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Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: +420 266 053 030, fax: +420 286 585 789,
e-mail:sima@cs.cas.cz



Institute of Computer Science
Academy of Sciences of the Czech Republic

Tristrips on Hopfield networks
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Abstract:

The important task of generating the minimum number of sequential triangle strips (tristrips) for a given
triangulated surface model is motived by applications in computer graphics. This hard combinatorial opti-
mization problem is reduced to the minimum energy problem in Hopfield nets by a linear-size construction.
In particular, the classes of equivalent optimal stripifications are mapped one to one to the minimum energy
states that are reached during any sequential computation by a Hopfield network starting at the zero initial
state. Thus the underlying Hopfield network powered by simulated annealing (i.e. Boltzmann machine)
which is implemented in a program HTGEN can be used for computing the semi-optimal stripifications.
Practical experiments confirm that one can obtain much better results using HTGEN than by a leading
stripification program FTSG although the running time of simulated annealing grows rapidly when the
global optimum is being approached.
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1 Sequential triangular strips

Piecewise-linear surfaces defined by sets of triangles (triangulation) are widely used representations
for geometric models. Computing a succinct encoding of a triangulated surface model represents an
important problem in graphics and visualization. Current 3D graphics rendering hardware often faces
a memory bus bandwidth bottleneck in the processor-to-graphics pipeline. Apart from reducing the
number of triangles that must be transmitted it is also important to encode the triangulated surface
efficiently. A common encoding scheme is based on sequential triangle strips which avoid repeating the
vertex coordinates of shared triangle edges. Triangle strips are supported by several graphics libraries
(e.g. IGL, PHIGS, Inventor, OpenGL).

In particular, a sequential triangle strip (hereafter briefly tristrip) of length m − 2 is an ordered
sequence of m ≥ 3 vertices σ = (v1, . . . , vm) which encodes the set of n(σ) = m− 2 different triangles
Tσ = {{vp, vp+1, vp+2} ; 1 ≤ p ≤ m − 2} so that their shared edges follow alternating left and right
turns as indicated in Figure 1.1.a by a dashed line. Thus a triangulation consisting of a single tristrip
with n triangles allows transmitting of only n+2 (rather than 3n) vertices. In general, a triangulated
surface model T with n triangles that is decomposed into k tristrips Σ = {σ1, . . . , σk} requires only
n + 2k vertices to be transmitted. A crucial problem is to decompose a triangulated surface model
into the fewest tristrips. This stripification problem has recently been proved to be NP-complete in
article [3] which also contains a more detailed related discussion complemented by references. In the
present paper a new method of generating tristrips Σ for a given triangulated surface model T with
n triangles is proposed which is based on a linear-time reduction to the minimum energy problem in
Hopfield network HT having O(n) units and connections. This approach has been inspired by a more
complicated and incomplete reduction (sequential cycles were not excluded) introduced in [8] which
was supported only by experiments.

The paper is organized as follows. After a brief review of the basic definitions concerning Hopfield
nets in Section 2, the main construction of Hopfield networkHT for a given triangulation T is described
in Section 3. The correctness of this reduction is formally verified in Section 4 by proving a one-to-one
correspondence between the classes of equivalent optimal stripifications of T and the minimum energy
states reached byHT during any sequential computation starting at the zero initial state (orHT can be
initialized arbitrarily if one asymmetric weight is introduced). This provides another NP-completeness
proof for the minimum energy problem in Hopfield nets. In addition, HT combined with simulated
annealing (i.e. Boltzmann machine) has been implemented in a program HTGEN which is compared
against a leading stripification program FTSG in Section 5. Practical experiments show that HTGEN
can compute much better stripifications than FTSG although the running time of HTGEN grows
rapidly when the global optimum is being approached.
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Figure 1.1: (a) Tristrip (1,2,3,4,5,6,3,7,1) (b) Sequential cycle (1,2,3,4,5,6,1,2)
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2 The minimum energy problem

In his 1982 paper [5], John Hopfield introduced a very influential associative memory model which has
since come to be widely known as the (symmetric) Hopfield network. The fundamental characteristic of
this model is its well-constrained convergence behavior as compared to arbitrary asymmetric networks.
Part of the appeal of Hopfield nets also stems from their connection to the much-studied Ising spin
glass model in statistical physics [2], and their natural hardware implementations using electrical
networks [6] or optical computers [4]. Hopfield networks have also been applied to the fast approximate
solution of combinatorial optimization problems [7].

