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Abstract. Methods of nearest neighbors are essential in wide range of applications where it is necessary to 
estimate probability density (e.g. Bayes’s classifier, problems of searching in large databases). This paper 
contemplates on features of distribution of nearest neighbors’ distances in high-dimensional spaces. It shows 
that for uniform distribution of points in n-dimensional Euclidean space the distribution of the distance of the i-th 
nearest neighbor to the n-power has Erlang distribution. A power approximation of the newly introduced 
probability distribution mapping function of distances of nearest neighbors in the form of suitable power of the 
distance is presented. An influence of the boundary effect is also discussed. Also presented is way to state 
distribution mapping exponent q for a probability density estimation including boundary effect in high-
dimensional spaces. 
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1 Introduction 

In a probability density estimate by the method of k nearest neighbors [5], [8] or in problems of 
searching in large databases [1], [2], [13], [14], distances of the nearest neighbor or several nearest 
neighbors are essential.  

There are at least two distinct problems dealing with the nearest neighbor or several nearest 
neighbors to a given point in n-dimensional Euclidean space En. One of them is a nonparametric 
technique of probability density estimation in multidimensional data space [11], [5], and the other is a 
problem of the nearest neighbor searching which is interesting and important in database applications 
[1], [2], [8]. The first class of problems looks for the highest quality of the probability density estimation, 
and efficiency and speed are secondary. For the other class, searching in large databases, the 
maximal performance, i.e. the speed of the nearest neighbor searching is a primary task. 

The rather strange behavior of the nearest neighbors in high dimensional spaces was found. For the 
problem of searching the nearest neighbor in large databases, the boundary phenomenon (boundary 
effect) was studied in [1] using approximation by so called bucketing algorithm and lmax metrics. In [3] 
the problem of finding k nearest neighbors was studied in general metric spaces and in [10], the so-
called concentration phenomenon was described. It was found in [2] and in [10] that, increasing 
dimensionality, the distance to the nearest data point approaches the distance to the farthest data point 
of the data set. 

For probability density estimation by the k-nearest-neighbor method in En, the best value of k must 
be carefully tuned to find optimal results. Let there be a ball with its center in x and containing k points. 
Let the volume of the ball be Vk. and the total number of points mT. Then for the probability density 
estimate in point x (a query point [13], [14]), it holds [5] that 
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It will be shown that starting from some k the value of pk(x) is not constant for larger k, as it should 

be, but lessens. It is caused by the boundary phenomenon. 
The goal of this study is to analyze the distances of the nearest neighbors from the query point x and 

the distances between two of these neighbors, the i-th and (i-1)-st of randomly distributed points 
without and with boundary effect consideration in Euclidean space En. We introduce the probability 
distribution mapping function, and the distribution density mapping function which maps probability 
density distribution of points in En to a similar distribution in the space of distances, which is one-
dimensional, i.e. E1. Thus the dimensionality problem is significantly reduced. The power 
approximation of the probability distribution mapping function in the form of (distance)q is introduced 
and a way is shown to choose distribution mapping exponent q for a probability density estimation 
including the boundary effect in high dimensions. It will be also shown that exponent q is something like 
local value of correlation dimension [7], [12]. 

2 Probability Density Estimate Based on Powers of Distances 

The nearest-neighbor-based methods usually use (1) for a probability density estimate and are based 
on the distances of neighbors from a given (unknown) point, i.e. on a simple transformation En → E1. 

Using the neighbor distances for the probability density estimation should copy the features of the 
probability density function based on real data. The idea of most nearest-neighbors-based methods as 
well as of kernel methods [8] does not reflect the boundary effects. That means that for any point x the 
statistical distribution of the data points xi surrounding it is supposed to be independent of the location 
of the neighbor points and their distances xi from point x. This assumption is not often met, especially 
for small data sets and higher dimensions. 

