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1 Introduction

Ever since the publication of Shafer’s book A Mathematical Theory of Evidence [15] there has been
continuous controversy around the so-called Dempster’s rule. The purpose of Dempster’s rule is to
combine two beliefs into a single belief that reflects the two beliefs in a fair and equal way.

Dempster’s rule has been criticised mainly because highly conflicting beliefs tend to produce coun-
terintuitive results. This has been formulated in the form of examples by Zadeh [19], Cohen [1],
and Daniel [4] among others. The problem with Dempster’s rule is due to its normalisation which
redistributes conflicting belief masses to non-conflicting ones, and thereby tends to eliminate any
conflicting characteristics in the resulting belief mass distribution. An alternative called the non-
normalised Dempster’s rule proposed by Smets [16] avoids this particular problem by allocating all
conflicting belief masses to the empty set. The idea is that conflicting belief masses should be allocated
to this missing (empty) event.

Unfortunately nor the non-normalised version does not solve all the disadvantages of Dempster’s
rule. Thus several other alternatives were suggested later. Among them the consensus operator [13],
[14], which is developed with an intension to combine better highly conflicting beliefs. The consensus
operator forms part of subjective logic described by Jøsang in [13].

An algebraic structure of binary belief functions with Demspter’s rule ⊕, called Dempster’s semi-
group, was in detail studied in a series of publications, e.g. [2], [3], [11], [12], [18]. The appearing of
the consensus operator c© is the motivation for a study of algebraic structures of belief functions with
c© to obtain a better theoretical comparison of both approaches.

The next section briefly recalls the basic definitions. An algebraic analysis of Dempster’s semigroup
which is used as a methodology for the presented investigation is overviewed in the third section.

Section 4 brings basic ideas and facts about the opinion space to prepare us for introduction of
the consensus operator in the consecutive section.

In Section 6, a new algebraic structure — the algebraic structure of binary belief functions with
the consensus operator c© — is defined. The new structure called Jøsang’s semigroup is analysed
there. The results are discussed and compared with those of Dempster’s semigroup in Section 7.

In the end, some ideas for future research are outlined as well.

2 Preliminaries

Let us recall some basic algebraic notions and some basic notions from the Dempster-Shafer theory
before we begin a description of its algebra.

A commutative semigroup (called also an Abelian semigroup) is a structure X = (X,⊕) formed by
the set X and a binary operation ⊕ on X which is commutative and associative (x ⊕ y = y ⊕ x and
x⊕(y⊕z) = (x⊕y)⊕z holds for all x, y, z ∈ X). A commutative group is a structure X = (X,⊕,−, o)
such that (Y,⊕) is a commutative semigroup, o is a neutral element (x ⊕ o = x) and − is a unary
operation of the inverse (x ⊕ −x = o). An ordered Abelian (semi)group consists of a commutative
(semi)group X as above and a linear ordering ≤ of its elements satisfying monotonicity (x ≤ y implies
x⊕z ≤ y⊕z for all x, y, z ∈ X). A subset of X which is a (semi)group itself is called a sub(semi)group.
A subsemigroup ({x|x ≥ o, x ∈ X},⊕, o) is called a positive cone of ordered Abelian group (OAG) X,
similarly a negative cone of OAG Y for x ≤ o.

For uncertainty processing, we extend OAG with extremal elements � and ⊥ representing True
and False, �⊕ x = �, ⊥⊕ x = ⊥, �⊕⊥ not defined. 3

A homomorphism p : (X,⊕1) −→ (Y,⊕2) is a mapping which preserves structure, i.e. p(x⊕1 y) =
p(x) ⊕2 p(y) for each x, y ∈ X. The special cases are automorphisms, which are bijective morphisms
from a structure onto itself. Morphisms which also preserve ordering of elements are called ordered
morphisms, see [9].

3Some examples are OAG+ PP = ([0, 1],⊕PP , 1−x, 1
2
,≤) and MC = ([−1, 1],⊕MC ,−, 0,≤) corresponding to com-

bining structures of the classical expert systems PROSPECTOR and EMYCIN, see [11], where x⊕PP y = xy
xy+(1−x)(1−y)

and x ⊕MC y = x + y − xy for x, y ≥ 0, x + y + xy for x, y ≤ 0 and x+y
1−min(|x|,|y|) for xy ≤ 0.

1



Ordered structures and ordered morphisms are very important for a comparative approach to
uncertainty management and decision making.

Let us consider a two-element frame of discernment Θ = {0, 1}. A basic belief assignment is
a mapping m : P(Θ) −→ [0, 1], such that

∑
A⊆Θ m(A) = 1. A belief function is a mapping

bel : P(Θ) −→ [0, 1], bel(A) =
∑

∅�=X⊆A m(X). In our special case bel(1) = m(1), bel(0) =
m(0), bel({0, 1}) = m(1) + m(0) + m({0, 1}) = 1. Each basic belief assignment determines a d-pair
(m(1),m(0)) and conversely, each d-pair determines a basic belief assignment.

The Dempster’s conjunctive rule of combination is given as (bel1 ∩©bel2)(A) =
∑

X∩Y =A
1
K m1(X)m2(Y ),

where K =
∑

X∩Y =∅ m1(X)m2(Y ), while the disjunctive rule of combination is given by the formula
(bel1 ∪©bel2)(A) =

∑
X∪Y =A m1(X)m2(Y ), see [15]. Specially for (m1(1),m1(0)) = (a, b), (m2(1),m2(0)) =

(c, d) we have (a, b) ⊕ (c, d) = (1 − (1−a)(1−c)
1−(ad+bc) , 1 − (1−b)(1−d)

1−(ad+bc) ) and (a, b) ∪©(c, d) = (ac, bd).
If all the focal elements are singletons (i.e. one-element subsets of Ω) then we speak about Bayesian

belief functions. A dogmatic belief function is defined by Smets as a belief function for which m(Ω = 0).
Let us note, that trivially, every Bayesian belief function is dogmatic.

Bayesian transformation is a mapping t : BelΩ −→ ProbΩ, such that bel(x) ≤ t(bel)(x) ≤ 1 −
bel(x). Thus Bayesian transformation assigns a Bayesian belief function (i.e. probability fuction) to
every general one. The fundamental example of Bayesian transformation is pignistic transformation
justified by Smets: BetP (A) =

∑
A∈X⊆Ω

1
|X|

m(X)
1−m(∅) , i.e. BetP (0) = m(0) + 1

2m(0, 1) and BetP (1) =
m(1) + 1

2m(0, 1).

3 On the Dempster’s semigroup

Now we introduce some principal notions according to [11].

Definition 1 A Dempster’s pair (or d-pair) is a pair of reals such that a, b ≥ 0 and a + b ≤ 1. A
d-pair (a, b) is Bayesian if a + b = 1, (a, b) is simple if a = 0 or b = 0, in particular, extremal d-pairs
are pairs (1,0) and (0,1). (Definitions of Bayesian and simple d-pairs correspond evidently to the
usual definitions of Bayesian and simple belief assignments [11], [15]).

Definition 2 (Standard/conjunctive) Dempster’s semigroup4 D0 = (D0,⊕) is the set of all non
extremal Dempster’s pairs, endowed with the operation ⊕ and two distinguished elements 0 = (0, 0)
and 0′ = (1

2 , 1
2 ), where the operation ⊕ is defined by

(a, b) ⊕ (c, d) = (1 − (1 − a)(1 − c)
1 − (ad + bc)

, 1 − (1 − b)(1 − d)
1 − (ad + bc)

).

Definition 3 For (a, b) ∈ D0 we define
−(a, b) = (b, a),
h(a, b) = (a, b) ⊕ 0′ = ( 1−b

2−a−b ,
1−a

2−a−b ),
h1(a, b) = 1−b

2−a−b ,

f(a, b) = (a, b) ⊕ (b, a) = (a+b−a2−b2−ab
1−a2−b2 , a+b−a2−b2−ab

1−a2−b2 ).
For (a, b), (c, d) ∈ D0 we further define

(a, b) ≤⊕ (c, d) iff h1(a, b) < h1(c, d) or if h1(a, b) = h1(c, d) and a ≤ c.
Let G denote the set of all Bayesian non-extremal d-pairs. Let us denote the set of all simple

d-pairs such that b = 0 (a = 0) as S1 (S2). Furthermore, put S = {(a, a) : 0 ≤ a ≤ 0.5}.
(Note: h(a, b) is an abbreviation for h((a, b)), etc.)

Note that homomophism h is a homomorphic Bayesian transformation in fact. h(x) expresses
certainty / uncertainy of belief x, while f−1(f(x)) ∩ S expresses vagueness / preciseness of x.

4A generalization of a notion of the Dempster’s semigroup is described in [12], see also [11]. The resulting algebraic
structure is called a dempsteroid. It has a similar relation to the Dempster’s semigroup as it has OAG to PP or MC.
The special case — the standard dempsteroid D0 = (D0,⊕,−, 0, 0′,≤) is defined by the Dempster’s semigroup.
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Figure 3.1: Dempster’s semigroup. Homomorphism h is in this representation a projection to
group G along the straight lines running through the point (1, 1). All the Dempster’s pairs laying on
the same ellipse are mapped by homomorphism f to the same d-pair in semigroup S.

Theorem 1

(i) The Dempster’s semigroup with the relation ≤⊕ is an ordered commutative semigroup with the
neutral element 0; 0′ is the only nonzero idempotent of it.

(ii) The set G with the ordering ≤⊕ is an ordered Abelian group (G,⊕,−, 0′,≤⊕) which is isomorphic
to the PROSPECTOR group PP (cf. [11]) and consequently isomorphic to the additive group
of reals with usual ordering.

(iii) The sets S, S1 and S2 with the operation ⊕ and the ordering ≤ form ordered commutative
semigroups with neutral element 0, and are all isomorphic to the semigroup of nonnegative
elements (positive cone) of the MYCIN group MC.

(iv) The mapping h is an ordered homomorphism of the ordered Dempster’s semigroup onto its
subgroup G (i.e. onto PP).

(v) The mapping f is a homomorphism of the Dempster’s semigroup onto its subsemigroup S (but
it is not an ordered homomorphism).