Formally, a Hopfield network is composed of s computational units or neurons, indexed as 1, . . . , s,
that are connected into undirected graph or architecture, in which each connection between unit i
and j is labeled with an integer symmetric weight w(i, j) = w(i, j). The absence of a connection
within the architecture indicates a zero weight between the respective neurons, and vice versa. For
example, w(j, j) = 0 is assumed for j = 1, . . . , s. The sequential discrete dynamics of such a network
is here considered, in which the evolution of the network state y(t) = (y(t)

1 , . . . , y
(t)
s ) ∈ {0, 1}s is

determined for discrete time instants t = 0, 1, . . ., as follows. The initial state y(0) may be chosen
arbitrarily, e.g. y(0) = (0, . . . , 0). At discrete time t ≥ 0, the excitation of any neuron j is defined as
ξ
(t)
j =

∑s
i=1 w(i, j)y(t)

i − h(j) including an integer threshold h(j) local to unit j. At the next instant

t + 1, one (e.g. randomly) selected neuron j computes its new output y
(t+1)
j = H(ξ(t)

j ) by applying
the Heaviside activation function H, that is, j is active when H(ξ) = 1 for ξ ≥ 0 while j is passive
when H(ξ) = 0 for ξ < 0. The remaining units do not change their states, i.e. y

(t+1)
i = y

(t)
i for i 6= j.

In this way the new network state y(t+1) at time t + 1 is determined.
In order to formally avoid long constant intermediate computations when only those units are

updated that effectively do not change their outputs, a macroscopic time τ = 0, 1, 2, . . . is introduced
during which all the units in the network are updated. A computation of a Hopfield network converges
or reaches a stable state y(τ∗) at macroscopic time τ∗ ≥ 0 if y(τ∗) = y(τ∗+1). The well-known
fundamental property of a symmetric Hopfield network is that its dynamics is constrained by energy
function

E(y) = −1
2

s∑

j=1

s∑

i=1

w(i, j)yiyj +
s∑

j=1

h(j)yj (2.1)

which is a bounded function defined on its state space whose value decreases along any nonconstant
computation path (to be precise it is assumed here without loss of generality that ξ

(t)
j 6= 0). It

follows from the existence of such a function that starting from any initial state the network converges
towards some stable state corresponding to a local minimum of E [5]. Thus the cost function of a hard
combinatorial optimization problem can be encoded into the energy function of a Hopfield network
which is then minimized in the course of computation. Hence, the minimum energy problem of finding
a network state with minimum energy is of special interest. Nevertheless, this problem is in general
NP-complete [2] (see also [9] for related results).

A stochastic variant of Hopfield model called the Boltzmann machine [1] is also considered in
which randomly selected unit j becomes active at time t + 1, i.e. y

(t+1)
j = 1, with probability P (ξ(t)

j )
which is computed by applying the probabilistic activation function P : R −→ (0, 1) defined as
P (ξ) = 1/(1 + e−2ξ/T (τ)

) where T (τ) is a so-called temperature at microscopic time τ > 0. This
parameter is controlled by simulated annealing, e.g.

T (τ) =
T (0)

log(1 + τ)
(2.2)

for sufficiently high initial temperature T (0). The simulated annealing is a powerful heuristic method
for avoiding the local minima in combinatorial optimization.
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3 The reduction

For the purpose of reduction the following definition are introduced. Let T be a set of n triangles that
represents a triangulated surface model homeomorphic to a sphere in which each edge is incident to
at most two triangles. An edge is said to be internal if it is shared by exactly two triangles; otherwise
it is a boundary edge. Denote by I and B the sets of internal and boundary edges, respectively, in
triangulation T . Furthermore, a sequential cycle is a “cycled tristrip”, that is, an ordered sequence
of vertices C = (v1, . . . , vm) where m ≥ 4 is even, which encodes the set of m − 2 different triangles
TC = {{vp, vp+1, vp+2} ; 1 ≤ p ≤ m − 2} so that v1 = vm−1 and v2 = vm. Also denote by IC

and BC the sets of internal and boundary edges of sequential cycle C, respectively, that is IC =
{{vp, vp+1} ; 1 ≤ p ≤ m − 2} and BC = {{vp, vp+2} ; 1 ≤ p ≤ m − 2}. An example of the sequential
cycle is depicted in Figure 1.1.b where its internal and boundary edges are indicated by dashed and
dotted lines, respectively. In addition, let C be the set of all sequential cycles in T .