To illustrate this, let us consider points uniformly distributed in a cube and a ball inserted tightly into 
the cube. The higher is space dimension, the smaller is amount of the cube occupied by the ball. In 
other words, the majority of points lie outside the ball somewhere “in the corner” of the cube (the 
boundary phenomenon [1]). It seems that in farther places from the origin, the space is less dense than 
near the origin. To illustrate this, let us consider uniformly distributed points in cube (-0.5, + 0.5)n 
(individual dimensions are measured in centimeters, cm). Let there be a ball with its center in the origin 



and the radius equal to 0.5 cm. This ball occupies 3
3
4 5.0.π  = 0.524 cm3, i.e. more than 52 % of that 

cube in a three-dimensional space, 0.080746 cm6, i.e. 8 % of the unit cube in 6-dimensional space, 
0.0026 cm10 in 10-dimensional space, and 3.28e-21 cm40 in the 40-dimensional space. It can then be 
seen that starting by some dimension n, say 5 or 6 and some index i, the i-th nearest neighbor does 
not lie in such a ball around point x but somewhere “in the corner” in that cube but outside the ball (the 
boundary effect [1]). It follows from it that this i-th neighbor lies farther from point x than it would follow 
from the uniformity of distribution. 

Let us look at function ( ) n
irif = , where ri is the mean distance of the i-th neighbor from point x. The 

function grows linearly with index i in the case of uniform distribution without the boundary effect 
mentioned. In the other case this function grows slower than linearly and therefore we suggest 
choosing function ( ) q

irif = , where q � n is a suitable power discussed later. 

3 Uniform Distributions without Boundary Effects 

Let us assume random and uniform distribution of points in some subspace S of En. Further suppose 
that point x is inside S in the following sense: For each neighbor y of point x, the ball with its center at x 
and the radius equal to ||x-y|| lies inside S. This is the case where the boundary effects do not take 
place. 

In this chapter one-dimensional case is studied and it is shown that the distance of the i-th nearest 
neighbor is given by Erlang distribution; the multidimensional case is the subject of the next part of this 
paper. 

Points spread on a line randomly and uniformly  

In this case the distance � between two neighbor points is a random variable with exponential 
distribution function ( ) ∆−−=∆ λeP 1  and probability density ( ) ∆−=∆ λep  [4], [6]. For this distribution the 
mean is E{�}= 1/� = d and it is the mean distance between two neighbor points. 

We can look at the query point x from two points of view, x as randomly dropped on a line with 
randomly and uniformly spread points, or as point x being chosen from the points on this line. We show 
that there is no essential difference. 

Random point dropped on a line with randomly and uniformly spread points  
Now imagine a line with randomly and uniformly spread points, i.e. the distance between two 

neighbor points is such as discussed in the previous paragraph. Let there be a new point x dropped 
randomly and with uniform distribution function on this line. The question is what is the distribution of 
the distance of this point to the nearest point on the line.  

Let the interval, to which the point x is dropped be (a, b). Then the length of the interval between two 
(fixed) neighbor points on a line has exponential distribution with � = 1/d [13], [14]. 

A new point is dropped somewhere between some already existing pair of points. If there was mean 
distance between neighbor points d and if there were N points and the line was limited to interval (a, b), 

the mean distance is 
1+N

N
d  now. For N � �, the mean distance goes to d. It is the same case as that 

of one point selected from the already existing points, see the next paragraph. 

Randomly chosen point on a line with randomly and uniformly spread points 
Let there be a query point x selected from the points already existing. The mean distance between 

neighbor points is again d. The question now is what is the distribution of the distance of this point to 
the nearest point on a line. Let x1 be the distance of point x to the nearest neighbor, i.e. the lesser of 
the distances of point x either to the point on the left or to the point on the right. The length of the 
interval between the neighbor points is thus broken to a half and x1 has exponential distribution with 1/� 
= d/2, i.e. one half of the mean distance of the neighbor points on the line. 



The second, third, etc. nearest neighbor  
Let us sort consecutive nearest neighbors from point x in an ascending order. The mean distance 

between two successive points is d/2. It is the same situation as in the previous case. From it it follows 
that the distance between two successive points has the exponential distribution with � = 2/d. 1/� 
corresponds to one half of the mean distance of the neighbor points on the line. We have already the 
query point x and its nearest neighbor denoted “1” in Fig. 1. The question is what the distance of the 
second, third, ... nearest neighbor from point x is for the case above. The situation is illustrated in Fig. 
1.  
 