For proofs see [11], [12], [18]. Using the theorem, see (iv) and (v), we can express

(a ⊕ b) = h−1(h(a) ⊕ h(b)) ∩ f−1(f(a) ⊕ f(b)). (3.1)
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4 The Opinion Space

Let us briefly recall some notions from [13], [14] before the definition of the consensus operator. Let
us consider a binary frame of discernment Θ again. Let Θ = {x, x}, where x (resp. x) could be a
simple element from an application domain or it could be a subset of an original multidimensional
frame of discernment Θ0 and x = Θ0 − x. In the later case, let belief function on Θ be constructed
by the method of focusing, see [13], [14]. Let us assume a basic belief assignment m such that
m(x) = b,m(x) = d,m(Θ) = u. Hence bel(x) = b, bel(x) = d, and we can consider b as a belief about
the truth of x, d as a disbelief about x (a belief about the complement of x), and u = 1− b− d as an
uncertainty5 about x. Let us further recall a 3-dimensional metric6 called opinion.

Definition 4 Let Θ be a binary frame of discernment containing x and x as its elements, let m be
a basic belief assignment which defines observer’s belief b about x, disbelief d about x (a belief of the
complement of x), and uncertainty u about x. Let a represent the relative atomicity of x in Θ. Then
the observer’s opinion about x is the tuple:

ω = (b, d, u, a).

Thus an opinion ωx represents an observer’s belief, disbelief and uncertainty about the truth of x
and a relative atomicity ax of x in the original frame of discernment Θ0 in the case of focusing. The
opinion contains a redundant parametr u = 1− b−d which allows a simple definition of the consensus
operator, see the next section. Because we consider the only x, we can omit indexing of b, d, u, a by
x, which is used in the case, where focusing given by different subsets of Θ is considered.

The opinion space can be graphically represented by a triangle as shown in Fig. 4.1.

x ωx

0,5 00

1

0,5 0,5

Disbelief1 Belief10
0 1

Uncertainty

0,5
Projection plane

Projector

Director

E(    )

ωx

a

Figure 4.1: Opinion triangle. ωx is an example of an opinion about x ∈ Θ.

As an example the position of the opinion ωx = (0.4, 0.1, 0.5, 0.6) is indicated as a point in the
triangle. The horizontal base line between the Belief and Disbelief corners is called the probability
axis. As shown in the figure, the probability expectation value E(x) = 0.7 and the relative atomicity
a(x) = 0.6 can be graphically represented as points on the probability axis. The line joining the top
corner of the triangle and the relative atomicity point is called the director. The projector is parallel
to the director and passes through the opinion point ωx. Opinions situate on the probability axis

5We use Jøsangs terminology here. Note, that bel(x) = dou(x) is called (degree of) doubt of x by Shafer in [15].
u = 1 − b − d corresponds rather to vagueness than to uncertainty in Hájek-Valdés.

6From the mathematical point of view, it is not any metric. It is just an extended representation of binary belief
function (belief).
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are called dogmatic opinions, representing traditional probability without uncertainty. The distance
between an opinion point and the probability axis can be interpreted as a degree of uncertainty.
Opinions situate in the left of right corner, i.e. with either b = 1 or d = 1 are called the absolute
opinions, corresponding to TRUE or FALSE values in two-valued logic.

Because the relative atomicity does not play any role in consensus operator (it is used for computing
of the probability expectation and by another operator of Jøsang’s subjective logic), we can omit it
as redundant from our point of interest7.

Several opinions can be indexed by A,B,C, ... for observers A,B,C, ... as it is used by Jøsang or
simply by 1, 2, 3, ... as we have used in the case of the Dempster’s semigroup8.

4.1 Analogy of opinions and d-pairs

Trivially, any opinion (b, d, u) gives the unique d-pair (b, d), and analogically any d-pair (v, w) gives
the opinion (v, w, 1− v −w) which is unique if relative atomicity is omitted or fixed. We can observe,
that the absolute opinion (1, 0, 0) in the right corner of the opinion triangle (Belief) corresponds to
� = (1, 0) in the notation of the Dempster’s semigroup, while Disbelief (0, 1, 0) in the left corner
corresponds to ⊥ = (0, 1), and Uncertainty (0, 0, 1) in the top corner corresponds to 0 = (0, 0)
which is interpreted as total ignorance in the Dempster’s semigroup. Analogically the probability axis
corresponds to the set G of all the Bayesian d-pairs, and right (or left) arm of the opinion space
triangle corresponds to S1, i.e. to the set of all simple d-pairs (b, 0) (or to S2 respectivelly). And
vertical median of the opinion triangle connecting (0, 0, 1) and (1

2 , 1
2 , 0) corresponds to the set S. Using

the analogies we will use denotations G,S, S1, and S2 also in the context of the opinion space.

5 The Consensus Operator

The consensus of two opinions is an opinion that reflects both argument opinions in a fair and equal
way, i.e. when two observers have beliefs about the truth of x resulting from distinct pieces of evidence
about x, the consensus operator produces a consensus belief that combines the two separate beliefs
into one.

Definition 5 Let ωA = (bA, dA, uA) and ωB = (bB , dB , uB) be opinions9 respectively held by agents A
and B about the same element x of Θ = {x, x}, and let κ = uA +uB −uAuB. When uA, uB → 0, the
relative dogmatism between ωA and ωB is defined by γ so that γ = uA/uB. Let ωAB = (bAB , dAB , uAB)
be the opinion such that:

for κ 
= 0 : for κ = 0 :
1. bAB = (bAuB + bBuA)/κ bAB = γ bA+bB

γ+1

2. dAB = (dAuB + dBuA)/κ dAB = γ dA+dB

γ+1

3. uAB = (uAuB)/κ uAB = 0 .

Then ωAB is called the consensus opinion between ωA and ωB, representing an imaginary agent [A,B]’s
opinion about x, as if that agent represented both A and B. By using the symbol c© to designate this
operator10 we define ωAB = ωA c©ωB.

Note that κ = uA + uB − uAuB = 0 iff uAuB = 0, i. e. iff both the opinions ωa, ωB

are Bayesian (laying on the probability axis), i. e. being dogmatic in the case of 2-element frame of
discernment.

7Especially, in the case of two simple elements x and x of a domain (Θ = Θ0, i.e. |Θ0| = 2), or in the case where
|x| = |x| ∈ Θ0 for |Θ0| > 2, there is the fix relative atomicity ax = 1

2
, and all the projectors are perpendicular to the

probability axis, and the probability expectaction is equal to the pignistic probability defined in the Transferable Belief
Model [16], [17].

8Note that these indices are upper indices in [13], [14], while they are lower indices in the context of the Dempster’s
semigroup and here.

9Let us note that (from our point of view) redundant relative atomicity and indexing by x is omitted in this definition,
originally from [14], further upper indices A, B are substituted by the lower ones.

10⊕ is used in [13], [14]. Let us use c© here to distinguish the consensus operator c© from the Dempster’s rule ⊕.
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6 Jøsang’s semigroup

Let us turn our attention to an algebra of belief functions on a binary frame of discernment (i.e.
to an algebra of d-pairs — opinions) with the binary consensus operator c©. As it is already stated
in [13] the set of all the opinions is closed with respect to the consensu operator c©. Further, the
consensus operator c© is a commutative and associative operation on the set of all non-dogmatic binary
belief functions (opinions), hence we can speak about an Abelian semigroup again. Associativity of
consensus of several dogmatic beliefs is more complicated, thus we will postpone its discussion and a
formal definition of Jøsang’s semigroup for a later time.

Proof of closeness of D0 with respect to c©: We have 0 ≤ bi, di, ui ≤ 1 such that bi + di + ui =
1. Let (b1, d1, u1) c©(b2, d2, u2) = (b12, d12, u12) = ( b1u2+b2u1

u1+u2−u1u2
, d1u2+d2u1

u1+u2−u1u2
, u1u2

u1+u2−u1u2
). We have

b1u2 + b2u2 ≥ 0, 0 ≤ u1u2 ≤ ui, and u1 + u2 − u1u2 ≥ 0, thus b12 ≥ 0, and similarly d12, u12 ≥ 0.
b12 + d12 + u12 = b1u2+b2u1

u1+u2−u1u2
+ d1u2+d2u1

u1+u2−u1u2
+ u1u2

u1+u2−u1u2
=

b1(1−b2−d2)+b2(1−b1−d1)+d1(1−b2−d2)+d2(1−b1−d1)+(1−b1−d1)(1−b2−d2)
(1−b1−d1)+(1−b2−d2)−(1−b1−d1)(1−b2−d2)

=
(b1+d1+1−b1−d1)(1−b2−d2)+(b2+d2)(1−b1−d1)

(1−b1−d1)+(1−b2−d2)−(1−b1−d1)(1−b2−d2)
=

(1−b2−d2)+(b2+d2+1−b2−d2)(1−b1−d1)−(1−b1−d1)(1−b2−d2)
(1−b1−d1)+(1−b2−d2)−(1−b1−d1)(1−b2−d2)

=
(1−b2−d2)+(1−b1−d1)−(1−b1−d1)(1−b2−d2)
(1−b1−d1)+(1−b2−d2)−(1−b1−d1)(1−b2−d2)

= 1. Hence 0 ≤ b12, d12, u12 ≤ 1 and b12 + d12 + u12 = 1, thus
(b12, d12, u12) ∈ D0. (b12, d12, u12) ∈ G iff u1u2 = 0.
If u1 = u2 = 0 then we obtain (b1, d1, u1) c©(b2, d2, u2) = (b1, 1 − b1, 0) c©(b2, 1 − b2, 0) = ( b1+b+2

2 , 1 −
b1+b+2

2 , 0), thus again (b12, d12, u12) ∈ G.
Hence we have proved that all the sets D0, G,D0−G are closed with respect to the consensus operator
c©.

Proof of commutativity and associativity of c©: Let it be ω1 = (b1, d1, u1), ω2 = (b2, d2, u2), ω3 =
(b3, d3, u3), ωij = ωi c©ωj for i, j = 1, 2, 3.
Let it hold κ 
= 0. There is b12 = b1u2+b2u1

κ12
= b1u2+b2u1

u1+u2−u12
= b2u1+b1u2

u2+u1−u21
= b2u1+b1u2

κ21
= b21, analogically

d12 = d21, and u12 = u1u2
κ12

= u2u1
κ21

= u21. Hence ω1 c©ω2 = ω12 = ω21 = ω2 c©ω1, i.e. c© is commutative
for κ 
= 0.

