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http://www.nusl.cz/ntk/nusl-19521
http://www.nusl.cz
http://www.nusl.cz


Institute of Computer Science
Academy of Sciences of the Czech Republic

Algebraic Structures Related to the
Combination of Belief Functions

Milan Daniel

Technical report No. 872

September 2002
Revised December 2002
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Abstract:

Based on a new demand — the commutativity of belief functions combination with refinement /
coarsening of the frame of discernment — the role of the disjunctive rule of combination has increased.
To compare the nature of this rule with a more frequent but also more controversional one, i.e. with
Dempster’s rule, an algebraic analysis was used.

The basic necessary definitions both from the Dempster-Shafer theory and from algebra are recalled.
An algebraic investigation of the Dempster’s semigroup — the algebraic structure of binary belief functions
with the Dempster’s rule of combination is briefly recalled as well.

After this, a new algebraic structure of binary belief functions with the disjunctive rule of combination
is defined. The structure is studied, and the results are discussed in a comparison with those ones of the
classical Dempster’s rule.

In the end, an impact of new algebraic results to the field of decision making and some ideas for future
research are presented.
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1 Introduction

When combining two or more belief functions, there are generally accepted requirements of associativ-
ity and commutativity of an operation of their combination. A new requirement of commutativity of a
combination with refinement/coarsening of the frame of discernment was introduced in [8]. There are
three sources of this requirement: it arises from some applications of belief functions (namely in cases
of subjective beliefs which are not constructed from probabilities), furthermore it arises from logical
studies on belief functions, see [11], and it is motivated by the utilization of a method of representing
a n-dimensional belief function by a set of two-dimensional ones, see [7].

The classical Dempster-Shafer theory uses the Dempster’s (conjunctive) rule of combination ⊕,
while the Transferable Belief Model [16, 17] uses its non-normalized version ∩©. To meet the new
requirement it is necessary to use the disjunctive rule of combination ∪©, which is the only known
associative and commutative combination of belief functions which commutes with coarsening of the
frame of discernment (while ⊕ and ∩© commute with refinement only).

An algebraic structure of binary belief functions with Demspter’s rule ⊕, called the Dempster’s
semigroup, was in detail studied in a series of publications, e.g. [1, 4, 12, 13, 18]. The new importance
of the disjunctive rule of combination ∪© is the motivation for a study of algebraic structures of belief
functions with ∪© to obtain a better theoretical comparison of both approaches.

The next section briefly recalls the basic definitions. An algebraic analysis of the Dempster’s
semigroup which is used as a methodology for the presented investigation is overviewed in the third
section.

In Section 4, a new algebraic structure — the algebraic structure of belief functions with operation
of combination ∪© (disjunctive rule of combination) — is defined. The structure is analyzed there.
The results are discussed and compared with those of the Dempster’s semigroup in Section 5.

In Section 6, the disjunctive rule of combination ∪© is considered from a decision making approach
and its impact to this area is presented. In the end, some ideas for future research are outlined as
well.

2 Preliminaries

Let us recall some basic algebraic notions and some basic notions from the Dempster-Shafer theory
before we begin a description of its algebra.

A commutative semigroup (called also an Abelian semigroup) is a structure X = (X,⊕) formed by
the set X and a binary operation ⊕ on X which is commutative and associative (x⊕ y = y ⊕ x and
x⊕(y⊕z) = (x⊕y)⊕z holds for all x, y, z ∈ X). A commutative group is a structure X = (X,⊕,−, o)
such that (Y,⊕) is a commutative semigroup, o is a neutral element (x ⊕ o = x) and − is a unary
operation of the inverse (x ⊕ −x = o). An ordered Abelian (semi)group consists of a commutative
(semi)group X as above and a linear ordering ≤ of its elements satisfying monotonicity (x ≤ y implies
x⊕z ≤ y⊕z for all x, y, z ∈ X). A subset of X which is a (semi)group itself is called a sub(semi)group.
A subsemigroup ({x|x ≥ o, x ∈ X},⊕, o) is called a positive cone of the ordered Abelian group (OAG)
X, similarly a negative cone of OAG Y for x ≤ o.

For uncertainty processing, we extend OAG with extremal elements > and ⊥ representing True
and False, >⊕ x = >, ⊥⊕ x = ⊥, >⊕⊥ not defined. 3

A homomorphism p : (X,⊕1) −→ (Y,⊕2) is a mapping which preserves structure, i.e. p(x⊕1 y) =
p(x)⊕2 p(y) for each x, y ∈ X. The special cases are automorphisms, which are bijective morphisms
from a structure onto itself, while endomorphisms are morphisms to a substructure of the original one.

Morphisms which also preserve ordering of elements are called ordered morphisms, see [10]. Ordered
automorphisms (o-automorphisms) are ordered morphisms back to the original structures, analogically
o-endomorphisms are ordered morphisms to a substructure of the original one.

Ordered structures and ordered morphisms are very important for a comparative approach to
uncertainty management and decision making.

3Some examples are OAG+ PP = ([0, 1],⊕PP , 1 − x, 1
2
,≤) and MC = ([−1, 1],⊕MC ,−, 0,≤) corresponding to

the combining structures of the classical expert systems PROSPECTOR and EMYCIN, see [12], where x ⊕PP y =
xy

xy+(1−x)(1−y)
and x⊕MC y = x + y − xy for x, y ≥ 0, x + y + xy for x, y ≤ 0 and x+y

1−min(|x|,|y|) for xy ≤ 0.
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Let us consider a two-element frame of discernment Θ = {0, 1}. A basic belief assignment is a
mapping m : P(Θ) −→ [0, 1], such that

∑
A⊆Θ m(A) = 1. A belief function is a mapping bel : P(Θ) −→

[0, 1], bel(A) =
∑
∅6=X⊆A m(X). In our special case bel(1) = m(1), bel(0) = m(0), bel({0, 1}) =

m(1) + m(0) + m({0, 1}) = 1.
A focal element is a subset X of the frame of discernment, such that m(X) > 0. If all the focal

elements are singletons (i.e. one-element subsets of Ω), then we speak about Bayesian belief function.
A Bayesian transformation is a mapping t : BelΩ −→ ProbΩ, such that bel(x) ≤ t(bel)(x) ≤ 1−bel(x).
Thus the Bayesian transformation assigns a Bayesian belief function (i.e. probability fuction) to every
general one. The fundamental example of Bayesian transformation is the pignistic transformation
introduced by Smets.