 

x 2 1 3 4 5 

x 2 1 3 4 5 
 

Fig. 1. Neighbors of point x on a line with randomly and uniformly spread points (atop) and sorted 
according to the distance from point x (below). 
 

In Fig. 1 the upper line shows some random points and point x on the line. The nearest neighbors 
are denoted by numbers - the first, the second etc. The bottom line shows these neighbors in their 
order and the true distances from point x. Let the difference in the distances of two successive 
neighbors on the bottom line, the (i-1)-st and the i-th be denoted xi-1,i. With the exception of point x, the 
points are distributed independently and uniformly but there are twice more points on the same length. 
We can see that xi-1,i , i = 2, 3, ... and x1 are all independent random variables. Then the mean distance 
between them, i.e. between two successive points, is d/2. This shows that the distance between two 
successive points on the bottom line has exponential distribution with � = 2/d, i.e. 1/� corresponds to 
one half of the mean distance between the neighbor points on the line. 

Composed distribution 
Let the true distance of the i-th neighbor be denoted xi. Let the difference in the distances of two 

successive neighbors, the (k-1)-st and the k-th be denoted xk-1, k . Then it holds that 
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because the distance is simply a sum of all successive differences. It is also a sum of independent 
exponentially distributed random variables. The probability density of the sum of independent random 
variables is given by convolution of the probability densities of these variables. Assuming exponential 
distribution of individual random variables, the composed distribution has Erlang distribution Erl(i, �).  

Our problem was studied in connection with mass service (queuing) systems. The problem of i 
independent exponential servers working in series (cascade) is solved in [9]. The servers have the 
same exponential distribution of the service time with constant �. Generally, the resulting total service 
time after the i-th server is given by Erlang distribution Erl(i, �) [4], [9] xii

i ex
i

xp λλ −−= 1

!
1

)(  . 

In our case the service time of one server is analogous to the difference of distances between two 
successsive neighbors (also the distance between two neighbor points on the bottom line in Fig. 3) and 
the total time after the i-th server is analogous to the distance of the i-th point from point x. It holds that 
� = 2/d because there is one half of the mean distance of the neighbor points on the line mentioned 
above. 

For statistical distribution of distances of the first, the second, the third, ..., the i-th nearest point from 
point x with � = 2/d it holds that Erl(1, �) = Exp(�), Erl(2, �) = xxe λλ −2 , etc. It will be proved later. 



4 Probability distribution mapping function 

To study a probability distribution of points in the neighborhood of a query point x in n-dimensional 
Euclidean space En, let us construct individual balls around point x embedded one into another like 
peels of onion. The radii of individual balls can be expressed by formula ri = const.n�Vi. A mapping 
between the mean density �i in an i-th peel and its radius ri is �i = p(ri). p(ri) is the mean probability 
density in the i-th ball peel with radius ri. The probability distribution of points in the neighborhood of 
a query point x is thus simplified to a function of a scalar variable. We call this function probability 
distribution mapping function D(x, r), and its partial derivation according to r the distribution density 
mapping function d(x, r).  

 
 
Definition 
In En the distribution mapping function D(x, r) of the neighborhood of the query point x is function 

�=
),(

)(),(
rxB

dzzprxD , where r is the distance from the query point and B(x, r) is the ball with center x 

and radius r. 
 

Definition 
In En the distribution density mapping function d(x, r) of the neighborhood of the query point x is 

function ),(),( rxD
r

rxd
∂
∂= , where D(x, r) is a distribution mapping function of the query point x and 

radius r. 
 

Note. It can be seen that for fixed x the function D(x, r), r > 0 is monotonously growing from zero to 
one. Functions D(x, r) and d(x, r) for x fixed are one-dimensional analogs to the probability distribution 
function and the probability density, respectively. 

4.1 Nearest Neighbors in En 

A number of points in a spherical neighborhood with a center in the query point x and the probability 
distribution mapping function D(x, r) grows with the n-th power of distance from the query point. Let us 
denote this n-th power of distance from the query point )(nd . More generally let the q-th power of 

distance from the query point be )(qd . 