Let it hold κ = 0 now. b12 =
u1
u2

b1+b2
u1
u2

+1
=

u1
u2

b1+b2
u1
u2

+1

u2
u1
u2
u1

=
b1+

u2
u1

b2

1+
u2
u1

=
u2
u1

b2+b1
u2
u1

+1
= b21, analogically d12 = d21,

and trivially u12 = 0 = u21. Hence the consensus operator c© is commutative also for combination of
two Bayesian opinions.
Let us suppose that all three opinions ω1, ω2, and ω3 are non-Bayesian, i.e. u1 
= 0, u2 
= 0, u3 
= 0,

thus κij 
= 0 for i, j ∈ {1, 2, 3}. b(12)3 = b12u3+b3u12
κ(12)3

=
b1u2+b2u1

u1+u2−u1u2
u3 + b3

u1u2
u1+u2−u1u2

u1u2
u1+u2−u1u2

+ u3 − u1u2
u1+u2−u1u2

u3
=

b1u2u3+b2u1u3
u1+u2−u1u2

+
b3u1u2

u1+u2−u1u2
u1u2

u1+u2−u1u2
+

u1u3+u2u3−u1u2u3
u1+u2−u1u2

− u1u2u3
u1+u2−u1u2

= b1u2u3+b2u1u3 + b3u1u2
u1u2 + u1u3+u2u3−u1u2u3 − u1u2u3

=

b1u2u3 + b2u1u3+b3u1u2
u1u2+u1u3−u1u2u3 + u2u3 − u1u2u3

=
b1u2u3

u2+u3−u2u3
+

b2u1u3+b3u1u2
u2+u3−u2u3

u1u2+u1u3−u1u2u3
u2+u3−u2u3

+
u2u3

u2+u3−u2u3
− u1u2u3

u2+u3−u2u3

=

b1
u2u3

u2+u3−u2u3
+

b2u3+b3u2
u2+u3−u2u3

u1

u1 +
u2u3

u2+u3−u2u3
− u1

u2u3
u2+u3−u2u3

= b1u23+b23u1
u1+u23−u1u23

= b1u23+b23u1
κ1(23)

= b1(23), analogically d(12)3 = d1(23),

u(12)3 = u1(23), and moreover u(12)3 = 1 − b(12)3 − d(12)3 = 1 − b1(23) − d1(23) = u1(23). Hence the
consensus operator c© is associative for non-Bayesian opinions. As it was already mentioned above,
we post pone the question of associativity of Bayesian opinions for later time.

Because we have no more information than beliefs, i.e. opinion and we do not expect any addi-
tional one, we have to concider the same approximation of u to 0 for all dogmatic opinions. Hence
γ = 1 and we can express the consensus operator as follows:
(bA, dA, uA) c© (bB , dB , uB) = ( bAuB+bBuA

uA+uB−uAuB
, dAuB+dBuA

uA+uB−uAuB
, uAuB

uA+uB−uAuB
) for uAuB 
= 0

(bA, dA, 0) c© (bB , dB , 0) = ( bA+bB

2 , dA+dB

2 , 0) for two dogmatic opinions, a consensus of several dog-
matic opinions we will discus later.

We can simply derive expressions for the consensus operator in special cases: for simple d-pairs
(opinions) with the same and different focal elements, and for cases where b = d.
(b1, 0, 1 − b1) c© (b2, 0, 1 − b2) = ( b1(1−b2)+b2(1−b1)

(1−b1)+(1−b2)−(1−b1)(1−b2)
, 0, (1−b1)(1−b2)

2−b1−b2−(1−b1−b2+b1b2))
) =
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= ( b1+b2−2b1b2
1−b1b2

, 0, 1−b1−b2+b1b2
1−b1b2

) ,

(0, d1, 1 − d1) c© (0, d2, 1 − d2) = (0, d1+d2−2d1d2
1−d1d2

, 1−d1−d2+d1d2
1−d1d2

) ,

(b, 0, 1−b) c© (0, d, 1−d) = ( b(1−d)
(1−b)+(1−d)−(1−b)(1−d) ,

d(1−b)
(2−b−d−(1−b−d+bd) ,

(1−b)(1−d)
1−bd ) = ( b−bd

1−bd , d−bd
1−bd , 1−b−d+bd

1−bd ) ,

(b1, b1, 1 − 2b1) c© (b2, b2, 1 − 2b2) =
( b1(1−2b2)+b2(1−2b1)
(1−2b1)+(1−2b2)−(1−2b1)(1−2b2)

, b1+b2−4b1b2
2−2b1−2b2−(1−2b1−2b2+4b1b2)

, (1−2b1)(1−2b2)
1−4b1b2

) =

( b1+b2−4b1b2
1−4b1b2

, b1+b2−4b1b2
1−4b1b2

, (1−2b1)(1−2b2)
1−4b1b2

) .

Lemma 1 (i) Both the 0 = (0, 0, 1) and 0′ = (1
2 , 1

2 , 0) are idempotents of the consensus operator.
(ii) All the Bayesian d-pairs (dogmatic opinions)11 are idempotents with respect to the consensus op-
erator.
(iii) All the Bayesian d-pairs (dogmatic opinions)12 are absorbing elements with respect to the con-
sensus with non-bayesian ones.
(iv) 0 = (0, 0, 1) is the only non-Bayesian idempotent.
(v) 0 = (0, 0, 1) is the neutral element for non-Bayesian d-pairs (opinions).

Proof: (i) (0, 0, 1) c© (0, 0, 1) = (0·1+0·1
1+1−1 , 0+0

1 , 1·1
1 ) = (0, 0, 1).

(1
2 , 1

2 , 0) c©( 1
2 , 1

2 , 0) = (
1
2+ 1

2
2 ,

1
2+ 1

2
2 , 0) = (1

2 , 1
2 , 0).

(ii) (b, 1 − b, 0) c©(b, 1 − b, 0) = ( b+b
2 , (1−b)+(1−b)

2 , 0) = (b, 1 − b, 0),
spec. (1, 0, 0) c© (1, 0, 0) = (1+1

2 , 0+0
2 , 0) = (1, 0, 0), (0, 1, 0) analogically.

(iii) (b, 1 − bd, 0) c© (bB , dB , 0) = ( 0+bBuA

uA+0−0 , dBuA

uA
, 0

uA
) = (bB , dB , 0),

spec. (b, 1 − bd, 0) c© (1, 0, 0) = ( 0+uA

uA+0−0 , 0uA

uA
, 0

uA
) = (1, 1, 0), (0, 1, 0) analogically.

(iv) (0, 0, 1) c©(0, 0, 1) = (0·1+0·1
1+1−1 , 0

1 , 1
1 ) = (0, 0, 1), i.e. it is an idempotent.

(b, d, u) c©(b, d, u) = ( bu+bu
u+u−uu , du+du

2u−u2 , u2

2u−u2 ) = (b, d, u), let (b, d, u) be idempotent, i.e. it holds b =
2bu

2u−u2 , d = 2du
2u−u2 it holds if either b = 0 & d = 0 or 2u−u2 = 2u, i.e. u = 0, thus (b, d, u) is Bayesian.

Hence (0, 0, 1) is the only non-Bayesian idempotent.
(v) (b, d, u) c© (0, 0, 1) = ( b+0

1+u−u , d+0
1+u−u , u

1 ) = (b, d, u). �

Lemma 2 (i) All the subsets G,S, S1, and S2 of the opinion space are closed with respect to the
consensus operator.
(ii) Consensus of two opinions is Bayesian iff at least one of the opinions consensed is Bayesian.
(iii) All the subsets S(k) = {(b, kb, 1 − (1 + k)b)|(b, kb, 1 − (1 + k)b) is opinion } of the opinion space
are closed with respect to the consensus operator.

Proof: (i) The subset G is closed from the definition because u12 = u1u2
κ = 0·0

κ = 0 for Bayesian
opinions. The other statements follow the above introduced formulas for the special cases: (b1, b1, 1−
2b1) c© (b2, b2, 1 − 2b2) =
( b1+b2−4b1b2

1−4b1b2
, b1+b2−4b1b2

1−4b1b2
, (1−2b1)(1−2b2)

1−4b1b2
) , hence the subset S is closed with respect to the consensus

operator; (b1, 0, 1 − b1) c© (b2, 0, 1 − b2) = ( b1+b2−2b1b2
1−b1b2

, 0, 1−b1−b2+b1b2
1−b1b2

) , hence S1 is also closed;
closeness of S2 with respect to the consensus operator is analogical.
(ii) u1u2

u1+u2−u1u2
= 0 iff u1 = 0 ∨ u2 = 0.

