) → (⊥ → 1) and using the know fact that
` (⊥ → 1) → 1 we would get our axiom). Now we show that L4 has some promised nice properties:

Lemma 2.38 Let L be a consistent fuzzy logic in L, such that 4 6∈ L and ⊥ ∈ L. Then L4 is a
fuzzy logic with DT4 and Baaz delta, which is a conservative expansion of L.

3 First-order logic

In this second part of this paper, we move to the first-order logics. We present the very basic theorems
only. The broader treatment of this topic will be the content of the subsequent papers. Our approach
is inspired by the classical first order logic and by its modification (the axiomatic system, the notion of
Henkin theory) for non-classical logics, the main source is Hájek’s treatment of basic predicate fuzzy
logic (for details see [4]).

3.1 Basic definitions

In the following let L be a fixed weakly implicative logic in propositional language L.

Definition 3.1 (Predicate language) By multi-sorted predicate language Γ we understand a quin-
tuple (S, ¹, P, F, A), where S is a non-empty set of sorts, ¹ is an ordering on S (indicating the
subsumption of sorts), P is a non-empty set of predicate symbols, F is a set of function symbols, and
A is a function assigning to each predicate and function symbol a finite sequences of elements of S.

Let |A(P )| denote the length of the sequence A(P ). The number |A(P )| is called the arity of the
predicate symbol P . The number |A(f)|−1 is called the arity of the function symbol f . The functions
f for which A(f) = <s> are called the individual constants of sort s. If s1 ¹ s2 holds for sorts s1, s2

we say that s2 subsumes s1.
The L-logical symbols are individual variables xs, ys, . . . for each sort s, the logical connectives of

L, and the quantifiers ∀ and ∃.

Let us denote by Cs the set of constants of the sort s. In the following let Γ be a fixed multi-sorted
predicate language for logic L∀.

Definition 3.2 (Terms) Each individual variable of sort s is a Γ-term of sort s. Let t1, . . . , tn be
terms of sorts s1, . . . , sn, and f be a function symbol, A(f) = <w1, . . . , wn, wn+1> such that si ¹ wi

for i ≤ n. Then f(t1, . . . , tn) is a Γ-term of sort wn+1.
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Notice that the set of terms depends on Γ only, whereas the set of formulas depends of the
propositional language as well. So we should speak about Γ-terms and (Γ,L)-formulas (however, we
speak about Γ-formulas if the propositional language is clear from the context and we speak about
terms and formulas if both propositional and the predicate language are clear from the context).

Definition 3.3 (Formulas) Let t1, . . . tn be terms of sorts s1, . . . sn, and P be a predicate symbol,
A(P ) = <w1, . . . wn>, such that si ¹ wi for i ≤ n. Then P (t1, . . . tn) is an atomic Γ-formula. The
nullary logical connectives of L are atomic Γ-formulas as well.

Let ϕ be Γ-formula and xs an object variable of the sort s. Then (∀xs)ϕ and (∃xs)ϕ are Γ-formulas.
Furthermore, the class of Γ-formulas is closed under logical connectives of L.

Bounded and free variables in a formula are defined as usual. A formula is called a sentence iff
it contains no free variables. A set of Γ-sentences is called a Γ-theory.

Instead of ξ1, . . . , ξn (where ξi’s are terms or formulae and n is arbitrary or fixed by the context)
we shall sometimes write just ~ξ.

Unless stated otherwise, the expression φ(x1, . . . , xn) means that all free variables of φ are among
x1, . . . , xn.

If φ(x1, . . . , xn, ~z ) is a formula and we substitute terms ti for all xi’s in φ, we denote the resulting
formula in the context simply by φ(t1, . . . , tn, ~z ).

Definition 3.4 (Substitutability) A term t of sort w is substitutable for the individual variable
xs in a formula ϕ(xs, ~z ) iff w ¹ s and no occurrence of any variable y occurring in t is bounded in
ϕ(t, ~z ).

Let B be fixed ordered L-matrix in the following text.