Definition  
Let a, b be distances of two points from a query point x in En. Let qq

q bad −=)( .  

 
Note that we differentiate between the d(q) and distance d = |a - b| sometimes with indexes dk, dk-1, 

and so on. 

Uniform distribution 
Let a query point x be surrounded by other points uniformly distributed to some distance d0 from the 

query point x. It means that there is a ball B(x, d0) with points uniformly distributed inside it. Up to 
distance d0 we deal with uniform distribution. In this case the number of points in a ball neighborhood 
with center in the query point x grows with the n-th power of distance from the query point (up to 
distance d0). At the same time, the probability distribution mapping function D(x, r) also grows with the 
n-th power of distance from the query point x.  

Using )(nd  instead of r, both the number of points and the D(x, r) grows linearly with rn. The 

distribution density mapping function d(x, rn) taken as ),(
)(

n
n

rxD
r∂
∂

 is constant, see Fig 2.  

It can be seen that )(nd  of successive neighbors is a random variable with exponential distribution 

function. The )(nd  of the i-th nearest neighbor from the query point is given by the sum of )(nd  between 

the successive neighbors. Then, it is a random variable with Erlang distribution Erl( )(nd , i, �), � = 



1/ )n(d , where )n(d  is a mean )(nd  between the successive neighbors. The only difference is that 

instead of distance r the n-th power of distance is used in an n-dimensional Euclidean space and then 
001 =−= −

nn
i

n
i)n( r,rrd . This is proved in the next paragraph. For illustration see Fig. 2. 
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Fig. 2. The probability distribution mapping function D(x, r) and D(x, rn), and the distribution density 

mapping function d(x, rn) for uniform distribution of points in En. 

Distribution of d(n) of the k-th nearest neighbor  
Let us suppose a ball in an n-dimensional space containing uniformly distributed points over its 

volume. 
Theorem 
For each query point x ∈ En let a distance r exists, such that in ball B(x,r) with center x and radius r 

the points will be spread uniformly with mean value of d(n) between two nearest neighbors equal to � 
and let � = 1/�. Then the d(n) of the k-th nearest neighbor of point x is a random variable with Erlang 
distribution Erl(d(n), k, �), i.e. 
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Proof 
Let us denote the i-th nearest neighbor of point x by xi, its distance from point x by di, its d(n) by d(n)i. 

Let us introduce a mapping Z: xi � R1+: Z(xi)= d(n)i, i.e. points xi are mapped to points on the straight 
line, the query point x to point 0. 

Let probability density of points in B(x,r) be p = const according to the assumption of uniformity. Let 
us build concentric balls with center in point x and radii � < r, i.e. inside ball B(x,r). The number of 

points in ball B(x,�) is �=
),( ρ

ρ
xB

dvpN , where dv is an element of the volume of ball B(x,r), and 

n
npSN ρρ =  where n

nS ρ  is the volume of ball B(x,r); Sn is the constant dependent on dimension n 

only.  

Let the total points xi in ball B(x,r) be N. Then 
n

nrS
N

p =  and from it 
n

n

p r
NN

ρ=  . From it follows that 

the number of points in distance � from point x grows linearly with �n and with proportionality constant 



� = N/rn. Therefore let us measure the distance in d(n) , it means not in centimeters (cm) but in cmn. 
From it follows that in mapping Z points x1, x2, ... are distributed randomly and uniformly, and mean d(n) 

of the neighbor pairs is equal to λ/1/ =Nr n . We have then uniform distribution of the points on d(n), 
then the d(n) between the neighbor points has exponential distribution [13], [14] with parameter �, and 
then the d(n) of the k-th point xk from point x is given by the sum of d(n) between successive neighbors. 
Then it is a random variable that is a sum of random variables with identical exponential distribution [4], 
[9] with parameter �, then ),,()( )()( λkdErlxd nkn = . � 