(iii) S(k): (b1, kb1, 1 − (1 + k)b1) c©(b2, kb2, 1 − (1 + k)b2) =
( b1(1−(1+k)b2)+b2(1−(1+k)b1)
(1−(1+k)b1)+(1−(1+k)b2)−(1−(1+k)b1)(1−(1+k)b2)

,
kb1(1−(1+k)b2)+kb2(1−(1+k)b1)

1−b1−kb1+1−b2−kb2−(1−b1−kb1−b2−kb2−(1+k)2b1b2)
, (1−(1+k)b1)(1−(1+k)b2)

(1−(1+k)2b1b2)
) =

( b1+b2−2(1+k)b1b2
(1−(1+k)2b1b2)

, k(b1+b2−2(1+k)b1b2)
(1−(1+k)2b1b2)

, 1−(1+k)b1−(1+k)b2+(1+k)2b1b2
(1−(1+k)2b1b2)

) =

( b1+b2−2(1+k)b1b2
(1−(1+k)2b1b2)

, k b1+b2−2(1+k)b1b2
(1−(1+k)2b1b2)

, 1−(1+k)(b1+b2)+(1+k)2b1b2
(1−(1+k)2b1b2)

) =

( b1+b2−2(1+k)b1b2
(1−(1+k)2b1b2)

, k b1+b2−2(1+k)b1b2
(1−(1+k)2b1b2)

, 1−(1+k)2b1b2+(1+k)2b1b2−(1+k)(b1+b2)+(1+k)2b1b2
(1−(1+k)2b1b2)

) =

( b1+b2−2(1+k)b1b2
(1−(1+k)2b1b2)

, k b1+b2−2(1+k)b1b2
(1−(1+k)2b1b2)

, 1 + (1+k)(2(1+k)b1b2−(b1+b2)
(1−(1+k)2b1b2)

) =

11Including extremal d-pairs (absolute opinions) TRUE and FALSE.
12Including extremal d-pairs (absolute opinions) TRUE and FALSE.
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( b1+b2−2(1+k)b1b2
(1−(1+k)2b1b2)

, k b1+b2−2(1+k)b1b2
(1−(1+k)2b1b2)

, 1 − (1 + k) b1+b2−2(1+k)b1b2
(1−(1+k)2b1b2)

) =

(b3, kb3, 1 − (1 + k)b3), where b3 = b1+b2−2(1+k)b1b2
(1−(1+k)2b1b2)

. �

Definition 6 Let us define for (b, d, u) from the opinion space the following: −(b, d, u) = (d, b, u),
q(b, d, u) = (b, d, u) c©0′ = 0′,
q0(b, d, u) = q−1(q(b, d, u)) ∩ (S1 ∪ S2), where
q0(b, d, u) = ( d−b

2d−1 , 0, b+d−1
2d−1 ) for b ≥ d, q0(b, d, u) = (0, b−d

2b−1 , b+d−1
2b−1 ) for b ≤ d,

r(b, d, u) = (b, d, u) c© − (b, d, u) = (b, d, u) c©(d, b, u) = ( bu+du
2u−u2 , bu+du

2u−u2 , u2

2u−u2 ) = ( b+d
2−u , b+d

2−u , u
2−u ) =

(1−u
2−u , 1−u

2−u , u
2−u ) for u 
= 0,

r(b, d, 0) = (b, d, 0) c©(d, b, 0) = ( b+d
2 , b+d

2 , 0) = (1
2 , 1

2 , 0) = 0′ .

Definition 7 For (b, d, u), (b′, d′, u′) ∈ D0 we further define
(b, d, u) ≤pr (b′, d′, u′) iff p1(b, d, u) < p1(b′, d′, u′) or if p1(b, d, u) = p1(b′, d′, u′) and b ≤ b′, where
p(b, d, u) = (b + u

2 , d + u
2 , 0), p1(b, d, u) = b + u

2 ,
(b, d, u) ≤qr (b′, d′, u′) iff (q0)2(b, d, u) > (q0)2(b′, d′, u′) or if (q0)2(b, d, u) = (q0)2(b′, d′, u′)
and (q0)1(b, d, u) < (q0)1(b′, d′, u′) or if q0(b, d, u) = q0(b′, d′, u′) and b ≤ b′, where q0(b, d, u) =
((q0)1(b, d, u), (q0)2(b, d, u), (q0)3(b, d, u)) .

Motivation: The mapping q is defined as an analogy of the homomorphism h in the context of the
Dempster’s semigroup. We have shown that q(x) = 0′ for all x ∈ J0, i.e. q(J0) = 0′, thus we
cannot use it for a definition of an ordering analogic to the ordering ≤ of the standard Dempster’s
semigroup. The ordering ≤pr is defined as an analogy of the ordering ≤ of the standard Dempster’s
semigroup, where projection p is used instead of homomorphism h. Note that projection p is pignistic
transformation in fact. As we’ll see later q is not an ordered homomorphism of D0 to G with respect
to c© and ≤pr.

We still keep the idea of lines analogic to h-lines in our mind, thus we can take q-lines connecting
opinion x with its q-image q(x) = 0′ and we define q0(x) as an intersection of q-line with S0 = S1∪S2.
And we use mapping q0 instead of homomorphism h in a definition of the ordering ≤qr.

Lemma 3 (i) −(−x) = x (i.e. −(−(b, d, u)) = (b, d, u)),
(ii) −(x c©y) = −x c© − y

(i.e. −((b1, d1, u1) c©(b2, d2, u2)) = −(b1, d1, u1) c© − (b2, d2, u2)),
(iii) −x is not an inverse to x, i.e. the equation (b1, d1, u1) c©(b2, d2, u2) = (0, 0, 1) has no solution in
opinion space for (b1, d1, u1) 
= (0, 0, 1) (a discussion of the cases).

Proof: (i) −(−(b, d, u)) = −(d, b, u) = (b, d, u),
(ii) −((b1, d1, u1) c©(b2, d2, u2)) = −( b1u2+b2u1

u1+u2−u1u2
, d1u2+d2u1

u1+u2−u1u2
, u1u2

u1+u2−u1u2
) =

( d1u2+d2u1
u1+u2−u1u2

, b1u2+b2u1
u1+u2−u1u2

, u1u2
u1+u2−u1u2

) = (d1, b1, u1) c©(d2, b2, u2) = −(b1, d1, u1) c© − (b2, d2, u2),
−((b1, d1, 0) c©(b2, d2, 0)) = −( b1+b2

2 , d1+d2
2 , 0) = (d1+d2

2 , b1+b2
2 , 0) = (d1, b1, 0) c©(d2, b2, 0) =

− (b1, d1, 0) c© − (b2, d2, 0),
(iii) ( b1u2+b2u1

u1+u2−u1u2
, d1u2+d2u1

u1+u2−u1u2
, u1u2

u1+u2−u1u2
) = (0, 0, 1) iff u1 = u2 = 1.

�

Lemma 4 (i) The mapping q is a trivial ordered homomorphism of the set of all non-Bayesian
opinions to {0′}.
(ii) For the mapping q0(x) = ”q−1(x)∩(S1∪S2)”, which is expressible as q0(b, d, u) = ( d−b

2d−1 , 0, b+d−1
2d−1 )

for b ≥ d and q0(b, d, u) = ( b−d
2b−1 , 0, b+d−1

2b−1 ) for b ≤ d, the following holds: q0 is a homomorphism of
(D1 − G) onto S1 and of (D2 − G) onto S2, where D1 = {(b, d, u) ∈ D0|b ≥ d}, D2 = {(b, d, u) ∈
D0|b ≤ d}, but it is not a homomorphism of (D0 − G) onto S1 ∪ S2. q0 is an ordered homomorphism
with respect to the ordering ≤qr. (But it is not an ordered homomorphism with respect to the ordering
≤pr.)
(iii) The mapping r is a homomorphism of all the opinion space onto its subalgebra S ∪ 0′ (but it is
not an ordered homomorphism).
(iv) The sets S, S1, S2, and S(k) with the consensus operator and with ordering ≤pr (or ≤qr respectively)
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form ordered Abelian semigroups with neutral element (0, 0, 1). They are all isomorphic to the positive
cone of the aditive group of reals.
(v) There is no neutral element in G, there is no inverse on G, i.e. there is no relation of G to any
group.
(vi) The set S0 = S1 ∪ S2 with operator c©S0 = c© ◦ q0, with operator −, with distiguished element
0 = (0, 0, 1) and with ordering ≤qr forms ordered Abelian group S0 = (S0, c©S0 ,−, 0,≤qr). S0 isomor-
phic to the MYCIN group MC. The same holds also for the ordering ≤pr.

Proof: (i) Trivially q(x c©y) = 0′ = 0′ c©0′ = q(x) c©q(y). And if x ≤ y then q(x) = 0′ ≤ 0′ = q(y).

(ii) Let x = (b, d, u) ∈ (D1 − G), then b ≥ d and q(x) = ( d−b
2d−1 , 0, b+d−1

2d−1 ) = ( b−d
1−2d , 0, 1−b−d

1−2d ),
further b − d ≥ 0 and 1 − 2d ≥ 0, hence b−d

1−2d ≥ 0 and q(x) ∈ S1. Analogically q(x) ∈ S2 for
x ∈ (D2 −G). q0(b, 0, 1− b) = (−b

−1 , 0, b−1
−1 ) = (b, 0, 1− b) and q0(0, d, 1− d) = (0, d, 1− d), hence q0 is

onto S1∪S2. Specially q0(0, 0, 1) = (0, 0, 1) thus it remains to prove that q0(x1) c©q0(x2) = q0(x1 c©x2).
Let x1, x2 ∈ D1 − G:
q0(x1) c©q0(x2) = q0(b1, d1, u1) c©q0(b2, d2, u2) =

( d1−b1
2d1−1 , 0, b1+d1−1

2d1−1 ) c©( d2−b2
2d2−1 , 0, b2+d2−1

2d2−1 ) =

(
d1−b1
2d1−1 ·

b2+d2−1
2d2−1 +

d2−b2
2d2−1 ·

b1+d1−1
2d1−1

b1+d1−1
2d1−1 +

b2+d2−1
2d2−1 − b1+d1−1

2d1−1 · b2+d2−1
2d2−1

, 0,
b1+d1−1
2d1−1 · b2+d2−1

2d2−1
b1+d1−1
2d1−1 +

b2+d2−1
2d2−1 − b1+d1−1

2d1−1 · b2+d2−1
2d2−1

) =

( (d1−b1)(b2+d2−1)+(d2−b2)(b1+d1−1)
(b1+d1−1)(2d2−1)+(b2+d2−1)(2d1−1)−(b1+d1−1)(b2+d2−1) , 0,

(b1+d1−1)(b2+d2−1)
(b1+d1−1)(2d2−1)+(b2+d2−1)(2d1−1)−(b1+d1−1)(b2+d2−1) ) =

( −[(d1−b1)(1−b2−d2)+(d2−b2)(1−b1−d1)]
−[(1−b1−d1)(2d2−1)+(1−b2−d2)(2d1−1)+(1−b1−d1)(1−b2+d2)]

, 0,
(1−b1−d1)(1−b2−d2)

−[(1−b1−d1)(2d2−1)+(1−b2−d2)(2d1−1)+(1−b1−d1)(1−b2+d2)]
) =

( (d1−b1)(1−b2−d2)+(d2−b2)(1−b1−d1)
(1−b1−d1)(2d2−1)+(1−b2−d2)(2d1−1)+(1−b1−d1)(1−b2+d2)