Definition 3.5 (Structure) An B-structure M for Γ has form: M = ((Ms)s∈S, (PM)P∈P, (fM)f∈F),
where Ms is a non-empty domain for each s ∈ S and Ms ⊆ Mw iff s ¹ w; PM is an n-ary fuzzy
relation

∏n
i=1 Msi → L for each predicate symbol P ∈ P such that A(P ) = <s1, . . . , sn>; fM is a

function
∏n

i=1 Msi → Msn+1 for each function symbol f ∈ F such that A(f) = <s1, . . . , sn, sn+1>,
and an element of Ms if f is a constant of sort s.

Definition 3.6 (Evaluation) Let M be a B-structure for Γ. An M-evaluation of the object variables
is a mapping e which assigns to each variable of sort s an element from Ms (for all sorts s ∈ S).

Let e be an M-evaluation, x a variable of sort s, and a ∈ Ms. Then e[x → a] is an M-evaluation
such that e[x → a](x) = a and e[x → a](y) = e(y) for each individual variable y different from x.

Definition 3.7 (Truth definition) Let M be a B-structure for Γ, and v an M-evaluation. A values
of the terms and a truth values of the formulas in M for an evaluation v are defined as follows:

||xs||BM,v = v(x) ,

||f(t1, t2, . . . , tn)||BM,v = fM(||t1||BM,v, ||t2||BM,v, . . . , ||tn||BM,v) ,

||P (t1, t2, . . . , tn)||BM,v = PM(||t1||BM,v, ||t2||BM,v, . . . , ||tn||BM,v) ,

||c(ϕ1, ϕ2, . . . , ϕn)||BM,v = cB(||ϕ1||BM,v, ||ϕ2||BM,v, . . . , ||ϕn||BM,v) ,

||(∀xs)ϕ||BM,v = inf{||ϕ||BM,v[xs→a] | a ∈ Ms} ,

||(∃xs)ϕ||BM,v = sup{||ϕ||BM,v[xs→a] | a ∈ Ms} ,

If the infimum or supremum does not exist, we take its value as undefined. We say that a B-
structure M for Γ is safe iff ‖ϕ||BM,v is defined for each Γ-formula ϕ and each M-evaluation v.

Definition 3.8 (Value of formula) Let M be a safe B-structure for Γ, and ϕ a Γ formula. A truth
value of the formula ϕ in M is defined as follows:

||ϕ||BM = inf{||ϕ||BM,v | v is an M-evaluation}.

We say that ϕ is an B-tautology if ||ϕ||AM ∈ DB for each safe B-structure M.
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Definition 3.9 (Model) Let M be a B-structure for Γ, and T a Γ-theory. The B-structure M for
Γ is called B-model of T if ||ϕ||AM ∈ DB for each ϕ ∈ T . We denote the set of A-models od T by
MOD(T,A)

Definition 3.10 (Semantical consequence) Let K be a class of L-matrices. We say that ϕ is a
semantical consequence of the T w.r.t. class K if MOD(T,B) = MOD(T ∪ {ϕ},B) for each B ∈ K;
we denote it by T |=K ϕ. By T AUT (K) we understand the set {ϕ | ∅ |=K ϕ}.

We write T |=L ϕ instead of T |=o−MAT(L) ϕ and we also write T |=l
L ϕ instead of T |=l−MAT(L) ϕ

For a fixed B-model M and an M-valuation e such that e(xi) = ai (for all i’s), instead of
‖ϕ(x1, . . . , xn)‖BM,e we write simply ‖ϕ(a1, . . . , an)‖ and speak of the value of ϕ(a1, . . . , an).

Now we define the predicate logic to each weakly implicative logic (and stronger predicate logic for
each fuzzy logics). As in the propositional case we understand the predicate logic as an asymmetric
consequence relation (following Dunn’s terminology). For simplicity of this introductory paper we
made two extra design choices. First, we assume that ∨ is the part of the language (there are ways
how ovoid the need for ∨ under some additional assumptions eg. having exchange, or having Ã in the
language). Second, we formulate consecutions (∀2) and (∃2) as axioms rather than rules, which would
result into the weaker definition. However, it is obvious that under some rather weak assumptions
these two notions would coincide (eg. under the presence of & in the language).

These two topics will be more elaborated in some subsequent paper.