The Dempster’s conjunctive rule of combination is given as
(bel1 ∩©bel2)(A) =

∑
X∩Y =A

1
K m1(X)m2(Y ), where K =

∑
X∩Y 6=∅m1(X)m2(Y ), see [15], while the

disjunctive rule of combination is given by the formula
(bel1 ∪©bel2)(A) =

∑
X∪Y =A m1(X)m2(Y ), see [9]. Specially for (m1(1),m1(0)) = (a, b), (m2(1), m2(0)) =

(c, d) we have (a, b)⊕ (c, d) = (1− (1−a)(1−c)
1−(ad+bc) , 1− (1−b)(1−d)

1−(ad+bc) ) and (a, b) ∪©(c, d) = (ac, bd).

3 On the Dempster’s semigroup

Now we introduce some principal notions according to [12]. For a two-valued frame of discernment
Θ = {0, 1} each basic belief assignment determines a d-pair (m(1),m(0)) and conversely, each d-pair
determines a basic belief assignment:

Definition 1 A Dempster’s pair (or d-pair) is a pair of reals such that a, b ≥ 0 and a + b ≤ 1. A
d-pair (a, b) is Bayesian if a + b = 1, (a, b) is simple if a = 0 or b = 0, in particular, extremal d-pairs
are pairs (1,0) and (0,1). (Definitions of Bayesian and simple d-pairs correspond evidently to the
usual definitions of Bayesian and simple belief assignments [12], [15]).

Definition 2 The (standard/conjunctive) Dempster’s semigroup D0 = (D0,⊕) is the set of all non-
extremal Dempster’s pairs, endowed with the operation ⊕ and two distinguished elements 0 = (0, 0)
and 0′ = ( 1

2 , 1
2 ), where the operation ⊕ is defined by

(a, b)⊕ (c, d) = (1− (1− a)(1− c)
1− (ad + bc)

, 1− (1− b)(1− d)
1− (ad + bc)

). (3.1)

Remark 1 It is well known that this operation corresponds to the Dempster’s rule (non-normalized
conjunctive rule) of combination of basic belief assignments on a binary frame of discernment, see
[12].

Remark 2 ⊕-sum of two d-pairs (a, b) ⊕ (c, d) is not defined if and only if (a, b) and (c, d) are
two different extremal d-pairs (the denominators are zeros). We can simply derive expressions of
Dempster’s rule for Bayesian d-pairs (i), simple d-pairs with the same (ii) and different (iii) focal
elements, and for d-pairs such that a = b (iv), from the basic form of the rule.
(i) (a, 1− a)⊕ (c, 1− c) = ( ac

ac+(1−a)(1−c) ,
(1−a)(1−c)

ac+(1−a)(1−c) ),
(ii) (a, 0)⊕ (c, 0) = (a + c− ac, 0),
(0, b)⊕ (0, d) = (0, b + d− bd),

(iii) (a, 0)⊕ (0, d) = (a−ad
1−ad , d−ad

1−ad ),
(iv) (a, a)⊕ (c, c) = (a+c−3ac

1−2ad , a+c−3ac
1−2ad ).

Definition 3 For (a, b) ∈ D0 we define

−(a, b) = (b, a),

h(a, b) = (a, b)⊕ 0′ = ( 1−b
2−a−b ,

1−a
2−a−b ),

h1(a, b) = 1−b
2−a−b ,

f(a, b) = (a, b)⊕ (b, a) = (a+b−a2−b2−ab
1−a2−b2 , a+b−a2−b2−ab

1−a2−b2 ).
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For (a, b), (c, d) ∈ D0 we further define
(a, b) ≤ (c, d) iff h1(a, b) < h1(c, d) or if h1(a, b) = h1(c, d) and a ≤ c.

Let G denote the set of all Bayesian non-extremal d-pairs. Let us denote the set of all simple
d-pairs such that b = 0 (a = 0) as S1 (S2). Furthermore, put
S = {(a, a) : 0 ≤ a ≤ 0.5}.
(Note: h(a, b) is an abbreviation for h((a, b)), etc.)

0 1

1

b

b

a

a

(a, b)

(b, a) = −(a, b)

f(a, b)
h(a, b)

h(b, a)

A B
0 = (0, 0)

⊥ = (0, 1)

> = (1, 0)

0′ = (1/2, 1/2)

S1

S2

S

G

Figure 3.1: Dempster’s semigroup. Homomorphism h is, in this representation, a projection to
group G along the straight lines running through the point (1, 1). All Dempster’s pairs lying on the
same ellipse are, by homomorphism f , mapped to the same d-pair in semigroup S.

Lemma 1 Let x, y (or (a, b), (c, d)) be elements of the Dempster’s semigroup. The following holds:
(i) −(x⊕ y) = −x⊕−y (i.e. −((a, b)⊕ (c, d)) = (b, a)⊕ (d, c)),
(ii) −(−x) = x (i.e. −(−(a, b)) = (a, b)),
(iii) −x is not an inverse to x, i.e. the equation (a, b) ⊕ (c, d) = (0, 0) has no solution in D0 for
(a, b) 6= (0, 0),
(iv) h(x) = 0′ if and only if x = −x if and only if 0 ≤ x ≤ 0′ if and only if x ∈ S.

For proofs see [13, 18].

Theorem 1

(i) The Dempster’s semigroup with the relation ≤ is an ordered commutative semigroup with the
neutral element 0; 0′ is the only nonzero idempotent of it.

(ii) The set G with the ordering ≤ is an ordered Abelian group (G,⊕,−, 0′,≤) which is isomorphic
to the PROSPECTOR group PP (cf. [12]) and consequently isomorphic to the additive group
of reals with usual ordering.