, 0,
−(1−b1−d1)(1−b2−d2)

(1−b1−d1)(2d2−1)+(1−b2−d2)(2d1−1)+(1−b1−d1)(1−b2+d2)
);

q0(x1 c©x2) = q0((b1, d1, u1) c©(b2, d2, u2)) = q0( b1u2+b2u1
u1+u2−u1u2

, d1u2+d2u1
u1+u2−u1u2

, u1u2
u1+u2−u1u2

) =

(
(d1−b1)u2+(d2−b2)u1

u1+u2−u1u2
2d1u2+2d2u1−u1−u2+u1u2

u1+u2−u1u2

, 0,
(b1+d1)u2+(b2+d2)u1−u1−u2+u1u2

u1+u2−u1u2
2d1u2+2d2u1−u1−u2+u1u2

u1+u2−u1u2

) =

( (d1−b1)u2+(d2−b2)u1
2d1u2+2d2u1−u1−u2+u1u2

, 0, (b1+d1)u2+(b2+d2)u1−u1−u2+u1u2
2d1u2+2d2u1−u1−u2+u1u2

) =

( (d1−b1)(1−b2−d2)+(d2−b2)(1−b1−d1)
2d1(1−b2−d2)+2d2(1−b1−d1)−(1−b1−d1)−(1−b2−d2)+(1−b1−d1)(1−b2−d2)

, 0,
(b1+d1)(1−b2−d2)+(b2+d2)(1−b1−d1)−(1−b1−d1)−(1−b2−d2)+(1−b1−d1)(1−b2−d2)

2d1(1−b2−d2)+2d2(1−b1−d1)−(1−b1−d1)−(1−b2−d2)+(1−b1−d1)(1−b2−d2)
) =

( (d1−b1)(1−b2−d2)+(d2−b2)(1−b1−d1)
(2d1−1)(1−b2−d2)+(2d2−1)(1−b1−d1)+(1−b1−d1)(1−b2−d2)

, 0,
(b1+d1−1)(1−b2−d2)+(b2+d2−1)(1−b1−d1)+(1−b1−d1)(1−b2−d2)

(2d1−1)(1−b2−d2)+(2d2−1)(1−b1−d1)+(1−b1−d1)(1−b2−d2)
) =

( (d1−b1)(1−b2−d2)+(d2−b2)(1−b1−d1)
(2d1−1)(1−b2−d2)+(2d2−1)(1−b1−d1)+(1−b1−d1)(1−b2−d2)

, 0,
−(1−b1−d1)1)(1−b2−d2)−(1−b2−d2))(1−b1−d1)+(1−b1−d1)(1−b2−d2)

(2d1−1)(1−b2−d2)+(2d2−1)(1−b1−d1)+(1−b1−d1)(1−b2−d2)
) =

( (d1−b1)(1−b2−d2)+(d2−b2)(1−b1−d1)
(2d1−1)(1−b2−d2)+(2d2−1)(1−b1−d1)+(1−b1−d1)(1−b2−d2)

, 0,
−(1−b1−d1)(1−b2−d2)−(1−b2−d2))(1−b1−d1)+(1−b1−d1)(1−b2−d2)

(2d1−1)(1−b2−d2)+(2d2−1)(1−b1−d1)+(1−b1−d1)(1−b2−d2)
) = q0(b1, d1, u1) c©q0(b2, d2, u2)) =

q0(x1) c©q0(x2)) and analogically for x1, x2 ∈ D2 − G. Hence q0 is homomorphism of Di − G to Si.
It remains to prove that q0 satisfies the ordering ≤qr but not ≤pr. Let x1 = (b1, d1, u1) ≤qr

(b2, d2, u2) = x2: if (q0)2(b1, d1, u1) < (q0)2(b2, d2, u2) then q0(b1, d1, u1) = (0, (q0)2(b1, d1, u1), 1 −
(q0)2(b1, d1, u1)) <qr (0, (q0)2(b2, d2, u2), 1 − (q0)2(b2, d2, u2)) = q0(b2, d2, u2), if (q0)2(b1, d1, u1) =
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(q0)2(b2, d2, u2) and (q0)1(b1, d1, u1) < (q0)1(b2, d2, u2) then q0(b1, d1, u1) = ((q0)1(b1, d1, u1), 0, 1 −
(q0)1(b1, d1, u1)) <qr ((q0)1(b2, d2, u2), 0, 1 − (q0)1(b2, d2, u2)) = q0(b2, d2, u2), if (q0)2(b1, d1, u1) =
(q0)2(b2, d2, u2) and (q0)1(b1, d1, u1) = (q0)1(b2, d2, u2) then q0(b1, d1, u1) = q0(b2, d2, u2) i.e. also
q0(b1, d1, u1) ≤qr q0(b2, d2, u2), hence q0 keeps the ordering ≤qr. We can easily show a counter ex-
ample for the ordering ≤pr: let x1 = (0.5, 0.1, 0.4), and x2 = (0.6, 0.3, 0.1), p(x1) = p(0.5, 0.1, 0.4) =
(0.7, 0.3, 0) > (0.65, 0.35, 0) = p(0.6, 0.3, 0.1) = p(x2), hence x1 >pr x2, further q0(x1) = q0(0.5, 0.1, 0.4) =
(0.4
0.8 , 0, 0.4

0.8 ) = (0.5, 0, 0.5) <pr (0.75, 0, 0.25) = (0.3
0.4 , 0, 0.1

0.4 ) = q0(0.6, 0.3, 0.1) = q0(x2), hence q0 does
not keep the ordering ≤pr.
Note that (S1∪S2) ⊂ (D0−G) is not closed with respect to c©, thus q0 is not a homomorphism D0−G
onto S1 ∪ S2.

(iii) S is closed, see Lemma 2 (i), and x c©0′ = 0′ for any x from D0 − G, hence S ∪ 0′ is also
closed with respect to consensus operator c©. r(x) = r(b, d, u) = (1−u

2−u , 1−u
2−u , u

2−u ) ∈ S if u > 0,
r(b, 1 − b, 0) = (1−0

2−0 , 1
2 , 0) = 0′, r(0, 0, 0) = (1−1

2−1 , 0
1 , 1

1 ) = 0, r(0′) = 0′.
r(b1, d1, u1) c©r(b2, d2, u2) = (1−u1

2−u1
, 1−u1

2−u1
, u1

2−u1
) c©( 1−u2

2−u2
, 1−u2

2−u2
, u2

2−u2
) =

(
1−u1
2−u1

u2
2−u2

+
1−u2
2−u2

u1
2−u1

u1
2−u1

+
u2

2−u2
− u1

2−u1

u2
2−u2

,
1−u1
2−u1

u2
2−u2

+
1−u2
2−u2

u1
2−u1

u1
2−u1

+
u2

2−u2
− u1

2−u1

u2
2−u2

,
u1

2−u1

u2
2−u1

u1
2−u1

+
u2

2−u2
− u1

2−u1

u2
2−u2

) =

( (1−u1)u2+(1−u2)u1
u1(2−u2)+u2(2−u1)−u1u2

,
1−u1
2−u1

u2
2−u1

+
1−u2
2−u2

u1
2−u2

1−u1
2−u1

+
1−u2
2−u2

− 1−u1
2−u1

1−u2
2−u2

, u1u2
u1(2−u2)+u2(2−u1)−u1u2

) =

( u2−u1u2+u1−u1u2
2u1−u1u2+2u2−u1u2−u1u2

, u1+u2−2u1u2
2(u1+u2)−3u1u2

, u1u2
2(u1+u2)−3u1u2

),

r((b1, d1, u1) c©(b2, d2, u2)) = r( b1u2+b2u1
u1+u2−u1u2

, d1u2+d2u1
u1+u2−u1u2

, u1u2
u1+u2−u1u2

) =

(
1− u1u2

u1+u2−u1u2
2− u1u2

u1+u2−u1u2

,
1− u1u2

u1+u2−u1u2
2− u1u2

u1+u2−u1u2

,
u1u2

u1+u2−u1u2
2− u1u2

u1+u2−u1u2

) = (
u1+u2−2u1u2
u1+u2−u1u2

2(u1+u2)−3u1u2
u1+u2−u1u2

,
u1+u2−2u1u2
u1+u2−u1u2

2(u1+u2)−3u1u2
u1+u2−u1u2

,
u1u2

u1+u2−u1u2
2(u1+u2)−3u1u2

u1+u2−u1u2

) =

( u1+u2−2u1u2
2(u1+u2)−3u1u2

, u1+u2−2u1u2
2(u1+u2)−3u1u2

, 2u1u2
2(u1+u2)−3u1u2

),

thus r(x1) c©r(x2) = r(x1 c©x2) and r is a homomorphismus of the opinion space to S ∪ 0′.
Let it be a < b. (0, a, 1−a) >qr (0, b, 1−b) while r(0, a, 1−a) = (1−(1−a)

2−(1−a) ,
a

1+a , 1−a
1+a ) <qr ( b

1+b ,
b

1+b ,
1−b
1+b ) =

r(0, b, 1 − b) (q0(
1−(1−a)
2−(1−a) ,

a
1+a , 1−a

1+a ) = q0( b
1+b ,

b
1+b ,

1−b
1+b ) and a

1+a ) < ( b
1+b ) , hence r is not an or-

dered homomorphism with respect to ≤qr. Similarly (0, a, 1 − a) >pr (0, b, 1 − b) because p(0, a, 1 −
a) = (1−a

2 , 1+a
2 , 0) > ( 1−b

2 , 1+b
2 , 0) = p(0, b, 1 − b) and r(0, a, 1 − a) <pr r(0, b, 1 − b) because of

p(r(0, a, 1 − a)) = p( a
1+a , a

1+a , 1−a
1+a ) = 0′ = p( b

1+b ,
b

1+b ,
1−b
1+b ) = p(r(0, b, 1 − b) and a

1+a < b
1+b again.

Hence is nor an ordered homomorphism with respect to ≤pr.