Definition 3.11 Let L be a weakly implicative logic. The logic L∀− is given by the following axioms
and the deduction rules:

(P) the formulas and deduction rules resulting from the axioms and deduction rules
of L by the substitution of the propositional variables by the formulas of Γ

(∀1) `L∀− (∀x)ϕ(x) → ϕ(t), where t is substitutable for x in ϕ
(∃1) `L∀− ϕ(t) → (∃x)ϕ(x), where t is substitutable for x in ϕ
(∀2) `L∀− χ(∀x)(χ → ϕ) → (∀x)ϕ, where x is not free in χ
(∃2) `L∀− (∀x)(ϕ → χ) → (∃x)ϕ → χ, where x is not free in χ
(Gen) ϕ `L∀− (∀x)ϕ

Furthermore, if L is a fuzzy logic we define the logic L∀ as an extension of L∀− by axiom:

(∀3) `L∀ (∀x)(χ ∨ ϕ) → χ ∨ (∀x)ϕ, where x is not free in χ

Logics L∀ and L∀− are sometimes the same (ÃLukasiewicz predicate logic) and sometimes they are
different (Gödel predicate logic).

Now we recall the concept of the Proof by Cases Property, we will need this property to prove the
completeness theorem of L∀ w.r.t. linearly ordered matrices.

Definition 3.12 (Proof by Cases) Fuzzy logic L∀ has the Proof by Cases Property (PP) if for each
theory T and each sentences ϕ and ψ we get T ` χ whenever T, ϕ → ψ ` χ and T, ψ → ϕ ` χ.

Unluckily, we are not able to prove that each predicate fuzzy logic has PP. However, we can give
some simply checkable sufficient conditions. Before we do so we observe that we can easily prove the
both deduction theorems (we assume the same definition of Implicational (Delta) Deduction theorem
are in propositional case, we only assume that ϕ is sentence).

Theorem 3.13 (Deduction Theorems) Let L be a logic with DT→ (DT4respectively). Then both
logics L∀− and L∀ has DT→ (DT4 resp.).

Corollary 3.14 Let L be logic, such that L has some presentation where (MP) is the only deduction
rule and implicational fragment of L is an extension of FBCK. Then L∀ has PP.

Corollary 3.15 Let L be a propositional language, 4 ∈ L and L a fuzzy logic in L, such that L has
some presentation where (MP) and (NEC) are the only deduction rules. Then L∀ has PP.
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3.2 Henkin and witnessed theories

In this subsection we prepare some technical means to proof the completeness.

Definition 3.16 (Henkin and ϕ-witnessed theories) The theory is called Henkin theory if for
each sentence ϕ = (∀x)ψ and T 6` ϕ, there is a constant c such that T 6` ψ(c).

Furthermore, let ϕ(x1, . . . xn, y) be a formula. Henkin theory is called ϕ-witnessed theory if for
each formula ψ(y) = ϕ(x1 : t1, . . . xn : tn, y), where ti are closed terms holds: if T ` (∃y)ψ(y), then
there is a constant c such that T ` ψ(c).

Definition 3.17 (Henkin and ϕ-witnessed logics) Let L be a weakly implicative logic and ϕ a
formula. We say that the logic L∀− is Henkin (ϕ-witnessed ) for each theory T and each sentence α,
T 6` α there is a Henkin (ϕ-witnessed ) theory T ′ such that T ⊆ T ′ and T ′ 6` α.

Let L be a fuzzy logic and ϕ a formula. We say that the logic L∀ is Henkin (ϕ-witnessed ) for
each theory T and each sentence α, T 6` α there is a linear Henkin (ϕ-witnessed ) theory T ′ such that
T ⊆ T ′ and T ′ 6` α.

Definition 3.18 (proto-ϕ-witnessed logics) Let L be a weakly implicative logic and ϕ a formula.
We say that the logic L∀− (or the logic L∀) is proto-ϕ-witnessed if for each theory T and for each
formula ψ(y) = ϕ(x1 : t1, . . . xn : tn, y), where ti are closed terms holds: T ∪ {ψ(c)} is a conservative
extension of T ∪ {(∃y)ψ(y)}.

In fact, the logic is proto-ϕ-witnessed iff it supports introduction of Skolem constants. We use this
property to show, that in that case we can introduce Skolem function of arbitrary arity.