Example of a Uniform Ball 
Let us suppose a ball in an n-dimensional space containing uniformly distributed points over its 

volume. Let us divide the ball on concentric “peels” of the same volume. Using the formula 
ri = S(n)/2n.n�Vi we obtain a quite interesting succession of radii corresponding to individual volumes. 
Symbol S(n) denotes the volume of a ball with unit radius in En; note S(3) = 4/3π . The higher space 
dimension leads to consideration that more similar values of the radii approaching the outer ball radius 
may be obtained. The inner part of the ball seems thus to be nearly empty, i.e. without points other 
than x; it is shown in Table 1. Note that in E3, a ball of radius 4.642 cm, has the same volume as the 
last peel between radii 9.655 cm and 10 cm which is only 0.345 cm thick, and, at the same time, has a 
ten times smaller volume than a ball of radius 10 cm. In E15 these differences are much larger. From 
this example we can easily see that true distances give a rather strange picture on distribution of points 
in the neighborhood of the query point. It gives impression as if all neighbor points were concentrated 
in the outer part of the ball. It is really so [1], but it does not holds for density of points. The )(nd  or 

radius to the n-th power corresponds much better to the probability distribution mapping function 
D(x, r) = const.rn. The radii of balls to the n-th power grow thus linearly. Differences are then constant, 
which corresponds well to uniformity of the distribution. 

 
Table 1. Distances of the first till the tenth nearest neighbors in E3 and in E15. 
For a three-dimensional ball:  
4.642 5.848 6.694 7.368 7.937 8.434 8.879 9.283 9.655 10 
For a fifteen-dimensional ball:  
8.577 8.983 9.229 9.407 9.548 9.665 9.765 9.852 9.930 10 

Unit cube with uniform distribution 
Let a unit cube (-0.5, 0.5)n be given. Distribution of points is uniform inside the cube and there are no 

points outside it. Let us consider four special positions of the query point x: 
x lies in the origin, i.e. in the center of this cube 
x lies in the center of one wall of the cube 
x lies in distance l (0 < l < 0.5) from the center of the cube on the straight line connecting the center 

of the cube and the center of one of its walls 
x lies in a corner of the cube. 
All these cases are illustrated in Fig. 3, where lines are drawn approximately for E3 but captions are 

valid for general dimension n as shown in Table 2 below. Solid lines show parts where the course of 
functions is known exactly, dashed lines denote parts where the course is not known exactly because it 
varies from case to case and, moreover, it is difficult to derive formulas for it. These parts are either 
monotonously increasing or monotonously decreasing. 

Case 2 (see Table 2) is very similar to “half-cube” (-0.5, 0.5) n-1×(0, 0.5) with the query point in the 
origin; the values of b and c are slightly different: a = 0.5n, b = (0.5�n)n , c = S(n)/2n . 
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Fig. 3. Distribution mapping function and distribution density mapping function for four special 

positions of the query point x in the unit cube. Values of a, b, c are in Table 2 and it holds that e = c/b. 
The solid lines show the true course of the functions, the dash line shows that the true course is not 
known exact.  
 

Table 2. Values of parameters a, b, c of the distribution mapping function and the distribution density 
mapping function for four special positions of the query point x in the unit cube. S(n) is the volume of a 
ball with unit radius. 

Case Position of the query point x a b c 
1 in the center of the cube 0.5n (0.5�n)n S(n)/2n 
2 in the center of one wall of the cube 0.5n �((n-1)0.52+1)n ½S(n)/2n 
3 in the distance l (0 < l < 0.5) from the 

center of the cube on the straight line 
connecting the center of the cube and 
the center of one of its walls 

(0.5-l)n �((0.5+l)2+(n-1) 

0.52)n 
(1-2l) 

nS(n)/2n 

4 in a corner of the cube 1 �(nn) S(n)/2n 
 

4.2 Influence of dimensionality and a total number of points 

Distances, as well as )(nd , of several nearest neighbors depend on probability distribution p(z) of 

points in the neighborhood of a query point x and also on the true density of the points in this 
neighborhood. It is clear that for the same function p(z) and a small number of samples the neighbors 
lie farther from the query point x and also one from the other than if there were lots of points distributed 
with the same p(z). 

Data considered 
Let the data set of total mT samples be given in the form of a matrix XT with mT rows and n columns. 