(iv) All the sets S, S1, S2 and S(k) are closed, see Lemma 2 (i) and (iii). Commutativity and as-
sociatiovity follow general commutativity and associativity. The neutral elements 0 is an element of
all the sets S, S1, S2 and S(k).
Let us define S−, S−

1 , S−
2 , S−

(k) as sets of all (−b,−d, u) where (b, d, u) ∈ S, S1, S2, S(k), thus we obtain
OAGs with neutral element 0 and with inverse inv(b, d, u) = (−b,−d, u). All the sets S ∪ S−, S1 ∪
S−

1 , S2 ∪ S−
2 , S(k) ∪ S−

(k) are dense as they are segments of straights lines and all of them are fully
ordered both with ≤pr and ≤qr, where (−b1,−d1, u1) ≤pr (−b2,−d2, u2) iff (b1, d1, u1) ≥pr (b2, d2, u2)
and analogically (−b1,−d1, u1) ≤qr (−b2,−d2, u2) iff (b1, d1, u1) ≥qr (b2, d2, u2). Thus all of them are
isomorphic to additive group of reals Re, see e.g. Chapter 7 in [11]. Hence all of them are isomoprphic
to MC.
Because the negative cones of Re, MC are isomorphic to its negative cones (isomorphism -), all
the Abelian semigroups S, S1, S2 and S(k) are isomorphic to the positive cones of OAGs Re and
MC. Nevertheless we have to note that S, S1, and S(k) for k ≤ 1 are positive cones of OAGs
S ∪ S−, S1 ∪ S−

1 , S(k) ∪ S−
(k) while S2 and S(k) for k > 1 are negative cones of S2 ∪ S−

2 , S(k) ∪ S−
(k).

(v) Let N = (bN , dN , uN ) = (bN , 1 − bN , 0) be a fixed neutral element of c© in G. Thus for any
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(b, 1 − b, 0) ∈ G holds that (b, 1 − b, 0) c©(bN , 1 − bN , 0) = (b, 1 − b, 0). We can compute (b, 1 −
b, 0) c©(bN , 1 − bN , 0) = ( b+bN

2 , 1−b+1−bN

2 , 0) = ( b+bN

2 , 2−b−bN

2 , 0), hence b+bN

2 = b and bN = b for any
b what is a contradiction. Thus there is neither inverse nor neutral element of c© in G.

(vi) D0 is closed with respect to c© and q0 maps D0 to S1 ∪ S2 thus S0 = S1 ∪ S2 is closed with
respect to c©S0 . Commutativity and associativity of c©S0 follow commutativity and associativity of c©.
(b, d, u) c©S0(0, 0, 0) = q0(0, 0, 0) = (0, 0, 0), (b, 0, 1−b) c©S0(0, b, 1−b) = q0(

b(1−b)
(1+b)(1−b) ,

b(1−b)
(1+b)(1−b) ,

(1−b)2

(1+b)(1−b) ) =
q0( b

1+b ,
b

1+b ,
1−b
1+b ) = (0, 0, 0), and similarly (0, b, 1 − b) c©S0(b, 0, 1 − b) = (0, 0, 0).

Let it be (b, 0, 1−b) ≤qr (B, 0, 1−B), i.e. b ≤ B. (a, 0, 1−a) c©S0(b, 0, 1−b) = (a+b−2ab
1−ab , 0, 1−a−b+ab

1−ab ) =

(a+(1−2a)b
1−ab , 0, 1−a−(1−a)b

1−ab ) and (a, 0, 1 − a) c©S0(B, 0, 1 − B) = (a+(1−2a)B
1−aB , 0, 1−a−(1−a)B

1−aB ). b ≤ B im-

plies a+(1−2a)b
1−ab ≤ a+(1−2a)B

1−aB and (a, 0, 1− a) c©S0(b, 0, 1− b) ≤qr(a,0,1-a) c©S0(B, 0, 1−B). Similarly it
holds (0, a, 1 − a) c©S0(0, b, 1 − b) ≤qr(0,a,1-a) c©S0(0, B, 1 − B) for (0, b, 1 − b) ≤qr (0, B, 1 − a). Thus
≤qr keeps monotonicity on both S1 and S2.
(a, 0, 1 − a) c©S0(B, 0, 1 − B) = q0(a+B−2aB

1−aB , 0, 1−a−B+aB
1−aB ) = (a+B−2aB

1−aB , 0, 1−a−B+aB
1−aB ). (a, 0, 1 −

a) c©S0(0, b, 1−b) = q0(a−ab
1−ab , b−ab

1−ab ,
1−a−b+ab

1−ab ), a−ab
1−ab ≤ b−ab

1−ab iff a ≤ b, thus for a ≤ b we obtain (a, 0, 1−
a) c©S0(0, b, 1− b) = (0, a−b

2a−ab−1 , a+b−ab−1
2a−ab−1 ) < (a, 0, 1−a) c©S0(B, 0, 1−B), and for a ≥ b we obtain the

following: (a, 0, 1−a) c©S0(0, b, 1−b) = (
b−ab
1−ab− a−ab

1−ab

2 b−ab
1−ab−1

, 0,
a−ab
1−ab + b−ab

1−ab−1

2 b−ab
1−ab−1

) = ( b−ab−a+ab
2b−2ab−1+ab , 0, a−ab+b−ab−1+ab

2b−2ab−1+ab ) =

( b−a
2b−ab−1 , 0, a−ab+b−1

2b−ab−1 ) ≤qr (a, 0, 1 − a) ≤qr (a, 0, 1 − a) c©S0(B, 0, 1 − B). Analogically for (0, a, 1 −
a), (0, b, 1−b) and (B, 0, 1−B), ((0, a, 1−a) c©S0(0, b, 1−b) ≤qr (0, a, 1−a) ≤qr (0, a, 1−a) c©S0(B, 0, 1−
B)) . Hence ≤qr keeps monotonicity on whole S1 ∪ S2. Both the orderings ≤pr and ≤qr are the same
on S0, thus ≤pr also keeps monotonicity on whole S0 = S1 ∪ S2.

�

r preimage of r(b, d, u) is just the intersection of horizontal straight line y = u with the opinion
triangle (it is just the intersection of triangle representing the Dempster’s semigroup with a straigt
line parallel to G, in both the cases it is an abscissa parallel to abscissa representing Bayesian d-pairs
/ opionions). The consensus of two opinions laying on the straigth lines (r-lines) y = u1 and y = u2 is
an opinion laying on the r-line y = u1u2

u1+u2−u1u2
. Thus the consensus operator is effected ’per r-lines’.

Analogically the consensus is effected ’per q-lines’ (straight lines containing 0′ = (1
2 , 1

2 , 0)). In this
case it is not possible to speak about q preimages of q(b, d, u) = 0′ but the idea is analogous. Because
of q maps all non-Bayesian opinions to the same opinion 0′, we are interesting in the other ends of
intersections of q-lines with the opinion triangle. They are formalized by the mapping q0.
Examples: both theoretical and numerical.

Remark 1 Because of computation of consensus of Bayesian opinions as an average, there is no
neutral element in G, there is no inverse on G, i.e. there is no relation to any group. Moreover
consensus of Bayesian opinions is not associative in general, see the next subsection.

6.1 Associativity of computing of the consensus of Bayesian opinions

The consensus operator of non-Bayesian opinions is computed as a increased weighted mean. Both
belief and disbelief components are weighted by u of the other opinion and resulting mean is in-
creased by a factor u1+u2

u1+u2−u1u2
> 1, i.e. we can express consensus of non-Bayesian opinions as

(b1, d1, u1) c© (b2, d2, u2) = ( b1u2+b2u1
u1+u2

u1+u2
u1+u2−u1u2

, d1u2+d2u1
u1+u2

u1+u2
u1+u2−u1u2

, u1u2
u1+u2−u1u2

) for u1u2 
= 0.
While the consensus of Bayesian opinions without any additional information correspond just to non-
associative arithmetical mean. To overcome it additional tools required additional information are
used to obtain γ 
= 1, see the definition 5. If there is no additional information we have to distinguish
whether the opinions to be combined are ’single’, i.e. not a results of consensus, or howmany times
the concensus was already used. We use γ = 1 for two ’single’ opinions, γ = n in the case where
(b1, d1, 0) is a result of just n applications of the consensus operator and (b2, d2, 0) is a ’single’ one. In
the case where the first argument (b1, d1, 0) is a ’single’ and the second one is already consensed we
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use γ = 1
n . Hence, the computation of the consensus corresponds to stepwise computation of n-ary

arithmetic mean. For an example of associative combination of three Bayesian opinions see [8].
Using the above procedure, we are able to compute the consensus of several Bayesian opinions in

associative way. But this method is not general. We have to always remember and handle the history
of the opinions (how many times the consensus operator was used). And it is not always easy. In the
case of subjective opinions it is often even for opinion agent himself quite difficult to deside whether
his opinion is ’single’ or it is already implicitly consensed from two or several ones.

6.2 A formal definition of Jøsang’s semigroup

From the algebraical point of view we have obtained instead of the operator on opinions a new one
defined on the Cartesian product of the set of opinions with the set of positive integers or reals if
we admit non-integer γ based on a different additional information. Because nor this method is not
completely general, we do not include it into the following formal definition of Jøsang’s semigroup,
and we stay limited to non-Bayesian opinions.

Definition 8 Jøsang’s semigroup J0 = (J0, c©) is the set of all non Bayesian Dempster’s pairs (opin-
ions), endowed with the operation c© and with a distinguished element 0 = (0, 0, 1), where the operation
c© is defined by

(bA, dA, uA) c© (bB , dB , uB) = ( bAuB+bBuA

uA+uB−uAuB
, dAuB+dBuA

uA+uB−uAuB
, uAuB

uA+uB−uAuB
).

Theorem 2 (i) Jøsang’s semigroup with the relation ≤qr is an ordered commutative semigroup
with the neutral element 0 = (0, 0, 1); 0 is the only idempotent of it. (It does not hold for ≤pr).

(ii) The sets S, S1, S2 and S(k) with the operation c© and the ordering ≤qr (or ≤pr respectively) form
ordered commutative semigroups with neutral element 0, and they are all isomorphic to the semigroup
of nonnegative elements (positive cone) of the MYCIN group MC.