Lemma 3.19 Let L be a weakly implicative logic and ϕ a formula. If the logic L∀− is ϕ-witnessed
then it is proto-ϕ-witnessed .

Furthermore, let L be a fuzzy logic and ϕ a formula. If the logic L∀ is ϕ-witnessed then it is
proto-ϕ-witnessed .

Proof: Let T be a theory and ψ(y) = ϕ(x1 : t1, . . . xn : tn, y), where ti are closed terms, such
that theory T ∪ {ψ(c)} is not a conservative extension of T ∪ {(∃y)ψ(y)}, i.e., there is a formula α
such that T ∪ {ψ(c)} ` α and T ∪ {(∃y)ψ(y)} 6` α. Let us take ϕ-witnessed theory T ′, such that
T ∪ {(∃y)ψ(y)} ⊆ T ′ and T ′ 6` α. Since T ′ is ϕ-witnessed and T ′ ` (∃y)ψ(y) there is a constant d
such that T ′ ` ψ(d). Since T ∪ {ψ(c)} ` α we get T ∪ {ψ(d)} ` α and so T ′ ` α—a contradiction

The proof of the second part as the same. QED

Definition 3.20 (Directed set of formulas) Let Ψ be a set of formulas. We say that Ψ is a di-
rected set if for each ψ, ϕ ∈ Ψ there is δ ∈ Ψ such that ` ψ → δ and ` ϕ → δ (we call δ the upper
bound of ϕ and ψ)

This is the crucial lemma of this paper:

Lemma 3.21 (ϕ-witnessed extension) Let L be a finitary fuzzy logic with PP and ϕ a formula.
If the logic L∀ is proto-ϕ-witnessed then it is ϕ-witnessed .

Proof: We construct our extension by a transfinite induction. Let T be a theory and α a formula
T 6` α. If Ψ is a set of formulas by T 6` Ψ we mean T 6` ψ for each ψ ∈ Ψ.

Before we start we extend our predicate language by new constants {cs
ν | ν ≤ ||Γ||} for each sort

s. Let T0 = T and Ψ0 = {α}. We enumerate all formulas with one free variable x by ordinal numbers
as χµ and all formulas with one free variable x of the form ϕ(x1 : t1, . . . xn : tn, x) by ordinal numbers
as σµ.

We construct directed sets Ψµ and theories Tµ so Tµ 6` Ψµ and Tµ ⊆ Tν and Ψµ ⊆ Ψν for µ ≤ ν.
Thus we get Tµ 6` α. Observe that theory T0 and set Ψ0 fulfill these conditions. The induction step:

Let us define the sets: T̂µ =
⋃

ν<µ
Tν and Ψ̂µ =

⋃
ν<µ

Ψν . Notice that from the induction property

we get that T̂µ 6` Ψ̂µ and Ψ̂µ is directed set. Now we construct theory T ′µ and set Ψµ. We distinguish
two cases:

24



(H1) There is ψ ∈ Ψ̂µ such that T̂µ ` ψ ∨ χµ(c). Let T ′µ = T̂µ ∪ {ψ → (∀x)χµ(x)} and Ψµ = Ψ̂µ

(H2) Otherwise, let T ′µ = T̂µ and Ψµ = Ψ̂µ ∪ {ψ ∨ χµ(c) | ψ ∈ Ψ̂µ}
We show that T ′µ 6` Ψµ and Ψµ are directed. Let c be the first unused constant of the proper sort.

(H1) Let ϕ ∈ Ψ̂µ and δ is the upper bound of ϕ and ψ. We know that T̂µ ` ψ ∨ χµ(x) (just replace
c by x everywhere in the proof of ψ ∨ χµ(c)). Thus T̂µ ` ψ ∨ (∀x)χµ(x) (by the generalization
and axiom (∀3)). Thus T̂µ ∪ {(∀x)χµ(x) → ψ} ` ψ and so we get T̂µ ∪ {(∀x)χµ(x) → ψ} ` δ.
Thus T̂µ ∪ {ψ → (∀x)χµ(x)} 6` δ (otherwise T̂µ ` δ—a contradiction). Finally, if we have
T̂µ ∪ {ψ → (∀x)χµ(x)} ` ϕ then T̂µ ∪ {ψ → (∀x)χµ(x)} ` δ—a contradiction. We have show
that Tµ 6` Ψµ the other conditions are in this case obvious.