Each sample corresponds to one row of XT and, at the same time, corresponds to a point in n-
dimensional Euclidean space En, where n is the sample space dimension.  



Example of uniform distribution in a ball of radius R in En 
Let the query point x be in the origin. The distribution density mapping in En is given by the constant 

function ),( nrxd = 1/Rn for r ∈ (0, R) and zero otherwise. Then D(x, rn) = rn/Rn for r ∈ (0, R) and D(x, 
rn) = 1 for r > R. D(x, rn) can be considered as a probability distribution function. Let there be mT 
samples with this distribution. Let rn

i be mean rn for the i-th nearest neighbor of the query point x. It 
holds that D(x, rn

i) = i/mT. Thus we have T
nn

i miRr /= . 

Example of normal distribution 
Let us consider a distribution of mT samples with distribution density mapping function 
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 in En. Coefficient 2 was introduced to get D(x, rn) � 1 for rn � �. 

Thus D(x, rn) can be considered as a probability distribution function. For the mean n
ir  of rn for the i-th 

nearest neighbor of the query point x it holds that )/5.05.0(1
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Fig. 4. Distances n

ir  of the first several nearest neighbors for different space dimensions n. 
 

Fig. 4 shows distances n
ir  of the first several nearest neighbors for different space dimensions n. 

Fig. 5 shows distances n
ir  for different numbers of points (samples in the set) for different space 

dimensions n. 
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Fig. 5. Distances n
ir  for different numbers of points for different space dimensions n. 

 

5 Influence of boundary effects 

The problem of boundary effects was studied in [1] in lmax metric and for different problems of 
searching the nearest neighbor in large databases. Taking the boundary effects into account, the 



estimation of the searching time was lesser than if no boundary effect was considered and was closer 
to reality. 

5.1 Boundary effect phenomenon 

Suppose that for any query point x in En and any distribution of points there is a spherical 
neighborhood with radius r (it corresponds to d(n) = rn) so that the probability density in this spherical 
neighborhood can be considered to be uniform. 

Let the boundary effect be understood as a phenomenon that  
the distribution density mapping function d(x, rn) is a (not strictly) decreasing function and decreases 

starting from some point a, see Fig. 4 for illustration;  
this fact influences the mean distances of neighbors of the query point so that these distances do 

not correspond to uniform distribution, i.e. that the mean d(n) of two successive neighbors of the point x 
are not constant. 
It can be seen that three facts influence the boundary effect, the character of the probability distribution 
of points, the position of the query point, and the total number of points mT, i.e. the size of the data set. 
The boundary effect is demonstrated on the example of a uniform cube in Fig. 3. 

The nearest neighbor influenced by boundary effect 
In this part we deal with the finite volume around the query point x with uniformly distributed points. 

There are no points outside the volume considered. For some first k-1 nearest neighbors of point x, the 
ball B(x, dk-1) with center x and the radius dk-1 equal to the distance of the (k-1)-st neighbor lies whole in 
the volume considered. Then no boundary effect arises. If for the k-th nearest neighbor the ball B(x, dk) 
does not lie whole in the volume considered, the distance dk is influenced because the ball B(x, dk) is 
not uniform any more. 

Let us consider the example of a unit cube with uniform distribution with four special positions of the 
query point x already discussed. The task is now: There are given radius a and the number of points 
(samples) mT, what is the index k of the k-th nearest neighbor to the query point x such that just for this 
k-th nearest neighbor the boundary effect arises, i.e. for some constant C it holds that rn

i = iC for 
i = 1, 2, .. k-1 and rn

k � kC? 
Let the distribution density mapping function on interval (0, a) be constant erxd n =),( . Then, on interval 

(0, a), the distribution mapping function is D(x, rn) = e.rn and let D(x, rn) � 1 for rn � �. Thus D(x, rn) can be 
considered as a probability function. It holds that D(x, rn

i) = i/mT, i.e. e.rn
i = i/mT. Setting rn

i = a we get 

� �Tmaek ..1+= ,where � �.  denotes the integer part.  