For each sequential cycle C ∈ C one unique representative internal edge eC ∈ IC can be chosen
as follows. Start with any cycle C ∈ C and choose any edge from IC to be its representative edge
eC . Observe that for a fixed orientation of triangulated surface any internal edge follows either left
or right turn corresponding to at most two sequential cycles. Thus denote by C ′ the sequential cycle
having no representative edge so far which shares its internal edge eC ∈ IC ∩ IC′ with C if such C ′

exists; otherwise let C ′ be any sequential cycle with no representative internal edge or stop if all the
sequential cycles do have their representative edges. Further choose any edge from IC′ \ {eC} to be
the representative edge eC′ of C ′ and repeat the previous step with C replaced by C ′. Clearly, each
edge represents at most one cycle because set IC′ \ {eC} 6= ∅ always contains only edges that do not
represent any cycle so far. If it were not the case then another sequential cycle C ′′ different from C
would obtain its representative edge eC′′ from IC′∩IC′′ and hence a representative edge would already
be assigned to C ′ (immediately after eC′′ was assigned to C ′′) before C is considered.

Hopfield networkHT corresponding to triangulation T will now be constructed. With each internal
edge e = {v1, v2} ∈ I two neurons `e and re are associated whose states either y`e = 1 or yre = 1
indicate that e follows the left or right turn, respectively, along a tristrip according to the chosen
orientation of triangulated surface. Let Le = {e, e1, e2, e3, e4} with e1 = {v1, v3}, e2 = {v2, v3},
e3 = {v2, v4}, and e4 = {v1, v4} be the set of edges of the two triangles {v1, v2, v3}, {v1, v2, v4} that
share edge e. Denote by Je = {`f , rf ; f ∈ Le ∩ I} the set of neurons local to e that are associated
with the internal edges from Le. Unit `e is connected with all neurons from Je via negative weights
except for units re2 (if e2 ∈ I), `e, and re4 (if e4 ∈ I) whose states may encode a tristrip that traverses
edge e by the left turn. Such a situation (for Le ⊆ I) is depicted in Figure 3.1.a where the edges
shared by triangles within the tristrip together with associated active neurons re2 , `e, re4 are marked.
Similarly, unit re is connected with neurons from Je except for units `e1 (if e1 ∈ I), re, and `e3 (if
e3 ∈ I) corresponding to the right turn. Thus define weights

w(i, `e) = −7 for i ∈ J`e = Je \ {re2 , `e, re4}
w(i, re) = −7 for i ∈ Jre = Je \ {`e1 , re, `e3}

(3.1)

for each internal edge e ∈ I. Hence, the states of Hopfield network HT with the negative symmetric
weights which enforce locally the alternation of left and right turns encode tristrips. Furthermore, for
each representative edge eC (C ∈ C) define jC = `eC

if eC follows the left turn along sequential cycle
C or jC = reC

if eC follows the right turn along C. Let J = {jC ; C ∈ C} be the set containing all
such neurons whereas J ′ = {`e, re 6∈ J ; e ∈ I} denotes its complement. The thresholds of neurons
associated with internal edges are defined:

h(j) =
{ −5 + 2be(j) for j ∈ J ′

1 + 2be(j) for j ∈ J ,
(3.2)

where e(j) = e for j ∈ {`e, re} and be = |{C ∈ C ; e ∈ B′
C}| ≤ 2 for B′

C = BC \ LeC
.