(H2) The proof of Tµ 6` Ψµ is trivial. We only have to show that Ψµ is directed. We should distinguish
three cases, however we show only one (the other are analogous) ϕ, α ∈ Ψ̂µ and ψ = α ∨ χµ(c).
Let δ be the upper bound of ϕ and α then obviously δ ∨ χµ(c) ∈ Ψµ is the upper bound ϕ and
ψ.

Next, we construct theory Tµ. Let c be the first unused constant of the proper sort. Again, we
distinguish two cases:

(W1) There is ψ ∈ Ψµ such that T ′µ ∪ {(∃x)σµ(x)} ` ψ. Let Tµ = T ′µ.

(W2) T ′µ ∪ {(∃x)σµ(x)} 6` Ψµ. Let Tµ = T ′µ ∪ {σµ(c)}.
We show that Tµ 6` Ψµ:

(W1) Trivial.

(W2) Since the logic L∀ is proto-ϕ-witnessed T ′µ∪{σ(c)} is a conservative extension of T ′µ∪{(∃x)σ(x)}.
Since T ′µ ∪ {(∃x)σ(x)} 6` Ψµ the proof is done.

Let us define theory T̂ = T||Γ|| and set Ψ = Ψ||Γ||. Now we construct a complete theory T ′ such
that T̂ ⊆ T ′ and T ′ 6` Ψ. We do it again by a transfinite induction. Let us enumerate pair of formulas
by ordinals. T ′0 = T̂ . We construct theories T ′µ such that T ′µ 6` Ψ and T ′µ ⊆ T ′ν for µ ≤ ν. Let us define
theory T̂ ′µ =

⋃
ν<µ

T ′ν . Notice that from the induction property we get that T̂ ′µ 6` Ψ. The induction step:

we show that T̂ ′µ ∪ {ϕµ → ψµ} 6` Ψ or T̂ ′µ ∪ {ψµ → ϕµ} 6` Ψ. By contradiction: let there be formulas
β, γ ∈ Ψ such that T̂ ′µ ∪ {ϕµ → ψµ} ` β and T̂ ′µ ∪ {ψµ → ϕµ} ` γ. Let us take upper bound δ of β

and γ and we get T̂ ′µ ∪ {ϕµ → ψµ} ` δ and T̂ ′µ ∪ {ψµ → ϕµ} ` δ. Thus T̂ ′µ ` δ—a contradiction.
Finally, we define T ′ = T ′||Γ||. Recall that T ′ 6` Ψ. If we show that T ′ is ϕ-witnessed theory the

proof is done (because T ′ is obviously complete and T ′ 6` α).
Is T ′ Henkin? Let ϕ(x) be processed in the step µ. If T ′ 6` (∀x)ϕ(x) then we used the case (H2)

(otherwise T̂µ ` ψ ∨ ϕ(c) which leads to T̂µ ` ψ ∨ (∀x)χµ(x) and so T̂µ ∪ {ψ → (∀x)ϕ(x)} ` (∀x)ϕ(x)
and so Tµ ` (∀x)ϕ(x)—a contradiction). If T ′ ` ϕ(c) then T ′ ` ϕ(c) ∨ ψ for all ψ ∈ Ψ̂µ. Since we
used case (H2) we know that ϕ(c) ∨ ψ ∈ Ψµ—a contradiction with T ′ 6` Ψ.

Is T ′ ϕ-witnessed ? Let ψ(x) = ϕ(x1 : t1, . . . xn : tn, x) be processed in the step µ. If T ′ ` (∃x)ϕ(x)
then we used the case (W2) (since T̂µ∪{(∃x)ϕ(x)} ` ψ for some ψ ∈ Ψ we get T ′ ` ψ—a contradiction).
Thus Tµ ` ϕ(c) and so T ′ ` ϕ(c). QED

Corollary 3.22 (Henkin extension in fuzzy logics) Let L be finitary fuzzy logic with PP. Then
the logic L∀ is Henkin.

Proof: Just read the proof of the latter lemma without parts (W1) and (W2) and notice that the
assumption that L∀ is proto-ϕ-witnessed was used only in part (W2). QED

Corollary 3.23 (Henkin extension) Let L be finitary weakly implicative logic. Then the logic L∀−
is Henkin.