(iii) The sets S, S1 and S2 with the operation ⊕ and the ordering ≤ form ordered commutative
semigroups with neutral element 0, and are all isomorphic to the semigroup of nonnegative
elements (positive cone) of the MYCIN group MC.

(iv) The mapping h is an ordered homomorphism of the ordered Dempster’s semigroup onto its
subgroup G (i.e. onto PP).

(v) The mapping f is a homomorphism of the Dempster’s semigroup onto its subsemigroup S (but
it is not an ordered homomorphism).

3



For proofs see [12], [13], [18].

Note: ad (ii): A mapping p1(a, a− 1) = a is the ordered isomorphism of G onto the PROSPECTOR
group PP on interval (0, 1),
ad (iii): 0 is the least element of the semigroups; it is extended semigroup (with the greatest and
absorbing element 0′) in the case of S. A mapping p1(a, 0) = a is the ordered isomorphism of S1 onto
a semigroup of non-negative, non-extremal elements of the MYCIN group MC, while p2(0, b) = b is
the ordered isomorphism of S2 to the same semigroup (the positive cone of MC).
ad (iv): h-preimages of a d-pair (a, 1− a) lie on the straight line running through the pairs (a, 1− a)
and (1, 1), i.e. h−1(a, 1− a) is the intersection of this line with D0.
ad (v): Pairs with the same f -image f(a, b) lie on an ellipse running through pairs (0, 1), (1, 0),
and (a, b), where the main axis of the ellipse is parallel with the abscissa (segment of straight line)
(0, 1), (1, 0), hence f−1(f(a, b)) is the intersection of this ellipse with D0.

Using the theorem, see (iv) and (v), we can see that the Dempster’s rule is effected ’per h-lines
and f -ellipses’, and we can express (a⊕ b) ∈ h−1(h(a)⊕ h(b)), and (a⊕ b) ∈ f−1(f(a)⊕ f(b)), hence
we obtain the following equation

(a⊕ b) = h−1(h(a)⊕ h(b)) ∩ f−1(f(a)⊕ f(b)). (3.2)

Lemma 2 Let x, y, z (or (a, b), (c, d), (e, f)) be elements of the Dempster’s semigroup. The following
holds:
(i) x⊕ z < y ⊕ z for x < y & z /∈ G,
(ii) if x < y and h(x) = h(y) then f(x) < f(y).
(iii) λ(a, b) = (h(a, b), f(a, b)) is an one-to-one mapping of D0 into G× S but not onto G× S.
Let (g, 1− g) ∈ G and (s, s) ∈ S. There exist (a, b) ∈ D0 such that λ(a, b) = ((g, 1− g), (s, s)) if and
only if it holds 1−2s

2−3s ≤ g ≤ 1−s
2−3s .

For proofs see [13].

Corollary 1 All the three semigroups S −{0′}, S1, S2 are ordered Abelian semigroups with subtrac-
tion, i.e. for (a, b), (c, d) ∈ Si, (a, b) < (c, d) there exist d-pair (e, f) in Si such that (a, b) ⊕ (e, f) =
(c, d).

The statement follows part (iii) from the previous theorem.

A generalization of a notion of the Dempster’s semigroup is described in [18], see also [12]. The
resulting algebraic structure is called a dempsteroid. It has a similar relation to the Dempster’s
semigroup as OAG has to PP or MC.

Definition 4 A dempsteroid is an algebra D = (D,⊕,ª, o, o′,≤) satisfying the following:

1. (D,⊕, o,≤) is an ordered commutative semigroup with o as a neutral element,

2. ª(ªx) = x,

ª(x⊕ y) = (ªx) ⊕ (ªy) for each x, y ∈ D,

3. o ≤ o′,

4. for each x ∈ D: o ≤ x ≤ o′ iff x ⊕ o′ = o′ iff x = ªx, the set of all x satisfying any of
these conditions is denoted by S.

5. for each x, y ∈ S such that x ≤ y there exists z ∈ S such that x⊕ y = z (subtraction in S).

Let us define mappings h and f on dempsteroid D: h(x) = x⊕ o′, f(x) = x⊕ (ªx) and let us denote
G the set G = {x⊕ o′ : x ∈ D}.
Definition 5 The standard dempsteroid D0 = (D0,⊕,−, 0, 0′,≤) is the dempsteroid defined by the
Dempster’s semigroup, by the operation −, and by the ordering ≤ , see definition 3.
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In order to use dempsteroids in uncertain information processing, it is necessary to enrich the
defined algebraic structures with extremal elements:

Definition 6 An extended dempsteroid D+ = (D ∪ {⊥,>},⊕,ª, o, o′,≤) is an algebraic structure
resulting from taking a dempsteroid and adding extremal elements ⊥,> in the following way:

x⊕⊥ = ⊥ and x⊕> = > for all x ∈ D,
ª⊥ = > and ª> = ⊥,
⊥ ≤ x ≤ > for all x ∈ D.

For the standard dempsteroid let us define ⊥ = (0, 1), > = (1, 0).

4 The Disjunctive Dempster’s semigroup

Let us turn our attention to an algebra of belief functions on a binary frame of discernment with
the disjunctive rule of combination ∪©. As ∪© is a commutative and associative operation, see lemma
bellow, we can speak about an Abelian semigroup again.

Because of the different nature of the operation, 0′ = ( 1
2 , 1

2 ) does not play the analogical role as
in the case of the (standard) Dempster’s semigroup (0′ is not as idempotent). The other idempotent
0 = (0, 0) of the Dempster’s semigroup is idempotent again, but it is not neutral element in this case.
To obtain a neutral element we add to D0 a technical pair 1 = (1, 1) which is not a d-pair (it does
not correspond to any basic belief assignment). Analogically, it is useful to consider all pairs (a, a) for
a ≥ 1 (or for all a ≥ 0, where (a, a) for 1

2 < a < 1 do not play any important role in the presented
theory).

Lemma 3 The disjunctive rule of combination (the operation ∪©) is commutative and associative.