Nevertheless, Hopfield network HT must also avoid the states encoding cycled strips of triangles
around sequential cycles [3]. As follows from the analysis below such infeasible states would have less
energy (2.1) than those encoding the optimal stripifications. For this purpose, two auxiliary neurons
dC , aC are introduced for each sequential cycle C ∈ C. Unit dC computes the disjunction of outputs
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Figure 3.1: The construction of Hopfield network HT

from all neurons i associated with boundary edges e(i) ∈ B′
C of C which, being active, enables the

activation of unit jC associated with representative edge eC . Hence, any tristrip may pass through
edge eC along the direction of C only if a boundary edge of C is is a part of another tristrip crossing
the sequential cycle C. This ensures that the states of Hopfield network HT do not encode sequential
cycles. In addition, unit aC balances the contribution of dC to the energy when jC is passive. As
depicted in Figure 3.1.b this is implemented by thresholds and symmetric weights:

h(dC) = h(aC) = 1 (3.3)
w(i, dC) = w(dC , i) = 2 for e(i) ∈ B′

C (3.4)
w(dC , jC) = w(jC , dC) = 7 (3.5)
w(dC , aC) = w(aC , dC) = 2 , w(jC , aC) = w(aC , jC) = −2 (3.6)

for each sequential cycle C ∈ C. This completes the construction of Hopfield network HT .
Moreover, observe that the number of units s = 2|I|+2|C| in HT is linear in terms of triangulation

size n = |T | because the number of sequential cycles |C| can be upper bounded by 2|I| = O(n) since
each internal edge can belong to at most two cycles. Similarly, the number of connections in HT can
be upper bounded by 7 · 2|I| + 2 · 2|I| + 3|C| = O(n) according to (3.1) and (3.4)–(3.6) since again
each internal edge may appear in BC for at most two C ∈ C. It can be checked that the reduction
can also be done within linear time O(n).

4 The correctness

The correctness of the reduction introduced in Section 3 will be verified by proving Theorem 1 below.
Let ST be the set of optimal stripifications with the minimum number of tristrips for T . Define Σ ∈ ST

is equivalent with Σ′ ∈ ST if their corresponding tristrips encode the same sets of triangles, i.e. Σ ∼ Σ′

iff {Tσ ; σ ∈ Σ} = {Tσ′ ; σ′ ∈ Σ′}. For example, two equivalent optimal stripifications may differ in a
tristrip σ encoding triangles Tσ = TC of sequential cycle C which is split at two different positions.
Moreover, let [Σ]∼ = {Σ′ ∈ ST ; Σ′ ∼ Σ} be the class of optimal stripifications equivalent with Σ ∈ ST

and denote by ST /∼ = {[Σ]∼ ; Σ ∈ ST } the partition of ST into equivalence classes.

Theorem 1 Let HT be a Hopfield network corresponding to triangulation T with n triangles and
denote by Y ∗ ⊆ {0, 1}s the set of stable states that can be reached during any sequential computation
by HT starting at the zero initial state. Then each state y ∈ Y ∗ encodes a correct stripification Σy of
T into k tristrips and has energy

E(y) = 5(k − n) . (4.1)
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In addition, there is a one-to-one correspondence between the classes of equivalent optimal stripifica-
tions [Σ]∼ ∈ ST /∼ having the minimum number of tristrips for T and the states in Y ∗ with minimum
energy miny∈Y ∗ E(y).

Proof: Stripification Σy is decoded from y ∈ Y ∗ as follows. Denote by I0 = {e ∈ I ; y`e = yre = 0}
the set of internal edges e ∈ I whose associated neurons `e, re are passive and let I1 = I \ I0 be
its complement. Set Σy contains each ordered sequence σ = (v1, . . . , vm) of m ≥ 3 vertices that
encodes n(σ) = m− 2 different triangles {vp, vp+1, vp+2} ∈ T for 1 ≤ p ≤ m− 2 such that their edges
e0 = {v1, v3}, em = {vm−2, vm}, and ep = {vp, vp+1} for 1 ≤ p ≤ m−1 satisfy e0, e1, em−1, em ∈ I0∪B
and e2, . . . , em−2 ∈ I1. Notice that σ ∈ Σy with n(σ) = 1 encodes a single triangle with all its edges
in I0 ∪B. It will be proved that Σy is a correct stripification of T .