Proof: Just read the proof of Theorem 3.4 in [6] QED
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3.3 Completeness

We introduce the notion of a Lindenbaum matrix in the same fashion as in the propositional level.
We define the canonical LinT -structure MT in the usual way—elements are the closed terms, and
functions and predicates are defined accordingly. We have the following important lemma.

Lemma 3.24 Let T be a Henkin theory and ϕ a formula with only one free variable x of the sort s.
Then

• [(∀xs)ϕ]T = inf
c∈Cs

[ϕ(c)]T.

• [(∃xs)ϕ]T = sup
c∈Cs

[ϕ(c)]T.

Proof: Recall that [ϕ]T ≤ [ψ]T iff T ` ϕ → ψ (cf. Lemma 1.32). We prove only the first claim, the
proof of the second one is analogous.

We show that [(∀xs)ϕ]T is the greatest lower bound of all [ϕ(c)]T. The proof that [(∀xs)ϕ]T is
the lower bound is simple: [(∀xs)ϕ]T ≤ [ϕ(c)]T for all constants c ∈ Cs (by axiom (∀1)).

Now suppose there is [χ]T such that [χ]T ≤ [ϕ(c)]T for all c ∈ Cs and [χ]T 6≤ [(∀xs)ϕ]T. Thus
T 6` χ → (∀xs)ϕ and so T 6` (χ → ϕ) (by rule (Gen∀)). Thus T 6` (∀xs)(χ → ϕ) (by axiom (∀1))
By a Henkin property we get a constant d ∈ Cs such that T 6` χ → ϕ(d). Finally [χ]T 6≤ [ϕ(d)]T - a
contradiction. QED

Obviously, for T being Henkin the canonical LinT -structure is safe and we have [ϕ]T = ||ϕ||LinT

MT

and thus MT is a LinT -model of T . Since each theory can be extended into Henkin theory (and in the
case of fuzzy logic into the linear Henkin theory the proof of the following theorems is straightforward.

Theorem 3.25 Let L be a finitary fuzzy logic with PP, Γ a predicate language, and ϕ a formula.
Then T `L∀ ϕ iff T |=l

L ϕ.

Corollary 3.26 Let L be logic, such that L has some presentation AX , where (MP) is the only
deduction rule and implicational fragment of L is an extension of FBCK. Then the logic L∀ is sound
and complete w.r.t. corresponding class of linear matrices.

Corollary 3.27 Let L be one of the following logics: MTL, IMTL, SMTL, ΠMTL, NM, WNM,
MTLH, IMTLH, ΠMTLH, NMH, WNMH, ÃL, Π, G, BL, ÃLH, ΠH, GH, BLH, CHL, SBL, PÃL. Then
the logic L∀ is sound and complete w.r.t. corresponding class of linear matrices.

Corollary 3.28 Let L be a propositional language, 4 ∈ L and L a fuzzy logic in L, such that L has
some presentation where (MP) and (NEC) are the only deduction rules. Then the logic L∀ is sound
and complete w.r.t. corresponding class of linear matrices.

Corollary 3.29 Let L be one of the following logics: MTL4, IMTL4, SMTL4, ΠMTL4, NM4,
WNM4, ÃL4, Π4, G4, BL4, SBL4, PÃL4, PÃL′4, SBL∼, Π∼, G∼, ÃLΠ, ÃLΠ1

2 . Then the logic L∀ is
sound and complete w.r.t. corresponding class of linear matrices.

There are fuzzy logic, described in the literature not covered by this general approach (so far),
namely the logics RΠ, RΠ∼ and RÃLΠ (because their infinitary rule—however this problem can be
easily solved) and the logic PÃL′ (because of the unavoidable rule ¬(ϕ¯ϕ) ` ¬ϕ - how to solve this is
unknown to me).

At the end of this section we formulate completeness theorem of for weakly implicative logics. The
proof is analogous to the one for fuzzy logics, we only use Lemma 3.23 instead of Lemma 3.22. This
gives us some kind of first order calculus for a very wide class of logics. There is an interesting research
task to examine existing first order calculi for particular logics (substructural, modal, intuitionistic,
etc.) and compare them to our approach.