Boundary effect in a uniform unit cube 
Example: For the unit cube with uniform distribution and the query point x in the origin, i.e. in the center of 

this cube, there is ae = c = S(n)/2n, then � �n
TmnSk 2/)(1+= , see Fig. 6. 
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Fig. 6. Index k of the k-th nearest neighbor for which the boundary effect arises for different 
dimensionalities n and for mT = 100 till 1,000,000 points (a unit cube with uniform distribution and the 
query point x in the origin) 
 



5.2 Power approximation of the probability distribution mapping function 

Here we consider situations where there are boundary effects or non-uniform distribution. A course 
of the probability distribution mapping function is often not known and it is not easy to derive it 
analytically. Therefore, we suggest using power approximation rq of the probability distribution mapping 
function. 

Definition 
Power approximation of the distribution mapping function D(x, rn) is function rq such that 

const
r

rxD
q

q

→),(  for +→ 0r  . The exponent q is a distribution-mapping exponent. The variable � = q/ n 

is called distribution mapping ratio. 
  
Note. We often omit a multiplicative constant of the distribution mapping function. 
 
Using approximation of the distribution mapping function by D(x, rn) = const.(rn)	, the distribution 

mapping exponent is q = n�. The distribution-mapping exponent reminds Grassberger-Procaccia’s 
correlation dimension [7], [12]. There are two essential differences. First, the distribution-mapping 
exponent is local feature of the data space because it depends on position of query point; the 
correlation dimension is a feature of the whole data space. Second, the distribution mapping exponent 
is related to data only, not to any assumption about attractor behind them – of course, attractor 
influences its value and its distribution over the data space.  

Power approximation for normal distribution 
Chap. “Normal n-dimensional distribution” has shown on an example that true distances of the first 

nearest neighbor till the tenth one lie in the distance between 0.65 cm and 0.98 cm for n = 10 till n = 
100. If the interval for rn is chosen from zero to one, the approximation is rather good with 	 = 0.85 and 
maximal difference 0.0164 between D(x, rn) and its power approximation. This approximation is shown 
in Fig. 7. 
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Fig. 7. Distribution mapping ratio 	 as a function of dimension n for normal distribution and for the 

uniform unit cube, with the query point in the distance l (0 < l < 0.5, see legend) from the center of 
the cube to the center of one of its walls. 
 

 The case of very small l is nearly identical to four other cases discussed in Section “Unit cube with 
uniform distribution“. 

5.3 Power approximation with the constant distribution density mapping function 

In this part we assume that power approximation is applicable to the N-th nearest neighbor, i.e. the 
distribution density mapping function is constant as far as to the N-th nearest neighbor from point x. 

Theorem 



Let for each query point x ∈ En exist a distribution mapping exponent q and a distance r such that in 
ball B(x,r) with center x and radius r the points are spread with mean d(q) between two nearest 
neighbors equal to � and let � = 1/�. Then the d(q) of the k-th nearest neighbor of point x is a random 
variable with Erlang distribution Erl(d(q), k, �), i.e. 
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Proof 
Let us denote the i-th nearest neighbor of point x by xi, its distance from point x by di, its d(q) by d(q)i. 

Let us introduce a mapping Z: xi � R1+: Z(xi)= d(q)i, i.e. points xi are mapped to points on the straight 
line, the query point x to point 0. Let the total points xi in ball B(x,r) be N. Then the distribution mapping 
function is 

q
q

r
N

constxd =),( ρ  . From the assumption it follows that the number of points in distance � 

from point x grows linearly with �q . Then there is a proportionality constant � = N/rq. From it it follows 
that in mapping Z points x1, x2, ... are distributed randomly and uniformly, and mean d(q) of the neighbor 
pairs is λ/1/ =Nr q . We have then uniform distribution of points on d(q) and then the d(q) between the 
neighbor points has exponential distribution [13], [14] with parameter �, then d(q) of the k-th point xk 
from point x is given by the sum of d(q) between successive neigbors. Then it is a random variable that 
is the sum of random variables with identical exponential distribution [4], [9] with parameter �, then 

),,()( )()( λkdErlxd qkq = . � 

Fig. 9 illustrates the theorem see the next paragraph. 