Proof: In a general case we have: (m1 ∪©m2)(A) =
∑

X∪Y =A m1(X)m2(Y ) =
∑

X∪Y =A m2(Y )m1(X) =
(m2 ∪©m1)(A), and
((m1 ∪©m2) ∪©m3)(A) =

∑
W∪Z=A(m1 ∪©m2)(W )m3(Z) =

∑
W∪Z=A(

∑
X∪Y =W m1(X)m2(Y ))m3(Z) =∑

W∪Z=A

∑
X∪Y =W m1(X)m2(Y )m3(Z) =

∑
W∪Z=A&X∪Y =W m1(X)m2(Y )m3(Z) =∑

X∪V =A

∑
Y ∪Z=V m1(X)m2(Y )m3(Z) =

∑
X∪V =A m1(X)(

∑
Y ∪Z=V m2(Y )m3(Z)) =∑

X∪V =A m1(X)(m2 ∪©m3)(V ) = (m1 ∪©(m2 ∪©m3))(A).
Specially for Ω = {0, 1} the following holds: (a, b) ∪©(c, d) = (ac, bd) = (ca, db) = (c, d) ∪©(a, b), and
((a, b) ∪©(c, d)) ∪©(e, f) = (ac, bd) ∪©(e, f) = (ace, bdf) = (a, b) ∪©(ce, df) = (a, b) ∪©((c, d) ∪©(e, f)). 2

Definition 7 The disjunctive Dempster’s semigroup D ∪© = (D0 ∪ {(1, 0), (0, 1), (1, 1)}, ∪©) is the set
of all Dempster’s pairs extended by 1 = (1, 1), endowed with the operation ∪© and two distinguished
elements 0 = (0, 0) and 1 = (1, 1), where the operation ∪© is defined by

(a, b) ∪©(c, d) = (ac, bd). (4.1)

Remark 3 (i) ∪©-sum of two d-pairs (a, b) ∪©(c, d) is defined for all d-pairs from D ∪©.
(ii) 0 = (0, 0) is not a neutral element in D ∪© ((0, 0) ∪©(a, b) = (0a, 0b) = (0, 0)),
(iii) 0′ = ( 1

2 , 1
2 ) is not idempotent in D ∪© (( 1

2 , 1
2 ) ∪©(a, b) = (a

2 , b
2 )).

Remark 4 Analogically to the Dempster’s semigroup, we can simply derive expressions of disjunctive
rule for Bayesian d-pairs (i), simple d-pairs with the same (ii) and different (iii) focal elements, and
for d-pairs such that a = b (iv), from the basic form of the rule.
(i) (a, 1− a) ∪©(c, 1− c) = (ac, (1− a)(1− c)),

(ii) (a, 0) ∪©(c, 0) = (ac, 0),
(0, b) ∪©(0, d) = (0, bd),

(iii) (a, 0) ∪©(0, d) = (0a, 0d) = (0, 0),
(iv) (a, a) ∪©(c, c) = (ac, ac).

Definition 8 For (a, b) ∈ D ∪© we define
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−(a, b) = (b, a),

u(a, b) = (a, b) ∪©( 1
a+b ,

1
a+b ) = ( a

a+b ,
b

a+b ),

u1(a, b) = a
a+b ,

v(a, b) = (a, b) ∪©(b, a) = (ab, ab).

For (a, b), (c, d) ∈ D ∪© we further define
(a, b) ≤ ∪© (c, d) iff u1(a, b) < u1(c, d) or if u1(a, b) = u1(c, d) and a ≤ c.

(a,b)

(b,a)
u(a,b)

(0,1)

b a

b

0
(0,0) (1,0)

1

u(b,a)

a

(1,1)

v(b,a)

Figure 4.1: Disjunctive Dempster’s semigroup The homomorphism u is, in this representation,
a projection to group G along the straight lines running through the point (0, 0). All Dempster’s pairs
lying on the same hyperbole are, by the homomorphism v, mapped to the same d-pair in semigroup S.

Remark 5 u(a, b) is defined on (D0 −−{(0, 0)}) ∪ {⊥,>}, i.e. it is not defined u(0, 0) which should
be ( 0

0 , 0
0 ).

u is equal to identity on G, u(a, 1− a) = ( a
a+1−a , 1−a

a+1−a ) = (a, 1− a).

Lemma 4 Let x, y (or (a, b), (c, d)) be elements of the disjunctive Dempster’s semigroup. The follow-
ing holds:

(o) 1 = (1, 1) is neutral element in D ∪©, while 0 = (0, 0) is an absorbing idempotent there, ⊥ = (0, 1)
and > = (1, 0) are idempotents which are neither neutral nor absorbing in

(i) −(x ∪©y) = −x ∪©− y (i.e. −((a, b) ∪©(c, d)) = (b, a) ∪©(d, c)),

(ii) −(−x) = x (i.e. −(−(a, b)) = (a, b)),

(iii) −x is not an inverse to x, i.e. the equation (a, b) ∪©(c, d) = (1, 1) has no solution in D ∪© for
(a, b) 6= (1, 1),

(iv) u(x) = 0′ if and only if 0 6= x = −x if and only if 0 < x ≤ 0′ if and only if x ∈ S − {0},
(v) x ∪©> = (p1(x), 0), i.e. (a, b) ∪©(1, 0) = (p1(a, b), 0) = (a, 0),

x ∪©⊥ = (0, p2(x)), i.e. (a, b) ∪©(0, 1) = (0, p2(a, b)) = (0, b),
projection.
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Proof: (o): (a, b) ∪©(1, 1) = (1a, 1b) = (a, b),
(0, 0) ∪©(0, 0) = (0 · 0, 0 · 0) = (0, 0), (a, b) ∪©(0, 0) = (0a, 0b) = (0, 0);
(1, 0) ∪©(1, 0) = (1 · 1, 0 · 0) = (1, 0), (a, b) ∪©(1, 0) = (1a, 0b) = (a, 0),
(0, 1) ∪©(0, 1) = (0 · 0, 1 · 1) = (0, 1), (a, b) ∪©(0, 1) = (0a, 1b) = (0, a);
(i): −((a, b) ∪©(c, d)) = −(ac, bd) = (bd, ac) = (b, a) ∪©(d, c);
(ii): −(−(a, b)) = −(b, a) = (a, b), (the same proof as in the case of D0);
(iii): (a, b) ∪©(c, d) = (ac, bd) = (1, 1) iff ac = 1 & bd = 1 iff a = c = b = d = 1 because of
a, b, c, d ∈< 0, 1 >.
(iv): (a, b) ∪©( 1

a+b ,
1

a+b ) = ( a
a+b ,

b
a+b ) = ( 1

2 , 1
2 ) iff a

a+b = 1
2 , b

a+b = 1
2 iff 2a = a + b, 2b = a + b and

a + b 6= 0 iff a = b 6= 0;
(v): (a, b) ∪©(1, 0) = (1a, 0b) = (a, 0) = (p1(a, b), 0),
(a, b) ∪©(0, 1) = (0a, 1b) = (0, b) = (0, p2(a, b)). 2