(iii) The set S0 = S1 ∪S2 with the operations c©S0 = c©◦ q0 and −, and with the ordering ≤qr form ordered
Abelian group with neutral element 0: S0 = (S0, c©S0 ,−, 0,≤qr). S0 is isomorphic to the MYCIN
group MC.

(iv) The mapping q0 is an ordered homomorphism of Jøsang’s semigroup onto group S0, it preserves the
ordering ≤qr (S0 is subset of J0 but it is not a subalgebra of J0).

(v) The mapping r is a homomorphism of Jøsang’s semigroup onto its subsemigroup S (but it is not an
ordered homomorphism).

(vi) The mapping q is a trivial homomorphism from J0 to the set G of Bayesian opinions. There does not
exist any homomorhic Bayesian transformation of J0. There does not exist any homomorhic Bayesian
transformation of the whole opinion space which is homomorphic with respect to the consensus oper-
ator.

Using the theorem, see (iv) and (v), we can express

(x c©y) = q−1
0 (q0(x) c©q0(y)) ∩ r−1(r(x) c©r(y)) (6.1)

for every couple of non-Bayesian opinions x, y.

Before a proof of the theorem we present the following lemma:

Lemma 5 (i) Let us define J1 as {(b, d, u) ∈ J0 | b ≥ d} = D1 − G and J2 as {(b, d, u) ∈ J0 | b ≤
d} = D2 − G. Let further x, y ∈ J0. It holds that x c©y ∈ J1 iff q0(x) c©q0(y) ∈ J1 and x c©y ∈ J2 iff
q0(x) c©q0(y) ∈ J2.
(ii) The operation c©S0 = c©◦q0 commutes with q0, i.e. the following holds: q0(x c©S0y) = q0(x) c©S0q0(y).
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Proof: (i) Let (b, d, u) = x = x1 c©x2 = (b1, d1, u1) c©(b2, d2, u2) = ( b1u2+b2u1
u1+u2−u1u2

, d1u2+d2u1
u1+u2−u1u2

, u1u2
u1+u2−u1u2

).
If bi ≥ di then (b1 −d1)u2 +(b2 −d2)u1 ≥ 0, b1u2 + b2u1 ≥ d1u2 +d2u1, and b ≥ d. Analogically b ≤ d
for bi ≤ di. Hence both J1 and J2 are closed with respect to the consensus operator c©. From Lemma
4(ii), we know that q0 maps Ji to Si and Si are also closed with respect to c©. Thus it satisfies to
prove the statement for x1 ∈ J1 and x2 ∈ J2.
Let us compute x c©y and q0(x1) c©q0(x2) and compare their belief components with disbelief ones:
x1 c©x2 = (b1, d1, u1) c©(b2, d2, u2) = ( b1u2+b2u1

u1+u2−u1u2
, d1u2+d2u1

u1+u2−u1u2
, u1u2

u1+u2−u1u2
), all bi, di, ui, and all the

fractions are positive less or equal to 1 thus all enumerators and denominators are positive and
b1u2+b2u1

u1+u2−u1u2
≥ d1u2+d2u1

u1+u2−u1u2
iff b1u2 + b2u1 ≥ d1u2 + d2u1 iff (b1 − d1)u2+ ≥ (d2 − b2)u1;

q0(b1, d1, u1) = ( d1−b1
2d1−1 , 0, b1+d1−1

2d1−1 ), q0(b2, d2, u2) = (0, b2−d2
2b2−1 , b2+d2−1

2b2−1 ) , and q0(b1, d1, u1) c©q0(b2, d2, u2) =

(
d1−b1
2d1−1

b2+d2−1
2b2−1 + 0

b1+d1−1
2d1−1 +

b2+d2−1
2b2−1 − b1+d1−1

2d1−1
b2+d2−1
2b2−1

,
0 +

b2−d2
2b2−1

b1+d1−1
2d1−1

b1+d1−1
2d1−1 +

b2+d2−1
2b2−1 − b1+d1−1

2d1−1
b2+d2−1
2b2−1

,
b1+d1−1
2d1−1

b2+d2−1
2b2−1

b1+d1−1
2d1−1 +

b2+d2−1
2b2−1 − b1+d1−1

2d1−1
b2+d2−1
2b2−1

) =

( (d1−b1)(b2+d2−1)
(b1+d1−1)(2b2−1)+(b2+d2−1)(2d1−1)−(b1+d1−1)(b2+d2−1) ,

(b2−d2)(b1+d1−1)
(b1+d1−1)(2b2−1)+(b2+d2−1)(2d1−1)−(b1+d1−1)(b2+d2−1) ,

(b1+d1−1)(b2+d2−1)
(b1+d1−1)(2b2−1)+(b2+d2−1)(2d1−1)−(b1+d1−1)(b2+d2−1) ) =

( (d1b2−b1b2+d1d2−b1d2−d1+b1)
(2b1b2+2b2d1−2b2−b1−d1+1)+(2b2d1+2d1d2−2d1−b2−d2+1)−(b1b2+b1d2−b1+b2d1+d1d2−d1−b2−d2+1) ,

(b1b2−b1d2+b2d1−d1d2−b2+d2)
(b1b2−b1d2+3b2d1+d1d2−2b2−2d1+1) ,

(b1b2+b1d2−b1+b2d1+d1d2−d1−b2−d2+1)
(b1b2−b1d2+3b2d1+d1d2−2b2−2d1+1) ) =

( (b1−d1)(1−b2−d2)
(b1b2−b1d2+3b2d1+d1d2−2b2−2d1+1) ,

(d2−b2)(1−b1−d1)
(b1b2−b1d2+3b2d1+d1d2−2b2−2d1+1) ,

(1−b1−d1)(1−b2−d2)
(b1b2−b1d2+3b2d1+d1d2−2b2−2d1+1) ) =

( (b1−d1)u2
u1(1−2b2)+u2(1−2d1)−u1u2

, (d2−b2)u1
u1(1−2b2)+u2(1−2d1)−u1u2

, u1u2
u1(1−2b2)+u2(1−2d1)−u1u2

). Again, all bi, di, ui, and
all the fractions are positive less or equal to 1 thus all enumerators and denominators are positive
and (b1−d1)u2

u1(1−2b2)+u2(1−2d1)−u1u2
≥ (d2−b2)u1

u1(1−2b2)+u2(1−2d1)−u1u2
iff (b1−d1)u2 ≥ u1(1−2b2) iff b1u2+b2u1

u1+u2−u1u2
≥

d1u2+d2u1
u1+u2−u1u2

. Hence x1 c©x2 ∈ J1 iff q0(x1) c©q0(x2) ∈ J1, and similarly x1 c©x2 ∈ J2 iff q0(x1) c©q0(x2) ∈
J2.
(ii) From Lemma 4(ii), we know that q0 is an ordered homomorphism from J1 to S1 and from J2 to
S2, thus it again satisfies to prove the statement for x1 ∈ J1 and x2 ∈ J2. Let x1 c©x2 ∈ J1, i.e. b ≥ d,
(b1 − d1)u2 ≥ (d2 − b2)u1. q0(x1 c©S0x2) = q0(q0(x1 c©x2)) = q0(x1 c©x2) =

q0( b1u2+b2u1
u1+u2−u1u2

, d1u2+d2u1
u1+u2−u1u2

, u1u2
u1+u2−u1u2

) = (
d1u2+d2u1

u1+u2−u1u2
− b1u2+b2u1

u1+u2−u1u2

2
d1u2+d2u1

u1+u2−u1u2
−1

, 0,
b1u2+b2u1

u1+u2−u1u2
+

d1u2+d2u1
u1+u2−u1u2

−1

2
d1u2+d2u1

u1+u2−u1u2
−1

) =

( d1u2+d2u1−b1u2−b2u1
2d1u2+2d2u1−u1−u2+u1u2

, 0, b1u2+b2u1+d1u2+d2u1−u1−u2+u1u2
2d1u2+2d2u1−u1−u2+u1u2

) =

( (d1−b1)u2+(d2−b2)u1
(2d1−1)u2+(2d2−1)u1+u1u2

, 0, (b1+d1−1)u2+(b2+d2−1)u1+u1u2
(2d1−1)u2+(2d2−1)u1+u1u2

) =

( (b1−d1)u2+(b2−d2)u1
(1−2d1)u2+(1−2d2)u1−u1u2

, 0, (1−b1−d1)u2+(1−b2−d2)u1−u1u2
(1−2d1)u2+(1−2d2)u1−u1u2

) =

( (b1−d1)u2+(b2−d2)u1
(1−b1−d1+(b1−d1))u2+(1−b2−d2+(b2−d2)u1−u1u2

, 0, (u1)u2+(u2)u1−u1u2
(1−b1−d1+(b1−d1))u2+(1−b2−d2+(b2−d2)u1−u1u2

) =

( (b1−d1)u2+(b2−d2)u1
u1u2+(b1−d1)u2+u1u2+(b2−d2)u1−u1u2

, 0, u1u2
u1u2+(b1−d1)u2+u1u2+(b2−d2)u1−u1u2

) =

( (b1−d1)u2+(b2−d2)u1
(b1−d1)u2+(b2−d2)u1+u1u2

, 0, u1u2
(b1−d1)u2+(b2−d2)u1+u1u2

);

q0(x1) c©S0q0(x2) = q0(q0(x1) c©q0(x2)) =
q0(

(b1−d1)u2
u1(1−2b2)+u2(1−2d1)−u1u2

, (d2−b2)u1
u1(1−2b2)+u2(1−2d1)−u1u2

, u1u2
u1(1−2b2)+u2(1−2d1)−u1u2

) =

(
(d2−b2)u1

u1(1−2b2)+u2(1−2d1)−u1u2
− (b1−d1)u2

u1(1−2b2)+u2(1−2d1)−u1u2

2
(d2−b2)u1

u1(1−2b2)+u2(1−2d1)−u1u2
−1

, 0,
(b1−d1)u2

u1(1−2b2)+u2(1−2d1)−u1u2
+

(d2−b2)u1
u1(1−2b2)+u2(1−2d1)−u1u2

−1

2
(d2−b2)u1

u1(1−2b2)+u2(1−2d1)−u1u2
−1

) =

( (d2−b2)u1−(b1−d1)u2
2(d2−b2)u1−u1(1−2b2)−u2(1−2d1)+u1u2

, 0, (b1−d1)u2+(d2−b2)u1−u1(1−2b2)−u2(1−2d1)+u1u2
2(d2−b2)u1−u1(1−2b2)−u2(1−2d1)+u1u2