It will first be observed that every neuron j ∈ J ∪ J ′ associated with an internal edge is passive if
there is an active unit i ∈ Jj . This ensures that each σ ∈ Σy encodes a set of different triangles Tσ

whose shared edges follow alternating left and right turns. It also follows that sets Tσ are pairwise
disjoint for σ ∈ Σy. In particular, for each unit j ∈ J ∪ J ′ the number of positive weights (3.4)
contributing to its excitation ξj is at most be(j) ≤ 2 which are subtracted within threshold h(j)
according to (3.2). Hence, if all units i ∈ Jj are passive then ξj ≤ 5 for j ∈ J ′, and ξj ≤ 6 for
j ∈ J which may include weight (3.5). Thus, an active unit i ∈ Jj contributing to ξj via negative
weight (3.1) makes unit j passive due to y is a stable state. Further, it must also be checked that
stripification Σy covers all triangles in T , that is,

⋃
σ∈Σy

Tσ = T . According to the definition of Σy

it suffices to prove that there is no sequential cycle C = (v1, . . . , vm) such that ep = {vp, vp+1} ∈ I1

for all p = 1, . . . ,m− 2. On the contrary suppose that such C exists which implies (BC ∩ I) ⊆ I0. It
follows that unit jC ∈ J associated with eC = eq for some 1 ≤ q ≤ m−2 could not be activated during
sequential computation of HT starting at the zero state, that is, y

(t)
jC

= 0 for t ≥ 0 since its positive
threshold h(jC) defined in (3.2) can be reached only by weight (3.5) from dC . However, dC computes
the disjunction of outputs from neurons i for e(i) ∈ B′

C ⊆ I0 according to (3.3) and (3.6) which are
passive in the course of computation. Hence, y

(t)
dC

= 0 for t ≥ 0 making also unit aC passive. Thus
eq ∈ I0 which is a contradiction. This completes the argument for Σy to be a correct stripification of
T .

Furthermore, assume that Σy contains k tristrips. ¿From the definition of Σy each tristrip σ ∈ Σy

is encoded using n(σ)− 1 edges from I1. Hence,

|I1| =
∑

σ∈Σy

(n(σ)− 1) = n− k (4.2)

which equals the number of active units in J ′ ∪ J . It will be shown that each active neuron j ∈ J ′ ∪ J
is accompanied with a contribution of −5 to energy (2.1) which gives (4.1) according to (4.2). Assume
that neuron j ∈ J ′ ∪ J is active which implies yi = 0 for all units i ∈ Jj . Moreover, neuron j is
connected to be(j) units dC for e(j) ∈ B′

C which are active since the underlying disjunctions include
active j. Consider first the case of active neuron j ∈ J ′ which produces the following contribution to
the energy:

−1
2
be(j)w(dC , j)− 1

2
be(j)w(j, dC) + h(j) = −be(j)w(dC , j) + h(j) = −5 (4.3)

according to (2.1), (3.2), and (3.4). Similarly, active neuron jC ∈ J assumes active unit dC and makes
aC passive due to (3.3) and (3.6), which contributes to the energy:

−be(jC)w(jC , dC)− w(dC , jC) + h(jC) + h(dC) = −5 . (4.4)

On the other hand, unit aC balances the contribution of active neuron dC to the energy when jC is
passive, that is, −w(aC , dC) + h(dC) + h(aC) = 0 according to (3.3) and (3.6).

Finally, optimal stripification Σ ∈ ST is encoded by state y of HT so that Σ ∈ [Σy]∼. Equivalent
stripification Σ′ ∼ Σ is used to determine state y such that Σy = Σ′. For each tristrip σ ∈ Σ that
encodes triangles Tσ = TC of some C ∈ C, define a corresponding tristrip σ′ = (v1, . . . , vm) ∈ Σ′

having Tσ′ = Tσ so that σ′ starts with representative edge eC = {v1, v2}. Then neuron `e or re from
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J ′ ∪ J is active iff there is tristrip σ = (v1, . . . , vm) ∈ Σ′ such that its edge e = {vp, vp+1} for some
2 ≤ p ≤ m − 2 follows the left or right turn, respectively. In addition, unit dC for C ∈ C is active
iff there is active neuron i ∈ J ′ ∪ J for e(i) ∈ B′

C while unit aC is active iff dC is active and jC is
passive. It follows that y is a stable state of HT . It must still be proved that y can be reached during
sequential computation by HT starting at the zero initial state, that is y ∈ Y ∗.