Theorem 2

(i) The disjunctive (Dempster’s) semigroup with the relation ≤ ∪© is an ordered commutative semi-
group with the neutral element 1; where 0, ⊥, and > are all the other idempotents of it.

(ii a) The set G of Bayesian d-pairs is not closed under the operation ∪©. Hence it is not subalgebra
of D ∪© with respect the operation ∪©. ( ∪© maps back to G only the following d-pairs: ⊥ ∪©⊥ = ⊥
and > ∪©> = >, i.e. only idempotents are mapped back to ).

(ii-b) The set G with the ordering ≤ ∪© and with the operation ∪©G = ∪© ◦ u, where (a, b) ∪©G(c, d) =
u(ac, bd) = ( ac

ac+bd , bd
ac+bd ), is an ordered Abelian group G ∪©G

= (G, ∪©G,−, 0′,≤ ∪©) which is
isomorphic to the PROSPECTOR group PP (cf. [12]) and consequently, it is isomorphic to the
additive group of reals with usual ordering.

(iii) The sets S ∪ 1, S1 ∪ > and S2 ∪ ⊥ with the operation ∪© and the ordering ≤ ∪© form ordered
commutative semigroups with neutral elements (1, 1), (1, 0), or (0, 1) respectively. S ∪ 1 is
isomorphically embeddable4 and S1 ∪ > and S2 ∪ ⊥ are isomorphic to the negative cone of
the extended (with 0) multiplicative group of positive reals.
Consequently they are isomorphic to the negative cone of the additive group of reals with usual
ordering and to the negative cone of the PROSPECTOR group PP as well.

(iv a) The mapping u is not a homomorphism of the disjunctive Dempster’s semigroup onto its subal-
gebra G.

(iv-b) The mapping u is an ordered homomorphism of the disjunctive Dempster’s semigroup onto group
G ∪©G

= (G, ∪©G,−, 0′,≤ ∪© (i.e. onto PP), which isa subset of D ∪©.

(v) The mapping v is a homomorphism of the disjunctive Dempster’s semigroup onto its subsemi-
group S (but it is not an ordered homomorphism).

Proof: (i): a, b, c, d ∈ [0, 1], thus ac, bd ∈ [0, 1], ac ≤ a, c and bd ≤ b, d for all a, b, c, d ∈ [0, 1], thus
ac + bd ≤ a + b, c + d ≤ 1

2 , hence D ∪© is closed with respect to ∪©. Associativity and commutativity
follow properties of ∪©. Neutral element 0 and idempotency of 0′ follow (o) from the previous lemma.
(a, b) ∪©(a, b) = (aa, bb) = (a, b) iff aa = a, bb = b iff a, b ∈ {0, 1}, thus there are just four idempotents
0, 1, ⊥, and >, (a, b) ∪©(1, 0) = (a, 0), hence > is neither neutral nor absorbing, similarly for ⊥.
(ii-a): (a, 1− a) ∪©(b, 1− b) = (ab, (1− a)(1− b)) = (X,Y ), X + Y = ab + 1− a− b + ab, X + Y = 1
iff 1 = 1 + 2ab− a− b iff 2ab− a = b iff a = b

2b−1 iff a = b = 0 or a = b = 1, (a > 1 for 1
2 < b < 1 and

a < 0 for 0 < b < 1
2 ).

(ii-b): ∪©G = ∪© ◦ u, where (a, b) ∪©G(c, d) = u((a, b) ∪©(c, d)) = u(ac, bd) =
( ac

ac+bd , bd
ac+bd );

4Note: ({(a, a)|0 ≤ a ≤ 1}, ∪©, 1,≤) is isomorphic to the negative cone of the extended (with 0) multiplicative group
of positive reals.
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closeness: (a, b), (c, d) ∈ D ∪©, hence (a, b) ∪©(c, d) ∈ D ∪©, thus (a, b) ∪©G(c, d) = u((a, b) ∪©(c, d)) ∈ G, i.e.
∪©G maps D ∪© to G, hence G ⊂ D ∪© is closed with respect to ∪©G,
commutativity: (c, d) ∪©G(a, b) = u(ca, db) = ( ca

ca+db ,
db

ca+db ) = ( ac
ac+bd , bd

ac+bd ) = (a, b) ∪©G(c, d),

associativity: ((a, b) ∪©G(c, d)) ∪©G(e, f) = (
ace

ac+bd
ace

ac+bd + bdf
ac+bd

,
bdf

ac+bd
ace

ac+bd + bdf
ac+bd

) =

( ace
ace+bdf , bdf

ace+bdf ) = (
a ce

ce+df
ace

ce+df + bdf
ce+df

,
b df

ce+df
ace

ce+df + bdf
ce+df

) = (a, b) ∪©G((c, d) ∪©G(e, f)),

neutral element: (a, 1− a) ∪©G( 1
2 , 1

2 ) = (
a
2

a
2 + 1−a

2
,

1−a
2

a
2 + 1−a

2
) =

( a
a+1−a , 1−a

a+1−a ) = (a, 1− a),

inverse: (a, 1− a) ∪©G(1− a, a) = ( a(1−a)
a(1−a)+(1−a)a , (1−a)a

(1−a)a+a(1−a) = ( 1
2 , 1

2 );
An isomorphism from G to PP is the projection p1(a, 1− a) = a:
p1((a, 1 − a) ∪©G(b, 1 − b)) = p1( ab

ab+(1−a)(1−b) ,
(1−a)(1−b)

ab+(1−a)(1−b) ) = ab
ab+(1−a)(1−b) = a ⊕PP b = p1(a, 1 −

a)⊕PP p1(b, 1− b);
p1(−(a, 1− a)) = p1(1− a, a) = 1− a = −PP (a) = −PP (p1(a, 1− a));
p1(0′) = p1( 1