) =

( (b2−d2)u1+(b1−d1)u2
2(b2−d2)u1+u1(1−2b2)+u2(1−2b1)−u1u2

, 0, −(b1−d1)u2+(b2−d2)u1+u1(1−2b2)+u2(1−2d1)−u1u2
2(b2−d2)u1+u1(1−2b2)+u2(1−2d1)−u1u2

) =
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( (b2−d2)u1+(b1−d1)u2
2(b2−d2)u1+u1(1−b2−d2−(b2−d2))+u2(1−b1−d1−(b1−d1))−u1u2

, 0,
−(b1−d1)u2+(b2−d2)u1+u1(1−b2−d2−(b2−d2))+u2(1−b1−d1+(b1−d1))−u1u2

2(b2−d2)u1+u1(1−b2−d2−(b2−d2))+u2(1−b1−d1−(b1−d1))−u1u2
) =

( (b2−d2)u1+(b1−d1)u2
2(b2−d2)u1+u1u2−u1(b2−d2))+u1u2+u2(b1−d1)−u1u2

, 0, −(b1−d1)u2+(b2−d2)u1+u1u2−u1(b2−d2)+u1u2+u2(b1−d1)−u1u2
2(b2−d2)u1+u1u2−u1(b2−d2))+u1u2+u2(b1−d1)−u1u2

) =

( (b2−d2)u1+(b1−d1)u2
(b2−d2)u1+u2(b1−d1)+u1u2

, 0, u1u2
(b2−d2)u1+u2(b1−d1)+u1u2

) = q0(x1 c©S0x2).
Analogically we can compute q0(x1) c©S0q0(x2) for x1 c©x2 ∈ J2. The cases of x1 ∈ J2 & x2 ∈ J1 follow
commutativity of c©. Hence q0(x1 c©S0x2) = q0(x1) c©S0q0(x2) for any x1, x2 ∈ J0. �

Remark 2 We can define q0(a, 1 − a, 0) = (1, 0, 0) for a > 1
2 and q0(a, 1 − a, 0) = (0, 1, 0) for a < 1

2
and extend the statements of Lemma 5 from J0, J1, J2 to D0 − 0′,D1 − 0′,D2 − 0′ and Theorem 2 (ii)
and (iii) from Si to S+

i .

Proof (of the theorem): (i) D0 is closed with respect to the consensus operator c©, there are no
Bayesian opinions in J0, thus J0 is also closed. Commutativity and associativity we have already
proved on D0. From Lemma 1(iv) we have that 0 = (0, 0, 1) is the only idempotent. Monotonicity of
the ordering ≤qr based on homomorphism q0 follows Lemata 4(ii) and 5(ii).
≤pr does not keep the monotonicity condition: let x1 = (0.5, 0.1, 0.4), and x2 = (0.6, 0.3, 0.1), (as in
the proof of Lemma 4(ii)), and x = (0.4, 0.4, 0.2), thus p(x1) = p(0.5, 0.1, 0.4) = (0.7, 0.3, 0) >pr

(0.65, 0.35, 0) = p(0.6, 0.3, 0.1) = p(x2), hence x1 > x2, x1 c©x + (0.5·0.2+0.4·0.4
0.4+0.2−0.08 , 0.02+0.16

0.52 , 0.08
0.52 ) =

(26
52 , 18

52 , 8
52 ), x2 c©x + (0.6·0.2+0.4·0.1

0.1+0.2−0.02 , 0.06+0.04
0.28 , 0.02

0.28 ) = (16
28 , 10

28 , 2
28 ), and p(x1 c©x) = p( 26

52 , 18
52 , 8

52 ) =
p(30

52 , 22
52 , 0) = (0.5769, 0.4231, 0), p(x2 c©x) = p( 16

28 , 10
28 , 2

28 ) = p( 17
28 , 11

28 , 0) = (0.6071, 0.3929, 0), hence
p(x1 c©x) < p(x1 c©x) and (x1 c©x) <pr (x1 c©x).
(ii) See Lemma 4(iv).
(iii) S0 = S1∪S2 is subset of J0, J0 is closed and q0 maps J0 back to S0, thus S0 = S1∪S2 is closed with
respect to c©. c© is commutative and associative with neutral element 0. (b, 0, 1 − b) c©S0(0, b, 1 − b) =
q0((b, 0, 1− b) c©(0, 1, 1− b)) = q0(

b(1−b)+0
1−b+1−b−(1−b)(1−b) ,

0+b(1−b)
1−b2 , (1−b)2

1−b2 = (0, 0, 1). Monotonicity follows
statement (i).
(iv) It again follows Lemata 4(ii) and 5(ii).
(v) It follows Lemma 4(iii) and closeness of J0.
(vi) It holds that q(x c©y) = 0′ = 0′ c©0′ = q(x) c©q(x) and 0′ ∈ G. Thus q : J0 → G is a trivial
homomorphism.
Let t be a homomorphic transformation. For any opinion x from J0 we have: t(x) = t(0 c©x) =
t(0) c©t(x), there is no neutral element on G, hence it should be t(x) = t(0). t is a trivial transforma-
tion from J0 to G, thus it does not satisfy the definition of Bayesian transformation. For any opinion
x from J0 and Bayesian opinion y we have: t(y) = t(x c©y) = t(x) c©t(y), there is no neutral element on
G, hence it should be t(x) = t(y). Thus we have t(x) = t(y) = t(0) for x ∈ J0, y ∈ G (i.e. t(z) = t(0)
for z ∈ D0, hence t is a trivial transformation again which is not a Bayesian transformation.

�

7 A Comparison of Jøsang’s Semigroup with Dempster’s one

Both the algebraic structures have the following similarities:
Both of them are ordered Abelian semigroups with neutral element (0, 0, 1).
There is the same unary operation minus − which is not inverse in both the cases.
Both the structures have subsemigroups S, S1, S2 with neutral elements.
Both of them have a surjective homomorphism D0 −→ S.
We can define group S0 on subsets S0 = S1 ∪ S2 of both the structures (with ⊕ ◦ h0, -, and ≤, in the
case of D0, while c© ◦ q0, -, and ≤qr in the case of J0).
In both the cases there exist surjective ordered homomorphism onto group S0.
Both the operations ⊕ and c© are expressable using the pair of homomorphisms.
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Differences:
Demspter’s semigroup is defined on all non-extremal d-pairs, ⊕ is not defined for �⊕⊥, while Jøsang’s
semigroup is defined on Bayesian d-pairs only, i.e. on D0 − G.
On the other hand the consensus operator c© is defined on the whole extended D+

0 but it is necessary
to use additional information to obtain its associativity.
S⊕

0 = (S0,⊕S0 ,−, 0,≤) is isomorphic to G = (G,⊕,−, 0′,≤) while
S c©

0 = (S0, c©S0 ,−, 0,≤qr) collapses to {0′}.

⊕ forms a OAG on G, while behaviour of c© is completely different on G:
c© is not associative on the set G,
0′ = (1

2 , 1
2 ) is not neutral element,

all Bayesian opinions are absorbing with respect to non-Bayesian,
extremal elements (absolute opinions) are not absorbing with respect to Bayesian.

We have to remember a different interpretations of uncertainty here. In the Dempster’s semigroup
certainty / uncertainty of d-pair x is defined as h(x), especially for Bayesian d-pair y = (b, d, 0) the
value b is just the certainty / uncertainty of y. Value f(x) corresponds to vagueness / impreciseness
of x. Bayesian d-pairs are precise, while 0 = (0, 0, 1) is the most vague d-pair. This corresponds also
to general consideration of probability as a tool for uncertainty processing.

In the opinion space interpretation Bayesian opinions have no uncertainty, they are considered to
be certain. And uncertainty increases with a distance from Bayesians.

The principal is the following.
⊕ combination of any two elements (d-pairs / opinions) is on an ellipse further from 0 (closer to G),
and similarly, c© combination of any two elements is on a straight line (r-line) further from 0. I.e. the
measure u = 1 − b − d is decreased by the combination, regardless on its interpretation (vagueness /
uncertainty).
Both combinations ⊕ and c© of two elements ≥ 0′ (or two ones ≤ 0) are on homomorphic straight
lines (h-lines, q-lines) further from S. In the case of the Dempster’s semigroup, we can interpret it as
that big values (close to (1, 0, 0), d-pairs ≥ 0′) are increased (closer to (1, 0, 0)), while small values are
decreased (closer to (0, 1, 0)). It is caused by a cumulative nature of the Dempster’s rule ⊕. There is
no such an interpretation in the case of Jøsang’s semigroup. It is caused by an averaging nature of
the consensus operator c©.
Example: (0.8, 0.1, 0.1) c©(0.6, 0.3, 0.1) = (14

19 , 4
19 , 1

19 , ) = (0.7368, 0.2105, 0.0526), thus Bayesian
transformation of the beliefs should be in the following intervals [0.8, 0.9], [0.6, 0.7] and [0.7368, 0.7895]
respectively, hence the value of the first opinion is decreased.

8 Conclusions and Perspectives

A new algebraic structure — Jøsang’s semigroup — is defined on a binary frame of discernment.
Jøsang’s semigroup and related structures are analysed in this text. It is compared with the analogi-
cally constructed Dempster’s semigroup.

The analysis of an algebraic nature of the consensus operator moves us on to better and deeper
understanding of this operator and also understanding of combining of several beliefs in general.

The main theoretical disadvantage of the present state of the consensus operator is its non-
associativity on dogmatic beliefs. This problem was already partially solved with using of an additive
information, see an example of associative consensus of three dogmatic beliefs in [8]. On the other
hand theoretically clean associative consensus of several dogmatic beliefs is still an interesting open
problem.

The other interesting topic for a future research is a comparison of the focusing of a frame of
discernment introduced by Jøsang, see [13], [14], with the approach of refinement / coarsening of a
frame of discernment suggested in [5] and used in [6].
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