Define a directed graph G = (C,A) whose vertices are sequential cycles C ∈ C and (C1, C2) ∈ A
is an edge of G iff eC1 ∈ B′

C2
. Let C′ ⊆ {C ∈ C ; yjC

= 1} be a subset of all the vertices C ∈ C
with yjC = 1 that create directed cycles in G. On the contrary suppose that units i are passive for
all e(i) ∈ ⋃

C∈C′ B
′
C \ EC′ where EC′ = {eC ; C ∈ C′}. Observe that for each C ∈ C′ units i for

e(i) ∈ BC ∩LeC
are also passive due to active jC . Thus it seems that such a stable state could not be

reached during any sequential computation by HT starting at the zero initial state since neurons jC ,
C ∈ C′, can be activated only by units dC , C ∈ C′, whose activation depends only on active jC , C ∈ C′,
in this case. Since Σy is the optimal stripification, the underlying tristrips follow internal edges of
sequential cycles C ∈ C′ as much as possible being interrupted only by edges from

⋃
C∈C′ BC \EC′ . In

addition, any tristrip σ ∈ Σy crossing some sequential cycle C1 ∈ C′, that is ∅ 6= Tσ ∩ TC1 6= TC1 , has
one its end within this cycle C1 because σ may enter C1 only through its boundary edge eC2 ∈ BC1

(i.e. yjC2
= 1) which is the only representative edge of sequential cycle C2 ∈ C′ that σ follows. It

will be proved below that there exists sequential cycle C ∈ C′ containing two tristrips σ1, σ2 ∈ Σy,
that is Tσ1 ⊆ TC and Tσ2 ⊆ TC . Hence, stripification Σ′y with fewer tristrips can be constructed from
Σy by introducing only one tristrip σ∗ ∈ Σ′y such that Tσ∗ = TC (e.g. yjC = 0) instead of the two
tristrips σ1, σ2 ∈ Σy while any tristrip σ ∈ Σy crossing and thus ending within sequential cycle C is
shortened to σ′ ∈ Σ′y so that Tσ′ ∩ TC = ∅ which does not increase the number tristrips. This will be
a contradiction with the assumption that Σy is the optimal stripification, and hence y ∈ Y ∗.

In order to prove that sequential cycle C ∈ C′ containing two tristrips exists consider first an
intersection of two cycles C1, C2 ∈ C′ that does not contain their representative edges, that is eC1 6∈ Le

and eC2 6∈ Le for some edge e ∈ IC1 ∩ IC2 . Adopt the notation introduced in Figure 3.1.a so that
e1, e, e3 ∈ IC1 and e2, e, e4 ∈ IC2 . Let triangle {v1, v2, v3} ∈ Tσ be encoded by tristrip σ ∈ Σy. If either
unit `e or neuron re is active then σ encodes exactly two triangles Tσ = {{v1, v2, v3}, {v1, v2, v4}} ⊆
TC1 ∩ TC2 sharing edge e = {v1, v2} since re2 , re4 and `e1 , `e3 are passive neurons associated with
boundary edges e2, e4 ∈ BC1 \ {eC2} and e1, e3 ∈ BC2 \ {eC1}, respectively. On the other hand,
if both units `e, re are passive then at most one neuron, either re1 or `e2 , may be active provided
that e1, e2 ∈ IC3 for some sequential cycle C3 ∈ C′ with representative edge eC3 = e1 or eC3 = e2,
respectively. In this case, σ may encode one more triangle from either TC1 or TC2 sharing edge e1

or e2, which cannot be further extended since σ following C3 crosses C2 or C1, respectively. Thus
conclude that the intersection of C1, C2 ∈ C′ produces one short tristrip σ ∈ Σy of length n(σ) ≤ 2
encoding one or two triangles, and Tσ ⊆ TC1 or Tσ ⊆ TC2 .

Furthermore, consider the subset of sequential cycles C′′ ⊆ C′ whose boundary edges form the
exterior boundary of set of triangles

⋃
C∈C′ TC . The triangles whose edges form a connected part

of this exterior boundary belonging to one sequential cycle C1 ∈ C′′ are encoded by single tristrip
σ1 ∈ Σy such that Tσ1 ⊆ TC1 because Σy is the optimal stripification and there is no sequential
cycle in C′ crossing C1 ∈ C′′. Moreover, there is a so-called boundary intersection of two sequential
cycles C1, C2 ∈ C′′ when the exterior boundary passes from the part formed by C1 to that formed by
C2. It follows that there are at least |C′′| such intersections. Assume first that there is a boundary
intersection of C1, C2 ∈ C′′ that does not contain eC1 , eC2 . Hence this intersection produces one short
tristrip σ ∈ Σy of length n(σ) ≤ 2 such that e.g. Tσ ⊆ TC1 , which together with σ1 ∈ Σy satisfying
also Tσ1 ⊆ TC1 gives C = C1 containing two tristrips. In the opposite case, each boundary intersection
of C1, C2 ∈ C′′ must contain just one representative edge eC1 or eC2 because there are only |C′′| edges
representing the sequential cycles in C′′. Clearly, the other non-boundary intersection of C1, C2 ∈ C′′
exists which cannot contain eC1 , eC2 , and hence C ∈ C′ containing two tristrips can be found again.