2 , 1
2 ) = 1

2 = 0PP ;
(a, 1− a) ≤ (b, 1− b) iff u1(a, 1− a) ≤ u1(b, 1− b) iff p1(a, 1− a) ≤ p1(b, 1− b), hence p1 is an ordered
isomorphism.
(iii): Commutativity and associativity follow properties of ∪© in all the three cases. Ordered isomorh-
pisms onto the positive cone of (Re>0

m )+ = (Re>0 ∪ {0,∞}, ·, 1
x , 1,≤), (i.e. ([0, 1], ·, 1/x, 1,≤)), are

the following projections p1(a, a) = a (p1(a, 0) = a and p2(0, a) = a) for S (S1 and S2) respectively.
Proofs are analogous to the case (ii-b).
S ∪ {(1, 1)}:
(a, a) ∪©(b, b) = (ab, ab) ∈ S ∪ {(1, 1)}, (0 ≤ a, b ≤ 1 hence 0 ≤ ab ≤ 1), i.e. S ∪ {(1, 1)} is closed with
respect to ∪©,
(a, a) ∪©(1, 1) = (a, a) — neutral element (1, 1) — isomorphic to 1 ∈ Re>0

m ,
(a, a) ∪©( 1

a , 1
a ) = (1, 1) — inverse which is isomorphic to an element 1

a of the positive cone of the group
Re>0

m , i.e. outside of S ∪ {(1, 1)},
(a, a) ∪©(0, 0) = (0, 0) — absorbing element — (0, 0) is isomorphic to an extremal element 0 from
(Re>0

m )+.
S1 ∪ {(1, 0)}:
(a, 0) ∪©(b, 0) = (ab, 0) ∈ S1 ∪ {(1, 0)} — closeness with respect to ∪©,
(a, 0) ∪©(1, 0) = (a, 0) — neutral element (1, 0),
(a, 0) ∪©( 1

a , 0) = (1, 0) — inverse ( 1
a , 0) outside of S ∪ {(1, 0)},

(a, 0) ∪©(0, 0) = (0, 0) — absorbing element (0, 0).
S2 ∪ {(0, 1)}:
(0, a) ∪©(0, b) = (0, ab) ∈ S2 ∪ {(0, 1)} — closeness with respect to ∪©,
(0, a) ∪©(0, 1) = (0, a) — neutral element (0, 1),
(0, a) ∪©(0, 1

a ) = (0, 1) — inverse (0, 1
a ) outside of S ∪ {(0, 1)},

(0, a) ∪©(0, 0) = (0, 0) — absorbing element (0, 0).
(iv a): We know from (ii-a) that G is not closed with respect to the operation ∪©, hence it is not
subalgebra of D ∪©,
moreover: u((a, b) ∪©(c, d)) = u(ac, bd) = ( ac

ac+bd , bd
ac+bd );

while u(a, b) ∪©u(c, d) = ( a
a+b ,

b
a+b ) ∪©( c

c+d , d
c+d ) = ( ac

(a+b)(c+d) ,
bd

(a+b)(c+d) ) =
( ac
(ac+bd+ad+bc) ,

bd
(ac+bd+ad+bc) );

(iv b): u((a, b) ∪©(c, d)) = u(ac, bd) = ( ac
ac+bd , bd

ac+bd );
u(a, b) ∪©Gu(c, d) = ( a

a+b ,
b

a+b ) ∪©G( c
c+d , d

c+d ) =

(
ac

(a+b)(c+d)
ac

(a+b)(c+d)+
bd

(a+b)(c+d)
,

bd
(a+b)(c+d) )

ac
(a+b)(c+d) , bd

(a+b)(c+d)
) = ( ac

ac+bd , bd
ac+bd ) = u((a, b) ∪©(c, d));

(v): v((a, b) ∪©(c, d)) = v(ac, bd) = (ac, bd) ∪©(bd, ac) = (acbd, acbd);
v(a, b) ∪©v(c, d) = ((a, b) ∪©(b, a)) ∪©((c, d), ∪©(d, c)) = ((ab, ab)) ∪©((cd), (cd)) =
(acbd, acbd) = v((a, b) ∪©(c, d)). 2
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Note: ad (ii): A mapping p1(a, a−1) = a is the ordered isomorphism of G onto the PROSPECTOR
group PP on interval (0, 1),
ad (iii): 1 is the greatest element of the semigroups; they are extended semigroup (with the least and
absorbing element 0). A mapping p1(a, a) = a is the ordered isomorphism of S ∪ {(1, 1)} onto the
negative cone of the extended multiplicative group of positive reals, a mapping p1(a, 0) = a is the
ordered isomorphism of S1 ∪ {(1, 0)} onto the same semigroup (the negative cone of (Re>0

m )+, i.e.
([0, 1], ·, 1,≤)), while p2(0, b) = b is the ordered isomorphism of S2 ∪ {(0, 1)} to the negative cone of
(Re>0

m )+.
ad (iv): u-preimages of a d-pair (a, 1− a) lie on the straight line running through the pairs (a, 1− a)
and (0, 0), i.e. u−1(a, 1− a) is the intersection of this line with D0.
ad (v): Pairs with the same v-image v(a, b) lie on an hyperbole running through pairs (a, b), (b, a),
and (

√
ab,
√

ab), hence v−1(f(a, b)) is the intersection of this hyperbole with D0.