Theorem 3.30 Let L be a weakly implicative logic, Γ a predicate language, T a theory, and ϕ a
formula. Then T `L∀− ϕ iff T |=L ϕ.
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3.4 Skolem functions

Again, this section is only a short sketch of what “can be done”. Observe that the majority of known
fuzzy logic are ϕ-witnessed for each formula ϕ. Whereas, the logics with 4 are rather limited in this
aspect, as shown by the following lemma:

Lemma 3.31 Let L be a propositional language, 4 ∈ L and L a logic in L with DT4. Then the
logics L∀− and L∀ are ϕ-witnessed iff ` 4(∃y)ϕ(y) → (∃y)4ϕ(y)

Proof: First, let us suppose that the logic is proto-ϕ-witnessed then {ϕ(c)} is a conservative extension
of {(∃y)ϕ(y)}. Since {ϕ(c)} ` (∃x)4ϕ(x) we get {(∃y)ϕ(y)} ` (∃x)4ϕ(x). The deduction theorem
gives us ` 4(∃y)ϕ(y) → (∃y)4ϕ(y).

Other direction if similar. Let ψ(y) = ϕ(x1 : t1, . . . xn : tn, y), where ti are closed terms. We want
show that T ∪ {ψ(c)} is a conservative extension of T ∪ {(∃y)ψ(y)}. For each ϕ without c we want to
get : T ∪ {ψ(c)} ` ϕ iff T ∪ {(∃y)ψ(y)} ` ϕ. By deduction theorem and some simple steps we get:
T ` (∃y)4ψ(y) → ϕ iff T ` 4(∃y)ψ(y) → ϕ. Now just notice that if ` 4(∃y)ϕ(y) → (∃y)4ϕ(y) then
` 4(∃y)ϕ(y) ≡ (∃y)4ϕ(y). QED

Corollary 3.32 Let L be a propositional language, 4 ∈ L, L a logic in L with DT4, and ϕ a formula.
Then the logics L∀− and L∀ are 4ϕ-witnessed.

Let us examine the behavior of the ϕ-witnessed logic w.r.t. Skolem functions introduction. We
formulate the theorem for fuzzy logics only, its reformulation for weakly implicative logics needs an
analogy of Lemma 3.21. This can be done in a rather straightforward way, but we skip this here. For
the sake of simplicity we formulate the theorem for the unsorted language.

Theorem 3.33 Let L be a proto-ϕ-witnessed finitary fuzzy logic with PP, T a theory, and
ϕ(x1, . . . , xn, y) a formula. If T ` (∀x1) . . . (∀xn) (∃y)ϕ(x1, . . . xn, y). Then the theory T ′ in the
language of T extended by new function symbol fϕ resulting from the theory T by adding the axiom
` (∀x1) . . . (∀xn) ϕ(x1, . . . xn, fϕ(x1, . . . , xn)) is a conservative extension of T .

Proof: Let T̄ be a ϕ-witnessed supertheory of T . Then if T 6` χ there is a canonical LinT̄ -model
MT̄ of T . Since for each vector t1, . . . , tn of closed terms if T̄ ` (∃y)ϕ(t1, . . . tn, y) there is a constant
ct1,...,tn such that T ` ϕ(t1, . . . tn, ct1,...,tn). Since ct1,...,tn is an element of MT̄ (together with all other
closed terms) we define (fϕ)MT̄

(t1, . . . , tn) = ct1,...,tn . Then obviously MT̄ is a model of T ′ and since
MT̄ 6|= χ we get that T ′ 6` χ. QED

To prove the Skolem function elimination we need to extend our language with some sort of
equality.
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[1] L. Běhounek and P. Cintula. What is fuzzy logic? Forthcoming, 2004.

[2] J. M. Dunn and G. M. Hardegree. Algebraic Methods in Philosophical Logic, volume 41 of Oxford
Logic Guides. Oxford University Press, Oxford, 2001.

[3] J. M. Font, R. Jansana, and D. Pigozzi. A survey of abstract algebraic logic. Studia Logica,
74(Special Issue on Abstract Algebraic Logic II):13–97, 2003.
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[5] P. Hájek. On logic of quasihoops. Forthcoming, 2004.
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