Obviously, the class of equivalent optimal stripifications [Σy]∼ with the minimum number of
tristrips corresponds uniquely to the state y ∈ Y ∗ having minimum energy miny∈Y ∗ E(y) accord-
ing to (4.1). 2

Note that the reduction in Theorem 1 together with the fact that the optimal stripification prob-
lem is NP-complete [3] provides another NP-completeness proof for the minimum energy problem in
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Hopfield networks (cf. [2, 9]). In addition, the restriction to the zero initial network states in The-
orem 1 can be inconvenient e.g. for stochastic computation. Without this constraint, however, HT

may reach infeasible states. In particular, initially active unit jC can activate dC in spite of yi = 0
for all e(i) ∈ B′

C , which admits sequential cycle C. Nevertheless, this can be secured by introducing
asymmetric weight w(dC , jC) = 7 whereas w(jC , dC) = 0 (cf. (3.5)). This revision which is used for
experiments in Section 5 does not break the convergence of HT to states y ∈ Y ∗.

5 Experiments

A C++ program HTGEN has been created to automate the reduction from Theorem 1 including
the simulation of Hopfield network HT using simulated annealing (2.2). The input for HTGEN is an
object file (in the Wavefront .obj format) describing triangulated surface model T by a list of geometric
vertices with their coordinates followed by a list of triangular faces each composed of three vertex
reference numbers. The program generates corresponding HT which then computes stripification Σy

of T . This is extracted from final stable state y = y(τ∗) ∈ Y ∗ of HT at microscopic time τ∗ into
an output .obj file containing a list of tristrips together with vertex data. The user may control the
Boltzmann machine by specifying the initial temperature T (0) for (2.2) and the stopping criterion ε
given as the maximum percentage of unstable units at the end of stochastic computation.

Program HTGEN has been compared against a leading practical system FTSG that computes
stripifications [3]. Apart from other data, experiments have been conducted using “grid” models which
are generated by randomly triangulating each square in a b×b regular grid containing of n = 2(b−1)2

triangles. The average number of tristrips obtained by HTGEN and FTSG are summarized in Table 5.1
where 10 random models were used for each grid size b = 15, 25, 35. The results from HTGEN were
further averaged for each model over 10 trials of simulated annealing applied for three different initial
temperatures T (0) and stopping criteria ε. The corresponding average convergence times τ∗ together
with the running times in seconds (on common PC) increase as T (0) increases (and ε decreases). Thus
T (0) controls the trade-off between the running time and the quality of stripification. One can achieve
much better results by HTGEN than by using FTSG with its most successful options (-dfs, -alt)
although the running time of HTGEN grows rapidly when the global optimum is being approached.
As concerns the time complexity, system HTGEN cannot compete with real-time program FTSG
providing the stripifications within a few milliseconds. Nevertheless, HTGEN can be useful if one is
interested in the stripification with a small number of tristrips at a preprocessing stage.

Table 5.1: The average number of tristrips for “grid” models obtained by HTGEN and FTSG

n HTGEN FTSG
T (0) = 5, ε = 0.3 T (0) = 10, ε = 0.05 T (0) = 18, ε = 0.01

392 88 63 53 67
τ∗ = 23 (0.10s) τ∗ = 166 (0.72s) τ∗ = 1648 (7.21s)
T (0) = 5, ε = 0.1 T (0) = 10, ε = 0.05 T (0) = 15, ε = 0.1

1152 243 172 151 187
τ∗ = 442 (0.76s) τ∗ = 347 (6.01s) τ∗ = 1107 (18.99s)
T (0) = 7, ε = 0.1 T (0) = 10, ε = 0.05 T (0) = 15, ε = 0.1

2312 404 337 297 373
τ∗ = 117 (5.31s) τ∗ = 489 (21.29s) τ∗ = 1967 (86.28s)
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