Using the theorem, see (iv) and (v), we can see that the disjunctive rule of combination is ef-
fected ’per u-lines and v-hyperboles, and analogically to the conjunctive case we can express (a ∪©b) ∈
u−1(u(a) ∪©u(b)), and (a ∪©b) ∈ v−1(v(a) ∪©v(b)), hence we obtain the following equation:

(a ∪©b) = u−1(u(a) ∪©u(b)) ∩ v−1(v(a) ∪©v(b)). (4.2)

Remark 6 (i) We can extend G with {⊥,>}, ⊥, > are extremal absorbing elements of G+.
(ii) (a, b) ∪©G> = >,
(iii) (a, b) ∪©G⊥ = ⊥,
(iv) ⊥ ∪©G> = not defined. Despite, of ⊥ ∪©> is defined and equal to 0, ∪©G is not defined because u(0)
is not defined.

Proof: (ii): (a, b) ∪©G> = u((a, b) ∪©(1, 0)) = u(a, 0) = ( a
a+0 , 0

a+0 ) = (1, 0) = >,
(iii): (a, b) ∪©G⊥ = u((a, b) ∪©(0, 1)) = u(0, a) = ( 0

a+0 , a
a+0 ) = (0, 1) = ⊥,

(iv): ⊥ ∪©G> = u((0, 1) ∪©(1, 0)) = u(0, 0) = ( 0
0+0 , 0

0+0 ) ... it is not defined,
(i): for all 0 < a < 1 we have: u(0, 1) = (0, 1) < (a, 1 − a) = u(a, 1 − a) < (1, 0) = u(1, 0), the rest
follows the previous proofs.

2

Lemma 5 Let x, y, z (or (a, b), (c, d), (e, f)) be elements of disjunctive Dempster’s semigroup. It holds
the following:
(i) x ∪©z < y ∪©z for x < y,
(ii) if x < y and u(x) = u(y) then v(x) < v(y),
(iii) κ(a, b) = (u(a, b), v(a, b)) is an one-to-one mapping of D ∪© − (S1 ∪ S2) into G × S but not onto
G× S.

Remark 7 Unlike in the case of the conjunctive Demspter’s semigroup, z can be an element of G in
the case of the Dempster’s disjunctive semigroup, see (i). (In the case of the conjunctive Dempster’s
semigroup z /∈ G or we must use ≤ instead of <.)
Note that κ-image of S1 ∪ S2 is vacuous belief function 0 = (0, 0). As we do not investigate automor-
phisms of the Dempster’s disjunctive semigroup in this text, we do not formulate any analogy of the
second part of Lemma 2 (iii) here.

Proof: (i): Let us denote x = (x1, x2), y = (y1, y2) z = (z1, z2). x < y iff u(x) < u(y) or u(x) =
u(y) & x1 < y2. If u(x) < u(y) then u(x ∪©z) = u(x) ∪©u(z) < u(y) ∪©u(z) = u(y ∪©z). If u(x) =
u(y) & x1 < y1 then u(x ∪©z) = u(x) ∪©u(z) = u(y) ∪©u(z) = u(y ∪©z) and p1(x ∪©z) = x1z1 < y1z1 =
p1(y ∪©z).
(ii): If x < y and u(x) = u(y) then x1 < y1 and also x2 < y2 because x and y lie on the same
straight line going through (0, 0) and u(x) = u(y), hence v(x) = (x1, x2) ∪©(x2, x1) = (x1x2, x1, x2) <
(y1y2, y1y2) = y ∪©(−y) = v(y).
(iii): A mapping to G × S is trivial. Let us suppose a hyperbole hyp such that its intersection vhyp

with straight line x = y lies inside S. Let us denote u+
hyp > u−hyp its intersection with G. If we take

any u+
hyp < ui ≤ 1 and any vhyp < vj < 1

2 then (ui, vj) has no κ-preimage in D ∪© − (S1 ∪ S2). 2
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Corollary 2 Semigroups S1∪>, S2∪⊥ are extended ordered Abelian semigroups with subtraction, i.e.
for (a, b), (c, d) ∈ Si, (a, b), (a, b) > (c, d) there exist d-pair (e, f) in Si such that (a, b) ∪©(e, f) = (c, d).

Remark 8 (i) Note that there is inequality (a, b) > (c, d) here, while there is (a, b) < (c, d) in Lemma
2. It is because S1 ∪ > and S2 ∪ ⊥ are negative cones of the corresponding Abelian group in the
disjunctive case.
(ii) To say an analogy about S we need to take all (a, a) for 0 ≤ a ≤ 1. (S ∪ 1 is not enough here.)

5 A comparison of the disjunctive Dempster’s semigroup with the standard
(conjunctive) one

Both the algebraic structures have a lot of similarities:
Both of them are ordered Abelian semigroups with a neutral element.
There is the same operation −, which is not inverse in both cases.
Both the structures have subsemigroups S, S1, S2 respectively S ∪ 1, S1 ∪ >, S2 ∪ ⊥ with neutral
elements.
Both of them have a OAG defined on G.
Both of them have a surjective homomorphism D0 −→ G.
Both of them have a surjective homomorphism D0 −→ S.
Both the semigroup operations ⊕ and ∪© are expressable using these homomorphisms, their preimages
and operations restricted to S and G.

Differences:
⊕ is not defined for >⊕⊥, while ∪© is defined on the whole extended D+

0 ∪ {(1, 1)}.
0 is a neutral element in D0, while it is an absorbing element in D ∪©.
Extremal elements are not absorbing in D ∪©.
The neutral element 1 = (1, 1) of D ∪© is out of D0.
0′ = ( 1

2 , 1
2 ) is not an idempotent of D ∪©.

The homomorphism u is not defined for 0 = (0, 0).
If we add 1 = (1, 1) into D0 we obtain a new absorbing element, where (a, 1 − a) ⊕ 1 is not defined
for all (a, 1− a) ∈ G.
G ∪©G

is not a subalgebra of D ∪©.

The pricipal is the following.
Both combinations ⊕ and ∪© of two elements (d-pairs) ≥ 0′ (or two ones ≤ 0) are on homomorphic

straight lines further from S (than those, which contain the original elements (d-pairs)). We can
reformulate this as that the certainty which is represented by belief functions is increased by both
combining rules ⊕ and ∪©.

⊕ combination of any two elements (d-pairs) is on an ellipse further from 0, i.e. vagueness is
decreased by the Dempster’s rule ⊕, while ∪© combination of of any two elements is on a hyperbole
closer to 0, i.e. vagueness is increased by the disjunctive rule ∪©.