5.4 Simulation analysis 

Simulation analysis was used to find a distribution-mapping exponent valid globally for the whole 
data set considered. From this different point of view, the differences in the results were compared with 
special cases studied before.  

For all simulations there were 32000 samples used with a uniform distribution in the unit n-
dimensional cube. With some exception, the behavior of the first 10 nearest neighbors of the query 
point x was studied. After the samples were generated, each of them was taken as a query point x and 
for each sample 10 nearest neighbors were found and their distances ri, i = 1, 2, ... 10 recorded. After 
that a distribution mapping exponent q was found as a value for which the mean values of q

ir grow 

approximately linearly, i.e. successive differences of their means 0),()( 01 =−= −
qq

i
q

iqi rrErEd  are 

approximately constant. The values of q are shown in the second column of Table 3. The values of q 

for n = 1, 20 and 40 were used for analytic approximation by function nwvnuq ++= , in numbers 
q = -1.114337 + 0.467465n + 1.646872�n. As the value of this function is larger than n for n = 2, 3 and 
4, values q = n are used in these three cases.  

 
Table 3. Values of the distribution mapping exponent q for some uniform n-dimensional cubes found 

by simulation and approximated. 
n q found by simulation q approximated 
1 1 1 
5 4.8 4.90 
10 9 8.77 
20 15.6 15.6 
40 28 28 

 
Fig. 8 shows differences 0),()( 01 =−= −

qq
i

q
iqi rrErEd  for n = 20 and three different exponents. We can see 

that the value q = 15.6 is a proper value of the distribution mapping exponent. 
 
 

Fig. 8 shows that the boundary effect influences the mean positions of neighbors also for the whole 
set of points. If there were no boundary effect, the line for power equal to 20 would be a straight 



horizontal line. It clearly follows from the theory but it is very difficult to arrange simulation with 
exclusion of the boundary effect, especially for such dimension as n = 20. 
 

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9 10

Neighbor

Difference

power = 15
q = 15.6
power = 20

 
Fig. 8. Differences 0),()( 01 =−= −
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iqi rrErEd  for n = 20 and three different exponents. 
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Fig. 9. Histograms of dq of variable q
ir , q = 15.6, n = 20. Lines from top to bottom i = 1, 2, ... 10. 

 
In Fig. 9 histograms of dq of variable q

ir  for q = 15.6, n = 20 and for the first 10 neighbors are 
shown. The histograms were smoothed using averaging over five values. The bin size is 0.01. It can be 
seen that the histograms show, in fact, probability density functions for Erlang distribution for indexes 1 
(exponential) to 10. This is just what was expected according to Theorem 2 when the distribution 
mapping function with a proper distribution mapping exponent was used. 

6 Conclusion 

By using a notion of distance, i.e. a simple transformation En → E1, the problems with dimensionality 
are easily eliminated at a loss of information on the true distribution of points in the neighborhood of the 
query point. It is known [1], [13], [14] that for larger dimensions something like local approximation of 
real distribution by uniform distribution does not exist. But the assumption of at least local uniformity in 
the neighborhood of a query point is usually inherent in methods based on the distances of neighbors.  



This problem is solved by introduction of a power approximation of the probability distribution 
mapping function here. An essential variable of this approximation is the distribution mapping 
exponent. By using this exponent the real distribution is transformed to be uniform. It is possible to do it 
either locally or globally. A local approach was shown for several special cases of positions of the 
query point in a uniform hypercube and on multinomial normal distribution. The global case was shown 
for uniform hypercube. The results in these two approaches differ, of course, but on the other hand, 
they correspond well to each other. In essence, there are two ways in estimating the distribution 
mapping exponent. One of them is to estimate this exponent globally for the whole data set and rely on 
not too large local differences. The other way is to estimate the distribution mapping exponent locally, 
i.e. for each query point anew. A disadvantage of this approach is a large possible error in the 
distribution mapping exponent when a small number of neighbor points is used. Processing of a larger 
number of points, on the other hand, makes estimation closer to global estimation, especially for small 
data sets. 
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