S⊕ = (S,⊕, 0,≤) is o-isomorphic to a positive cone of OAGs, while S ∪© = (S ∪ {1}, ∪©, 1,≤) is o-
isomorphic to a negative cone of OAGs (ordered such that 0 ≤ 0′). In another words, inverse elements
of S in a group defined by S⊕ are in {(a, a)|a ≤ 0}. While inverse elements of S in a group defined
by S ∪© are in {(a, a)|a ≥ 1}.

6 Impact to decision making

Summarizing the results of comparison of the disjunctive Dempster’s semigroup with the standard
(conjunctive) one, we obtain the following originally surprising theorem:

Theorem 3 The groups G⊕ = (G,⊕,−, 0′,≤) and G ∪©G
= (G, ∪©G,−, 0′,≤ ∪©) are identical; espe-

cially x⊕ y = x ∪©Gy for all x, y ∈ G. (The same holds also for G+
⊕ and G+

∪©G
.)
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Proof: G is same in G⊕ and G ∪©G
;

(a, 1− a)⊕ (b, 1− b) = (1− (1−a)(1−b)
1−(a(1−b)+(b(1−a)) , 1− ab

1−(a(1−b)+(b(1−a)) ) =

( 1−(a−ab+b−ab)−(1−a−b+ab)
1−(a−ab+b−ab) , 1−(a−ab+b−ab)−ab

1−(a−ab+b−ab) ) = ( ab
1−a−b+2ab ,

1−a−b+ab
1−a−b+2ab ) =

( ab
ab+(1−a)(1−b) ,

(1−a)(1−b)
ab+(1−a)(1−b) ),

∪©G = ∪© ◦ u :
(a, 1− a) ∪©G(b, 1− b) = u((a, 1− a) ∪©(b, 1− b)) = u((ab, (1− a)(1− b)) =
( ab

ab+(1−a)(1−b) ,
(1−a)(1−b)

ab+(1−a)(1−b) );
hence x⊕ y = x ∪©Gy for all x, y ∈ G, this holds also for extremal elements:
(a, 1 − a) ⊕ (1, 0) = (1, 0), (a, 1 − a) ∪©G(1, 0) = u(a, 0) = (a

a , 0
a ) = (1, 0), analogically for (0, 1),

(1, 0)⊕ (0, 1) is not defined, (1, 0) ∪©G(0, 1) = u((1, 0) ∪©(0, 1)) = u(0, 0), and it is also not defined;
the operation ’−’ and 0′ are same for both G⊕ and G ∪©G

;
(a, 1− a) ≤ (b, 1− b) iff h1((a, 1− a)) < h1((b, 1− b)) or if h1((a, 1− a)) = h1((b, 1− b)) and a ≤ b

iff 1−(1−a)
2−(a+1−a) = a

1 < b
1 = 1−(1−b)

2−(b+1−b) or a = b and a ≤ b iff a ≤ b;
(a, 1− a) ≤ ∪© (b, 1− b) iff u1((a, 1− a)) < u1((b, 1− b)) or if u1((a, 1− a)) = u1((b, 1− b)) and a ≤ b
iff a

a+1−a = a < b = b
b+1−b or a = b and a ≤ b iff a ≤ b;

hence (a, 1 − a) ≤ (b, 1 − b) iff a ≤ b iff (a, 1 − a) ≤ ∪© (b, 1 − b) for all a, b ∈ [0, 1], i.e. x ≤ y iff
p1(x) ≤ p1(y) iff x ≤ ∪© y for all x, y ∈ G ∪ {(0, 1), (1, 0)}.
Thus we have G⊕ is just the same as G ∪©G

, and G+
⊕ is the same as G+

∪©G
.

Corollary 3 It holds that:

h(a⊕ b) = h(a)⊕ h(b) = h(a) ∪©Gh(b)
a ∪©Gb = u(a ∪©b) = u(a) ∪©Gu(b) = u(a)⊕ u(b)

From the point of view of decision making, the difference between ⊕ and ∪© is given by their
homomorphic projections h and u from D0 onto G. (There is no difference on G because it holds
h(x) = u(x) = x for all x ∈ G).

The theorem and its corollary express the importance of projection of D0 onto G from the point
of view of decision making. There are two homomorphic projections h and u (homomorphic with
respect to operations ⊕ and ∪©). The another such a projection is the pignistic transformation defined
in Transferable Belief Model (TBM), see e.g. [16]. Such projections are useful for decision making
using belief functions. Hence, it would be an interesting and useful task to make a comparative study
of these projections.

7 Conclusion

A new algebraic structure — the disjunctive Dempster’s semigroup — is defined on a binary frame of
discernment and analyzed in this text. It is compared with the standard Dempster’s semigroup. The
high principal importance of homomorphic projections of general belief (d-pairs) onto Bayesian ones
was shown. And consequently great importance, from the point of view of decision making, of general
Bayesian projections was mentioned.

8 Perspectives for future research

The present research can continue with defining and studying of disjunctive analogy of dempsteroids,
i. e. with algebraic generalization of the notion of the disjunctive Dempster’s semigroup, further with
a disjunctive analogy of Lemma 2 (iii), and with a research of automorphisms and endomorphisms of
the disjunctive Dempster’s semigroup, analogically to the study of the standard conjunctive case, see
[1, 2, 3, 4, 5, 6].

Moreover there are the following other fields for future research.
An investigation of algebraic structures related to combination of belief functions on general n-

element frames of discernment.
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A comparative study of Bayesian projections which could be motivated both by this algebraic anal-
ysis and by looking for a combination of belief functions which commutes with refinement coarsening,
see [8].

An algebraic study of subjective logic by Jøsang [14] and the comparison of the algebraic structure
given on a binary frame of discernment by Jøsang’s Consensus operator (an algebraisation of his
Opinion space) with both the standard and the disjunctive Dempster’s semigroup. This topic is just
under development.
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narová, ed., Proc. of 4th Czech-Japan Sem. on Data Analysis and Decision Making under Uncer-
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